ICSE Board
 Class IX Mathematics
 Sample Paper 1

Time: $\mathbf{2 1}^{1 ⁄ 2}$ hrs
Total Marks: $\mathbf{8 0}$

General Instructions:

1. Answers to this paper must be written on the paper provided separately.
2. You will NOT be allowed to write during the first 15 minutes. This time is to be spent in reading the question paper.
3. The time given at the head of this paper is the time allowed for writing the answers.
4. This question paper is divided into two Sections. Attempt all questions from Section A and any four questions from Section \mathbf{B}.
5. Intended marks for questions or parts of questions are given in brackets along the questions.
6. All working, including rough work, must be clearly shown and should be done on the same sheet as the rest of the answer. Omission of essential working will result in loss of marks.
7. Mathematical tables are provided.

SECTION - A (40 Marks)
 (Answer all questions from this Section)

Q. 1.
(a) Calculate the amount and the compound interest on Rs. 6000 at 10\% p.a. for
$1 \frac{1}{2}$ years, when the interest is compounded half yearly.
(b) If $\frac{\sqrt{11}-\sqrt{7}}{\sqrt{11}+\sqrt{7}}=x-y \sqrt{77}$, find the values x and y.
(c) Sonu and Monu had adjacent triangular fields with a common boundary of 25 m . The other two sides of Sonu's field were 52 m and 63 m , while Monu's were 114 m and 101 m . If the cost of fertilization is Rs 20 per sq m, then find the total cost of fertilization for both of Sonu and Monu together.

Q. 2.

(a) Calculate the area of fig., ABCDE . Given $D X=9 \mathrm{~cm}, \mathrm{DC}=5 \mathrm{~cm} \mathrm{FC}=4 \mathrm{~cm}$ and $\mathrm{XB}=6 \mathrm{~cm}$. Also F and X are the mid-points of EC and AB respectively.

(b) If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.
(c) Find x, if $(\sqrt[3]{4})^{2 x+\frac{1}{2}}=(\sqrt[3]{8})^{5}$.

Q. 3.

(a) Given $\log x=a+b$ and $\log y=a-b$, find the value of $\log \frac{10 x}{y^{2}}$ in terms of ' a ' and ' b '. [3]
(b) The bisector of $\angle \mathrm{A}$ of a $\triangle \mathrm{ABC}$ meets BC at D and BC is produced to E . prove that $\angle \mathrm{ABC}+\angle \mathrm{ACE}=2 \angle \mathrm{ADC}$.
(c) Using ruler and compass only, construct a trapezium ABCD , in which the parallel sides AB and DC are 3.3 cm apart; $\mathrm{AB}=4.5 \mathrm{~cm}, \angle \mathrm{~A}=120^{\circ}, \mathrm{BC}=3.6 \mathrm{~cm}$ and $\angle \mathrm{B}$ is obtuse. [4]

Q. 4.

(a) The following figure shows a right-angled triangle ABC with $\angle \mathrm{B}=90^{\circ}, \mathrm{AB}=15 \mathrm{~cm}$ and $A C=25 \mathrm{~cm}$. D is a point in side $B C$ and $C D=7 \mathrm{~cm}$. If $D E \perp A C$, find the length of $D E$. [4]

(b) Prove that the interior angle of a regular pentagon is three times the exterior angle of a regular decagon.
(c) If $\tan \theta+\cot \theta=3$, find the value of $\tan ^{2} \theta+\cot ^{2} \theta$.

SECTION - B (40 Marks)
 (Answer any four questions from this Section)

Q. 5.

(a) Graphically solve the simultaneous equations:

$$
\begin{equation*}
x-2 y=1 ; x+y=4 \tag{4}
\end{equation*}
$$

(b) A and B together can do a piece of work in 15 days. If A's one day's work is $\frac{3}{2}$ times

B's one day's work; in how many days can A and B do the work alone?
(c) How many sides does a regular polygon have, each angle of which is of measure 108° ?
Q. 6.
(a) A person invests Rs. 5600 at 14\% p.a. compound interest for 2 years. Calculate
i. The interest for the first year.
ii. The amount at the end of the first year.
iii. The interest for the second year corrected to the nearest rupee.
(b) A point P lies on the x-axis and another point Q lies on the y-axis.
i. Write the ordinate of point P.
ii. Write the abscissa of point Q .
iii. If the abscissa of point P is -12 and the ordinate of point Q is -16 ; calculate the length of line segment $P Q$.
(c) $\triangle \mathrm{ABC}$ is right angled at B . If $\mathrm{m} \angle \mathrm{A}=30^{\circ}$ and $\mathrm{BC}=8 \mathrm{~cm}$. Find the remaining angles and sides.
Q. 7.
(a) Simplify: $\frac{3^{n+1}}{3^{n(n-1)}} \div \frac{9^{n+1}}{\left(3^{n+1}\right)^{n-1}}$
(b) The area of an isosceles triangle is $12 \mathrm{~cm}^{2}$ and the base is 8 cm in length. Find the perimeter of the triangle.
(c) In the figure, $\mathrm{AC}=\mathrm{CD}$. Prove that $\mathrm{BC}<\mathrm{CD}$.

