ICSE Board
 Class IX Mathematics
 Sample Paper 2

Time: $\mathbf{2 ¹}^{1 / 2} \mathbf{h r s}$
Total Marks: $\mathbf{8 0}$

General Instructions:

1. Answers to this paper must be written on the paper provided separately.
2. You will NOT be allowed to write during the first 15 minutes. This time is to be spent in reading the question paper.
3. The time given at the head of this paper is the time allowed for writing the answers.
4. This question paper is divided into two Sections.

Attempt all questions from Section A and any four questions from Section B.
5. Intended marks for questions or parts of questions are given in brackets along the questions.
6. All working, including rough work, must be clearly shown and should be done on the same sheet as the rest of the answer. Omission of essential working will result in loss of marks.
7. Mathematical tables are provided.

> SECTION - A ($\mathbf{4 0} \mathbf{~ M a r k s)}$
> (Answer all questions from this Section)
Q. 1.
(a) Express $0 . \overline{001}$ as a fraction in the simplest form.
(b) Find the median of the following set of numbers: $10,75,3,81,18,27,4,48,12,47,9,15$
(c) If the side of a square is $\frac{1}{2}(x+1)$ and its diagonal is $\frac{3-x}{\sqrt{2}}$ units. Find the length of the side of the square.
Q. 2.
(a) Two concentric circles are of radii 6.5 cm and 2.5 cm . Find the length of the chord of the larger circle which touches the smaller circle.
(b)Show that the following points $\mathrm{A}(8,2), \mathrm{B}(5,-3)$ and $\mathrm{C}(0,0)$ are the vertices of an isosceles triangle.
(c) If $\sin \theta=\frac{x}{y}$, find the value of $\cos \theta \times \tan \theta$ in terms of x and y.
Q. 3.
(a) Factorise: $a^{2}+b^{2}-c^{2}-2 a b$
(b) Prove that: $9^{\log 4}=16^{\log 3}$
(c) If $\mathrm{p}^{\frac{1}{x}}=\mathrm{p}^{\frac{1}{y}}=\mathrm{p}^{\frac{1}{z}}$ and $\mathrm{pqr}=1$, prove that $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$

Q. 4.

(a) In the following figure, find the value of x and y.

(b) The amount at compound interest which is calculated yearly on a certain sum of money is Rs. 1250 in one year and Rs. 1375 in two years. Calculate the rate of interest.
(c) Construct a rhombus ABCD, given diagonal $\mathrm{AC}=6.0 \mathrm{~cm}$ and height $=3.5 \mathrm{~cm}$.

SECTION - B (40 Marks)
 (Answer any four questions from this Section)

Q. 5.

(a) Use graph paper for this question:
i. Draw the graph of $3 x-y-2=0$ and $2 x+y-8=0$. Take $1 \mathrm{~cm}=1$ unit on both the axes and plot only three points per line.
ii. Write down the co-ordinates of the point of intersection.
(b) In the parallelogram $A B C D, M$ is the midpoint of $A C, X$ and Y are points on $A B$ and $D C$ respectively such that $A X=C Y$. Prove that
(a) $\triangle \mathrm{AXM}$ is congruent to $\triangle \mathrm{CYM}$
(b) XMY is a straight line

Q. 6.

(a) In a river, a boat covers 8 km in 40 min while travelling downstream, but takes 60 min for the return journey. If the speed of the boat and the flow of the river are uniform, find the speed of the boat in still water and speed of the stream.
(b) Hamid built a cubical water tank lid for his house, with each outer edge 1.5 m long. He gets the outer surface area of the tank excluding the base covered with square tiles of sides 25 cm . How much will he spend on the tiles, if the cost of the tiles is Rs. 360 per dozen?
(c) Solve: $3 p-2 q=5, q-1=3 p$
Q. 7.

