Areas Of Circle, Sector \& Segment

Exercise 18

Area of A SEMICIRCLE

- A semicircle is just half of a circle. To find the area of a semicircle we just take half of the area of a circle.
- So, the formula for the area of a semicircle is:

$$
\text { Area }=\frac{1}{2} \pi r^{2}
$$

AREA OF A SECTOR

The area of a sector, A is proportional to the angle subtended at the centre of the circle.

$$
\begin{aligned}
\frac{\text { Area of sector } \mathrm{OPQR}}{\text { Area of circle }} & =\frac{\theta}{2 \pi} \\
\frac{A}{\pi r^{2}} & =\frac{\theta}{2 \pi} \\
A & =\frac{\theta}{2 \pi} \times \pi r^{2} \\
A & =\frac{1}{2} r^{2} \theta
\end{aligned}
$$

Measurement of area of sector of a circle in Radian

In general, if the angle of a sector, θ, is measured in degree,
then the area of the sector,

$$
A=\frac{\theta}{360} \times \pi r^{2}
$$

If θ is measured in radians,
then the area of the sector,

$$
\mathrm{A}=\frac{\theta}{2 \pi} \times \pi \mathrm{r}^{2} \quad 2 \pi \mathrm{rad}=360^{\circ}
$$

$$
\therefore A=\frac{1}{2} r^{2} \theta
$$

Segment of a Circle (shaded)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} r^{2}(\theta-\sin \theta) \quad \text { (radians) } \\
& =\frac{1}{2} r^{2}\left(\frac{\pi}{180} \theta-\sin \theta\right) \quad \text { (degrees) }
\end{aligned}
$$

Question 1:

Radius $=\frac{\text { Diameter }}{2}=\frac{35}{2} \mathrm{~cm}$
Circumference of circle $=2 \pi r=\left(2 \times \frac{22}{7} \times \frac{35}{2}\right) \mathrm{cm}=110 \mathrm{~cm}$
\therefore Area of circle $=\pi r^{2}=\left(\frac{22}{7} \times \frac{35}{2} \times \frac{35}{2}\right) \mathrm{cm}^{2}$
$=962.5 \mathrm{~cm}^{2}$

Question 2:

Circumference of circle $=2 \pi r=39.6 \mathrm{~cm}$
$\Rightarrow 2 \times \frac{22}{7} \times r=39.6$

$$
\begin{aligned}
& r=\left(39.6 \times \frac{7}{44}\right) \mathrm{cm}=6.3 \\
& r=6.3 \mathrm{~cm}
\end{aligned}
$$

Area of irde $=\pi r^{2}=\left(\frac{22}{7} \times 6.3 \times 6.3\right) \mathrm{cm}^{2}$
$=124.74 \mathrm{~cm}^{2}$

Question 3:

Area of circle $=\pi r^{2}=301.84$
$\Rightarrow r^{2}=301.84 \times \frac{7}{22}=96.04$
$r=\sqrt{96.04} \mathrm{~cm}=9.8 \mathrm{~cm}$
Circumference of circle $=2 \pi r=\left(2 \times \frac{22}{7} \times 9.8\right)=61.6 \mathrm{~cm}$

Question 4:

Let radius of circle be r
Then, diameter $=2$ r
circumference - Diameter $=16.8$
$\Rightarrow 2 \pi-2=16.8$
$\Rightarrow \frac{44}{7} r-2 r=16.8$
$\Rightarrow \frac{30 r}{7}=16.8 \Rightarrow r=\frac{16.8 \times 7}{30}=3.92 \mathrm{~cm}$
Circumference of circle $=2 \pi r=\left(2 \times \frac{22}{7} \times 3.92\right) \mathrm{cm}=24.64 \mathrm{~cm}$

Question 5:

Let the radius of circle be rcm
Then, circumference - radius $=37 \mathrm{~cm}$
$2 \pi r-r=37$
$\frac{44}{7}-r=37$
$\frac{37 r}{7}-37 \Rightarrow r=\frac{37 \times 7}{37}=7 \mathrm{~cm}$
Area of cirde $=\boldsymbol{m}^{2}=\frac{22}{7} \times 7 \times 7=154 \mathrm{~cm}^{2}$

Question 6:

Area of square $=(\text { side })^{2}=484 \mathrm{~cm}^{2}$
\Rightarrow side $=\sqrt{484} \mathrm{~cm}=22 \mathrm{~cm}$
Perimeter of square $=4 \times$ side $=4 \times 22=88 \mathrm{~cm}$
Circumference of circle $=$ Perimeter of square

$$
2 \pi r-8 c \mathrm{~cm} \Rightarrow r=\frac{88 \times 7}{2 \times 22}=14 \mathrm{~cm}
$$

Area of cirde $=\pi r^{2}=\left(\frac{22}{7} \times 14 \times 14\right) \mathrm{cm}^{2}=616 \mathrm{~cm}^{2}$

Question 7:

Area of equilateral $=\frac{\sqrt{3}}{4} a^{2}=121 \sqrt{ } 3$
$a^{2}=121 \times \frac{\sqrt{3}}{\sqrt{3}} \times 4$
$a^{2}=484 \Rightarrow a-\sqrt{484}$
$a=22 \mathrm{~cm}$

Perimeter of equilateral triangle $=3 \mathrm{a}=(3 \times 22) \mathrm{cm}$
$=66 \mathrm{~cm}$
Circumference of circle $=$ Perimeter of circle
$2 \pi r=66$
$\Rightarrow\left(2 \times \frac{22}{7} \times r\right) \mathrm{cm}=66$
$\Rightarrow r=10.5 \mathrm{~cm}$
Area of circle $=\pi r^{2}=\left(\frac{22}{7} \times 10.5 \times 10.5\right) \mathrm{cm}^{2}$
$=346.5 \mathrm{~cm}^{2}$

Question 8:

Let the radius of park be r meter

Thus, $\pi r+2=90 \Rightarrow \frac{2 x}{7}+2 r=90$

$$
\begin{gathered}
\Rightarrow \frac{36 r}{7}=90 \Rightarrow r=\frac{90 \times 7}{36} \\
r=17.5 \mathrm{~cm}
\end{gathered}
$$

Area of semicircle $=\frac{1}{2} \pi r^{2}=\left(\frac{1}{2} \times \frac{22}{7} \times 17.5 \times 17.5\right) \mathrm{m}^{2}$

$$
=481.25 \mathrm{~m}^{2}
$$

Question 9:

Let the radii of circles be $x \mathrm{~cm}$ and $(7-x) \mathrm{cm}$
Then,
$2 \pi x-[2 \pi(7-x)]=8$
$2 \pi x-[14 \pi-2 \pi x]=8$
$2 \pi x-14 \pi+2 \pi x=8$
$4 \pi x-14 \pi=8$
$2 \pi x=4+7 \pi$
$2 \pi x=4+22$
$2 \pi x=26$
Substitute the value of $2 \pi x$ in $2 \pi(7-x)$

$$
\begin{aligned}
& =14 \pi-2 \pi x=14 \times \frac{22}{7}-26 \\
& =44-26=18 \mathrm{~cm}
\end{aligned}
$$

Circumference of the circles are 26 cm and 18 cm

Question 10:

Area of first circle $=\pi r^{2}=962.5 \mathrm{~cm}^{2}$
$r^{2}=\left(962.5 \times \frac{7}{22}\right) \mathrm{cm}$
$r^{2}=306.25$
$r=17.5 \mathrm{~cm}$
Area of second circle $=\Pi R^{2}=1386 \mathrm{~cm}^{2}$
$R^{2}=\left(1386 \times \frac{7}{22}\right) \mathrm{cm}$
$\mathrm{R}^{2}=441$
$\Rightarrow R=21 \mathrm{~cm}$
Width of ring $R-r=(21-17.5) \mathrm{cm}=3.5 \mathrm{~cm}$

Area of Annulus = $\pi R^{2}-\pi r^{2}$

Question 11:

Area of outer circle $=\pi^{r_{1}^{2}}=\left(\frac{22}{7} \times 23 \times 23\right) \mathrm{cm}^{2}$
$=1662.5$
Area of inner circle $=n^{r_{2}^{2}}=\left(\frac{22}{7} \times 12 \times 12\right) \mathrm{cm}^{2}$
$=452.2 \mathrm{~cm}^{2}$
Area of ring $=$ Outer area - inner area
$=(1662.5-452.5) \mathrm{cm}^{2}=1210 \mathrm{~cm}^{2}$

Question 12:

Inner radius of the circular park $=17 \mathrm{~m}$
Width of the path $=8 \mathrm{~m}$
Outer radius of the circular park $=(17+8) \mathrm{m}=25 \mathrm{~m}$
Area of path $=\Pi\left[(25)^{2}-(17)^{2}\right]=\mathrm{cm}^{2}$
$=x(25+17)(25-17) \mathrm{m}^{2}$
$-\left[\frac{22}{7} \times 42 \times 8\right] \mathrm{m}^{2}$
Area $=1056 \mathrm{~m}^{2}$

Question 13:

Let the inner and outer radii of the circular tacks be r meter and R meter respectively. Then
Inner circumference $=440$ meter

$$
\begin{aligned}
\Rightarrow & 2 \pi r=440 \\
& 2 \times \frac{22}{7} \times r=440 \\
\Rightarrow & r=70 \mathrm{~m}
\end{aligned}
$$

Since the track is 14 m wide every where.
Therefore,
Outer radius $R=r+14 m=(70+14) m=84 m$
Outer circumference $=2 \pi R$
$=\left(2 \times \frac{22}{7} \times 84\right) \mathrm{m}=528 \mathrm{~m}$
Rate of fencing $=$ Rs. 5 per meter
Total cost of fencing $=$ Rs. $(528 \times 5)=$ Rs. 2640
Area of circular ring $=\pi R^{2}-\pi r^{2}$
$-x\left(84^{2}-70^{2}\right)-\frac{22}{7} \times 2156-6776 \mathrm{~m}^{2}$
Cost of levelling = Rs 0.25 per m2
Cost of levelling the track $=\operatorname{Rs}(6776 \times 0.25)=$ Rs. 1694

Question 14:

Let $r m$ and $R m$ be the radii of inner circle and outer boundaries respectively.
Then, $2 \mathrm{r}=352$ and $2 \mathrm{R}=396$

$$
r=\frac{352}{2 \pi}, R-\frac{396}{2 \pi}
$$

Width of the track $=(R-r) m$
$-\left(\frac{396}{2 \pi}-\frac{352}{2 \pi}\right) m=\left(\frac{44}{2 \pi}\right) m$
$-\left(\frac{44}{2} \times \frac{7}{22}\right) m=7 m$

Area the track $=\pi\left(R^{2}-r^{2}\right)=\pi(R+r)(R-r)$
$=\left[\pi\left(\frac{352}{2 \pi}+\frac{396}{2 \pi}\right) \times 7\right] \mathrm{m}^{2}$
$=\left[\left(\pi \times \frac{748}{2 \pi}\right) \times 7\right] \mathrm{m}^{2}=(374 \times 7) \mathrm{m}^{2}$
$=2618 \mathrm{~m}^{2}$

Question 15:

Area of rectangle $=(120 \times 90)$
$=10800 \mathrm{~m}^{2}$
Area of circular lawn $=$ [Area of rectangle - Area of park excluding circular lawn]
$=[10800-2950] \mathrm{m}^{2}=7850 \mathrm{~m}^{2}$
Area of circular lawn $=7850 \mathrm{~m}^{2}$
$\Rightarrow \pi r^{2}=7850 \mathrm{~m}^{2}$
$3.14 \mathrm{xr}^{2}=7850 \mathrm{~m}^{2}$

$$
\begin{aligned}
r^{2} & =\left(\frac{7850}{3.14}\right) \mathrm{m}^{2} \\
& =2500 \mathrm{~m}^{2} \\
r & =\sqrt{2500} \mathrm{~m} \\
r & =50 \mathrm{~m}
\end{aligned}
$$

or

Hence, radius of the circular lawn $=50 \mathrm{~m}$

Question 16:

Area of the shaded region $=$ (area of circle with OA as diameter) + (area of semicircle $\triangle D B C$) - (area of $\triangle B C D$)
Area of circle with $O A$ as diameter $=\pi r^{2}$
$-\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \mathrm{cm}^{2}$

- $38.5 \mathrm{~m}^{2}$
$O B=7 \mathrm{~cm}, C D=A B=14 \mathrm{~cm}$
Area of semicircle $\triangle \mathrm{DBC}=\frac{1}{2} \mathrm{Nr}^{2}=\left(\frac{1}{2} \times \frac{22}{7} \times 7 \times 7\right) \mathrm{cm}^{2}$
$=72$
Area of $\triangle B C D=\frac{1}{2} \times D C \times O B$
$-\frac{1}{2} \times 14 \times 7$
$-49 \mathrm{~cm}^{2}$
Area of shaded region $=(38.5+77-49)$
$-66.5 \mathrm{~cm}^{2}$