Q. 8.
(a) If $\cos \theta=\frac{2 \sqrt{m n}}{m+n}$, find the value of $\sin \theta(>($ given $m>n)$.
(b) The mean of 5 numbers is 20 . If one number is excluded the mean of the remaining numbers becomes 23 . Find the excluded number.
(c) 3 equal cubes are placed adjacently in a row. Find the ratio of the total surface area of the new cuboid to that of the sum of the surface areas of three cubes.
Q. 9.
(a) In the given quadrilateral $\mathrm{AD}=\mathrm{BC}$, and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are the midpoints of the sides AB , $B D, C D$ and $A C$, respectively. Prove that PQRS is a rhombus.

(b) The distance (in km) of 40 engineers from their residence to place of work were found as follows:

5	3	10	20	25	11	13	7	12	31
2	19	10	12	17	18	11	32	17	16
3	7	9	7	8	3	5	12	15	18
12	12	14	2	9	6	15	15	7	6

Construct a grouped frequency distribution table with class size 5 for the data given above taking the first interval as 0-5 (5 not included). What main feature do you observe from this tabular representation?
(c) Solve: $\log _{x}(8 x-3)-\log _{x} 4=2$
Q. 10.
(a) Prove that $\sqrt{5}$ is an irrational number.
(b) If $\tan \left(\theta_{1}+\theta_{2}\right)=\frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}}$, find the value of $\left(\theta_{1}+\theta_{2}\right)$ given that $\tan \theta_{1}=\frac{1}{2}$ and $\tan \theta_{2}=\frac{1}{3}$.
(c) If $\frac{x^{2}+1}{x}=4$, find the value of $2 x^{3}+\frac{2}{x^{3}}$.
Q. 11.
(a) Factorise: $4 a^{3} b-44 a^{2} b+112 b$
(b) Find the area of following figure:

(c) In $\triangle A B C, A B=A C=x, B C=20 \mathrm{~cm}$ and the area of the triangle is $250 \mathrm{~cm}^{2}$. Find x.

Solution

SECTION - A (40 Marks)

Q. 1.
(a) $\mathrm{P}=$ Rs. $6000, \mathrm{R}=10 \%$ p.a., $\mathrm{n}=1 \frac{1}{2}$ years $=\frac{3}{2}$ years
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{2 \times 100}\right)^{2 \mathrm{n}}(\because$ Interest is compounded half yearly $)$
$=6000\left(1+\frac{10}{2 \times 100}\right)^{3}$
$=6000\left(1+\frac{5}{100}\right)^{3}$
$=6000 \times(1.05)^{3}$
=Rs. 6945.75
Amount $=$ Rs. 6945.75
C.I. $=6945.75-6000=$ Rs. 945.75
(b) We have

$$
\begin{aligned}
& \frac{(\sqrt{11}-\sqrt{7})(\sqrt{11}-\sqrt{7})}{(\sqrt{11}+\sqrt{7})(\sqrt{11}-\sqrt{7})}=x-y \sqrt{77} \\
& \Rightarrow \frac{11-\sqrt{77}-\sqrt{77}+7}{11-7}=x-y \sqrt{77} \\
& \Rightarrow \frac{18-2 \sqrt{77}}{4}=x-y \sqrt{77} \\
& \Rightarrow \frac{9}{2}-\frac{1}{2} \sqrt{77}=x-y \sqrt{77} \\
& \Rightarrow x=\frac{9}{2}, y=\frac{1}{2}
\end{aligned}
$$

(c)

Sonu and Monu's field together form a quadrilateral $A B C D$.

Sonu's field is $\triangle A B D$,
$s=\frac{a+b+c}{2}=\frac{52+25+63}{2}=70$
$s-a=70-52=18, s-b=70-25=45$ and $s-c=70-63=7$
Area of $\triangle A B D=$

$$
\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{70.18 .45 .7}=630 \mathrm{sq} \mathrm{~m}
$$

Monu's field is $\triangle B C D$,
$s=\frac{a+b+c}{2}=\frac{114+25+101}{2}=120$
$s-a=120-114=6, s-b=120-25=95$ and $s-c=120-101=19$
Area of $\triangle B C D=$

$$
\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{120.6 .95 .19}=1140 \mathrm{sq} \mathrm{~m}
$$

Total area is $=630+1140=1770 \mathrm{sq} \mathrm{m}$
The cost of fertilization is Rs 20 per sq m .
Therefore the total cost is $=1770 \times 20=$ Rs 35,400 .