> (a) If $A=60^{\circ}$ and $B=30^{\circ}$, verify that $$
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
$$

(b) The dimensions of a rectangular field are $120 \mathrm{~m} \times 70 \mathrm{~m}$. The field is to be changed into a garden, leaving a path way of 5 m width around the garden. Find the expenses that are met when the cost per square meter is Rs. 10.
(c) In a rectangle PQRS , prove that $\mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2}+\mathrm{SP}^{2}$
Q. 8.
(a) Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other, and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is 6 cm , then find the radius of the circle.
(b) If $\mathrm{p}+\mathrm{q}=1+\mathrm{pq}$, prove that $\mathrm{p}^{3}+\mathrm{q}^{3}=1+\mathrm{p}^{3} \mathrm{q}^{3}$
(c) Construct a histogram of the frequency distribution given below:

Marks obtained	No. of students
Below 15	20
Below 30	35
Below 45	40
Below 60	55
Below 75	65
Below 90	70

Q. 9.
(a) In the given figure, $\mathrm{AD} \perp \mathrm{BC}$. Prove that
i. $\mathrm{AB}>\mathrm{BD}$
ii. $A C>C D$
iii. $A B+A C>B C$

[3]
(b) If $\frac{9^{\mathrm{n}} \times 3^{2} \times\left(3^{-\mathrm{n} / 2}\right)^{-2}-(27)^{\mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27}$, prove that $\mathrm{m}-\mathrm{n}=1$
(c) If $x=30^{\circ}$, verify that $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
Q. 10.
(a) In rectangle $\mathrm{ABCD} ; \mathrm{AB}=15 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{BAC}=30^{\circ}$. Find the length of the BC .

(b) In the given figure, area of $\| g m ~ A B C D$ is $80 \mathrm{~cm}^{2}$. Find (i) $\operatorname{ar}(\| g m ~ A B E F)$ (ii) $\operatorname{ar}(\triangle \mathrm{ABD})$ and (iii) $\operatorname{ar}(\triangle B E F)$.

(c) Two alternate sides of a regular polygon, when produced, meet at right angles.

Find:
i. Each external angle
ii. The number of sides
Q. 11.
(a) Find $x: \sqrt[3]{\frac{p}{q}}=\left(\frac{p}{q}\right)^{3-4 x}$
(b) If $a+b=1$ and $a-b=7$, find the values of
(1) $5\left(a^{2}+b^{2}\right)$
(2) a
(c) In $\triangle A O B, A=(0,4), O=(0,0)$ and $B=(3,0)$. By plotting these points on a graph paper, find the area of $\triangle A O B$.

Solution

SECTION - A

Q. 1.
(a) Let $x=0 . \overline{001}$

Then, $x=0.001001001$
Therefore, $1000 \mathrm{x}=1.001001001$
Subtracting (i) from (ii), we get $999 x=1 \Rightarrow x=\frac{1}{999}$
Hence, $0 . \overline{001}=\frac{1}{999}$
(b) On arranging the numbers in ascending order, we get
$3,4,9,10,12,15,18,27,47,48,75,81$
$\mathrm{n}=12$ (even)
Median $=\frac{\frac{\mathrm{n}}{2}^{\text {th }} \text { term }+\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { term }}{2}$

$$
\begin{aligned}
& =\frac{\frac{12^{\text {th }}}{2} \text { term }+\left(\frac{12}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{6^{\text {th }} \text { term }+7^{\text {th }} \text { term }}{2} \\
& =\frac{15+18}{2} \\
& =16.5
\end{aligned}
$$

(c) Given, side of the square $=\left(\frac{x+1}{2}\right)$ units

And diagonal $=\frac{3-x}{\sqrt{2}}$ units $==\sqrt{2}$ side
$\Rightarrow \frac{3-\mathrm{x}}{\sqrt{2}}=\sqrt{2}\left(\frac{\mathrm{x}+1}{2}\right)$
$\Rightarrow 3-\mathrm{x}=\mathrm{x}+1$
$\Rightarrow 2 \mathrm{x}=2 \Rightarrow \mathrm{x}=1$
\therefore length of side $=\frac{x+1}{2}=\frac{1+1}{2}=1$ unit