Question 17:

Diameter of bigger circle $=A C=54 \mathrm{~cm}$
Radius of bigger circle $=\frac{A C}{2}$
$=\left(\frac{54}{2}\right) \mathrm{cm}=27 \mathrm{~cm}$
Diameter $A B$ of smaller circle $=A C-B C=54-10=44 \mathrm{~cm}$
Radius of smaller circle $=\frac{44}{2} \mathrm{~cm}=22 \mathrm{~cm}$
Area of bigger circle $=\Pi R^{2}=\left(\frac{22}{7} \times 27 \times 27\right) \mathrm{cm}^{2}$
$=2291.14 \mathrm{~cm}^{2}$
Area of smaller circle $=\pi r^{2}=\left(\frac{22}{7} \times 22 \times 22\right) \mathrm{cm}^{2}$
$=1521.11 \mathrm{~cm}^{2}$
Area of shaded region $=$ area of bigger circle - area of smaller circle $=(2291.14-1521.11) \mathrm{cm}^{2}=770 \mathrm{~cm}^{2}$

Question 18:

$\mathrm{PS}=12 \mathrm{~cm}$
$\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=4 \mathrm{~cm}, \mathrm{QS}=8 \mathrm{~cm}$
Perimeter $=\operatorname{arc}$ PTS + arc PBQ $+\operatorname{arc}$ QES
$=(\pi \times 6+\pi \times 2+\pi \times 4) \mathrm{cm}$

- 12 x cm
$=12 x-12 \times 3.14 \mathrm{~cm}$
$-37.68 \mathrm{~cm}$
Area of shaded region $=($ area of the semicircle PBQ) + (area of semicircle PTS)(Area of semicircle QES)

$$
\begin{aligned}
& =\left[\frac{1}{2} \pi \times(2)^{2}+\frac{1}{2} \times \pi \times(6)^{2}-\frac{1}{2} \times \pi \times(4)^{2}\right] \mathrm{cm}^{2} \\
& =[2 x+18 x-8 x]=12 \pi \mathrm{~cm}^{2}-(12 \times 3.14) \mathrm{cm}^{2} \\
& =37.68 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 19:

Length of the inner curved portion
$=(400-2 \times 90) \mathrm{m}$
$=220 \mathrm{~m}$
Let the radius of each inner curved part be r

Then, $\frac{22}{7} \times r=110 \mathrm{~m}$

$$
r=\left(110 \times \frac{7}{22}\right) m=35 m
$$

Inner radius $=35 \mathrm{~m}$, outer radius $=(35+14)=49 \mathrm{~m}$
Area of the track $=$ (area of 2 rectangles each $90 \mathrm{~m} \times 14 \mathrm{~m}$) + (area of circular ring with $R=49 \mathrm{~m}, \mathrm{r}=35 \mathrm{~m}$
$-\left[2 \times 90 \times 14+\frac{22}{7}\left((49)^{2}-(35)^{2}\right)\right] \mathrm{m}^{2}$
$-\left[2520+\frac{22}{7}(49+35)(49-35)\right] \mathrm{m}^{2}$
$-[2520+3696] \mathrm{m}^{2}-6216 \mathrm{~m}^{2}$
Length of outer boundary of the track
$-\left[2 \times 90+2 \times \frac{22}{7} \times 49\right] m=488 \mathrm{~m}$

Question 20:

$O P=O R=O Q=r$
Let OQ and PR intersect at S
We know the diagonals of a rhombus bisect each other at right angle.

Therefore we have

$$
\begin{aligned}
O S & =\frac{1}{2} r \text { and } \angle O S R=90^{\circ} \\
S R & =\sqrt{O R^{2}-O S^{2}} \\
& =\sqrt{r^{2}-\frac{r^{2}}{4}}=\frac{\sqrt{3} r}{2} \\
P R & =2 \times S R=\sqrt{3}
\end{aligned}
$$

Area of rhombus $=\frac{1}{2} \times O Q \times P R$

$$
\begin{aligned}
&=\frac{1}{2} \times r \times \sqrt{3}=\frac{\sqrt{3} r^{2}}{2} \\
& \therefore \frac{\sqrt{3}^{2}}{2}=32 \sqrt{3} \Rightarrow r^{2}=\frac{32 \sqrt{3}}{\sqrt{3}} \times 2=64 \mathrm{~cm} \\
& r=8 \mathrm{~cm}
\end{aligned}
$$

Question 21:

Diameter of the inscribed circle $=$ Side of the square $=10 \mathrm{~cm}$ Radius of the inscribed circle $=5 \mathrm{~cm}$

Diameter of the circumscribed circle
$=$ Diagonal of the square
$=(\sqrt{ } 2 \times 10) \mathrm{cm}$
Radius of circumscribed circle $=5 \sqrt{ } 2 \mathrm{~cm}$
(i) Area of inscribed circle $=\left(\frac{22}{7} \times 5 \times 5\right)=78.57 \mathrm{~cm}^{2}$
(ii) Area of the circumscribed circle $=\left(\frac{22}{7} \times 5 \sqrt{2} \times 5 \sqrt{2}\right)=157.14 \mathrm{~cm}^{2}$

Question 22:
Let the radius of circle be rcm

Then diagonal of square $=$ diameter of circle $=2 \mathrm{rcm}$ Area of the circle $=\pi r^{2} \mathrm{~cm}^{2}$

Area of square $=\frac{1}{2} \times(\text { diagonal })^{2}$

$$
=\frac{1}{2} \times 4^{2}-\gamma^{2} \mathrm{~cm}
$$

Ratio $=\frac{\text { Area of circle }}{\text { Area of square }}=\frac{\pi r^{2}}{\gamma^{2}}=\frac{\pi}{2}=(x: 2)$

Question 23:

Let the radius of circle be rcm

Then, $\pi r^{2}=154$

$$
\Rightarrow \quad r^{2}=\left(154 \times \frac{7}{22}\right)
$$

$$
\Rightarrow \quad r=7 \mathrm{~cm}
$$

Let each side of the triangle be a cm

And height be hcm

$$
\begin{aligned}
& \text { Then, } \quad \begin{aligned}
r & =\frac{h}{3} \\
\Rightarrow \quad h & =3 r=21 \mathrm{~cm} \\
h & =\sqrt{a^{2}-\frac{a^{2}}{4}}=\frac{\sqrt{3 a^{2}}}{2}=\frac{\sqrt{3 a}}{2}=21 \\
a & =\frac{42}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=14 \sqrt{3} \mathrm{~cm} \\
\text { Perimeter } & =3 a=(3 \times 14 \times \sqrt{3})=(42 \times 1.73) \mathrm{cm} \\
& =72.66 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Question 24:

Radius of the wheel $=42 \mathrm{~cm}$
Circumference of wheel $=2 \pi r=\left(2 \times \frac{22}{7} \times 42\right)=264 \mathrm{~cm}$
Distance travelled $=19.8 \mathrm{~km}=1980000 \mathrm{~cm}$
Number of revolutions $=\frac{1980000}{264}=7500$

Question 25:

Radius of wheel $=2.1 \mathrm{~m}$
Circumference of wheel $=2 \pi r=\left(2 \times \frac{22}{7} \times 2.1\right)=13.2 \mathrm{~m}$
Distance covered in one revolution $=13.2 \mathrm{~m}$
Distance covered in 75 revolutions $=(13.2 \times 75) \mathrm{m}=990 \mathrm{~m}$
$=\frac{990}{1000} \mathrm{~km}$
Distance a covered in 1 minute $=\frac{99}{100} \mathrm{~km}$
Distance covered in 1 hour $=\frac{99}{100} \times 60 \mathrm{~km}=59.4 \mathrm{~km}$

Question 26:

Distance covered by the wheel in 1 revolution

$-\left(\frac{4.95 \times 1000 \times 100}{2500}\right) \mathrm{cm}-198 \mathrm{~cm}$

The circumference of the wheel $=198 \mathrm{~cm}$
Let the diameter of the wheel be d cm
Then, $\pi d=198 \Rightarrow \frac{22}{7} \times d=198$
$\Rightarrow \quad d=\frac{198 \times 7}{22}=63 \mathrm{~cm}$
Hence diameter of the wheel is 63 cm

Question 27:

Radius of the wheel $=r=\frac{60}{2}=30 \mathrm{~cm}$
Circumference of the wheel $=2 \pi r=\left(2 \times \frac{22}{7} \times 30\right)=\frac{1320}{7} \mathrm{~cm}$
Distance covered in 140 revolution
$-\left(\frac{1320}{7} \times 140\right) \mathrm{cm}-(1320 \times 20) \mathrm{cm}$
$-26400 \mathrm{~cm}-\frac{26400}{100} \mathrm{~m}-264 \mathrm{~m}=\frac{264}{1000} \mathrm{~km}$
Distance covered in one hour $=\frac{264}{1000} \times 60=15.84 \mathrm{~km}$

Question 28:

Distance covered by a wheel in 1 minute
$-\left(\frac{72.6 \times 1000 \times 100}{60}\right) \mathrm{cm}-121000 \mathrm{~cm}$
Circumference of a wheel $=2 \pi r=\left(2 \times \frac{22}{7} \times 70\right)=440 \mathrm{~cm}$
Number of revolution in $1 \mathrm{~min}=\frac{121000}{440}=275$

Question 29:

Area of quadrant $=\frac{1}{4} n r^{2}$
Circumference of circle $=2 \pi r=22$

$$
\begin{aligned}
& 2 \times \frac{22}{7} \times r-22 \\
\Rightarrow \quad r & \quad \mathrm{r} \frac{22 \times 7}{2 \times 22}-3.5 \mathrm{~cm}
\end{aligned}
$$

Area of quadrant $=\frac{1}{4} \mathrm{xI}^{2}=\left(\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5\right) \mathrm{cm}^{2}$
$-9.625 \mathrm{~cm}^{2}$

Question 30:

Area which the horse can graze $=$ Area of the quadrant of radius 21 m
$-\left(\frac{1}{4} \times \frac{22}{7} \times 21 \times 21\right) \mathrm{m}^{2}$

- $346.5 \mathrm{~m}^{2}$

Area ungrazed $=[(70 \times 52)-346.5] \mathrm{m}^{2}$
$=3293.5 \mathrm{~m}^{2}$

Question 31:

Each angle of equilateral triangle is 60°

Area which cannot be grazed $=$ (area of equilateral $\triangle A B C$)

$$
\begin{aligned}
& -\left(\text { area of the sector with } r=7 \mathrm{~m}, \theta=60^{\circ}\right) \\
= & {\left[\frac{\sqrt{3}}{4} \times(12)^{2}-\frac{22}{7} \times(7)^{2} \times \frac{60}{360}\right] \mathrm{m}^{2} } \\
= & {\left[(\sqrt{3} \times 12 \times 3)-\frac{(22 \times 7)}{6}\right] } \\
= & 62.35-25.66 \mathrm{~m}^{2} \\
= & 36.68 \mathrm{~m}^{2}
\end{aligned}
$$

Area that the horse cannot graze is $36.68 \mathrm{~m}^{2}$

Question 32:

Each side of the square is 14 cm
Then, area of square $=(14 \times 14) \mathrm{cm}^{2}$
$=196 \mathrm{~cm}^{2}$
Thus, radius of each circle 7 cm
Required area $=$ area of square $A B C D-4$ (area of sector with $r=7 \mathrm{~cm}, \theta=90^{\circ}$)
$-\left[196-4 \times \frac{22}{7} \times 7 \times 7 \times \frac{90}{360}\right] \mathrm{cm}^{2}$

- [196-154] cm^{2}
- $42 \mathrm{~cm}^{2}$

Area of the shaded region $=42 \mathrm{~cm}^{2}$

Question 33:

Area of square $=(4 \times 4) \mathrm{cm}^{2}$
$=16 \mathrm{~cm}^{2}$
Area of four quadrant corners
$=4\left[\frac{1}{4} \pi^{2}\right]$
$-\pi^{2}$
$-\{x \times 1 \times 1)_{\mathrm{cm}^{2}}$
$-3.14 \mathrm{~cm}^{2}$

Radius of inner circle $=2 / 2=1 \mathrm{~cm}$
Area of circle at the center $=\pi r^{2}=(3.14 \times 1 \times 1) \mathrm{cm}^{2}$
$=3.14 \mathrm{~cm}^{2}$
Area of shaded region $=$ [area of square - area of four corner quadrants - area of circle at the centre]
$=[16-3.14-3.14] \mathrm{cm}^{2}=9.72 \mathrm{~cm}^{2}$

Question 34:

Area of rectangle $=(20 \times 15) \mathrm{m}^{2}=300 \mathrm{~m}^{2}$
Area of 4 corners as quadrants of circle
$=4 \times\left(\frac{1}{4} \frac{x^{2}}{}\right)$
$-\left[\frac{22}{7} \times 3.5 \times 3.5\right] \mathrm{m}^{2}$

- $38.5 \mathrm{~m}^{2}$

Area of remaining part $=$ (area of rectangle - area of four quadrants of circles) $=(300-38.5) \mathrm{m}^{2}=261.5 \mathrm{~m}^{2}$

Question 35:

Ungrazed area

- shaded area
$-\left[(50 \times 50)-\frac{4 \times \pi \times(25)^{2} \times 90}{360}\right] \mathrm{m}^{2}$
- [2500-3.14×25×25] m^{2}
- [2500-1962.5] m^{2}
- $537.5 \mathrm{~m}^{2}$

Question 36:

Shaded area $=($ area of quadrant $)-($ area of DAOD $)$
$-\left[\frac{1}{4} \pi x^{2}-\frac{1}{2} \times h \times b\right]$
$-\left[\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5-\frac{1}{2} \times 2 \times 3.5\right] \mathrm{cm}^{2}$
$-(9.625-3.5) \mathrm{cm}^{2}-6.125 \mathrm{~cm}^{2}$

Question 37:

Area of flower bed $=$ (area of quadrant OPQ) - (area of the quadrant ORS)
$=\left[\frac{1}{4} \pi \frac{2}{1}-\frac{1}{4} \pi \frac{2}{2}\right]$
$=\left[\frac{1}{4} \times \frac{22}{7} \times 21 \times 21-\frac{1}{4} \times \frac{22}{7} \times 14 \times 14\right] \mathrm{m}^{2}$
$=[346.5-154] m^{2}=192.5 m^{2}$

Question 38:

Let A, B, C be the centres of these circles. Joint $A B, B C, C A$
Required area $=($ area of $\triangle A B C$ with each side $a=12 \mathrm{~cm}$) - 3(area of sector with r $=6, \theta=60^{\circ}$)

$$
\begin{aligned}
& =\left[\frac{\sqrt{3}}{4} \times(12)^{2}-3 \times\left(3.14 \times(6)^{2} \times \frac{60}{360}\right)\right] \\
& =\left[\frac{\sqrt{3}}{4} \times 12 \times 12-3 \times 3.14 \times 6\right] \mathrm{cm} \\
& =(36 \times 1.73-56.52) \mathrm{cm}^{2} \\
& =(62.28-56.52) \mathrm{cm}^{2} \\
& =5.76 \mathrm{~cm}^{2}
\end{aligned}
$$

The area enclosed $=5.76 \mathrm{~cm}^{2}$

Question 39:

Let A, B, C be the centers of these circles. Join $A B, B C, C A$ Required area $=$ (area of $\triangle A B C$ with each side 2) -3 [area of sector with $r=a$ $\mathrm{cm}, \theta=60^{\circ}$]
$=\left[\frac{\sqrt{3}}{4} \times(2 a)^{2}-\frac{3 \pi a^{2} \times 60}{360}\right]$
$=\left(1.73 a^{2}-1.57 a^{2}\right)$
$=0.16 a^{2}$
$=\frac{16}{100} a^{2}$
$=\left(\frac{4}{25} a^{2}\right)$ sq unit

Question 40:

Let A, B, C, D be the centres of these circles
Join $A B, B C, C D$ and $D A$
Side of square $=10 \mathrm{~cm}$
Area of square $A B C D$
$=(10 \times 10) \mathrm{cm}^{2}$
$=100 \mathrm{~cm}^{2}$
Area of each sector $=\left(\pi^{2} \times \frac{\theta}{360}\right)=3.14 \times 5 \times 5 \times \frac{90}{360}$
$=19.625 \mathrm{~cm}^{2}$
Required area $=$ [area of sq. ABCD -4 (area of each sector)]
$=(100-4 \times 19.625) \mathrm{cm}^{2}$
$=(100-78.5)=21.5 \mathrm{~cm}^{2}$

Question 41:

Required area = [area of square - areas of quadrants of circles] Let the side $=2$ a unit and radius $=$ a units

Area of square $=($ side \times side $)=(2 a \times 2 a)$ sq. units $=4 a^{2}$ sq. units Area of quadrant $=\frac{1}{4} \pi r^{2}$
Area of 4 quadrants $=4 \times \frac{1}{4} \pi r^{2}=\pi r^{2}=\frac{22}{7} \times a \times a=\frac{22}{7} a^{2}$ sq.unit
Required area $=\left(4 a^{2}-\frac{22}{7} a^{2}\right)$ sq unit $=\frac{6 a^{2}}{7}$

Question 42:

Let the side of square $=a \mathrm{~m}$
Area of square $=(a \times a) c m=a^{2} m^{2}$

$$
\begin{aligned}
\therefore & a^{2}=1600 \\
& a=\sqrt{1600} \mathrm{~m} \\
& a=40 \mathrm{~m}
\end{aligned}
$$

Side of square $=40 \mathrm{~m}$
Therefore, radius of semi circle $=20 \mathrm{~m}$
Area of semi circle $=\frac{1}{2} \pi r^{2}=\left(\frac{1}{2} \times 3.14 \times 20 \times 20\right) \mathrm{m}^{2}$
$=628 \mathrm{~m}^{2}$
Area of four semi circles $=(4 \times 628) \mathrm{m}^{2}=2512 \mathrm{~m}^{2}$
Cost of turfing the plot of of area $1 \mathrm{~m}^{2}=$ Rs. 1.25
Cost of turfing the plot of area $2512 \mathrm{~m}^{2}=$ Rs. (1.25×2512)
= Rs. 3140

Question 43:

Area of rectangular lawn in the middle
$=(50 \times 35)=1750 \mathrm{~m}^{2}$
Radius of semi circles $=\frac{35}{2}=17.5 \mathrm{~m}$

Area of two semidirdes $\mathbf{- 2}$ (area of semi circle)

$-\left[2\left(\frac{1}{2} \pi r^{2}\right)\right] m^{2}$
$=\left(2 \times \frac{1}{2} \times \frac{22}{7} \times 17.5 \times 17.5\right) \mathrm{m}^{2}$

- $962.5 \mathrm{~m}^{2}$

Area of lawn $=$ (area of rectangle + area of semi circle)
$=(1750+962.5) \mathrm{m}^{2}=2712.5 \mathrm{~m}^{2}$