Q. 2.

(a) In $\triangle \mathrm{DFC}, \mathrm{DC}^{2}=\mathrm{DF}^{2}+\mathrm{FC}^{2} \quad$ [Pythagoras Theorem]
$\Rightarrow 5^{2}=\mathrm{DF}^{2}+4^{2}$
$\Rightarrow 5^{2}-4^{2}=\mathrm{DF}^{2} \Rightarrow \mathrm{DF}^{2}=25-16 \Rightarrow \mathrm{DF}=3$
\therefore Area of $\triangle \mathrm{DEC}=\frac{1}{2} \times(4+4) \times 3=\frac{1}{2} \times 8 \times 3=12 \mathrm{~cm}^{2}$
$\mathrm{FX}=\mathrm{DX}-\mathrm{DF}=9-3=6 \mathrm{~cm}$

Area of trapezium CEBA $=\frac{1}{2} \times(4+4+6+6) \times 6=\frac{1}{2} \times 20 \times 6=60 \mathrm{~cm}^{2}$
\therefore Area of figure $\mathrm{ABCDE}=$ area of $\triangle \mathrm{DEC}+$ area of trapezium $\mathrm{ECBA}=12+60=72 \mathrm{~cm}^{2}$
(b) Given that AB and CD are two chords of a circle with centre O , intersecting at a point $E . P Q$ is the diameter through E , such that $\angle \mathrm{AEQ}=\angle \mathrm{DEQ}$.

To prove that $\mathrm{AB}=\mathrm{CD}$.
Draw perpendiculars OL and OM on chords AB and CD respectively.
Now, $\mathrm{m} \angle \mathrm{LOE}=180^{\circ}-90^{\circ}-\mathrm{m} \angle \mathrm{LEO} . .$. [Angle sum property of a triangle]

$$
=90^{\circ}-\mathrm{m} \angle \mathrm{LEO}
$$

$\Rightarrow \mathrm{m} \angle \mathrm{LOE}=90^{\circ}-\mathrm{m} \angle \mathrm{AEQ}$
$\Rightarrow \mathrm{m} \angle \mathrm{LOE}=90^{\circ}-\mathrm{m} \angle \mathrm{DEQ}$
$\Rightarrow \mathrm{m} \angle \mathrm{LOE}=90^{\circ}-\mathrm{m} \angle \mathrm{MEQ}$
$\Rightarrow \angle \mathrm{LOE}=\angle \mathrm{MOE}$
In \triangle OLE and $\triangle O M E$,

\angle LEO $=\angle$ MEO
$\angle \mathrm{LOE}=\angle \mathrm{MOE}$
EO = EO
$\Delta \mathrm{OLE} \cong \triangle \mathrm{OME}$
$\mathrm{OL}=\mathrm{OM}$
Therefore, cords AB and CD are equidistant from the centre.
(c)

$$
\begin{aligned}
& (\sqrt[3]{4})^{2 x+\frac{1}{2}}=(\sqrt[3]{8})^{5} \\
& \Rightarrow\left[(4)^{1 / 3}\right]^{2 x+\frac{1}{2}}=\left[8^{1 / 3}\right]^{5} \\
& \Rightarrow\left(2^{2 / 3}\right)^{\left(2 x+\frac{1}{2}\right)}=\left[8^{1 / 3}\right]^{5} \\
& \Rightarrow(2)^{\frac{2}{3}\left(2 x+\frac{1}{2}\right)}=(2)^{5} \\
& \Rightarrow \frac{2}{3}\left(2 x+\frac{1}{2}\right)=5 \\
& \Rightarrow 4 x+1=15 \\
& \Rightarrow x=\frac{7}{2}
\end{aligned}
$$

Q. 3.

(a) Given, $\log x=a+b$ and $\log y=a-b$

$$
\begin{aligned}
\log \frac{10 \mathrm{x}}{\mathrm{y}^{2}} & \left.=\log 10 \mathrm{x}-\log \mathrm{y}^{2} \quad \text { [Using quotient law }\right] \\
& =\log 10+\log \mathrm{x}-2 \log \mathrm{y} \\
& =1+(\mathrm{a}+\mathrm{b})-2(\mathrm{a}-\mathrm{b}) \\
& =1+\mathrm{a}+\mathrm{b}-2 \mathrm{a}+2 \mathrm{~b} \\
& =1-\mathrm{a}+3 \mathrm{~b}
\end{aligned}
$$

(b) Given : In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the bisector of $\angle \mathrm{BAC}$ and BC is produced to E