Q. 2.

(a)

Since $A B$ is a tangent to the inner circle.
$\angle O D B=90^{\circ} \ldots$...(tangent is \perp to the radius of a circle) $A B$ is a chord of the outer circle.
We know that, the perpendicular drawn from the centre to a chord of a circle, bisects the chord.
$\Rightarrow \mathrm{AB}=2 \mathrm{DB}$
In $\triangle O D B$,
By Pythagoras theorem,
$O B^{2}=O D^{2}+D^{2}$
$\Rightarrow 6.5^{2}=2.5^{2}+\mathrm{DB}^{2}$
$\Rightarrow \mathrm{DB}^{2}=6.5^{2}-2.5^{2}$
$\Rightarrow \mathrm{DB}^{2}=42.25-6.25$
$\Rightarrow \mathrm{DB}^{2}=36 \mathrm{~cm}$
$\Rightarrow \mathrm{DB}=6 \mathrm{~cm}$
$\mathrm{AB}=2 \mathrm{DB}=2(6)=12 \mathrm{~cm}$
(b) Given points are $A(8,2), B(5,-3)$ and $C(0,0)$.

Using the distance formula, we get,
$A C=\sqrt{(8-0)^{2}+(2-0)^{2}}=\sqrt{68}$
$\mathrm{BC}=\sqrt{(5-0)^{2}+(-3-0)^{2}}=\sqrt{34}$
$A B=\sqrt{(5-8)^{2}+(-3-2)^{2}}=\sqrt{34}$
Since, $B C=A B, \triangle A B C$ is an isosceles triangle.
(c) By Pythagoras theorem

$$
\begin{aligned}
& \mathrm{y}^{2}=\mathrm{x}^{2}+(\text { Base })^{2} \\
& \Rightarrow(\text { Base })^{2}=\mathrm{y}^{2}-\mathrm{x}^{2} \\
& \Rightarrow \text { Base }=\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}} \\
& \therefore \cos \theta=\frac{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}}{\mathrm{y}}, \tan \theta=\frac{\mathrm{x}}{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}} \\
& \cos \theta \times \tan \theta=\frac{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}}{\mathrm{y}} \times \frac{\mathrm{x}}{\sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}}=\frac{\mathrm{x}}{\mathrm{y}}
\end{aligned}
$$

Q. 3
(a) $a^{2}+b^{2}-c^{2}-2 a b=a^{2}+b^{2}-2 a b-c^{2}$

$$
\begin{aligned}
& =(\mathrm{a}-\mathrm{b})^{2}-(\mathrm{c})^{2} \\
& =(\mathrm{a}-\mathrm{b}+\mathrm{c})(\mathrm{a}-\mathrm{b}-\mathrm{c})
\end{aligned}
$$

(b)

$$
\begin{align*}
& \text { Let } x=9^{\log 4}, y=16^{\log 3} \\
& \log x=\log 9^{(\log 4)} \\
& \log x=\log 4 \cdot \log 9 \quad \ldots .(1) \tag{1}\\
& \log y=16^{\log 3} \\
& \Rightarrow \log y=\log 3 \cdot \log 16=\log 3 \cdot \log 4^{2} \\
& \Rightarrow \log y=2 \log 3 . \log 4 \\
& \Rightarrow \log y=\log 9 . \log 4 \tag{2}
\end{align*}
$$

$$
\Rightarrow \log x=\log y \quad[\text { From (1) and (2)] }
$$

$$
\text { Hence } x=y
$$

(c)

