Paper Class

- XII

Subject - MATHEMATICS

TIME 3 HRS

SECTION A (ANSWER Q1. AND ANY FIVE)

Question 1

1. a) If $A=\left[\begin{array}{ll}x & 0 \\ 1 & 1\end{array}\right] \&$.. $B=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ and $A^{2}=B$, find x.
b) Evaluate $: \int \frac{e^{x}(1+\tan x) d x}{\cos x}$
c) Prove that for an element ' a ' from Boolean algebra, $\mathrm{a} . \mathrm{a}=\mathrm{a}$.
d) If $(\cos x)^{y}=(\sin y)^{x}$, find $\frac{d y}{d x}$.

$$
\left\lfloor\frac{\log \sin y+y \tan x}{\log \cos x-x \cot y}\right\rfloor
$$

e) Evaluate $\int_{0}^{\pi / 2} \frac{e^{\sin x}}{e^{\sin x}+e^{\cos x}} d x$
f) Find the equation of the tangent to $x^{2}=12 y$ which is perpendicular to the line $3 x+y=0$.
g) The probability of a male birth is 0.52 . if a woman has three children, what is the probability that at least two are boys?
h) Evaluate $\underset{x \rightarrow 0+}{\operatorname{Lt}}(1+\sin x)^{\cot x}$.
i) Express $\frac{1+\cos A+i \sin A}{\sin A+i+i \cos A}$ in A+iB form.
j) Solve the differential equation: $x d y-y d x+y^{2} d x=0$. $[C y=x(y-1)]$

Question 2

a) Using the properties prove that, $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$.
b) If $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ prove that $[\mathrm{f}(\mathrm{x})]^{-1}=\mathrm{f}(-\mathrm{x})$

Question 3

a) Solve $\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1} \frac{8}{31}$.
b) Draw the circuit: $\left(a b c+a b c^{\prime}+a b^{\prime} c+a^{\prime} b c\right)$. Simplify it by the laws of Boolean. Construct the simplified circuit and show that when any two switches are on the lights are on.
[ab+bc+ca]

Question 4

a) Find the equation of the ellipse whose foci are at $(\pm 2,0)$ and whose latus rectum is 6 .
b) Find the points on $y=x^{2}-2 x$, where the tangent to the curve is parallel to the chord joining $(1,-1)$ and $(3,3)$ by the help of LMVT.

Question5

a) If $\log y=\cos ^{-1} x$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=y$.
b) A large window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 metres find the dimensions of the rectangle that will produce the largest area of the window.

$$
[12 /(6-\sqrt{ } 3),(18-6 \sqrt{ } 3) /(6-\sqrt{ } 3)]
$$

Question 6

a) There are 3 urns X, Y, Z. which contains 4 red, 3 black and 3 red, 2 black and 2 red, 3 black balls resp. Two ball are drawn from X and one from anyone of Y or Z. Find the probability that atleast one black ball is drawn.[6/7]
b) In a town of 6000 people, 1200 are over 50 yrs old and 2000 are female. It is known that 30% of the female are over 50 years. What is the probability that an individual from the town is either female or over 50 yrs ? [13/30]

Question 7

a) Calculate Karl Pearson's coefficient of correlation between Accounts and Mathematics marks:

Accounts	18	40	23	32	27	19	38	40
Mathematics	22	0	17	8	13	21	2	0

b) In the estimation of regression equation of X and Y the following results were obtained:

$$
\begin{equation*}
\bar{X}=90, \bar{Y}=70, N=10, \sum(X-\bar{X})^{2}=6360, \sum(Y-\bar{Y})^{2}=2860, \sum(X-\bar{X})(Y-\bar{Y})=3900 \tag{21}
\end{equation*}
$$

Calculate the value of Y when $X=10$ by using the suitable regression equation.