To Prove: $\angle \mathrm{ABC}+\angle \mathrm{ACE}=2 \angle \mathrm{ADC}$
Proof:
Let $\angle \mathrm{BAD}=\angle \mathrm{DAC}=\mathrm{x}$ and $\angle \mathrm{ABC}=\mathrm{y}$
Now, $\angle \mathrm{ACE}=\angle \mathrm{ABC}+\angle \mathrm{BAC} \quad \ldots .[$ Exterior angle $=$ Sum of interior opposite $\angle \mathrm{s}$]
$\Rightarrow \angle \mathrm{ACE}=\mathrm{y}+2 \mathrm{x}$
In $\triangle \mathrm{ABD}, \angle \mathrm{ADC}=\mathrm{x}+\mathrm{y} \quad \ldots$. [Exterior angle $=$ Sum of interior opposite $\angle \mathrm{s}$]
$\therefore \angle \mathrm{ABC}+\angle \mathrm{ACE}=\mathrm{y}+\mathrm{y}+2 \mathrm{x}=2(\mathrm{x}+\mathrm{y})$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{ACE}=2 \angle \mathrm{ADC}$
(c) Steps of Construction:

1. Draw $\mathrm{AB}=4.5 \mathrm{~cm}$.
2. Draw $\angle \mathrm{BAS}=120^{\circ}$ and draw $\mathrm{EA} \perp \mathrm{AB}$.
3. From A , cut an arc of measure 3.3 cm on EA such that $\mathrm{AX}=3.3 \mathrm{~cm}$.
4. Through X, draw a line QP which is parallel to AB which cuts AS at D.
5. Through B draw an arc taking radius 3.6 cm at C on PQ .
6. Join CB.

Thus, ABCD is the required trapezium.

Q. 4.
(a) We can see that $\triangle \mathrm{ABC}$ is a right-angles triangle.
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \quad \ldots . .[\mathrm{By}$ Pythagoras theorem]
$\Rightarrow 15^{2}+\mathrm{BC}^{2}=25^{2}$
$\Rightarrow \mathrm{BC}^{2}=400$
$\Rightarrow \mathrm{BC}=20 \mathrm{~cm}$
Now $\mathrm{BC}=\mathrm{DB}+\mathrm{CD}$
$\Rightarrow 20=\mathrm{DB}+7$
$\Rightarrow \mathrm{DB}=13 \mathrm{~cm}$
Again ADB is a right angled triangle.
$\Rightarrow \mathrm{AB}^{2}+\mathrm{DB}^{2}=\mathrm{AD}^{2} \ldots . .[$ By Pythagoras theorem $]$
$\Rightarrow 15^{2}+13^{2}=390$
$\Rightarrow \mathrm{BC}=19.8 \mathrm{~cm}$
In the right-angled $\triangle \mathrm{CDE}$
$\Rightarrow \mathrm{ED}^{2}+\mathrm{CE}^{2}=\mathrm{CD}^{2} \quad \ldots$..[By Pythagoras theorem $]$
$\Rightarrow \mathrm{ED}^{2}=\mathrm{CD}^{2}-\mathrm{CE}^{2}=7^{2}-\mathrm{x}^{2}$

In the right-angled $\triangle \mathrm{AED}$
$\Rightarrow \mathrm{ED}^{2}+\mathrm{AE}^{2}=\mathrm{AD}^{2} \quad \ldots . .[$ By Pythagoras theorem $]$
$\Rightarrow \mathrm{ED}^{2}=\mathrm{AD}^{2}-\mathrm{AE}^{2}=19.8^{2}-(25-\mathrm{x})^{2}$
Since in both the cases length of ED is same
and hence $E D^{2}$ is also same in both the cases.
$\Rightarrow 7^{2}-x^{2}=19.8^{2}-(25-x)^{2}$
$\Rightarrow 7^{2}-x^{2}=19.8^{2}-625-x^{2}+50 \mathrm{x}$
$\Rightarrow 7^{2}-19.8^{2}+625=50 \mathrm{x}$
$\Rightarrow 281.96=50 \mathrm{x}$
$\Rightarrow \mathrm{x}=5.63 \mathrm{~cm}$
So,
$E D^{2}=7^{2}-5.6^{2}=17.64$
$\Rightarrow \mathrm{ED}=4.2 \mathrm{~cm}=\mathrm{DE}$
(b)

Each interior angle of a regular pentagon $=\frac{(2 \times 5-4) \times 90}{5} \quad[\mathrm{n}=5]$

$$
\begin{aligned}
& =\frac{6 \times 90}{5} \\
& =108^{\circ}
\end{aligned}
$$

Each exterior angle of a regular decagon $=\frac{360}{10}=36^{\circ} \quad[\mathrm{n}=10]$
\therefore Each interior angle of a regular pentagon $=3$ (Exterior angle of a regular decagon)
(c) Given $\tan \theta+\cot \theta=3$,