Question 44:

Area of plot which cow can graze when $r=16 \mathrm{~m}$ is $n \mathrm{r}^{2}$
$=\left(\frac{22}{7} \times 10.5 \times 10.5\right)$
$=804.5 \mathrm{~m}^{2}$
Area of plot which cow can graze when radius is increased to 23 m $=\left(\frac{22}{7} \times 10.5 \times 10.5\right)$
$=1662.57 \mathrm{~m}^{2}$
Additional ground $=$ Area covered by increased rope - old area
$=(1662.57-804.5) m^{2}=858 m^{2}$

Question 45:

Given: $A B C$ is right angled at A with $A B=6 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$ $B C=\sqrt{A B^{2}+A C^{2}}=\sqrt{(6)^{2}+(8)^{2}} \mathrm{~cm}$

$$
=\sqrt{36+64} \mathrm{~cm}
$$

$B C=\sqrt{100} \quad \mathrm{~cm}=10 \mathrm{~cm}$
Let us join OA, OB and OC
$\operatorname{ar}(\triangle \mathrm{AOC})+\operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{BOC})=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow\left(\frac{1}{2} \times 8 \times r\right)+\left(\frac{1}{2} \times 6 \times r\right)+\left(\frac{1}{2} \times 10 \times r\right)$
$=\frac{1}{2} \times 6 \times 8$
$4 r+3 r+5 r=24$
$12 \mathrm{r}=24$
$\Rightarrow \mathrm{r}=\frac{24}{12}=2$
Radius $=2 \mathrm{am}$

Question 46:

Given $B P \perp C D, H Q \perp F$ and $E L \perp D F$,
$\mathrm{DC}=8 \mathrm{~cm}, \mathrm{BP}=\mathrm{HQ}=4 \mathrm{~cm}$ and $\mathrm{DE}=\mathrm{EF}=5 \mathrm{~cm}$
Area of parallelogram $A B C D=B P \times D C$

$$
=4 \times 8=32 \mathrm{~cm}^{2}
$$

Area of parallelogram $\mathrm{FGHI}=\mathrm{Fl} \times \mathrm{HQ}$

$$
=8 \times 4=32 \mathrm{~cm}^{2}
$$

Area of semicircle CKI $=\frac{1}{2} \pi r^{2}$

$$
=\frac{1}{2} \times 3.14 \times(4)^{2}=25.12 \mathrm{~cm}^{2}
$$

Area of isosceles $\triangle D E F=\frac{1}{4} b \sqrt{4 a^{2}-b^{2}}$

$$
\begin{aligned}
& =\frac{1}{4}(8) \sqrt{4(5)^{2}-(8)^{2}}=2 \sqrt{100-64} \\
& =2 \sqrt{36}=12 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of square $\mathrm{CDF}=(\text { side })^{2}=(8)^{2}=64 \mathrm{~cm}^{2}$
Area of whole figure $=$ area of $11^{9 m}, \mathrm{ABCD}+$ area of $11^{9 m} \mathrm{FGHI}$

+ area of semi-arde CKI + area of $\triangle D E F$
* area of square CDFI

$$
\begin{aligned}
& =(32+32+25.12+12+64) \mathrm{cm}^{2} \\
& =165.12 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 47:

Area of region $A B C D E F A=$ area of square $A B D E+$ area of semi circle $B C D-$ area of \triangle AFE
$-\left[10 \times 10+\frac{1}{2} \times 3.14 \times 5 \times 5-\frac{1}{2} \times 6 \times 8\right] \mathrm{cm}^{2}$
$-[100+39.25-24] \mathrm{cm}^{2}-115.25 \mathrm{~cm}^{2}$

Question 48:

Side of the square $A B C D=14 \mathrm{~cm}$
Area of square $A B C D=14 \times 14=196 \mathrm{~cm}^{2}$
Radius of each circle $=\frac{14}{4}=3.5 \mathrm{~cm}$
Area of the circles $=4 \times$ area of one circle
$=4 \times \pi(3.5)^{2}$
$-4 \times \frac{22}{7} \times 3.5 \times 3.5$

- $154 \mathrm{~cm}^{2}$

Area of shaded region $=$ Area of square - area of 4 circles
$=196-154=42 \mathrm{~cm}^{2}$

Question 49:

Diameter AC $=2.8+1.4$
$=4.2 \mathrm{~cm}$
Radius $\mathrm{r}_{1}=\frac{4.2}{2}=2.1 \mathrm{~cm}$
Length of semi-circle ADC $=\pi r_{1}=\pi \times 2.1=2.1 n \mathrm{~cm}$
Diameter $\mathrm{AB}=2.8 \mathrm{~cm}$
Radius $\mathrm{r}_{2}=1.4 \mathrm{~cm}$
Length of semi- circle $\mathrm{AEB}=\pi r_{2}=\pi \times 1.4=1.4 n \mathrm{~cm}$
Diameter $\mathrm{BC}=1.4 \mathrm{~cm}$
Radius $r_{3}=\frac{1.4}{2}=0.7 \mathrm{~cm}$
Length of semi - circle BFC $=\pi \times 0.7=0.7 n \mathrm{~cm}$
Perimeter of shaded region $=2.1+1.4+0.7=4.2 \pi \mathrm{~cm}$
$=4.2 \times \frac{22}{7}=13.2 \mathrm{~cm}$

Question 50:

Area of shaded region $=$ Area of $\triangle A B C+$ Area of semi-circle APB + Area of semi circle AQC - Area of semicircle BAC

Now, Area of a $\triangle A B C=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}-(1)$
Area of semi - drde APB $=\frac{1}{2} \pi^{2}=\frac{1}{2} \pi \times\left(\frac{3}{2}\right)^{2}=\frac{9}{8} \pi--(2)$
Area of semi - cirde AQC $=\frac{1}{2} \pi r_{2}^{2}$

$$
\begin{equation*}
=\frac{1}{2} \pi\left(\frac{4}{2}\right)^{2}-2 \pi \mathrm{~cm}^{2} \tag{3}
\end{equation*}
$$

Further in $\triangle A B C, \angle A=90^{\circ}$
$\therefore B C^{2}=A B^{2}+A C^{2}=9+16-25$
$\therefore \mathrm{BC}=5$
Area of semi - cirdeBAC $=\frac{1}{2} x\left(\frac{5}{2}\right)^{2}-\frac{25}{8} x--(4)$
Adding (1), (2), (3) and subtracting (4)
\therefore Area of shaded region $=6+\frac{9}{8} x+2 \pi-\frac{25}{8} x$

$$
-6+\frac{25}{8} x-\frac{25}{8} x-6 \mathrm{~cm}^{2}
$$

Question 51:

In $\triangle \mathrm{PQR}, \angle \mathrm{P}=90^{\circ}, \mathrm{PQ}=24 \mathrm{~cm}, \mathrm{PR}=7 \mathrm{~cm}$
$\therefore \mathrm{QR}^{2}-\mathrm{RP}^{2}+\mathrm{PQ}^{2}-\mathrm{7}^{2}+24^{2}$

- 49 + 576-625
$\therefore Q R=25 \mathrm{~cm}$
Area of semicircle
$=\frac{1}{2} \times \pi \times\left(\frac{25}{2}\right)^{2}$
$=\frac{1}{2} \times 3.14 \times \frac{25 \times 25}{4} \mathrm{~cm}^{2}$
$-\frac{625 \times 3.14}{8}-245.31 \mathrm{~cm}^{2}$
Area of $\triangle P Q R=\frac{1}{2} \times 7 \times 24 \mathrm{~cm}^{2}=84 \mathrm{~cm}^{2}$
Shaded area $=245.31-84=161.31 \mathrm{~cm}^{2}$

Question 52:

$A B C D E F$ is a hexagon.
$\angle A O B=60^{\circ}$, Radius $=35 \mathrm{~cm}$
Area of sector AOB
$=\pi r^{2} \times \frac{60^{\circ}}{360^{\circ}}=\frac{\pi \times 35 \times 35}{6} \mathrm{~cm}^{2}$
$=\frac{3.14 \times 35 \times 35}{6} \mathrm{~cm}^{2}$
$=641.083 \mathrm{~cm}^{2}$
Area of $\triangle A O B=\frac{\sqrt{3}}{4} \times r^{2}=\frac{\sqrt{3}}{4} \times 35 \times 35 \mathrm{~cm}^{2}$
$=530.425 \mathrm{~cm}^{2}$
Area of segment APB $=(641.083-530.425) \mathrm{cm}^{2}=110.658 \mathrm{~cm}^{2}$
Area of design (shaded area) $=6 \times 110.658 \mathrm{~cm}^{2}=663.948 \mathrm{~cm}^{2}$
$=663.95 \mathrm{~cm}^{2}$
Question 53:

In $\triangle A B C, \angle A=90^{\circ}, A B=6 \mathrm{~cm}, B C=10 \mathrm{~cm}$

$$
B C^{2}=A C^{2}+A B^{2}
$$

$\therefore A C^{2}=B C^{2}-A B^{2}=10^{2}-6^{2}=100-36=64$
$\therefore A C=8 \mathrm{~cm}$
Area of $\triangle A B C=\frac{1}{2} \times A C \times A B=\frac{1}{2} \times 8 \times 6 \mathrm{~cm}^{3}=24 \mathrm{~cm}^{2}$

Let r be the radius of circle of centre O
Area of $\triangle O C B=\frac{1}{2} \times 10 \times r \mathrm{~cm}^{2}=5 \mathrm{~cm}^{2}$
Area of $\triangle O A B=\frac{1}{2} \times 6 \times r \mathrm{~cm}^{2}=3 \mathrm{~cm}^{2}$
Area of $\triangle O C A=\frac{1}{2} \times 8 \times r \mathrm{~cm}^{2}=4 \mathrm{r} \mathrm{cm}^{2}$
Area of $(\triangle O C B+\triangle O A B+\triangle O C A)=$ Area of $\triangle A B C$
$\therefore 5 r+3 r+4 r=24$
or $12 \mathrm{r}=24 \quad \mathrm{r}=2 \mathrm{~cm}$
: Area of inarde $=\pi r^{2}=3.14 \times 2 \times 2 \mathrm{~cm}^{2}$

$$
=12.56 \mathrm{~cm}^{2}
$$

\Rightarrow Shaded area $=$ Area of $\triangle A B C$ - Area of incircle

$$
=(24-12.56) \mathrm{cm}^{2}=11.44 \mathrm{~cm}^{2}
$$

Question 54:

Area of equilateral triangle $A B C=49 \sqrt{ } 3 \mathrm{~cm}^{2}$

Let a be its side
$\therefore \frac{\sqrt{3}}{4} a^{2}=49 \sqrt{3}$
or $a^{2}=49 \times 4$
$\therefore \mathrm{a}=7 \times 2$
$\Rightarrow a=14 \mathrm{~cm}$
Area of sector BDF $=\pi^{2} \times \frac{\theta}{360^{\circ}}$
$-\frac{22}{7} \times 7 \times 7 \times \frac{60}{360} \mathrm{am}$
$=\frac{11 \times 7}{3} \mathrm{~cm}^{2}=\frac{77}{3} \mathrm{~cm}^{2}$
Area of sector BDF = Area of sector CDE = Area of sector AEF Sum of area of all the sectors
$=\frac{77}{3} \times 3 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}$
Shaded area $=$ Area of $\triangle A B C$ - sum of area of all sectors
$=49 \sqrt{ } 3-77=(84.77-77.00) \mathrm{cm}^{2}$
$=77.7 \mathrm{~cm}^{2}$

Question 55:

In $\triangle A B C, \angle B=90^{\circ}, A B=48 \mathrm{~cm}, B C=14 \mathrm{~cm}$
$\therefore A C^{2}=A B^{2}+A C^{2}=48^{2}+14^{2}$
$=2304+196=2500$
$\therefore A C=50 \mathrm{~cm}$
Area of $\triangle A B C=\frac{1}{2} \times 48 \times 14 \mathrm{~cm}^{2}=336 \mathrm{~cm}^{2}$
Area of semi-circle APC
$-\frac{1}{2} x^{2}-\frac{1}{2} \times \frac{22}{7} \times 25 \times 25 \mathrm{~cm}^{2}$
$-\frac{11 \times 625}{7} \mathrm{~cm}^{2}=\frac{6875}{7} \mathrm{~cm}^{2}$
$-982.14 \mathrm{~cm}^{2}$
Area of quadrant BDC with radius 14 cm
$=\frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Shaded area $=$ Area of $\triangle A B C+$ Area of semi-circle APC - Area of quadrant BDC
$=(336+982.14-154) \mathrm{cm}^{2}$
$=(1318.14-154) \mathrm{cm}^{2}=1164.14 \mathrm{~cm}^{2}$

