ICSE Board
 Class X Mathematics
 Sample Paper 5

Time: $\mathbf{2 1}^{1 ⁄ 2}$ hrs
Total Marks: $\mathbf{8 0}$

General Instructions:

1. Answers to this paper must be written on the paper provided separately.
2. You will NOT be allowed to write during the first 15 minutes. This time is to be spent in reading the question paper.
3. The time given at the head of this paper is the time allowed for writing the answers.
4. This question paper is divided into two Sections. Attempt all questions from Section A and any four questions from Section \mathbf{B}.
5. Intended marks for questions or parts of questions are given in brackets along the questions.
6. All working, including rough work, must be clearly shown and should be done on the same sheet as the rest of the answer. Omission of essential working will result in loss of marks.
7. Mathematical tables are provided.

SECTION - A (40 Marks)
 (Answer all questions from this Section)

Q. 1
(a) Find the value of a and b if $(x-1)$ and $(x-2)$ are factors of $x^{3}-a x+b$.
(b) A point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ is reflected on the y -axis as $\mathrm{P}^{\prime}(-3,1)$

Write down the values of a and b.
$P^{\prime \prime}$ is the image of P when reflected on the x-axis.
Write down the coordinates of $P^{\prime \prime}$
$\mathrm{P}^{\prime \prime \prime}$ is the image of P when reflected on the line $\mathrm{x}=5$
Write down the coordinates of $\mathrm{P}^{\prime \prime \prime}$.
(c) The area of the base of a right circular cone is 28.26 sq. cm. If its height is 4 cm , find its volume and the curved surface area. (use $\pi=3.14$)

Q. 2.

(a) A bag contains 20 balls, of which x balls are blue. If one ball is drawn at random, find the probability of drawing a blue ball. If 10 more blue balls are put in the bag, and a ball is drawn at random then the probability of getting a blue ball is double the probability obtained before. Find x.
(b) Solve the equation: $2 y^{-4}+5 y^{-2}-3=0$
(c) In the diagram given below $\mathrm{m} \angle \mathrm{EDC}=90^{\circ}$. The tangent drawn to the circle at C makes an angle of 50° with AB produced. Find the measure of $\angle \mathrm{ACB}$.

Q. 3.

(a) Mr. Arora has two years recurring deposit account in State Bank of India and deposits Rs. 1500 per month. If he receives Rs. 37,875 at the time of maturity, find the rate of interest.
(b) If $\mathrm{m}^{\text {th }}$ term of an A.P. is $\frac{1}{\mathrm{n}}$ and $\mathrm{n}^{\text {th }}$ term is $\frac{1}{\mathrm{~m}}$, then show that the sum of the mn terms is $\frac{1}{2}(m n+1)$.
(c) Find the equation of a line passing through the point $(2,3)$ and the point of intersection of the lines $4 x-3 y=7$ and $3 x+4 y+1=0$.
Q. 4.
(a) Without using trigonometric table calculate $4 \frac{\sin 32^{\circ}}{\cos 58^{\circ}}+5 \frac{\tan 48^{\circ}}{\cot 42^{\circ}}-8 \frac{\sec 72^{\circ}}{\operatorname{cosec} 18^{\circ}}$
(b) Solve the given equation and graph the solution on the number line. $2 y-3 \leq y+1 \leq 4 y+7 ; y \in R$
(c) Calculate the arithmetic mean, correct to one decimal place, for the following frequency distribution of marks obtained in a geometry test.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	7	13	15	12	3

SECTION - B (40 Marks)
 (Answer any four questions from this Section)

Q. 5.
(a) The diameter of a metallic sphere is 6 cm . It is melted and drawn into a wire having a cross sectional diameter of 0.2 cm . Find the length of the wire.
(b) A shopkeeper buys a camera at a discount of 20% from the wholesaler, the printed price of the camera being Rs. 1,600 and the rate of sales tax is 6%. The shopkeeper sells it to the buyer at the printed price and charges tax at the same rate. Find
i. The price at which the camera can be bought
ii. The VAT paid by the shopkeeper
(c) Find the equation of the altitudes AD of the triangle whose vertices are $(7,-1)$, $(-2,8)$ and $(1,2)$.
Q. 6.
(a) Use a graph paper to solve this question.