Squaring both sides,

$$
\begin{aligned}
& (\tan \theta+\cot \theta)^{2}=3^{2} \\
& \Rightarrow \tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cot \theta=9 \\
& \Rightarrow \tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \times \frac{1}{\tan \theta}=9 \quad\left[\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right] \\
& \Rightarrow \tan ^{2} \theta+\cot ^{2} \theta+2=9 \\
& \Rightarrow \tan ^{2} \theta+\cot ^{2} \theta=7
\end{aligned}
$$

Section - B (40 Marks)

Q. 5.
(a) Consider equation, $x-2 y=1$
$\Rightarrow y=\frac{x-1}{2}$

x	1	3	5
y	0	1	2

\therefore Points are $(1,0),(3,1)$ and $(5,2)$.
Now consider equation $x+y=4$

x	0	2	4
y	4	2	0

\therefore Points are $(0,4),(2,2)$ and $(4,0)$.

Now plotting these points on the graph paper, we get

Since the lines intersect at $(3,1)$, therefore the solution is $\mathrm{x}=3$ and $\mathrm{y}=1$.
(b) In 15 days A and B together can do a piece of work.

Therefore, in 1 day they do $\frac{1}{15}$ work
Let us assume that A takes x days and B takes y days to do the work alone.
So A's one day's work $=\frac{1}{x}$
B's one day's work $=\frac{1}{y}$
$\frac{1}{x}=\frac{3}{2} \cdot \frac{1}{y}$
$\Rightarrow 3 \mathrm{x}-2 \mathrm{y}=0$
$\Rightarrow 2 \mathrm{y}=3 \mathrm{x}$
$\Rightarrow y=\frac{3 x}{2}$
Also, $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\frac{1}{15}$
$\Rightarrow \frac{1}{\mathrm{x}}+\frac{2}{3 \mathrm{x}}=\frac{1}{15}$
$\Rightarrow \frac{3+2}{3 \mathrm{x}}=\frac{1}{15}$
$\Rightarrow 3 \mathrm{x}=75$
$\Rightarrow \mathrm{x}=25$
$\Rightarrow \mathrm{y}=\frac{3 \times 25}{2}=37.5$
Hence, A will do the work alone in 25 days and B will do it alone 37 and half days.
(c) Let there be n sides of the polygon. Then, each interior angle is of measure

$$
\begin{aligned}
& \left(\frac{2 \mathrm{n}-4}{\mathrm{n}} \times 90^{\circ}\right) \\
& \therefore \frac{2 \mathrm{n}-4}{\mathrm{n}} \times 90=108 \\
& \Rightarrow(2 \mathrm{n}-4) \times 90=108 \mathrm{n} \\
& \Rightarrow 180 \mathrm{n}-360=108 \mathrm{n} \\
& \Rightarrow 180 \mathrm{n}-108 \mathrm{n}=360 \\
& \Rightarrow 72 \mathrm{n}=360 \\
& \Rightarrow \mathrm{n}=5
\end{aligned}
$$

Hence the given polygon has 5 sides.

Q. 6.

(a) (i) Interest for first year $=\frac{5600 \times 14 \times 1}{100}=$ Rs. 784
(ii) Amount at the end of the first year $=5600+784=$ Rs. 6384
(iii) Interest for the second year $=$
$\frac{6384 \times 14 \times 1}{100}=$ Rs. $893.76=$ Rs. 894 (to the nearest rupee)
(b)
(i) Since, the point P lies on the x -axis, its ordinate is 0 .
(ii) Since, the point Q lies on the y-axis, its abscissa is 0 .
(iii) The co-ordinates of P and Q are $(-12,0)$ and $(0,-16)$ respectively.

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{(-12-0)^{2}+(0+16)^{2}} \\
& =\sqrt{144+256} \\
& =\sqrt{400} \\
& =20
\end{aligned}
$$

(c) Here $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{C}=90^{\circ}$ as $\mathrm{m} \angle \mathrm{B}=90^{\circ}$

$$
\Rightarrow 30^{\circ}+\mathrm{m} \angle \mathrm{C}=90^{\circ}
$$

$$
\Rightarrow \mathrm{m} \angle \mathrm{C}=60^{\circ}
$$

In right-angled $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{\mathrm{BC}}{\mathrm{AB}} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{8}{\mathrm{AB}} \\
& \Rightarrow \mathrm{AB}=8 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

