Volume \& Surface Areas Of Solids

Exercise 19A

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid		lbh	$\begin{gathered} 2 \mathrm{lh}+2 \mathrm{bh} \\ \text { or } \\ 2 \mathrm{~h}(\mathrm{l}+\mathrm{b}) \end{gathered}$	$\begin{gathered} 2 l h+2 b h+2 l b \\ \text { or } \\ 2(l h+b h+l b) \end{gathered}$
Cube		a^{3}		$\begin{gathered} 4 a^{2}+2 a^{2} \\ \text { or } \\ 6 a^{2} \end{gathered}$
Right circular cylinder		$\pi r^{2} h$	$2 \pi \mathrm{rh}$	$\begin{gathered} 2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2} \\ \text { or } \\ 2 \pi \mathrm{r}(\mathrm{~h}+\mathrm{r}) \end{gathered}$
Right circular cone		$\frac{1}{3} \pi r^{2} h$	$\pi \mathrm{rl}$	$\pi r l+\pi r^{2}$ or $\pi r(\mathrm{l}+\mathrm{r})$
Sphere		$\frac{4}{3} \pi r^{3}$	$4 \pi r^{2}$	$4 \pi \mathrm{r}^{2}$
Hemisphere		$\frac{2}{3} \pi r^{3}$	$2 \pi \mathrm{r}^{2}$	$\begin{gathered} 2 \pi r^{2}+\pi r^{2} \\ \text { or } \\ 3 \pi r^{2} \end{gathered}$

Question 1:

Radius of the cylinder $=14 \mathrm{~m}$
And its height $=3 \mathrm{~m}$
Radius of cone $=14 \mathrm{~m}$
And its height $=10.5 \mathrm{~m}$
Let I be the slant height

$$
\begin{aligned}
\left.\therefore \quad\right|^{2} & =(14)^{2}+(10.5)^{2} \\
\left.\right|^{2} & =(196+110.25) \mathrm{m}^{2} \\
\left.\right|^{2} & =306.25 \mathrm{~m}^{2} \\
\mid & =\sqrt{306.25} \mathrm{~m} \\
& =17.5 \mathrm{~m}
\end{aligned}
$$

Curved surface area of tent
$=$ (curved area of cylinder + curved surface area of cone)
$-2 \pi h+\pi$
$=\left[\left(2 \times \frac{22}{7} \times 14 \times 3\right)+\left(\frac{22}{7} \times 14 \times 17.5\right)\right] \mathrm{m}^{2}$
$-(264+770) \mathrm{m}^{2}=1034 \mathrm{~m}^{2}$
Hence, the curved surface area of the tent $=1034$
Cost of canvas $=$ Rs. $(1034 \times 80)=$ Rs. 82720

Question 2:

For the cylindrical portion, we have radius $=52.5 \mathrm{~m}$ and height $=3 \mathrm{~m}$ For the conical portion, we have radius $=52.5 \mathrm{~m}$
And slant height $=53 \mathrm{~m}$
Area of canvas $=2 r h+r l=r(2 h+I)$
$-\left[\frac{22}{7} \times 52.5 \times(2 \times 3+53)\right] \mathrm{m}^{2}$
$-\left(22 \times \frac{15}{2} \times 59\right) \mathrm{m}^{2}-9735 \mathrm{~m}^{2}$

Question 3:

Height of cylinder $=20 \mathrm{~cm}$
And diameter $=7 \mathrm{~cm}$ and then radius $=3.5 \mathrm{~cm}$
Total surface area of article
$=$ (lateral surface of cylinder with $r=3.5 \mathrm{~cm}$ and $\mathrm{h}=20 \mathrm{~cm}$)
$-\left[2 \pi r h+2 x\left(2 \pi r^{2}\right)\right]$ squnits
$-\left[\left(2 \times \frac{22}{7} \times \frac{7}{2} \times 20\right)+\left(4 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right)\right] \mathrm{cm}^{2}$
$-(440+154) \mathrm{cm}^{2}=594 \mathrm{~cm}^{2}$

Question 4:

Radius of wooden cylinder $=4.2 \mathrm{~cm}$ Height of wooden cylinder $=12 \mathrm{~cm}$ Lateral surface area

- 2um sqcm
$-2 \times \pi \times 4.2 \times 12 \mathrm{~cm}^{2}$
$-100.8 \mathrm{~cm} \mathrm{~cm}^{2}$
Radius of hemisphere $=4.2 \mathrm{~cm}$
Surface area of two hemispheres
$-2 \times 2 \mathrm{r}^{2}$ squnit
- $4 \pi \times 4.2 \times 4.2 \mathrm{~cm}^{2}$
$=70.70 \pi \mathrm{~cm}^{2}$
Total surface area $=(100.8+70.56) \pi \mathrm{cm}^{2}$
$=538.56 \mathrm{~cm}^{2}$
$=171.36 \pi$
$=171.36 \times \frac{22}{7} \mathrm{~cm}^{2}$
$=538.56 \mathrm{~cm}^{2}$

Further, volume of cylinder $=\pi r^{2} h=4.2 \times 4.2 \times 12 \pi \mathrm{~cm}^{2}$
$=211.68 \mathrm{ncm}^{2}$
Volume of two hemispheres $=2 \times \frac{2}{3} \pi r^{3}$ cu.units
$=\frac{4}{3} \pi \times 4.2 \times 4.2 \times 4.2$
$=98.784 \mathrm{~cm}^{3}$
Volume of wood left $=(211.68-98.784) \pi$
$=112.896 \pi \mathrm{~cm}^{3}$
$=112.896 \times \frac{22}{7} \mathrm{~cm}^{3}$
$=354.816 \mathrm{~cm}^{3}$

Question 5:

Radius of cylinder $=2.5 \mathrm{~m}$
Height of cylinder $=21 \mathrm{~m}$
Slant height of cone $=8 \mathrm{~m}$
Radius of cone $=2.5 \mathrm{~m}$
Total surface area of the rocket $=$ (curved surface area of cone + curved surface area of cylinder + area of base)
$-\left(x r_{1}+2 x H+\pi r^{2}\right)$
where l-8m, h-21m, r-2.5m
$=\left(\frac{22}{7} \times 2.5 \times 8+2 \times \frac{22}{7} \times 2.5 \times 21+\frac{22}{7} \times 2.5 \times 2.5\right) \mathrm{m}^{2}$
$=(62.85+330+19.64) \mathrm{m}^{2}-412.5 \mathrm{~m}^{2}$

Question 6:

Height of cone $=\mathrm{h}=24 \mathrm{~cm}$
Its radius $=7 \mathrm{~cm}$
\therefore Slant height $=\sqrt{(24)^{2}+7^{2}}$
$-\sqrt{576+49}$

- $\sqrt{625}-25 \mathrm{~cm}$

Total surface area of toy
$-\left(x+2 \pi r^{2}\right)$
$=\Psi(1+\lambda)$
$-\frac{22}{7} \times 7 \times(25+14)$

- $22 \times 39-858 \mathrm{~cm}^{2}$

Question 7:

Height of cylindrical container $h_{1}=15 \mathrm{~cm}$
Diameter of cylindrical container $=12 \mathrm{~cm}$
Volume of container $=\pi_{1} h_{1}=\pi \times 6 \times 6 \times 15=540 \pi \mathrm{~cm}^{2}$
Height of cone $r_{2}=12 \mathrm{~cm}$
Diameter $=6 \mathrm{~cm}$
Radius of $\mathrm{r}_{2}=3 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi \frac{2}{2} h_{2}=\frac{1}{3} \pi \times 3 \times 3 \times 12$

$$
-36 \pi \mathrm{~m}^{3}
$$

Radius of hemisphere $=3 \mathrm{~cm}$
Volume of hemisphere $=\frac{2}{3} \pi r_{2}^{3}-\frac{2}{3} \pi \times 3 \times 3 \times 3-18 \pi$
Volume of cone + volume of hemisphere
$=36 \pi+18 \pi=54 \pi$
Number of cones

Volume of conteiner

$=\overline{\text { Volume of cone }+ \text { Volume of hemisphere }}$
$=\frac{540 \pi}{54 \pi}-10$
Number of cones that can be filled $=10$

Question 8:

Diameter of cylindrical gulabjamun $=2.8 \mathrm{~cm}$
Its radius $=1.4 \mathrm{~cm}$
Total height of gulabjamun $=\mathrm{AC}+\mathrm{CD}+\mathrm{DB}=5 \mathrm{~cm}$
$1.4+C D+1.4=5$
$2.8+C D=5$
$C D=2.2 \mathrm{~cm}$
Height of cylindrical part h $=2.2 \mathrm{~cm}$
Volume of 1 gulabjamun = Volume of cylindrical part + Volume of two hemispherical parts
$-x r^{2} h+\frac{2}{3} \pi x^{2}+\frac{2}{3} \pi r^{3}$
$=\pi r^{2} h+\frac{4}{3} \pi \pi^{3}-x r^{2}\left(h+\frac{4}{3}\right)$
$=\frac{22}{7} \times 1.4 \times 1.4 \times\left(2.2+\frac{4}{3} \times 1.4\right)$
$=22 \times 0.2 \times 1.4 \times(2.2+1.87)$
$=4.4 \times 1.4 \times 4.07-25.07 \mathrm{~cm}^{3}$
Volume of 45 gulabjamuns $=45 \times 25.07 \mathrm{~cm}^{3}$
Quantity of syrup $=30 \%$ of volume of gulabjamuns
$=0.3 \times 45 \times 25.07=338.46 \mathrm{~cm}^{3}$

Question 9:

Diameter $=7 \mathrm{~cm}$, radius $==3.5 \mathrm{~cm}$
Height of cone $=14.5 \mathrm{~cm}-3.5 \mathrm{~cm}=11 \mathrm{~cm}$

$$
\begin{gathered}
I=\sqrt{\left(\frac{7}{2}\right)^{2}+(11)^{2}} \mathrm{~cm}=\sqrt{\frac{49}{4}+121} \mathrm{~cm}=\sqrt{\frac{533}{4}} \mathrm{~cm} \\
I=\frac{23.08}{2} \mathrm{~cm}=11.54 \mathrm{~cm}
\end{gathered}
$$

Vdume of toy $=\frac{2}{3} x r^{3}+\frac{1}{3} x^{2} h$

$$
\begin{aligned}
& =\left[\frac{1}{3} \pi^{2}(\gamma+h)\right] \\
& \text { where } r=\frac{7}{2} \text { and } h=11 \\
& =\left[\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times\left(2 \times \frac{7}{2}+11\right)\right] \mathrm{cm}^{3} \\
& =(12.83 \times 18) \mathrm{cm}^{3}-230.94 \mathrm{~cm}^{3}
\end{aligned}
$$

Total surface area of toy $=\left(2 \pi r^{2}+\pi r\right) \mathrm{cm}^{2}=\pi r(2+1) \mathrm{cm}^{2}$
$=\frac{22}{7} \times \frac{7}{2} \times\left(2 \times \frac{7}{2}+11.54\right) \mathrm{cm}^{2}$
$-(11 \times 18.54) \mathrm{cm}^{2}-203.94 \mathrm{~cm}^{2}$

Question 10:

Diameter of cylinder $=24 \mathrm{~m}$
Radius of cylinder $=\frac{24}{2}=12 \mathrm{~cm}$
Height of the cylinder $=11 \mathrm{~m}$
Height of cone $=(16-11) \mathrm{cm}=5 \mathrm{~cm}$
Slant height of the cone $1=\sqrt{r^{2}+h^{2}}=\sqrt{144+25} \mathrm{~m}=13 \mathrm{~m}$
Area of canvas required = (curved surface area of the cylindrical part) + (curved surface area of the conical part)
$-(2 x h+x=\pi) m^{2}=x r(2 h+1) m^{2}$
$-\left[\frac{22}{7} \times 12 \times(2 \times 11+13)\right] \mathrm{m}^{2}$
$-\left(\frac{22}{7} \times 12 \times 35\right) \mathrm{m}^{2}-1320 \mathrm{~m}^{2}$

Question 11:

Radius of hemisphere $=10.5 \mathrm{~cm}$
Height of cylinder $=(14.5-10.5) \mathrm{cm}=4 \mathrm{~cm}$
Radius of cylinder $=10.5 \mathrm{~cm}$

Capacity $=$ Volume of cylinder + Volume of hemisphere
$-\left(x r^{2} h+\frac{2}{3} x r^{3}\right) \mathrm{cm}^{3}=x^{2}\left(h+\frac{2}{3} r\right) \mathrm{cm}^{3}$
$-\left[\frac{22}{7} \times 10.5 \times 10.5 \times\left(4+\frac{2}{3} \times 10.5\right)\right] \mathrm{cm}^{3}$
$-(346.5 \times 11) \mathrm{cm}^{2}-3811.5 \mathrm{~cm}^{2}$

Question 12:

Height of cylinder $=6.5 \mathrm{~cm}$
Height of cone $=h_{2}=(12.8-6.5) \mathrm{cm}=6.3 \mathrm{~cm}$
Radius of cylinder $=$ radius of cone
= radius of hemisphere
$=\frac{7}{2} \mathrm{~cm}$
Volume of solid $=$ Volume of cylinder + Volume of cone + Volume of hemisphere
$=x^{2} h_{1}+\frac{1}{3} x r^{2} h_{2}+\frac{2}{3} \pi r^{3}=x^{2}\left(h_{1}+\frac{1}{3} h_{2}+\frac{2}{3} r\right)$
$=\left[\frac{22}{7} \times 3.5 \times 3.5 \times\left(6.5+6.3 \times \frac{1}{3}+\frac{2}{3} \times 3.5\right)\right]$
$=[(38.5) \times(6.5+2.1+2.33)] \mathrm{cm}^{3}$
$-(38.5 \times 10.93) \mathrm{cm}^{3}-420.80 \mathrm{~cm}^{3}$

Question 13:

Radius of each hemispherical end $=\frac{28}{2}=14 \mathrm{~cm}$ Height of each hemispherical part $=$ Its Radius
Height of cylindrical part $=(98-2 \times 14)=70 \mathrm{~cm}$
Area of surface to be polished $=2$ (curved surface area of hemisphere) + (curved surface area of cylinder)
$-\left[2\left(2 \pi^{2}\right)+2 x \pi\right]$ squnit

- $2 x \mathrm{x}(2 \mathrm{r}+\mathrm{h}) \mathrm{cm}^{2}$
$-2 \times \frac{22}{7} \times 14 \times[2 \times 14+70] \mathrm{cm}^{2}$
$-(88 \times 98)-8624 \mathrm{~cm}^{2}$
Cost of polishing the surface of the solid
$=$ Rs. (0.15×8624)
$=$ Rs. 1293.60

Question 14:

Radius of cylinder $r_{1}=5 \mathrm{~cm}$

And height of cylinder $\mathrm{h}_{1}=9.8 \mathrm{~cm}$
Radius of cone $r=2.1 \mathrm{~cm}$
And height of cone $h_{2}=4 \mathrm{~cm}$
Volume of water left in tub = (volume of cylindrical tub - volume of solid)
$=\left(x h_{1} h_{1}-\frac{2}{3} \pi^{3}-\frac{1}{3} \pi^{2} h_{2}\right)$
$=\left(\frac{22}{7} \times 5 \times 5 \times 9.8-\frac{2}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 2.1-\frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 4\right)$

- [$[770-19.404)-18.48] \mathrm{cm}^{3}$
- $732.116 \mathrm{~cm}^{3}$

Question 15:

(i) Radius of cylinder $=6 \mathrm{~cm}$

Height of cylinder $=8 \mathrm{~cm}$

Volume of cylinder
$\Rightarrow \pi r^{2} \times 10800=972 \pi$

$$
\begin{aligned}
& \mathrm{r}^{2}=\frac{972 \pi}{10800 \pi}=0.09 \mathrm{~cm}^{2} \\
& \mathrm{r}=\sqrt{0.09} \mathrm{~cm}=0.3
\end{aligned}
$$

Volume of cone removed
$=\frac{1}{3} \pi^{2} h$
$-\frac{1}{3} \times x \times 6 \times 6 \times 8 \mathrm{~cm}^{3}$
$-96 \pi \mathrm{~cm}^{3}$
(ii) Surface area of cylinder $=2 \pi=2 \pi \times 6 \times 8 \mathrm{~cm}^{2}=96 \pi \mathrm{~cm}^{2}$

Slant height of cone $=\sqrt{6^{2}+8^{2}}=\sqrt{36+64} \mathrm{~cm}$

$$
-\sqrt{100} \mathrm{~cm}=10 \mathrm{~cm}
$$

Curved surface area of cone $=\pi x_{1}=\pi \times 6 \times 10=60 \pi$
Area of base of cylinder $=\pi^{2}=\pi \times 6 \times 6=36 \pi$
Total surface area of remaining solid

$$
\begin{aligned}
& =(96 \pi+60 \pi+36 \pi) \mathrm{cm}^{2} \\
& =192 \pi \mathrm{~cm}^{2}=602.88 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 16:

Diameter of spherical part of vessel $=21 \mathrm{~cm}$
Its radius $=\frac{21}{2} \mathrm{~cm}$
Its volume $=\frac{4}{3} \mathrm{xr}^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} \\
& =11 \times 21 \times 21 \mathrm{~cm}^{3}=4851 \mathrm{~cm}^{3}
\end{aligned}
$$