The points $A(2,3), B(4,5)$ and $C(7,2)$ are the vertices of $\triangle A B C$.
i. Write down the co-ordinates of $A^{\prime}, B^{\prime}, C^{\prime}$ if $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, when reflected on the origin.
ii. Write down the co-ordinates of $A^{\prime \prime}, B ", C "$ if $\triangle A$ " $B^{\prime \prime} C^{\prime \prime}$ is the image of $\triangle A B C$, when reflected on the x-axis.
iii. Mention the special name of the quadrilateral $B C C$ " ${ }^{\prime \prime}$ and find its area.
(b) Factorize : $\left(a^{2}-a\right)\left(4 a^{2}-4 a-5\right)-6$
(c) The sum of three terms of a G.P. is $\frac{39}{10}$ and their product is 1 . Find the common ratio and the terms.
Q. 7.
(a) If $3 x+4 y: 4 x+7 y=5: 7$, find $x: y$.
(b) Find the matrix M, such that $-A+3 B+M=0$, where $A=\left[\begin{array}{cc}-2 & 6 \\ 5 & 8\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right]$.
(c) In the given figure, ABC is a triangle, $\mathrm{DE} \| \mathrm{BC}$ and $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{3}{2}$
i. Find out $\frac{A D}{A B}$
ii. Prove that the $\triangle A D E$ is similar to $\triangle A B C$ and write down the ratio $\frac{D E}{B C}$.
iii. Prove that $\triangle \mathrm{DEF}$ is similar to $\triangle \mathrm{CFB}$
iv. Find out the ratio of $\frac{\text { Area of } \triangle \mathrm{DFE}}{\text { Area of } \triangle \mathrm{DEC}}$

Q. 8.

(a) The following table shows the distribution of the heights of a group of students:

Height (cm)	$140-145$	$145-150$	$150-155$	$155-160$	$160-165$	$165-170$	$170-175$
No. of students	8	12	18	22	26	10	4

Use a graph sheet to draw an Ogive curve for the distribution.
Use the Ogive curve to find
i. the inter-quartile range
ii. the number of students whose height is more than 168 cm
(b) If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$, show that $x^{2}+y^{2}=1$
Q. 9.
(a) Use a rule and a pair of compasses to construct $\mathrm{m} \angle \mathrm{ABC}=75^{\circ}$. Mark a point D on BC , such that $\mathrm{BD}=5 \mathrm{~cm}$. Construct a circle to touch AB at B and also to pass through D . Measure and record its radius.
(b) Prove that: $\frac{1}{\operatorname{cosec} \theta-\cot \theta}-\frac{1}{\sin \theta}=\frac{1}{\sin \theta}-\frac{1}{\operatorname{cosec} \theta+\cot \theta}$
(c) The daily wages of 30 workers in company are distributed as follows:

Daily wages	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of workers	1	8	10	5	4	2

Draw the histogram and calculate the modal daily wage from the histogram.
Q. 10.
(a) Construct a quadrilateral ABCD in which $\mathrm{m} \angle \mathrm{BAD}=45^{\circ}, \mathrm{AD}=\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=3.6 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$.
i. Measure $\angle B C D$.
ii. Locate the point P on $B D$ which equidistant from $B C$ and $C D$.
(b) If y is the mean proportional between x and z, prove that $x y+y z$ is the mean proportional between $x^{2}+y^{2}$ and $y^{2}+z^{2}$.
(c) The angle of elevation of an airplane from a point P on the ground is 60°. After 12 seconds from the same point P, the angle of elevation of the same plane changes to 30°. If the plane is flying horizontally at a speed of $600 \sqrt{3} \mathrm{~km} / \mathrm{h}$, find the height the plane is flying at.
Q. 11.
(a) Ram wishes to start a $200 \mathrm{~m}^{2}$ rectangular vegetable garden. Since he has only 50 m of barbed wire, he fences three sides of the rectangular garden letting his house compound wall act as the fourth side of the fence. Find the dimensions of the garden.
(b) In the given figure, quadrilateral $P Q R S$ is circumscribed around a circle, find x .

(c) A straight line passes through the points $P(-1,4)$ and $Q(5,-2)$. It intersects the co-ordinate axes at point A and $B . M$ is the midpoint of the segment $A B$. Find
i. The equation of the line
ii. The co-ordinates of A and B
iii. The co-ordinates of M

Solution

SECTION - A (40 Marks)