$$
\sin 30^{\circ}=\frac{\mathrm{BC}}{\mathrm{AC}}
$$

$$
\Rightarrow \frac{1}{2}=\frac{8}{\mathrm{AC}}
$$

$$
\Rightarrow \mathrm{AC}=16 \mathrm{~cm}
$$

Q. 7.
(a)

$$
\begin{aligned}
& \frac{3^{n+1}}{3^{n(n-1)}} \div \frac{9^{n+1}}{\left(3^{n+1}\right)^{n-1}} \\
& =\frac{3^{n+1}}{3^{n(n-1)}} \times \frac{\left(3^{n+1}\right)^{n-1}}{9^{n+1}} \\
& =\frac{3^{n+1}}{3^{n(n-1)}} \times \frac{3^{(n+1)(n-1)}}{(3 \times 3)^{n+1}} \\
& =\frac{3^{n+1}}{3^{n^{2}-n}} \times \frac{3^{\left(n^{2}-1\right)}}{\left(3^{2}\right)^{n+1}} \\
& =\frac{3^{n+1}}{3^{n^{2}-n}} \times \frac{3^{\left(n^{2}-1\right)}}{3^{2 n+2}} \\
& =3^{n+1+n^{2}-1-\left(n^{2}-n\right)-(2 n+2)} \\
& =3^{n+1+n^{2}-1-n^{2}+n-2 n-2} \\
& =3^{-2} \\
& =\frac{1}{3^{2}} \\
& =\frac{1}{9}
\end{aligned}
$$

(b)

Area of an isosceles $\Delta=\frac{1}{4} \mathrm{~b} \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}$
(where b is the base and a is the length of equal sides)
Given, $\mathrm{b}=8 \mathrm{~cm}$ and area $=12 \mathrm{~cm}^{2}$
$\Rightarrow \frac{1}{4} \times 8 \times \sqrt{4 \mathrm{a}^{2}-8^{2}}=12$
$\Rightarrow \sqrt{4 \mathrm{a}^{2}-8^{2}}=6$
$\Rightarrow 4 \mathrm{a}^{2}-8^{2}=36$
$\Rightarrow 4 \mathrm{a}^{2}=100$
$\Rightarrow a^{2}=25$
$\Rightarrow \mathrm{a}=5 \mathrm{~cm}$
\therefore Perimeter $=2 \mathrm{a}+\mathrm{b}=2 \times 5+8=18 \mathrm{~cm}$
(c) Given $\mathrm{AC}=\mathrm{CD}$

To prove: $\mathrm{BC}<\mathrm{CD}$
Proof: In $\triangle \mathrm{ACD}$,
$\mathrm{m} \angle \mathrm{ACD}=180^{\circ}-70^{\circ}=110^{\circ} \quad$ [Linear pair]
$\angle \mathrm{CAD}=\angle \mathrm{ADC}=\frac{70^{\circ}}{2}=35^{\circ} \quad$ [Angles opposite to equal sides are equal]
In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\mathrm{m} \angle \mathrm{BAC} & =70^{\circ}-35^{\circ}=35^{\circ} \\
\mathrm{m} \angle \mathrm{ABC} & =180^{\circ}-\left(70^{\circ}+35^{\circ}\right) \\
& =75^{\circ} \\
& {\left[\mathrm{Sum} \text { of all } \angle \mathrm{s} \text { of a } \triangle \text { is } 180^{\circ}\right] } \\
\therefore \angle \mathrm{BAC} & <\angle \mathrm{ABC} \\
\therefore \mathrm{BC} & \angle \mathrm{AC}
\end{aligned}
$$

So, $\mathrm{BC}<\mathrm{CD} \quad[$ Since AC $=\mathrm{CD}$]

Q. 8.
(a)
$\cos \theta=\frac{2 \sqrt{m n}}{m+n}$
Now,

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \Rightarrow \sin ^{2} \theta=1-\cos ^{2} \theta \\
&=1-\left(\frac{2 \sqrt{m n}}{m+n}\right)^{2} \\
&=1-\left(\frac{4 m n}{(m+n)^{2}}\right) \\
&=\frac{(m+n)^{2}-4 m n}{(m+n)^{2}} \\
&=\frac{m^{2}+n^{2}+2 m n-4 m n}{(m+n)^{2}} \\
&=\frac{m^{2}+n^{2}-2 m n}{(m+n)^{2}} \\
&=\frac{(m-n)^{2}}{(m+n)^{2}} \\
&=\left(\frac{m-n}{m+n}\right)^{2} \\
& \Rightarrow \sin \theta=\frac{m-n}{m+n}
\end{aligned}
$$

(b) Mean $=20$

Number of terms $=5$
\therefore Total sum $=20 \times 5=100$
Let the excluded number be x.
Then, $\frac{(100-x)}{4}=23$
$\Rightarrow 100-x=23 \times 4=92$
$\Rightarrow \mathrm{x}=8$
Hence, the excluded number is 8 .
(c) Let the side of each of the three equal cubes be 'a' cm.