Vdume of cylindrical part of vessel

$$
\begin{aligned}
& =\pi^{2} \mathrm{~h}=\frac{22}{7} \times 2 \times 2 \times 7 \mathrm{~cm}^{3} \\
& =88 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Volume of whole vessel $=(4851+88) \mathrm{cm}^{3}=4939 \mathrm{~cm}^{3}$

Question 17:

Height of cylindrical tank $=2.5 \mathrm{~m}$
Its diameter $=12 \mathrm{~m}$, Radius $=6 \mathrm{~m}$
Volume of tank $=\pi{ }^{24} \mathrm{~h}=\frac{22}{7} \times 6 \times 6 \times 2.5 \mathrm{~m}^{3}=\frac{1980}{7} \mathrm{~m}^{3}$
Water is flowing at the rate of $3.6 \mathrm{~km} / \mathrm{hr}=3600 \mathrm{~m} / \mathrm{hr}$ Diameter of pipe $=25 \mathrm{~cm}$, radius $=0.125 \mathrm{~m}$ Volume of water flowing per hour

$$
\begin{aligned}
& =\frac{22}{7} \times 0.125 \times 0.125 \times 3600 \mathrm{~m}^{3} \\
& =\frac{22 \times 3600}{7 \times 8 \times 8} \mathrm{~m}^{3}=\frac{2475}{14} \mathrm{~m}^{3}
\end{aligned}
$$

Time taken to fill the tank=$\frac{1980}{7}+\frac{2475}{14} \mathrm{hr}$

$$
=\frac{1980}{7} \times \frac{14}{2475} \mathrm{hr}=\frac{792}{495} \mathrm{hr}
$$

$$
=1.36 \mathrm{hr}=1 \mathrm{hr} 36 \mathrm{~min} .
$$

Water charges $=$ Rss $\frac{1980}{7} \times 0.07=$ Rs 19.80

Question 18:

Diameter of cylinder $=5 \mathrm{~cm}$
Radius $=2.5 \mathrm{~cm}$
Height of cylinder $=10 \mathrm{~cm}$
Volume of cylinder $=\pi r^{2} h$ cu.units $=3.14 \times 2.5 \times 2.5 \times 10 \mathrm{~cm}^{3}=196.25 \mathrm{~cm}^{3}$
Apparent capacity of glass $=196.25$
Radius of hemisphere $=2.5 \mathrm{~cm}$
Volume of hemisphere
$-\frac{2}{3} \pi^{3}$
$-\frac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5 \mathrm{~cm}^{3}$

$-32.708 \mathrm{~cm}^{3}$

Actual capacity of glass $=(196.25-32.608) \mathrm{cm}^{3}=163.54 \mathrm{~cm}^{3}$

Exercise 19B

https://www.youtube.com/watch?v=6KpStN_0mjE

Question 1:

Radius of the cone $=12 \mathrm{~cm}$ and its height $=24 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{3} \mathrm{~h}=\left(\right.$ frac $\{1\}\{3\} \backslash$ times $12 \backslash$ times $12 \backslash$ times 24) $\pi \mathrm{cm}^{3}$
$=(48 \times 24) \pi \mathrm{cm}^{3}$

$$
=(48 \times 24) \pi \mathrm{cm}^{3}
$$

Volume of each ball $=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi \times 3 \times 3 \times 3=(36 \pi) \mathrm{cm}^{3}$
Number of balls formed $=\frac{\text { Volume of solid cone }}{\text { Volume of each ball }}$

$$
=\frac{(48 \times 24 \pi)}{36 \pi}=32
$$

Question 2:

Internal radius $=3 \mathrm{~cm}$ and external radius $=5 \mathrm{~cm}$
Volume of material in the shell $=\frac{2}{3} \pi \times\left[(5)^{3}-(3)^{3}\right] \mathrm{cm}^{2}$

$$
=\frac{2}{3} \times \frac{22}{7} \times 98=\frac{616}{3} \mathrm{~cm}^{3}
$$

Radius of the cone $=7 \mathrm{~cm}$
Let height of cone be $h \mathrm{~cm}$
Volume of cone $=\left(\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times h\right) \mathrm{cm}^{3}=\frac{154 h}{3} \mathrm{~cm}^{3}$
$\therefore \frac{154 h}{3}=\frac{616}{3}$
$\Rightarrow h=\frac{616}{154}=4 \mathrm{~cm}$
Hence, height of the cone $=4 \mathrm{~cm}$

Question 3:

Inner radius of the bowl $=15 \mathrm{~cm}$
Volume of liquid in it $=$
$\frac{2}{3} \pi^{3}=\left(\frac{2}{3} \pi \times(15)^{3}\right) \mathrm{cm}^{3}$
Radius of each cylindrical bottle $=2.5 \mathrm{~cm}$ and its height $=6 \mathrm{~cm}$ Volume of each cylindrical bottle
$=\pi r^{2} h=\left(\pi \times\left(\frac{5}{2}\right)^{2} \times 6\right) \mathrm{cm}^{2}$
$=\left(\frac{25}{4} \times 6 \pi\right)=\left(\frac{75 \pi}{2}\right) \mathrm{cm}^{3}$
Volume of liquid
Required number of bottles $=\overline{\text { Volume ofeach cylindrical bottle }}$
$=\frac{\frac{2}{3} \times \pi \times 15 \times 15 \times 15}{\frac{75}{2} \times \pi}=60$
Hence, bottles required $=60$

Question 4:

Radius of the sphere $=\frac{21}{2} \mathrm{~cm}$
Volume of the sphere $=\left(\frac{4}{3} \pi r^{3}\right)=\left[\frac{4}{3} \pi \times\left(\frac{21}{2}\right)^{3}\right] \mathrm{cm}^{3}$
Radius of cone $=\frac{7}{4} \mathrm{~cm}$ and height 3 cm
Volume of cone $=\frac{1}{3} \pi r^{2} \mathrm{~h}=\left(\frac{1}{3} \times \pi \times\left(\frac{7}{4}\right)^{2} \times 3\right) \mathrm{am}^{3}$
Let the number of cones formed be n, then

$$
\begin{aligned}
& n \times \frac{1}{3} \pi \times\left(\frac{7}{4}\right)^{2} \times 3=\frac{4}{3} \pi \times\left(\frac{21}{2}\right)^{3} \\
& n=\frac{4}{3} \pi \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} \times \frac{3}{\pi} \times \frac{4}{7} \times \frac{4}{7} \times \frac{1}{3} \\
& n=504
\end{aligned}
$$

Hence, number of cones formed $=504$

Question 5:

Radius of the cannon ball $=14 \mathrm{~cm}$
Volume of cannon ball $=$

$$
\frac{4}{3} \pi r^{3}=\left[\frac{4}{3} \pi \times(14)^{3}\right] \mathrm{cm}^{3}
$$

Radius of the cone $=\frac{35}{2} \mathrm{~cm}$
Let the height of cone be hcm
Volume of cone $=\left[\frac{1}{3} \pi \times\left(\frac{35}{2}\right)^{2} \times h\right] \mathrm{cm}^{3}$

$$
\begin{aligned}
\therefore \frac{4}{3} \pi \times(14)^{3} & =\frac{1}{3} \pi \times\left(\frac{35}{2}\right)^{2} \times h \\
h & =\frac{4}{3} \pi \times 14 \times 14 \times 14 \times \frac{3}{\pi} \times \frac{2}{35} \times \frac{2}{35} \\
& =35.84 \mathrm{~cm}
\end{aligned}
$$

Hence, height of the cone $=35.84 \mathrm{~cm}$

Question 6:

Let the radius of the third ball be rcm , then,
Volume of third ball $=$ Volume of spherical ball - volume of 2 small balls Volume of third ball $=\left[\frac{4}{3} \pi(3)^{3}-\left\{\frac{4}{3} \pi\left(\frac{3}{2}\right)^{3}+\frac{4}{3} \pi(2)^{3}\right\}\right]$

$$
=\left[36 \pi-\left(\frac{9 \pi}{2}+\frac{32 \pi}{3}\right)\right] \mathrm{cm}^{3}=\frac{125 \pi}{6} \mathrm{am}^{3}
$$

$$
\begin{aligned}
\therefore \quad \frac{4}{3} \pi r^{3} & =\frac{125 \pi}{6} \\
r^{3} & =\frac{125 \pi \times 3}{6 \times 4 \times \pi}=\frac{125}{8} \\
r & =\left(\frac{5}{2}\right) \mathrm{cm}=2.5 \mathrm{~cm}
\end{aligned}
$$

Question 7:

External radius of shell $=12 \mathrm{~cm}$ and internal radius $=9 \mathrm{~cm}$
Volume of lead in the shell $=\frac{4}{3} \pi\left[(12)^{3}-(9)^{3}\right] \mathrm{cm}^{3}$
Let the radius of the cylinder be r / cm
Its height $=37 \mathrm{~cm}$
Volume of cylinder $=\pi r^{2} h=\left(\pi r^{2} \times 37\right)$

$$
\begin{aligned}
& \therefore \frac{4}{3} \pi\left[(12)^{3}-(9)^{3}\right]=\pi r^{2} \times 37 \\
& \frac{4}{3} \times \pi \times 999=\pi r^{2} \times 37 \\
& r^{2}=\frac{4}{3} \times \pi \times 999 \times \frac{1}{37 \pi}=36 \mathrm{~cm}^{2} \\
& r=\sqrt{36} \mathrm{~cm}^{2}=6 \mathrm{~cm}
\end{aligned}
$$

Hence diameter of the base of the cylinder $=12 \mathrm{~cm}$

Question 8:

Volume of hemisphere of radius 9 cm
$=\left(\frac{2}{3} \times \pi \times 9 \times 9 \times 9\right) \mathrm{cm}^{3}$
Volume of circular cone (height $=72 \mathrm{~cm}$)
$=\frac{1}{3}\left(\pi \times r^{2} \times 72\right) \mathrm{cm}$

Volume of cone $=$ Volume of hemisphere

$$
\begin{aligned}
& \therefore \frac{1}{3} \times \pi^{2} \times 72=\frac{2}{3} \pi \times 9 \times 9 \times 9 \\
& r^{2}=\frac{2 \pi}{3} \times 9 \times 9 \times 9 \times \frac{1}{24 \pi}=20.25 \\
& \quad r=\sqrt{20.25}=4.5 \mathrm{~cm}
\end{aligned}
$$

Hence radius of the base of the cone $=4.5 \mathrm{~cm}$

Question 9:

Diameter of sphere $=21 \mathrm{~cm}$
Hence, radius of sphere $=\frac{19}{2} \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}=\left(\frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2}\right)$
Volume of cube $=a 3=(1 \times 1 \times 1)$
Let number of cubes formed be n
\therefore Volume of sphere $=\mathrm{n} \times$ Volume of cube

$$
\begin{aligned}
\therefore \frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} & =n \times 1 \\
& =(441 \times 11)=n \\
4851 & =n
\end{aligned}
$$

Hence, number of cubes is 4851.