Question 8

a) Evaluate $\int \frac{d x}{1-2 \sin x} \quad \quad\left[\frac{1}{2 \sqrt{2}} \log \left|\frac{\tan x / 2-2-\sqrt{3}}{\tan x / 2-2+\sqrt{3}}\right|+C\right\rfloor$
b) Calculate the area bounded by the curve $y=x-3 \sqrt{x}$ and the x axis.

Question 9

a) If n be a positive integer, prove that $(1+i)^{n}+(1-i)^{n}=2^{\frac{n+2}{2}} \cos \frac{n \pi}{4}$
b) Solve: $\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x$.
$\left[y \sec x=x^{2} \sec x+C\right]$.

SECTION B (ANY TWO)

[2x10 =20 marks]

Question 10

a) Find the cartesian and vector equations of a line which passes through the point $(1,2,3)$ and is parallel to the

$$
\text { line } \frac{-x-2}{1}=\frac{y+3}{7}=\frac{2 z-6}{3} . \quad\left[\frac{x-1}{-2}=\frac{y-2}{14}=\frac{z-3}{3}, \hat{i}+2 \hat{j}+3 \hat{k}+\lambda(-2 \hat{i}+14 \hat{j}+3 \hat{k})\right]
$$

b) Find the plane that meets the coordinate axes in points A, B and C and centroid of $\triangle A B C$ is $(\alpha, \beta, ¥)$.

$$
[x / \alpha+y / \beta+z / \gamma=3]
$$

Question 11

a) Find the area of the triangle whose vertices are given by $\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}-3 \hat{k}$ and

$$
\begin{equation*}
\vec{c}=4 \hat{i}-3 \hat{j}+\hat{k} \tag{41.25}
\end{equation*}
$$

b) Using vectors prove that $\sin (A+B)=\sin A \cos B+\sin B \cos A$.

Question 12

a) The probability that, on joining a professional college, a student will successfully complete the course of studies is $3 / 5$. Determine the probability that out of five students joining (i) none and (ii) at least two will successfully complete the course.
[32/3125,2853/3125]
b) A company has two plants to manufacture bicycles. The first and second plants manufacture 60% and 40% bicycles respectively. 80% and 90% of bicycles are rated as standard quality at first and second plants
respectively. A bicycle of standard quality was found. Find the probability that it come from second plant. [0.36]

SECTION C (ANY TWO)

> [2x10 =20 marks]

Question 13

a) A bill for Rs 7650 was drawn on 8 March, 2003 at 7 months. It was discounted on 18 May, 2003 and the holder of the bill received Rs 7497. What rate of interest did the banker charge? [5\%]
b) Solve the following linear programming problem graphically: Minimize $Z=x-5 y+20$, subject to the constraints $\mathrm{x}-\mathrm{y} \geq 0,-\mathrm{x}+2 \mathrm{y} \geq 2, \mathrm{x} \geq 3, \mathrm{y} \leq 4, \mathrm{x}, \mathrm{y} \geq 0 . \quad[4,4,4]$

Question 14

a) A company set aside a certain sum for a reserve fund on quarterly basis to enable it to pay off a debenture issue of Rs 239000 at the end of 10 years at 8% p.a.
[3956.95]
b) The manufacturing cost of an item consists of Rs 900 as overheads, the material cost is Rs 3 per item and the labour cost Rs $x^{2} / 100$ for x items produced. How many items must be produced to have minimum average cost?

Question 15

a) Calculate the price index number:

Commodity	\% increase in price	\% of consumption
A	81	4
B	16	12
C	10	3
D	52	7

b) Assuming a five yearly cycle, calculate the trend by the method of moving averages from the following data of industrial failures in a city: Display the actual and trend values on the same graph paper.

Year	No of failures	Year	No of failures
1982	23	1990	9
1983	26	1991	13
1984	28	1992	11
1985	32	1993	14
1986	20	1994	12
1987	12	1995	9
1988	12	1996	3
1989	10	1997	1