Surface area of one cube $=6 \mathrm{a}^{2} \mathrm{~cm}^{2}$
Therefore, sum of surface areas of the three cubes $=3 \times 6 \mathrm{a}^{2}=18 \mathrm{a}^{2} \mathrm{~cm}^{2}$
Now,
Length of the new cuboid $=3 \mathrm{a} \mathrm{cm}$
Breadth of the new cuboid $=\mathrm{acm}$
Height of the new cuboid = a cm
Total surface area of the new cuboid $=2[(3 a \times a)+(a \times a)+(a \times 3 a)]$

$$
\begin{aligned}
& =2\left[3 a^{2}+a^{2}+3 a^{2}\right] \\
& =2\left[7 a^{2}\right] \\
& =14 a^{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the required ratio of T.S.A. of the new cuboid to that of the sum of the S.A. of the 3 cubes $=14 \mathrm{a}^{2}: 18 \mathrm{a}^{2}=7: 9$.

Q. 9.

(a) Given: In quadrilateral $A B C D ; A D=B C . P, Q, R, S$ are the mid-points of $A B, B D, C D$ and AC respectively.
To Prove: PQRS is a rhombus.
Proof: In $\triangle \mathrm{ACD}, \mathrm{RS} \| \mathrm{AD}$ and $\mathrm{RS}=\frac{1}{2} \mathrm{AD}$
[Line joining the mid-points of the two sides of triangle is parallel and half of the third side.]
Similarly,
In $\triangle \mathrm{ABD}, \mathrm{PQ} \| \mathrm{AD}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AD}$

In $\triangle \mathrm{BCD}, \mathrm{QR} \| \mathrm{BC}$ and $\mathrm{QR}=\frac{1}{2} \mathrm{BC}$
In $\triangle \mathrm{ABC}, \mathrm{SP}| | \mathrm{BC}$ and $\mathrm{SP}=\frac{1}{2} \mathrm{BC}$
As AD = BC [Given]
$\mathrm{RS}=\mathrm{PQ}=\mathrm{QR}=\mathrm{SP}$ and $\mathrm{RS}|\mid \mathrm{PQ}$ and $\mathrm{QR} \| \mathrm{SP} \quad$ [From (i), (ii), (iii) and (iv)]
Hence PQRS is a rhombus.
(b) Given that we have to construct a grouped frequency distribution table of class size 5 . So, the class intervals will be as $0-5,5-10,10-15,15-20$, and so on. Required grouped frequency distribution table is as follows:

Distance (in km)	Tally marks	Number of engineers		
0-5	NN	5		
5-10	NNMNI	11		
10-15	NNMNI	11		
15-20	NN\|			9
20-25	\|	1		
25-30	\|	1		
30-35	\\|	2		
Total		40		

Only 4 engineers have homes at a distance of more than or equal to 20 km from their work place.

Most of the engineers have their workplace at a distance of upto 15 km from their homes.
(c)
$\log _{x}(8 x-3)-\log _{x} 4=2$
$\Rightarrow \log _{x}\left(\frac{8 x-3}{4}\right)=2$
$\Rightarrow \frac{8 \mathrm{x}-3}{4}=\mathrm{x}^{2}$
$\Rightarrow 8 \mathrm{x}-3=4 \mathrm{x}^{2}$
$\Rightarrow 4 \mathrm{x}^{2}-8 \mathrm{x}+3=0$
$\Rightarrow 4 \mathrm{x}^{2}-6 \mathrm{x}-2 \mathrm{x}+3=0$
$\Rightarrow 2 \mathrm{x}(2 \mathrm{x}-3)-1(2 \mathrm{x}-3)=0$
$\Rightarrow(2 x-3)(2 x-1)=0$
$\Rightarrow 2 \mathrm{x}-3=0$ or $2 \mathrm{x}-1=0$
$\Rightarrow \mathrm{x}=\frac{3}{2}$ or $\mathrm{x}=\frac{1}{2}$
Q. 10.
(a)

Let us assume, on the contrary that $\sqrt{5}$ is a rational number.
Therefore, we can find two integers $\mathrm{a}, \mathrm{b}(\mathrm{b} \neq 0)$ such that $\sqrt{5}=\frac{\mathrm{a}}{\mathrm{b}}$
Where a and b are co-prime integers.

$$
\begin{aligned}
\sqrt{5} & =\frac{a}{b} \\
\Rightarrow & a=\sqrt{5} b \\
\Rightarrow & a^{2}=5 b^{2}
\end{aligned}
$$