$$
\begin{aligned}
& \left(\frac{81}{16}\right)^{-3 / 4} \times\left[\left(\frac{25}{9}\right)^{-3 / 2} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3^{4}}{2^{4}}\right)^{-3 / 4} \times\left[\left(\frac{5^{2}}{3^{2}}\right)^{-3 / 2} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3}{2}\right)^{4 \times-3 / 4} \times\left[\left(\frac{5}{3}\right)^{2 \times-3 / 2} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3}{2}\right)^{-3} \times\left[\left(\frac{5}{3}\right)^{-3} \div\left(\frac{5}{2}\right)^{-3}\right] \\
& =\left(\frac{3}{2}\right)^{-3} \times\left(\frac{5}{3} \div \frac{5}{2}\right)^{-3} \\
& =\left(\frac{3}{2}\right)^{-3} \times\left(\frac{5}{3} \times \frac{2}{5}\right)^{-3} \\
& =\left(\frac{3}{2}\right)^{-3} \times\left(\frac{2}{3}\right)^{-3} \\
& =\left(\frac{3}{2} \times \frac{2}{3}\right)^{-3} \\
& =(1)^{-3} \\
& =1
\end{aligned}
$$

Q. 4.

(a) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDE}$

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{CED} \quad \text { [Given] } \\
& \mathrm{AC}=\mathrm{EC} \quad[\text { Given }]
\end{aligned}
$$

$\angle \mathrm{ACB}=\angle \mathrm{DCE}$ [Vertically opposite $\angle \mathrm{s}$]
Hence $\triangle \mathrm{ACB} \cong \triangle \mathrm{ECD}$ [\because ASS - condition of congruency is satisfied]
$\therefore \mathrm{AB}=\mathrm{ED} \quad[\mathrm{CPCT}]$
Then, $2 \mathrm{x}+4=3 \mathrm{y}+8$
$2 x-3 y=4$
Also, BC = CD
$\mathrm{x}=2 \mathrm{y}$
$x-2 y=0$
Solving (1) and (2), we get
$x=8$ and $y=4$
(b) Amount at the end of first year = Principal for second year $\mathrm{P}=$ Rs. $1250, \mathrm{~A}=$ Rs. $1375, \mathrm{n}=1$, rate $=\mathrm{r} \%$

$$
1375=1250\left(1+\frac{r}{100}\right)^{1}
$$

$$
\frac{1375}{1250}=\frac{100+r}{100}
$$

$$
\Rightarrow 125000+1250 r=137500
$$

$$
\Rightarrow 1250 \mathrm{r}=137500-125000
$$

$$
\Rightarrow 1250 r=12500 \Rightarrow r=\frac{12500}{1250}=10 \%
$$

(c) Steps of construction:

1) Draw a line AP.
2) Now draw $\mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{CP}=3.5 \mathrm{~cm}$
3) Draw a line $B C$ such that $A B=B C$.
4) Now at C draw a line CY parallel to AP.

5) At point C and A , taking radius same as AB draw arcs cutting each other at D .
6) Now join AD.
$A B C D$ is the required rhombus.

SECTION - B

Q. 5.
(a) (i) $3 x-y-2=0$
$\Rightarrow y=3 x-2$
Taking convenient value of x

x	0	2	3
y	-2	4	7

$2 \mathrm{x}+\mathrm{y}-8=0$
$y=8-2 x$
Taking convenient value of x

x	0	2	3
y	8	4	2

Now plot these points on the graph paper,

(ii) The coordinates of the point of intersection are (2, 4).
(b) Given: ABCD is a parallelogram, M is the midpoint of AC, X and Y are points on AB and DC respectively such that $\mathrm{AX}=\mathrm{CY}$.
To prove: (a) $\Delta \mathrm{AXM} \cong \triangle \mathrm{CYM}$ (b) XMY is a straight line
Construction: Join XM and MY
Proof:
(a) In $\triangle s$ AMX and CMY
$\mathrm{AM}=\mathrm{MC}$ [Given]
$\mathrm{AX}=\mathrm{CY}$ [Given]