Q. 1.
(a) Since $(x-1)$ is a factor of $x^{3}-a x+b$,

Thus, for $x=1$, we have
$(1)^{3}-a(1)+b=0$
$\Rightarrow 1-\mathrm{a}+\mathrm{b}=0$
$\Rightarrow \mathrm{a}-\mathrm{b}=1$
Also, $(\mathrm{x}-2)$ is a factor of $\mathrm{x}^{3}-\mathrm{ax}+\mathrm{b}$,
\therefore For $\mathrm{x}=2,(2)^{3}-\mathrm{a}(2)+\mathrm{b}=0$
$\Rightarrow 8-2 \mathrm{a}+\mathrm{b}=0$
$\Rightarrow 2 \mathrm{a}-\mathrm{b}=8$
Now subtracting equation (1) from equation (2), we get $\mathrm{a}=7$
Substituting $\mathrm{a}=7$ in equation (1), we have
$7-b=1$
$b=6$
$\therefore \mathrm{a}=7$ and $\mathrm{b}=6$
(b) $P(a, b) \xrightarrow{y \text {-axis }} P^{\prime}(-3,1)$
$\Rightarrow \mathrm{a}=3, \mathrm{~b}=1$
$P(3,1) \xrightarrow{x \text {-axis }} P^{\prime \prime}(3,-1)$
\therefore Co-ordinates of $P^{\prime \prime}$ are $(3,-1)$
$P(3,1) \xrightarrow{\text { Line } x=5} P^{\prime \prime}(7,1)$
And co-ordinates of $P^{\prime \prime}$ are $(7,1)$
(c)

Area of base of cone $=28.26 \mathrm{~cm}^{2}$
$\Rightarrow \pi r^{2}=28.26 \Rightarrow r^{2}=\frac{28.26}{3.14}=9 \Rightarrow r=3 \mathrm{~cm}$
Volume of the cone $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=37.68 \mathrm{~cm}^{3}$
Curved surface area of the cone $=\pi r \ell=\pi r \sqrt{r^{2}+h^{2}}=3.14 \times 3 \times \sqrt{3^{2}+4^{2}}=3.14 \times 3 \times 5=47.10 \mathrm{~cm}^{2}$

Q. 2.

(a) Since there are 20 balls out of which x are blue.

The probability of drawing a blue ball $=P($ a blue ball $)=\frac{x}{20}$
When 10 more blue balls are added, total number of balls $=20+10=30$
No. of blue balls $=x+10$
New probability of drawing a blue ball $=P($ Blue ball $)=\frac{x+10}{30}$
According to question,
$\frac{x+10}{30}=2 \times \frac{x}{20} \Rightarrow \frac{x+10}{30}=\frac{x}{10}$
Cross multiplying, we get

$$
\begin{aligned}
& 10 x+100=30 x \\
& \Rightarrow 20 x=100 \Rightarrow x=5
\end{aligned}
$$

(b) $2 y^{-4}+5 y^{-2}-3=0$

Let $\mathrm{y}^{-2}=\mathrm{x} \therefore \mathrm{y}^{-4}=\mathrm{x}^{2}$
So, $2 x^{2}+3 x+5=0 \Rightarrow(2 x-1)(x+3)=0$
$\Rightarrow \mathrm{x}=\frac{1}{2}, \mathrm{x}=-3 \Rightarrow \mathrm{y}^{-2}=\frac{1}{2} \mathrm{y}^{-2}=-3$
$\Rightarrow \frac{1}{\mathrm{y}^{2}}=\frac{1}{2}, \frac{1}{\mathrm{y}^{2}}=-3$
$\Rightarrow y^{2}=2, y^{2}=\frac{1}{-3}$
$\Rightarrow \mathrm{y}= \pm \sqrt{2} \quad\left(\mathrm{y}^{2}=\frac{1}{-3}\right.$ does not exist $)$
(c) $\angle \mathrm{EDC}=90^{\circ}$

Now, $\angle \mathrm{ABC}=\angle \mathrm{EDC}$ [exterior angle of a cyclic quadrilateral = interior opposite angle]
$\Rightarrow \angle \mathrm{ABC}=90^{\circ}$
$\angle \mathrm{CGB}=50^{\circ} \quad$ [given]
And, $\angle \mathrm{ABC}+\angle \mathrm{CBG}=180^{\circ} \quad$ [linear pair angles]
Thus, $90^{\circ}+\angle \mathrm{CBG}=180^{\circ}$
$\Rightarrow \angle \mathrm{CBG}=180^{\circ}-90^{\circ}=90^{\circ}$
Now in $\triangle \mathrm{BCG}, \angle \mathrm{CBG}+\angle \mathrm{CGB}+\angle \mathrm{BCG}=180^{\circ}$ [Angle sum property]
$\Rightarrow 90^{\circ}+50^{\circ}+\angle \mathrm{BCG}=180^{\circ} \Rightarrow 140^{\circ}+\angle \mathrm{BCG}=180^{\circ} \Rightarrow \angle \mathrm{BCG}=40^{\circ}$

Also, $\angle \mathrm{CAB}=\angle \mathrm{BCG}$ [Angle in alternate segment]
$\Rightarrow \angle \mathrm{CAB}=40^{\circ}$
And, $\angle \mathrm{CBG}=\angle \mathrm{CAB}+\angle \mathrm{ACB} \quad[$ exterior angle of a \triangle]
Thus, $90^{\circ}=40^{\circ}+\angle \mathrm{ACB}$
$\Rightarrow \angle \mathrm{ACB}=50^{\circ}$