Therefore, a^{2} is divisible by 5 then a is also divisible by 5 .
So $\mathrm{a}=5 \mathrm{k}$, for some integer k .
Now, $\mathrm{a}^{2}=(5 \mathrm{k})^{2}=5\left(5 \mathrm{k}^{2}\right)=5 \mathrm{~b}^{2}$
$\Rightarrow \mathrm{b}^{2}=5 \mathrm{k}^{2}$
This means that b^{2} is divisible by 5 and hence, b is divisible by 5 .
This implies that a and b have 5 as a common factor.
And this is a contradiction to the fact that a and b are co-prime.
So our assumption that $\sqrt{5}$ is rational is wrong.
Hence, $\sqrt{5}$ cannot be a rational number. Therefore, $\sqrt{5}$ is irrational.
(b)

$$
\begin{aligned}
& \tan \left(\theta_{1}+\theta_{2}\right)=\frac{\tan \theta_{1}+\tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{2} \times \frac{1}{3}\right)} \\
& \Rightarrow \tan \left(\theta_{1}+\theta_{2}\right)=\frac{\frac{3+2}{6}}{1-\frac{1}{6}}=\frac{\frac{5}{6}}{\frac{6-1}{6}}=\frac{5}{6} \times \frac{6}{5}=1 \\
& \Rightarrow \tan \left(\theta_{1}+\theta_{2}\right)=1=\tan 45^{\circ} \\
& \Rightarrow\left(\theta_{1}+\theta_{2}\right)=45^{\circ}
\end{aligned}
$$

(c) $\frac{x^{2}+1}{x}=4$

$$
\begin{align*}
& \Rightarrow x^{2}+1=4 x \\
& \Rightarrow x^{2}-4 x+1=0 \tag{i}
\end{align*}
$$

On dividing equation (i) by x, we have

$$
\begin{align*}
& x-4+\frac{1}{x}=0 \\
& \Rightarrow x+\frac{1}{x}=4 \tag{ii}
\end{align*}
$$

On cubing equation (ii) both sides, we have

$$
\begin{aligned}
& \left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{3}=(4)^{3} \\
& \Rightarrow \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}+3 \mathrm{x} \times \frac{1}{\mathrm{x}}\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)=64 \\
& \Rightarrow \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}+3 \times 4=64 \\
& \Rightarrow \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}=64-12 \\
& \Rightarrow \mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}=52 \\
& \therefore\left(2 \mathrm{x}^{3}+\frac{2}{\mathrm{x}^{3}}\right)=2\left(\mathrm{x}^{3}+\frac{1}{\mathrm{x}^{3}}\right)=2 \times 52=104
\end{aligned}
$$

Q. 11.
(a) $4 a^{3} b-44 a^{2} b+112 b$

$$
\begin{aligned}
& =4 a b\left[a^{2}-11 a+28\right] \\
& =4 a b\left[a^{2}-7 a-4 a+28\right] \\
& =4 a b[a(a-7)-4(a-7)] \\
& =4 a b(a-7)(a-4)
\end{aligned}
$$

(b) Construction: Draw TM \perp QS

Area of $\triangle \mathrm{RQS}=\frac{1}{2} \times \mathrm{QS} \times \mathrm{RN}=\frac{1}{2} \times 35 \times 20=350 \mathrm{~cm}^{2}$
Now, QS = QM + MS
$\Rightarrow 35=25+\mathrm{MS}$
$\Rightarrow \mathrm{MS}=10 \mathrm{~cm}$
In \triangle STM,
$\mathrm{MS}^{2}+\mathrm{TM}^{2}=\mathrm{ST}^{2}$
$\Rightarrow \mathrm{TM}^{2}=\mathrm{ST}^{2}-\mathrm{MS}^{2}=(26)^{2}-(10)^{2}=676-100=576$

$\Rightarrow \mathrm{TM}=24 \mathrm{~cm}=\mathrm{PQ}$
\therefore Area of trapezium $\mathrm{PQST}=\frac{1}{2} \times(\mathrm{PT}+\mathrm{QS}) \times \mathrm{PQ}=\frac{1}{2} \times(25+35) \times 24=720 \mathrm{~cm}^{2}$
Thus, area of given figure $=$ Area of $\triangle R Q S+$ Area of trapezium PQST

$$
\begin{aligned}
& =350 \mathrm{~cm}^{2}+720 \mathrm{~cm}^{2} \\
& =1070 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) Given: In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}=\mathrm{x}, \mathrm{BC}=20 \mathrm{~cm}$, Area of $\triangle \mathrm{ABC}=250 \mathrm{~cm}^{2}$

To find: x
Construction: Draw AD \perp BC
Since $\triangle A B C$ is an isosceles triangle. $A D$ bisects $B C$.
$\mathrm{BD}=\mathrm{DC}=20 / 2=10 \mathrm{~cm}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}=250 \mathrm{~cm}^{2}$ [Given]

$$
\frac{1}{2} \times 20 \times \mathrm{AD}=250 \Rightarrow \mathrm{AD}=25 \mathrm{~cm}
$$

In rt. $\triangle \mathrm{ADC}$,

$$
\mathrm{AD}^{2}+\mathrm{DC}^{2}=\mathrm{AC}^{2}
$$

20 cm
$25^{2}+10^{2}=x^{2}$
$x^{2}=625+100=725$
[Pythagoras Theorem]
$\Rightarrow x=5 \sqrt{29} \mathrm{~cm}$