$\angle \mathrm{XAM}=\angle \mathrm{YCM}$ [Alternate angles]
So, $\triangle \mathrm{AXM} \cong \Delta \mathrm{CYM}$ [SAS]
(b) $\angle \mathrm{AMX}=\angle \mathrm{CMY}$ [Vertically opposite angles]
$\therefore \mathrm{XMY}$ is a straight line.
Q. 6.
(a) Let the speed of boat in still water be $=x$ kmph

And speed of the stream $=y \mathrm{kmph}$
Speed of boat upstream $=(x-y) \mathrm{kmph}$
Speed of boat downstream $=(x+y)$ kmph
Time taken for upstream journey $=\frac{8}{x-y}$
Time taken for downstream journey $=\frac{8}{x+y}$
As per the problem, $\frac{8}{x-y}=1 \mathrm{hr}$

$$
\begin{equation*}
x-y=8 \tag{1}
\end{equation*}
$$

Also,
$\frac{8}{x+y}=\frac{40}{60}=\frac{2}{3}$

$$
\begin{equation*}
x+y=12 \tag{2}
\end{equation*}
$$

Solving (1) and (2) we get
$\mathrm{x}=10 \mathrm{kmph} ; \mathrm{y}=2 \mathrm{kmph}$
(b) Edge of the cubical tank $=1.5 \mathrm{~m}=150 \mathrm{~cm}$

Surface area of the tank $=5 \times 150 \times 150 \mathrm{~cm}^{2}$
Area of each square tile $=$ side \times side $=25 \times 25 \mathrm{~cm}^{2}$
\therefore Number of tiles required $=\frac{\text { Surface area of the tank }}{\text { area of each tile }}=\frac{5 \times 150 \times 150}{25 \times 25}=180$
Cost of 1 dozen tiles, i.e. cost of 12 tiles $=$ Rs. 360
Cost of one tile $=$ Rs. $\frac{360}{12}=$ Rs. 30
Thus, the cost of 180 tiles $=180 \times 30=$ Rs. 5400
(c) $3 p-2 q=5$
$q-1=3 p$
From equation (2),
$\mathrm{p}=\frac{\mathrm{q}-1}{3}$
Substituting the value of p in equation (1), we get
$3\left(\frac{q-1}{3}\right)-2 q=5$
$\Rightarrow \mathrm{q}-1-2 \mathrm{q}=5$
$\Rightarrow-\mathrm{q}=5+1$
$\Rightarrow \mathrm{q}=-6$
Substituting the value of q in equation (2) we get,
$\Rightarrow \mathrm{q}-1=3 \mathrm{p}$
$\Rightarrow-6-1=3 p$
$\Rightarrow-7=3 p$
$\Rightarrow \mathrm{p}=-\frac{7}{3}$
$\Rightarrow \mathrm{p}=-\frac{7}{3}, \mathrm{q}=-6$
Q. 7.
(a)

$$
\begin{aligned}
& A=60^{\circ} \text { and } B=30^{\circ} \\
& \begin{aligned}
& \Rightarrow A-B=60^{\circ}-30^{\circ}=30^{\circ} \\
& \therefore \tan (A-B)=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
& \text { And, } \frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \tan 30^{\circ}} \\
&=\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \times \frac{1}{\sqrt{3}}} \\
&=\frac{\frac{2}{\sqrt{3}}}{2} \\
&=\frac{1}{\sqrt{3}}
\end{aligned} \\
& \begin{aligned}
\therefore \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
\end{aligned}
$$

(b) Length of garden $=120-2 \times 5$ and breadth $=70-2 \times 5$

$$
\Rightarrow \mathrm{l}=110 \mathrm{~m}, \mathrm{~b}=60 \mathrm{~m}
$$

Area of garden $=1 \times b=110 \times 60=600 \mathrm{~m}^{2}$

Given, rate $=$ Rs. $10 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \therefore \text { Cost }=\text { Area } \times \text { rate } \\
& \text { Cost }=\text { Rs. } 66000
\end{aligned}
$$