Q. 3.

(a) Monthly deposit = Rs. 1500

Amount deposited in 2 years (24 months) = Rs. $1500 \times 24=$ Rs. 36,000
Amount received on maturity $=$ Rs. 37,875
\therefore Interest (I) = Rs. $(37,875-36,000)$
Now $n=24, P=$ Rs. 1500 and $r=$?
Equivalent principal for one month $=P \times \frac{n(n+1)}{2}$

$$
\begin{aligned}
& =\frac{1500 \times 24(24+1)}{2} \\
& =1500 \times 12 \times 25
\end{aligned}
$$

\therefore Interest (I) $=1500 \times 12 \times 25 \times \frac{r}{100} \times \frac{1}{12}$
Or $1,875=1500 \times 12 \times 25 \times \frac{r}{100 \times 12} \Rightarrow r=5 \%$
\therefore Rate of interest $=5 \%$ p.a.
(b) Let a and d respectively be the first term and the common difference of the A.P.

$$
\begin{align*}
& a+(m-1) d=\frac{1}{n} \\
& a+(n-1) d=\frac{1}{m} . \tag{i}
\end{align*}
$$

On solving (i) and (ii) we get,

$$
\begin{aligned}
& (\mathrm{m}-\mathrm{n}) \mathrm{d}=\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{~m}} \\
& \Rightarrow(\mathrm{~m}-\mathrm{n}) \mathrm{d}=\frac{\mathrm{m}-\mathrm{n}}{\mathrm{mn}} \\
& \Rightarrow \mathrm{~d}=\frac{1}{\mathrm{mn}}
\end{aligned}
$$

Therefore, $\mathrm{a}=\frac{1}{\mathrm{n}}-\frac{\mathrm{m}-1}{\mathrm{mn}}=\frac{\mathrm{m}-\mathrm{m}+1}{\mathrm{mn}}=\frac{1}{\mathrm{mn}}$

$$
\begin{aligned}
\mathrm{S}_{\mathrm{mn}} & =\frac{\mathrm{mn}}{2}\left[2 \times \frac{1}{\mathrm{mn}}+(\mathrm{mn}-1)\left(\frac{1}{\mathrm{mn}}\right)\right] \\
& =\frac{1}{2}[2+(\mathrm{mn}-1)] \\
& =\frac{1}{2}(\mathrm{mn}+1)
\end{aligned}
$$

(c) $4 x-3 y=7$
$3 x+4 y=-1$
After multiplying eq. (i) by 4 and eq. (ii) by 3 we get
$16 \mathrm{x}-12 \mathrm{y}=28$
$\Rightarrow 9 x+12 y=-3$
On adding $25 \mathrm{x}=25$
$\Rightarrow \mathrm{x}=1$
Put $x=1$, in equation $4 x-3 y=7$, we get
$\Rightarrow 4 \mathrm{x}(1-3 \mathrm{y})=7$
$\Rightarrow-3 y=7-4$
$\Rightarrow-3 y=3$
$\Rightarrow \mathrm{y}=-1$
Point of intersection $=(1,-1)$
Equation of line passing through $(2,3)$ and $(1,-1)$
$\Rightarrow \mathrm{y}-\mathrm{y}_{1}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\Rightarrow y-3=\frac{-1-3}{1-2}(x-2)$
$\Rightarrow \mathrm{y}-3=4(\mathrm{x}-2)$
$\Rightarrow \mathrm{y}-3=4 \mathrm{x}-8$
$\Rightarrow 4 \mathrm{x}-\mathrm{y}-5=0$
Q. 4.
(a) $4 \frac{\sin 32^{\circ}}{\cos 58^{\circ}}+5 \frac{\tan 48^{\circ}}{\cot 42^{\circ}}-8 \frac{\sec 72^{\circ}}{\operatorname{cosec} 18^{\circ}}$
$=4 \frac{\sin 32^{\circ}}{\sin \left(90^{\circ}-58^{\circ}\right)}+5 \frac{\cot \left(90^{\circ}-48^{\circ}\right)}{\cot 42^{\circ}}-8 \frac{\operatorname{cosec}\left(90^{\circ}-72^{\circ}\right)}{\operatorname{cosec} 18^{\circ}}$
$=4 \frac{\sin 32^{\circ}}{\sin 32^{\circ}}+5 \frac{\cot 42^{\circ}}{\cot 42^{\circ}}-8 \frac{\operatorname{cosec} 18^{\circ}}{\operatorname{cosec} 18^{\circ}}$
$=4+5-8$
$=9-8$
$=1$
(b) $2 y-3 \leq y+1 \leq 4 y+7 ; y \in R$
$\Rightarrow 2 \mathrm{y}-3-1 \leq \mathrm{y} \leq 4 \mathrm{y}+7-1$
$\Rightarrow 2 \mathrm{y}-4 \leq \mathrm{y} \leq 4 \mathrm{y}+6$
$\Rightarrow 2 \mathrm{y}-4 \leq \mathrm{y}$ and $\mathrm{y} \leq 4 \mathrm{y}+6$
$\Rightarrow \mathrm{y} \leq 4$ and $-6 \leq 3 \mathrm{y}$
$\therefore-2 \leq \mathrm{y} \leq 4$
Graphical solution is given by