Question 10:

Volume of sphere (when $r=1 \mathrm{~cm})=\frac{4}{3} n r^{3}=(\backslash$ frac $\{4\}\{3\}$ \times 1 ไtimes 1 \times 1) п cm^{3}
Volume of sphere (when $r=8 \mathrm{~cm})=\frac{4}{3} n r^{3}=(\backslash$ frac $\{4\}\{3\}$ \times $8 \backslash$ times 8\times 8) $п \mathrm{~cm}^{3}$
Let the number of balls $=n$

$$
\begin{array}{r}
n \times\left(\frac{4}{3} \times 1 \times 1 \times 1\right) \pi=\left(\frac{4}{3} \times 8 \times 8 \times 8\right) \pi \\
n=\frac{4 \times 8 \times 8 \times 8 \times 3}{3 \times 4}=512
\end{array}
$$

Question 11:

Radius of marbles $=\frac{\text { Diameter }}{2}=\frac{1.4}{2} \mathrm{~cm}$

Volume of marbles $=\frac{4}{3} \pi r^{3}$

$$
=\left[\frac{4}{3} \times \pi \times\left(\frac{1.4}{2}\right) \times\left(\frac{1.4}{2}\right) \times\left(\frac{1.4}{2}\right)\right] \mathrm{cm}^{3}
$$

Radius of beaker $=\left(\frac{7}{2}\right) \mathrm{cm}$
Volume of rising water in beaker

$$
=\pi r^{2} h=\left(\pi \times\left(\frac{7}{2}\right)^{2} \times\left(\frac{56}{10}\right)\right) \mathrm{cm}^{3}
$$

Let the number of marbles be n
$\therefore \mathrm{n} \times$ volume of marble $=$ volume of rising water in beaker
$n \times\left(\frac{4}{3} \pi \times \frac{1.4}{2} \times \frac{1.4}{2} \times \frac{1.4}{2}\right)=\pi \times \frac{7}{2} \times \frac{7}{2} \times \frac{56}{10}$

$$
n=150
$$

Hence the number of marbles is 150

Question 12:

Radius of sphere $=3 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}=(\backslash$ frac $\{4\}\{3\}$ times 3\times $3 \backslash$ times 3$) \pi \mathrm{cm}^{3}=$ $36 \mathrm{~cm}{ }^{3}$
Radius of small sphere $=\frac{0.6}{2} \mathrm{~cm}=0.3 \mathrm{~cm}$
Volume of small sphere $=(\backslash$ frac $\{4\}\{3\} \backslash$ times $0.3 \backslash$ times $0.3 \backslash$ times 0.3$)$ $\pi \mathrm{cm}^{3}$
$=\left(\frac{4}{3} \times \pi \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\right) \mathrm{cm}^{3}$
$=\left(\frac{4 \pi}{3} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\right) \mathrm{cm}^{2}$
Let number of small balls be n
$n \times\left(\frac{4 \pi}{3} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\right)=\frac{4}{3} \pi \times 3 \times 3 \times 3$

$$
n=1000
$$

Hence, the number of small balls $=1000$.

Question 13:

Diameter of sphere $=42 \mathrm{~cm}$
Radius of sphere $=\frac{42}{2} \mathrm{~cm}=21 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}=(\backslash$ frac $\{4\}\{3\} \backslash$ times $21 \backslash$ times $21 \backslash$ times 21 $)$ $\pi \mathrm{cm}^{3}$
Diameter of cylindrical wire $=2.8 \mathrm{~cm}$
Radius of cylindrical wire $=\frac{2.8}{2} \mathrm{~cm}=1.4 \mathrm{~cm}$

Volume of cylindrical wire $=\pi r^{2} h=(\pi \times 1.4 \times 1.4 \times h) \mathrm{cm}^{3}=(1.96 \pi h) \mathrm{cm}^{3}$ Volume of cylindrical wire $=$ volume of sphere
$\therefore 1.96 \pi h=\frac{4}{3} \times \pi \times 21 \times 21 \times 21$

$$
\begin{aligned}
& h=\left(\frac{4}{3} \times \pi \times 21 \times 21 \times 21 \times \frac{1}{1.96} \times \frac{1}{\pi}\right) \mathrm{cm} \\
& h=6300 \\
& h\left(\frac{6300}{100}\right) \mathrm{m}=63 \mathrm{~m}
\end{aligned}
$$

Hence length of the wire 63 m .

Question 14:

Diameter of sphere $=6 \mathrm{~cm}$
Radius of sphere $=\frac{6}{2} \mathrm{~cm}=3 \mathrm{~cm}$
Volume of sphere $=\frac{4}{3} \pi r^{3}=\left(\backslash\right.$ frac $\{4\}\{3\} \backslash$ times 3\times $3 \backslash$ times 3) $n \mathrm{~cm}^{3}=$ $36 \mathrm{~cm} \mathrm{~cm}^{3}$
Radius of wire $=\frac{2}{2} \mathrm{~mm}=1 \mathrm{~mm}=0.1 \mathrm{~cm}$
Volume of wire $=\pi r^{2} I=(\pi \times 0.1 \times 0.1 \times I) \mathrm{cm}^{2}=(0.01 \pi l) \mathrm{cm}^{2}$
$36 п=0.01 п 1$
$\therefore l=\frac{36}{0.01}=3600 \mathrm{~cm}$
Length of wire $=\frac{3600}{100} \mathrm{~m}=36 \mathrm{~m}$

Question 15:

Diameter of sphere $=18 \mathrm{~cm}$
Radius of copper sphere $=\frac{3600}{100} \mathrm{~m}=36 \mathrm{~m}$
Volume of sphere $=\left(\frac{4}{3} \times \pi \times r^{3}\right) \mathrm{cm}^{3}$

$$
=\left(\frac{4}{3} \pi \times 9 \times 9 \times 9\right) \mathrm{cm}^{3}=972 \pi \mathrm{~cm}^{3}
$$

Length of wire $=108 \mathrm{~m}=10800 \mathrm{~cm}$
Let the radius of wire be rcm
$=\pi r^{2} \mathrm{~cm}^{3}=\left(\pi r^{2} \times 10800\right) \mathrm{cm}^{3}$
But the volume of wire $=$ Volume of sphere
$\Rightarrow \pi r^{2} \times 10800=972 \pi$

$$
\begin{aligned}
& \mathrm{r}^{2}=\frac{972 \pi}{10800 \pi}=0.09 \mathrm{~cm}^{2} \\
& \mathrm{r}=\sqrt{0.09} \mathrm{~cm}=0.3
\end{aligned}
$$

Hence the diameter $=2 r=(0.3 \times 2) \mathrm{cm}=0.6 \mathrm{~cm}$

Question 16:

The radii of three metallic spheres are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm respectively.