(c) Given: A rectangle PQRS

To prove: $\mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2}+\mathrm{SP}^{2}$
Proof: In \triangle PSR

$$
\begin{align*}
& \left.\mathrm{PR}^{2}=\mathrm{PS}^{2}+\mathrm{SR}^{2} \ldots .(1) \quad \text { [Pythagoras theorem }\right] \\
& \text { In } \triangle \mathrm{QRS}, \\
& \mathrm{QS}^{2}=\mathrm{QR}^{2}+\mathrm{RS}^{2} \ldots .(2)
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{aligned}
& \mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PS}^{2}+\mathrm{SR}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2} \\
& =\mathrm{RS}^{2}+\mathrm{QR}^{2}+\mathrm{PS}^{2}+\mathrm{PQ}^{2}[\because \mathrm{RS}=\mathrm{PQ}] \\
& \mathrm{PR}^{2}+\mathrm{QS}^{2}= \\
& \quad \mathrm{PQ}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2}+\mathrm{SP}^{2} \\
& \quad=\mathrm{RS}^{2}+\mathrm{QR}^{2}+\mathrm{PS}^{2}+\mathrm{PQ}^{2}[\because \mathrm{RS}=\mathrm{PQ}] \\
& \therefore \mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}+\mathrm{RS}^{2}+\mathrm{SP}^{2}
\end{aligned}
$$

Q. 8.
(a) Construction: Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$. Join OB and OD .

$\mathrm{BM}=\frac{\mathrm{AB}}{2}=\frac{5}{2}$ and $\mathrm{ND}=\frac{\mathrm{CD}}{2}=\frac{11}{2}$ (Perpendicular from centre bisects the chord)
Let $O N$ be x, so $O M$ will be $6-\mathrm{x}$.
In $\triangle \mathrm{MOB}, \mathrm{OM}^{2}+\mathrm{MB}^{2}=\mathrm{OB}^{2}$
$\therefore(6-\mathrm{x})^{2}+\left(\frac{5}{2}\right)^{2}=\mathrm{OB}^{2}$
$\therefore 36+\mathrm{x}^{2}-12 \mathrm{x}+\frac{25}{4}=\mathrm{OB}^{2}$
In $\triangle \mathrm{NOD}, \mathrm{ON}^{2}+\mathrm{ND}^{2}=\mathrm{OD}^{2}$
$\therefore \mathrm{OD}^{2}=\mathrm{x}^{2}+\left(\frac{11}{2}\right)^{2}=\mathrm{x}^{2}+\frac{121}{4}$
We have $0 B=O D$
....(radii of same circle)
$36+x^{2}-12 x+\frac{25}{4}=x^{2}+\frac{121}{4}$ [From (1) and (2)]
$\therefore 12 x=36+\frac{25}{4}-\frac{121}{4}=\frac{144+25-121}{4}=\frac{48}{4}=12$
$\therefore 12 \mathrm{x}=12 \Rightarrow \mathrm{x}=1$
From equation (2),
$\mathrm{OD}^{2}=(1)^{2}+\left(\frac{121}{4}\right)=1+\frac{121}{4}=\frac{125}{4} \Rightarrow \mathrm{OD}=\frac{5}{2} \sqrt{5}$
Hence, the radius of the circle is $\frac{5}{2} \sqrt{5} \mathrm{~cm}$.
(b) We know,

$$
\begin{aligned}
p^{3}+q^{3} & =(p+q)^{3}-3 p q(p+q) \\
& =(1+p q)^{3}-3 p q(1+p q) \\
& =(1+p q)^{3}-3 p q(1+p q) \\
& =1+p^{3} q^{3}+3 p q(1+p q)-3 p q(1+p q) \\
& =1+p^{3} q^{3}
\end{aligned}
$$