(c) Drawing table and Calculating values,

Marks	x	f	$\mathrm{u}=\frac{\mathrm{x}-25}{10}$	fu
			-2	-14
$0-10$	5	7	-1	-13
$10-20$	15	13	0	0
$20-30$	25	15	1	12
$30-40$	35	12	2	6
$40-50$	45	3		$\sum \mathrm{fu}=-9$
Total		$\sum \mathrm{f}=50$		

Here, $\mathrm{a}=25, \mathrm{~h}=10, \sum \mathrm{f}=50$ and $\sum \mathrm{fu}=-9$

$$
\begin{aligned}
\therefore \text { Mean } & =(\overline{\mathrm{x}}) \\
& =\mathrm{a}+\mathrm{h} \frac{\sum \mathrm{fu}}{\sum \mathrm{f}} \\
& =25+\frac{10(-9)}{50} \\
& =25-1.8 \\
& =23.2
\end{aligned}
$$

SECTION - B (40 Marks)

Q. 5.

(a) For the sphere, $D=6 \mathrm{~cm}, \mathrm{R}=\frac{6}{2}=3 \mathrm{~cm}$

For cylindrical wire, $\mathrm{d}=0.2 \mathrm{~cm}, \mathrm{r}=\frac{0.2}{2}=0.1 \mathrm{~cm}$
Let the length of wire be xcm .
So, according to problem
Volume of cylindrical wire = Volume of sphere
$\Rightarrow \pi r^{2} h=\frac{4}{3} \pi R^{3}$
$\Rightarrow \pi \times 0.1 \times 0.1 \times \mathrm{x}=\frac{4}{3} \times \pi \times 3 \times 3 \times 3$
$\Rightarrow 0.1 \times 0.1 \times \mathrm{x}=\frac{4}{3} \times 3 \times 3 \times 3$
$\Rightarrow \mathrm{x}=\frac{4 \times 3 \times 3 \times 3}{3 \times 0.1 \times 0.1}$
$\Rightarrow \mathrm{x}=3600 \mathrm{~cm}$ or 36 m
(b)
i. Price at which the camera can be bought
$=80 \%$ of $1,600+6 \%$ of 80% of 1,600
= Rs. 1,280 + Rs. 76.80
= Rs. 1,356.80
ii. For wholesaler VAT $=6 \%$ of 1,280

$$
\text { = Rs. } 76.80
$$

For buyer VAT $=6 \%$ of 1,600

$$
\begin{aligned}
& =\frac{6}{100} \times 1,600 \\
& =\text { Rs. } 96
\end{aligned}
$$

VAT paid by the shopkeeper $=$ Rs. $96-76.80=$ Rs. 19.20
(c)

Slope of $(B C)=\frac{2-8}{1+2}=\frac{-6}{3}=-2$
Slope of (AD) $=\frac{1}{2}$
Equation of $\mathrm{AD}, \mathrm{y}=\frac{1}{2} \mathrm{x}+\mathrm{c}$
Since the altitude AD passes through the point $A(7,-1)$, we have
$-1=\frac{1}{2} \times 7+\mathrm{c}$
So,

$\Rightarrow \mathrm{c}=-1-\frac{7}{2}=\frac{-9}{2}$
Equation of AD
$\Rightarrow \mathrm{y}=\frac{1}{2} \mathrm{x}-\frac{9}{2}$
$\Rightarrow 2 \mathrm{y}=\mathrm{x}-9$
$\Rightarrow \mathrm{x}-2 \mathrm{y}-9=0$
Q. 6.
(a) Graph:

i. The coordinates of $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C^{\prime} are $(-2,-3),(-4,-5)$ and $(-7,-2)$.
ii. The coordinates of $A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ are $(2,-3),(4,-5)$ and $(7,-2)$
iii. $B C C=B "$ is a trapezium

Area of trapezium $=\frac{1}{2}\left(\mathrm{BB}^{\prime \prime}+\mathrm{CC}^{\prime \prime}\right) \times \mathrm{CM}=\frac{1}{2}(10+4) \times 3=\frac{1}{2} \times 14 \times 3=21$ sq. units
(b) Let us assume $\mathrm{a}^{2}-\mathrm{a}=\mathrm{x}$