Sum of their volumes $=\frac{4}{3} \pi\left(3^{3}+4^{3}+5^{3}\right) \mathrm{cm}^{3}$
$=\frac{4}{3} \pi(27+64+125)=\frac{4}{3} \pi \times 216$
Let r be the radius of sphere whose volume is equal to the total volume of three spheres.

$$
\begin{aligned}
& \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \times 216 \\
\Rightarrow & r^{3}=216 \\
\therefore \quad & r=6 \mathrm{~cm}
\end{aligned}
$$

\therefore Diameter $=6 \times 2=12 \mathrm{~cm}$

Exercise 19C

Question 1:

Here $h=42 \mathrm{~cm}, \mathrm{R}=16 \mathrm{~cm}$, and $\mathrm{r}=11 \mathrm{~cm}$
Capacity $=\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right) \mathrm{cm}^{3}$
$=\frac{1}{3} \times \frac{22}{7} \times 42\left[(16)^{2}+(11)^{2}+16 \times 11\right] \mathrm{cm}^{3}$
$=(44 \times 553) \mathrm{cm}^{3}=24332 \mathrm{~cm}^{3}$

Question 2:

Here $R=33 \mathrm{~cm}, r=27 \mathrm{~cm}$ and $\mathrm{l}=10 \mathrm{~cm}$

$$
\begin{aligned}
\therefore h-\sqrt{2-\left(R^{2}-r^{2}\right)} \mathrm{cm} & =\sqrt{(10)^{2}-(33-27)^{2}} \mathrm{~cm} \\
& -\sqrt{(10)^{2}-(6)^{2}}-\sqrt{64} \mathrm{~cm}=8 \mathrm{~cm}
\end{aligned}
$$

Capacity of the frustum
$=\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right) \mathrm{cm}^{3}$
$=\frac{1}{3} \times \frac{22}{7} \times 8\left[(33)^{2}+(27)^{2}+33 \times 27\right] \mathrm{cm}^{3}$
$-(8.38 \times 2709) \mathrm{cm}^{3}=22701.4 \mathrm{~cm}^{3}$
Total surface area
$=\left[\pi R^{2}+\pi r^{2}+\pi(R+r)\right] \mathrm{cm}^{2}$
$=\pi\left[R^{2}+r^{2}+1(R+r)\right] \mathrm{cm}^{2}$
$-\frac{22}{7}\left[(33)^{2}+(27)^{2}+10 \times(33+27)\right] \mathrm{cm}^{2}$
$-\left(\frac{22}{7} \times 2418\right) \mathrm{cm}^{2}-7599.43 \mathrm{~cm}^{2}$

Question 3:

Height $=15 \mathrm{~cm}, \mathrm{R}=\frac{56}{2} \mathrm{~cm}=28 \mathrm{~cm}$ and $\mathrm{r}=\frac{42}{2} \mathrm{~cm}=21 \mathrm{~cm}$
Capacity of the bucket $=$
$\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right) \mathrm{cm}^{3}$
$=\frac{1}{3} \times \frac{22}{7} \times 15\left[(28)^{2}+(21)^{2}+28 \times 21\right] \mathrm{cm}^{3}$
$=(15.71 \times 1831) \mathrm{cm}^{3}$
$=(28482.23) \mathrm{cm}^{3}$
Quantity of water in bucket $=28.49$ litres

Question 4:

$\mathrm{R}=20 \mathrm{~cm}, \mathrm{r}=8 \mathrm{~cm}$ and $\mathrm{h}=16 \mathrm{~cm}$

$$
\begin{aligned}
\therefore I=\sqrt{h^{2}+(R-r)^{2}} & =\sqrt{(16)^{2}+(20-8)^{2}} \\
& =\sqrt{256+144 \mathrm{~cm}}=20 \mathrm{~cm}
\end{aligned}
$$

Total surface area of container $=\pi I(R+r)+\pi r^{2}$
$=[3.14 \times 20 \times(20+8)+3.14 \times 8 \times 8] \mathrm{cm}^{2}$
$=(3.14 \times 20 \times 28+3.14 \times 8 \times 8) \mathrm{cm}^{2}$
$=(1758.4+200.96) \mathrm{cm}^{2}$
$=1959.36 \mathrm{~cm}^{2}$
Cost of metal sheet used $=$ Rs. $\left(1959.36 \times \frac{15}{100}\right)=$ Rs. 293.90

Question 5:

$\mathrm{R}=15 \mathrm{~cm}, \mathrm{r}=5 \mathrm{~cm}$ and $\mathrm{h}=24 \mathrm{~cm}$

$$
\begin{aligned}
\therefore I & =\sqrt{h^{2}+(R-r)^{2}}=\sqrt{(24)^{2}+(10)^{2}} \mathrm{~cm} \\
& =\sqrt{576+100} \mathrm{~cm}=\sqrt{676} \mathrm{~cm}=26 \mathrm{~cm}
\end{aligned}
$$

(i) Volume of bucket $=$
$\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right)$
$=\frac{1}{3} \times 3.14 \times 24 \times\left[(15)^{2}+(5)^{2}+15 \times 5\right]$
$=(25.12 \times 325) \mathrm{cm}^{3}$
$=8164 \mathrm{~cm}^{3}=8.164$ litres
Cost of milk $=$ Rs. $(8.164 \times 20)=$ Rs. 163.28
(ii) Total surface area of the bucket
$=\pi l(R+r)+\pi r^{2}$
$=(3.14 \times 26 \times 20 \times 3.14 \times 5 \times 5) \mathrm{cm}^{2}$
$=1711.3 \mathrm{~cm}^{2}$
Cost of sheet $=\left(1711.3 \times \frac{10}{100}\right)=$ Rs. 171.13