Hence, $p^{3}+q^{3}=1+p^{3} q^{3}$
(c) Rewriting we get the continuous frequency distribution as following:

C.I	Frequency (No. of students)
Below 15	20
$15-30$	$35-20=15$
$30-45$	$40-35=5$
$45-60$	$55-40=15$
$60-75$	$65-55=10$
$75-90$	$70-65=5$

Q. 9.
(a) Given: $\mathrm{AD} \perp \mathrm{BC}$

To prove:
AB > BD
$A C>C D$
$A B+A C>B C$
Proof: In $\triangle \mathrm{ABD}, \angle \mathrm{ADB}$ is the greatest angle [There can be only one right angle]

i. So, the side opposite to $\angle \mathrm{ADB}$ in $\triangle \mathrm{ABD}$ is greatest i.e., $\mathrm{AB}>\mathrm{BD}$
ii. Similarly, $\angle \mathrm{ADC}$ is the greatest angle in $\triangle \mathrm{ADC}$

$$
\text { So, } \mathrm{AC}>\mathrm{CD} \quad\left[\angle \mathrm{ADC}=90^{\circ}\right] \ldots .(2)
$$

iii. On adding (1) and (2), we get $A B+A C>B D+C D$
$A B+A C>B C$
(b) We have,

$$
\begin{aligned}
& \frac{9^{\mathrm{n}} \times 3^{2} \times\left(3^{-\mathrm{n} / 2}\right)^{-2}-(27)^{\mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{\left(3^{2}\right)^{\mathrm{n}} \times 3^{2} \times 3^{2 \mathrm{n} / 2}-\left(3^{3}\right)^{\mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{2 \mathrm{n}} \times 3^{2} \times 3^{\mathrm{n}}-3^{3 \mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{2 \mathrm{n}+2+\mathrm{n}}-3^{3 \mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{3 \mathrm{n}+2}-3^{3 \mathrm{n}}}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{3 \mathrm{n}}\left(3^{2}-1\right)}{3^{3 \mathrm{~m}} \times 2^{3}}=\frac{1}{27} \\
& \Rightarrow \frac{3^{3 \mathrm{n}} \times 8}{3^{3 \mathrm{~m}} \times 8}=\frac{1}{27} \\
& \Rightarrow 3^{3 \mathrm{n}-3 \mathrm{~m}}=3^{-3} \\
& \Rightarrow 3 \mathrm{n}-3 \mathrm{~m}=-3 \Rightarrow \mathrm{n}-\mathrm{m}=-1 \Rightarrow \mathrm{~m}-\mathrm{n}=1
\end{aligned}
$$

(c) We have,

$$
\begin{aligned}
& x=30^{\circ} \Rightarrow 2 x=60^{\circ} \\
& \therefore \tan 2 x=\tan 60^{\circ}=\sqrt{3}
\end{aligned}
$$

$$
\text { And, } \frac{2 \tan x}{1-\tan ^{2} x}=\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}
$$

$$
=\frac{2 \times \frac{1}{\sqrt{3}}}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}
$$

$$
=\frac{2 / \sqrt{3}}{1-\frac{1}{3}}=\frac{2 / \sqrt{3}}{2 / 3}
$$

$$
=\frac{2}{\sqrt{3}} \times \frac{3}{2}
$$

$$
=\sqrt{3}
$$

$\therefore \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
Q. 10.
(a) In $\triangle A B C, \tan 30^{\circ}=\frac{B C}{A B}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{BC}}{15}$
$\Rightarrow \mathrm{BC}=\frac{\mathrm{AB}}{\sqrt{3}}=\frac{15}{\sqrt{3}}=\frac{15 \sqrt{3}}{\sqrt{3}}=5 \sqrt{3} \mathrm{~cm}$
(b)
(i) Given that ABCD is a parallelogram.