Then the given expression is
$\left(a^{2}-a\right)\left(4 a^{2}-4 a-5\right)-6$
$=x(4 x-5)$
$=4 x^{2}-5 x-6$
$=4 x^{2}-8 \mathrm{x}+3 \mathrm{x}-6$
$=4 x(x-2)+3(x-2)$
$=(4 x+3)(x-2)$
$=\left(4\left(a^{2}-a\right)+3\right)\left(a^{2}-a-2\right) \quad[$ Substituting value of $x]$
$=\left(4 a^{2}-4 a+3\right)\left(a^{2}-a-2\right)$
$=\left(4 a^{2}-4 a+3\right)\left(a^{2}-2 a+a-2\right)$
$=\left(4 a^{2}-4 a+3\right)(a-2)(a+1)$
(c)

Let the 3 terms of the G.P. be $\frac{a}{r}$, a, ar, where r is the common ratio.
It is given that the product of the terms is 1.
Thus,
$\frac{\mathrm{a}}{\mathrm{r}} \times \mathrm{a} \times \mathrm{ar}=1$
$\Rightarrow \mathrm{a}^{3}=1$
$\Rightarrow \mathrm{a}=1$
Also, it is given that the sum of the terms is $39 / 10$. Thus,
$\frac{\mathrm{a}}{\mathrm{r}}+\mathrm{a}+\mathrm{ar}=\frac{39}{10}$
$\Rightarrow \mathrm{a}\left(\frac{1}{\mathrm{r}}+1+\mathrm{r}\right)=\frac{39}{10}$
$\Rightarrow 1 \times\left(\frac{1+\mathrm{r}+\mathrm{r}^{2}}{\mathrm{r}}\right)=\frac{39}{10}$
$\Rightarrow 10+10 r+10 r^{2}=39 r$
$\Rightarrow 10 r^{2}-29 r+10=0$
$\Rightarrow \mathrm{r}=\frac{5}{2}$ or $\frac{2}{5}$
Thus, the common ratio is $\frac{5}{2}$ or $\frac{2}{5}$.
The terms are $\frac{2}{5}, 1, \frac{5}{2}$ or $\frac{5}{2}, 1, \frac{2}{5}$.
Q. 7.
(a) Given: $\frac{3 x+4 y}{4 x+7 y}=\frac{5}{7}$

$$
\begin{aligned}
& \Rightarrow 7(3 x+4 y)=5(4 x+7 y) \\
& \Rightarrow 21 x+28 y=20 x+35 y \\
& \Rightarrow 21 x-20 x=35 y-28 y \\
& \Rightarrow x=7 y \\
& \Rightarrow \frac{x}{y}=\frac{7}{1} \\
& \Rightarrow x: y=7: 1
\end{aligned}
$$

(b) $-\mathrm{A}+3 \mathrm{~B}+\mathrm{M}=0$

$$
\Rightarrow \mathrm{M}=\mathrm{A}-3 \mathrm{~B}
$$

$$
=\left[\begin{array}{cc}
-2 & 6 \\
5 & 8
\end{array}\right]-3\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-2 & 6 \\
5 & 8
\end{array}\right]-\left[\begin{array}{cc}
3 & 6 \\
-6 & 9
\end{array}\right]
$$

$$
=\left[\left[\begin{array}{cc}
-2-3 & 6-6 \\
5+6 & 8-9
\end{array}\right]\right.
$$

$$
=\left[\begin{array}{cc}
-5 & 0 \\
11 & -1
\end{array}\right]
$$

(c)
(i) $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{3}{2}$

Let $\mathrm{AD}=3 \mathrm{x}$
Then $\mathrm{DB}=2 \mathrm{x}$

$$
\begin{aligned}
\therefore \frac{A D}{A B} & =\frac{3 x}{A D+D B} \\
& =\frac{3 x}{3 x+2 x} \\
& =\frac{3 x}{5 x} \\
& =\frac{3}{5}
\end{aligned}
$$

(ii) In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$ [Corresponding angles]
$\angle \mathrm{AED}=\angle \mathrm{ACB}$ [Corresponding angles]
$\Rightarrow \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
$\Rightarrow \frac{\mathrm{DE}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{5}$
(iii) In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{CFB}$
$\angle \mathrm{DEF}=\angle \mathrm{CBF}$ [Alternate interior angles]
$\angle \mathrm{DFE}=\angle \mathrm{CFB}$ [vertically opposite angles]
$\therefore \triangle \mathrm{DEF} \sim \Delta \mathrm{CFB} \quad$ [AA Similarity]
(iv) $\frac{\mathrm{DE}}{\mathrm{BC}}=\frac{\mathrm{DF}}{\mathrm{FC}}=\frac{3}{5}$

$$
\Rightarrow \frac{\mathrm{DF}}{\mathrm{DC}}=\frac{3}{8}
$$

$\frac{\text { Area of } \triangle \mathrm{DFE}}{\text { Area of } \triangle \mathrm{DEC}}=\frac{\frac{1}{2} \times \mathrm{DF} \times \mathrm{h}}{\frac{1}{2} \times \mathrm{DC} \times \mathrm{h}}=\frac{\mathrm{DF}}{\mathrm{DC}}=\frac{3}{8}$
Q. 8.
(a) Ogive for the distribution,