Question 6:

$R=10 \mathrm{~cm}, \mathrm{r}=3 \mathrm{~m}$ and $\mathrm{h}=24 \mathrm{~m}$
Let I be the slant height of the frustum, then
$I=\sqrt{h^{2}+(R-r)^{2}}$
$=\sqrt{(24)^{2}+(10-3)^{2}}$
$=\sqrt{(24)^{2}+(7)^{2}}$
$=\sqrt{576+49}$
$=\sqrt{625} \mathrm{~m}=25 \mathrm{~m}$
Let l_{1} be the slant height of conical part

$$
\begin{array}{ll}
& r=3 \mathrm{~m} \\
\text { and } \quad & h=4 m \\
\therefore \quad I_{1}=\sqrt{3^{2}+4^{2}} \mathrm{~m} \\
= & \sqrt{25} \mathrm{~m}=5 \mathrm{~m}
\end{array}
$$

Quantity of canvas = (Lateral surface area of the frustum) + (lateral surface area of the cone)
$=\left[\pi 1(R+r)+\pi r_{1}\right] \mathrm{m}^{2}$
$=\pi[25 \times(10+3)+(3 \times 5)] \mathrm{m}^{2}$
$=\frac{22}{7} \times[(25 \times 13)+(3 \times 5)] \mathrm{m}^{2}$
$=1068.57 \mathrm{~m}^{2}$

Question 7:

$A B C D$ is the frustum in which upper and lower radii are $E B=7 \mathrm{~m}$ and $F D=13 \mathrm{~m}$ Height of frustum $=8 \mathrm{~m}$
Slant height I_{1} of frustum
$=\sqrt{h^{2}+(R-r)^{2}}$
$=\sqrt{8^{2}+(13-7)^{2}}$
$=\sqrt{64+36}$
$=\sqrt{100}=10 \mathrm{~m}$

Radius of the cone $=E B=7 \mathrm{~m}$
Slant height I_{2} of cone $=12 \mathrm{~m}$
Surface area of canvas required
$=\left.\pi(R+r)\right|_{1}+\pi r l_{2}$
$=\pi[(13+7) \times 10+7 \times 12]$
$=\frac{22}{7} \times[200+84]=\frac{22}{7} \times 284 \mathrm{~m}^{2}$
$=892.6 \mathrm{~m}^{2}$

Question 8:

In the given figure, we have
$\angle C O D=30^{\circ}, O C=10 \mathrm{~cm}, \mathrm{OE}=20 \mathrm{~cm}$
Let $C D=r \mathrm{~cm}$ and $E B=R \mathrm{~cm}$

$$
\begin{aligned}
\frac{C D}{O C} & =\tan 30^{\circ} \\
\Rightarrow \frac{C D}{10} & =\frac{1}{\sqrt{3}} \\
\Rightarrow C D & =\left(10 \times \frac{1}{\sqrt{3}}\right) \mathrm{cm} \\
& =\frac{10}{\sqrt{3}} \mathrm{~cm}
\end{aligned}
$$

$\frac{E B}{O E}=\tan 30^{\circ}=\frac{E B}{20}=\frac{1}{\sqrt{3}}$
$\Rightarrow E B=\left(20 \times \frac{1}{\sqrt{3}}\right) \mathrm{cm} \Rightarrow \mathrm{R}=\frac{20}{\sqrt{3}} \mathrm{~cm}$
Also, CE $=10 \mathrm{~cm}$
Thus, ABDF is the frustum of a cone in which $\mathrm{R}=\frac{20}{\sqrt{3}} \mathrm{~cm}, \mathrm{r}=\frac{10}{\sqrt{3}} \mathrm{~cm}$ and $\mathrm{h}=10 \mathrm{~cm}$
Volume of frustum $=\frac{1}{3} \pi h\left(\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right)$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 10 \times\left(\frac{400}{3}+\frac{100}{3}+\frac{200}{3}\right) \\
& =\left(\frac{\pi \times 10}{3} \times \frac{700}{3}\right) \mathrm{cm}^{3}=\left(\frac{7000 \pi}{9}\right) \mathrm{cm}^{3}
\end{aligned}
$$

Volume of wire of radius r and length
$=\pi r^{2} 1=\pi\left[\frac{1}{32}\right]^{2}$ ।
Volume of wire $=$ Volume of frustum
$\pi\left(\frac{1}{32}\right)^{2} I=\frac{7000 \pi}{9}$

$$
\begin{aligned}
\mathrm{I} & =\frac{7000 \times 32 \times 32}{9} \mathrm{~cm} \\
& =\frac{70 \times 32 \times 32}{9} \mathrm{~m} \\
& =7964.44 \mathrm{~m}
\end{aligned}
$$

Length of the wire is 7964.44 m

Question 9:

Radii of upper and lower end of frustum are $r=8 \mathrm{~cm}, \mathrm{R}=32 \mathrm{~cm}$ Height of frustum $\mathrm{h}=18 \mathrm{~cm}$
Volume of frustum $=\frac{1}{3} \pi h\left[R^{2}+r^{2}+R \times r\right]$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 18 \times\left[32^{2}+8^{2}+32 \times 8\right] \mathrm{cm}^{3} \\
& =\frac{22 \times 6}{7}[1024+64+256] \mathrm{cm}^{3} \\
& =\frac{132}{7} \times 1344 \mathrm{~cm}^{3}=25344 \mathrm{~cm}^{3}=25.344 \text { litres }
\end{aligned}
$$

Cost of milk at Rs 20 per litre $=$ Rs. $25.344 \times 20=$ Rs. 506.88