So, $\mathrm{AB}|\mid \mathrm{DE}$. That is, AB$| \mid \mathrm{FE}$.
Since the parallelograms have the same base $A B$, and the height on base
AB is equal, the areas of $\| \mathrm{gm}$ ABCD and $\| g m$ ABEF will be equal.
Hence, $\operatorname{ar}(\| \mathrm{gm}$ ABEF $)=\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=80 \mathrm{~cm}^{2}$
(ii) We know that the diagonal of a parallelogram, divides the parallelogram into two triangles with equal areas.

$$
\text { So, } \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{ar}(| | \mathrm{gm} \mathrm{ABCD})=\frac{1}{2}(80)=40 \mathrm{~cm}^{2}
$$

(iii) Similarly,

$$
\operatorname{ar}(\triangle \mathrm{BEF})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABEF})=\frac{1}{2}(80)=40 \mathrm{~cm}^{2}
$$

(c) ABCD be a regular polygon
$B C$ and $E D$ when produced meet at P such that $\angle C P D=90^{\circ}$
$\angle \mathrm{CPD}=90^{\circ}$
Let $\angle \mathrm{BCD}=\mathrm{x}^{\circ}$
So, $\angle \mathrm{CDE}=\mathrm{x}^{\circ}$
$\angle \mathrm{PCD}=180-\mathrm{x}$
$\angle \mathrm{PDC}=180-\mathrm{x}$
In $\triangle \mathrm{CPD}$,

$$
\begin{aligned}
& 180^{\circ}-\mathrm{x}^{\circ}+180^{\circ}-\mathrm{x}^{\circ}+90^{\circ}=180^{\circ} \quad[\text { Sum of all } \angle \mathrm{s} \text { of a } \triangle] \\
& 270^{\circ}-2 \mathrm{x}^{\circ}=0 \\
& 2 \mathrm{x}^{\circ}=270^{\circ} \\
& \mathrm{x}^{\circ}=135^{\circ}
\end{aligned}
$$

Each external angle $=180^{\circ}-x^{\circ}=180-135=45^{\circ}$
No. of sides $=\frac{360^{\circ}}{45^{\circ}}=8^{\circ}$
Q. 11.
(a)

$$
\begin{aligned}
& \sqrt[3]{\frac{p}{q}}=\left(\frac{p}{q}\right)^{3-4 x}=\left(\frac{p}{q}\right)^{4 x-3} \\
& \Rightarrow\left(\frac{p}{q}\right)^{1 / 3}=\left(\frac{p}{q}\right)^{-3+4 x} \\
& \Rightarrow \frac{1}{3}=-3+4 x \\
& \Rightarrow 4 x=3+\frac{1}{3} \\
& \Rightarrow 4 x=\frac{10}{3} \\
& \Rightarrow x=\frac{10}{12} \\
& \Rightarrow x=\frac{5}{6}
\end{aligned}
$$

(b) $a+b=1, a-b=7$
$(a+b)^{2}-(a-b)^{2}=4 a b$
$\Rightarrow 1^{2}-7^{2}=4 \mathrm{ab}$
$\Rightarrow 1-49=4 \mathrm{ab}$
$\Rightarrow 4 \mathrm{ab}=-48$
$\Rightarrow \mathrm{ab}=-12$

Now, we know that

$$
\begin{aligned}
& \mathrm{a}^{2}+\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})^{2}-2 \mathrm{ab}=1^{2}-2 \times(-12) \\
& \Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=1+24=25
\end{aligned}
$$

(1) $5\left(a^{2}+b^{2}\right)=25 \times 5=125$
(2) $a b=-12$ [using equation (1)]
(c) The given points $\mathrm{A}(0,4), \mathrm{O}(0,0), \mathrm{B}(3,0)$ can be plotted as follows:

Clearly, AOB is a right-angled triangle.
$\mathrm{OA}=4$ units, $\mathrm{OB}=3$ units.

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{AOB} & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times 3 \times 4 \\
& =6 \text { square units }
\end{aligned}
$$