Height (in cm)	Number of students (f)	Cumulative Frequency(c.f.)
$140-145$	8	8
$145-150$	12	20
$150-155$	18	38
$155-160$	22	60
$160-165$	26	86
$165-170$	10	96
$170-175$	4	100
	$\mathrm{~N}=100$	

i. Lower Quartile,
$\mathrm{Q}_{1}=\left(\frac{\mathrm{N}}{4}\right)^{\text {th }}$ observation $=\left(\frac{100}{4}\right)^{\text {th }}$ observation $=25^{\text {th }}$ observation $=152 \mathrm{~cm}$

Upper quartile,
$\mathrm{Q}_{3}=\left(\frac{3 \mathrm{~N}}{4}\right)^{\mathrm{th}}$ observation $=\left(\frac{3 \times 100}{4}\right)^{\text {th }}$ observation $=75^{\text {th }}$ observation $=162 \mathrm{~cm}$

So, Inter Quartile Range, $\mathrm{Q}_{3}-\mathrm{Q}_{1}=162-152=10 \mathrm{~cm}$
ii. The number of students whose height is more than $168 \mathrm{~cm}=100-93=7$
b) Given, $x \sin \theta=y \cos \theta$
$x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
or $(x \sin \theta) \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$y \cos \theta \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$
$y \cos \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$
$\Rightarrow \mathrm{y} \cos \theta=\sin \theta \cos \theta$
$\Rightarrow \mathrm{y}=\sin \theta$
Put the value of y in equation (1)
$\Rightarrow \mathrm{x} \sin \theta=\sin \theta \cdot \cos \theta$
$\Rightarrow \mathrm{x}=\cos \theta$
\Rightarrow Now $x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta$
$\Rightarrow x^{2}+y^{2}=1$
Hence proved
Q. 9.
(a)

Radius OB $=2.4 \mathrm{~cm}$
(b)
$\frac{1}{\operatorname{cosec} \theta-\cot \theta}-\frac{1}{\sin \theta}=\frac{1}{\sin \theta}-\frac{1}{\operatorname{cosec} \theta+\cot \theta}$
if $\frac{1}{\operatorname{cosec} \theta-\cot \theta}+\frac{1}{\operatorname{cosec} \theta+\cot \theta}=\frac{1}{\sin \theta}+\frac{1}{\sin \theta}$
if $\frac{\operatorname{cosec}+\cot \theta+\operatorname{cosec}-\cot \theta}{(\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec}+\cot \theta)}=\frac{2}{\sin \theta}$
if $\frac{2 \operatorname{cosec} \theta}{\operatorname{cosec}^{2}-\cot ^{2} \theta}=\frac{2}{\sin \theta}$
if $\frac{2 \operatorname{cosec} \theta}{1}=2 \operatorname{cosec} \theta$
Or $2 \operatorname{cosec} \theta=2 \operatorname{cosec} \theta$
(c) The Histogram is as follows:

Steps:

i. Mark the upper corner of the rectangle with maximum frequency as A and B.
ii. Mark the inner corner of adjacent rectangles to the above rectangle as C and D.
iii. Join AC and BD to intersect at K . From K, draw KL perpendicular to x -axis meet at L.
iv. The value of L on the x-axis represents the mode.
\therefore Modal daily wage $=$ Rs 23.
Q. 10.
(a) Draw the quadrilateral ABCD .
i. Measure $\mathrm{m} \angle \mathrm{BCD}=65^{\circ}$
ii. Draw bisector of $\angle B C D$, which intersects $B D$ at P.

(b) y is the mean proportional between x and $z \Rightarrow y^{2}=x z$

To prove: $\left(x^{2}+y^{2}\right)\left(y^{2}+z^{2}\right)=(x y+y z)^{2}$

$$
\begin{aligned}
\text { L.H.S. } & =\left(x^{2}+y^{2}\right)\left(y^{2}+z^{2}\right) \\
& =\left(x^{2}+x z\right)\left(x z+z^{2}\right) \\
& =x(x+z) z(x+z) \\
& =x z(x+z)^{2} \\
& =y^{2}(x+z)^{2} \\
& =(x y+y z)^{2} \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence Proved
(c) Let the height of the plane be $=\mathrm{x} \mathrm{m}$

Speed of plane $=600 \sqrt{3} \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& =\frac{600 \sqrt{3} \times 1000}{3600} \mathrm{~m} / \mathrm{sec} \\
& =\frac{500}{3} \sqrt{3} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Distance (CD) $=$ Speed \times time
$=\frac{500}{3} \sqrt{3} \times 12 \mathrm{~m}=2000 \sqrt{3} \mathrm{~m}$

Let $\mathrm{PA}=\mathrm{ym}$
In $\triangle P A D, \tan 60^{\circ}=\frac{x}{y}=\frac{A D}{P A} \Rightarrow \sqrt{3}=\frac{x}{y} \Rightarrow x=y \sqrt{3}$ or $y=\frac{x}{\sqrt{3}}$
In $\triangle \mathrm{PBC}$,
$\tan 30^{\circ}=\frac{\mathrm{BC}}{\mathrm{PB}}=\frac{\mathrm{x}}{\mathrm{PA}+\mathrm{AB}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{x}}{\mathrm{PA}+\mathrm{AB}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{x}}{\mathrm{y}+2000 \sqrt{3}}$
$\Rightarrow y+2000 \sqrt{3}=x \sqrt{3}$
$\Rightarrow \frac{\mathrm{x}}{\sqrt{3}}+2000 \sqrt{3}=\mathrm{x} \sqrt{3}$
$\Rightarrow \frac{x+6000}{\sqrt{3}}=x \sqrt{3}$
$\Rightarrow 3 \mathrm{x}=\mathrm{x}+6000$
$\Rightarrow 2 \mathrm{x}=6000$
$\Rightarrow \mathrm{x}=3000$
So, the height at which the plane is flying $=3000 \mathrm{~m}$.

Q. 11.

(a) Let ABCD be the rectangular garden and CD act the house's compound wall Let length $A B=x$ m
Breadth BC = y m
According to question

$$
\begin{align*}
& y=200 \tag{1}\\
& x+2 y=50 \tag{2}
\end{align*}
$$

From equation (2), we get
$x=50-2 y$
By putting value of x in equation (1), we get
$x y=200$

$\Rightarrow(50-2 y) y=200$
$\Rightarrow 50 \mathrm{y}-2 \mathrm{y}^{2}=200$
$\Rightarrow 2 \mathrm{y}^{2}-50 \mathrm{y}+200=0$
$\Rightarrow y^{2}-25 y+100=0$
$\Rightarrow(y-20)(y-5)=0$
So, $y=5$ or 20
And, when $y=5$, then $x=50-2 y=50-2 \times 5=40$
When $\mathrm{y}=20$, then $\mathrm{x}=50-2 \mathrm{y}=50-2 \times 20=10$
So, dimension of the garden $=10 \mathrm{~m}$ and 20 m or 40 m and 5 m
(b) We know that, tangents from a point outside the circle are equal.

So, $\mathrm{PA}=\mathrm{PB}$
$P A=5 \mathrm{~cm}(\because P B=5 \mathrm{~cm})$
Now, $A Q=P Q-P A=x-5$
$D Q=A Q$
$D Q=x-5$
Similarly, RD = CR
$\mathrm{RD}=3 \mathrm{~cm}(\because \mathrm{CR}=3 \mathrm{~cm})$
Now, RQ = RD + DQ
$\Rightarrow 7=3+\mathrm{x}-5$
$\Rightarrow 7=\mathrm{x}-2$
$\Rightarrow 7+2=x$

$\Rightarrow 9=\mathrm{x}$
$\Rightarrow \mathrm{x}=9 \mathrm{~cm}$
(c) Using two points form a line:
i. Equation of line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is
$y-y_{1}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}\left(x-x_{1}\right)$
$y-4=\frac{-6}{5+1}(x+1)$
$\Rightarrow y-4=\frac{-6}{6}(x+1)$
$\Rightarrow y-4=-x-1$
$\Rightarrow \mathrm{x}+\mathrm{y}-3=0$
ii. The equation of line is $x+y-3=0$

For $y=0, x+0-3=0 \Rightarrow x=3$
\therefore Co-ordinates of A are $(3,0)$
And for $\mathrm{x}=0$,

$0+y-3=0$
$\Rightarrow \mathrm{y}=3$
\therefore Co-ordinates of B are $(0,3)$.
iii. Co-ordinates of $\mathrm{M}=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{3+0}{2}, \frac{0+3}{2}\right) \\
& =\left(\frac{3}{2}, \frac{3}{2}\right)
\end{aligned}
$$