Question 56:

Radius of quadrant $A B E D=16 \mathrm{~cm}$
Its area $=\frac{1}{4} \times \frac{22}{7} \times 16 \times 16 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{ABD}=\left(\frac{1}{2} \times 16 \times 16\right) \mathrm{cm}^{2}$
$=128 \mathrm{~cm}^{2}$
Area of segment DEB
$-\frac{11 \times 128}{7}-128$
$=128\left(\frac{11-7}{7}\right) \mathrm{cm}^{2}=\frac{128 \times 4}{7} \mathrm{~cm}^{2}-\frac{512}{7} \mathrm{~cm}^{2}$
Area of segment DFB $=\frac{512}{7} \mathrm{~cm}^{2}$
Total area of segments $=2 \times \frac{512}{7} \mathrm{~cm}^{2}=\frac{1024}{7} \mathrm{~cm}^{2}$
Shaded area $=$ Area of square $A B C D-$ Total area of segments
$-\left(16 \times 16-\frac{1024}{7}\right) \mathrm{cm}^{2}$
$=\left(256-\frac{1024}{7}\right) \mathrm{cm}^{2}=\frac{1792-1024}{7} \mathrm{~cm}^{2}$
$=\frac{768}{7} \mathrm{~cm}^{2}=109.7 \mathrm{~cm}^{2}$

Question 57:

Radius of circular table cover $=70 \mathrm{~cm}$
Area of the circular cover $=\pi^{2}=\frac{22}{7} \times 70 \times 70 \mathrm{~cm}^{2}=15400 \mathrm{~cm}^{2}$
$\ln \triangle B O D, \angle D=90^{\circ}, \angle O B D=30^{\circ}$
$\therefore \frac{\mathrm{BD}}{\mathrm{OB}}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\Rightarrow \mathrm{BD}=\mathrm{OB} \cos 30^{\circ}$
$=70 \times \frac{\sqrt{3}}{2} \mathrm{~cm}$
$=35 \sqrt{3} \mathrm{~cm}$
$\Rightarrow B C=2 B D=2 \times 35 \sqrt{3}=70 \sqrt{3}$

Area of $\mathrm{ABC}=\frac{\sqrt{3}}{4} \times a^{2}=\frac{\sqrt{3}}{4} \times 70 \sqrt{3} \times 70 \sqrt{3}$

$$
\begin{aligned}
& \quad[\because \Delta A B O \text { is equilateral }] \\
&=\frac{4900 \times 3 \times \sqrt{3}}{4} \mathrm{~cm}^{2}=1225 \times 3 \times \sqrt{3} \\
&=3675 \sqrt{3} \mathrm{~cm}^{2}=6365.1 \mathrm{~cm}^{2}
\end{aligned}
$$

Shaded area $=$ Area of circle - Area of $\triangle A B C$
$=(15400-6365.1)$

Question 58:

Area of the sector of circle $=\frac{\frac{\pi^{2}}{380}}{380^{2}}$
$r=14 \mathrm{~cm}$ and $\theta=45^{\circ}$

$$
\begin{aligned}
\therefore \text { Area of sector } & =\left(\frac{\pi \times 14 \times 14 \times 45}{360}\right) \mathrm{cm}^{2} \\
& =(24.5 \pi) \mathrm{cm}^{2} \\
& =\left(24.5 \times \frac{22}{7}\right) \mathrm{cm}^{2}=77 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 59:

Length of the arc $=\frac{2 \pi r \theta}{360}, r=21 \mathrm{~cm}, \theta=150^{\circ}$
$-\left(\frac{2 \pi \times 21 \times 150}{360}\right) \mathrm{cm}-(17.5 x) \mathrm{cm}$
Length of arc $=\left(17.5 \times \frac{22}{7}\right) \mathrm{cm}=55 \mathrm{~cm}$
Area of the sector $=\frac{\frac{\pi^{2} \theta}{360}}{36}-\left(\frac{\pi \times 21 \times 21 \times 150}{360}\right) \mathrm{cm}^{2}$
$=\left(\frac{22}{7} \times 183.75\right) \mathrm{cm}^{2}=577.5 \mathrm{~cm}^{2}$

Question 60:

Length of arc of circle $=44 \mathrm{~cm}$
Radius of circle $=17.5 \mathrm{~cm}$
Area of sector $=\frac{1}{2} \operatorname{Ir}=\left(\frac{1}{2} \times 44 \times 17.5\right) \mathrm{cm}^{2}$
$=(22 \times 17.5) \mathrm{cm}^{2}=385 \mathrm{~cm}^{2}$

Question 61:

Let sector of circle is OAB
Perimeter of a sector of circle $=31 \mathrm{~cm}$
$O A+O B+$ length of arc $A B=31 \mathrm{~cm}$

$6.5+6.5+\operatorname{arc} A B=31 \mathrm{~cm}$
arc $A B=31-13$
$=18 \mathrm{~cm}$
Area of dirde $\left.=\frac{1}{2} \right\rvert\, r$

$$
-\frac{1}{2} \times 18 \times 6.5-58.5 \mathrm{~cm}^{2}
$$

Question 62:

Area of the sector of circle $=\frac{\pi^{2} \theta}{360}=69.3$
Radius $=10.5 \mathrm{~cm}$
$\Rightarrow \frac{\pi \times(10.5)^{2} \times \theta}{360}=69.3$
$\Rightarrow \quad \theta=\frac{69.3 \times 360 \times 7}{10.5 \times 10.5 \times 22}=72^{\circ}$

Question 63:

Length of the pendulum $=$ radius of sector $=r \mathrm{~cm}$

$$
\text { Arc length }-8.8 \Rightarrow 2 \times \frac{22}{7} \times r \times \frac{30}{360}=8.8
$$

$\Rightarrow r=\frac{8.8 \times 7 \times 360}{2 \times 22 \times 30}=16.8 \mathrm{~cm}$

Question 64:

Length of arc $=\frac{2 \pi r}{360}=16.5 \mathrm{~cm}$
$2 \times \frac{22}{7} \times r \times \frac{54^{\circ}}{360^{\circ}}=16.5$

$$
r=\frac{16.5 \times 7 \times 360}{2 \times 22 \times 54}=17.5 \mathrm{~cm}
$$

Circumference of circle $=2 \pi r$
$\left(2 \times \frac{22}{7} \times 17.5\right)-110 \mathrm{~cm}$
Area of circle $=$
$x^{2}-\left(\frac{22}{7} \times 17.5 \times 17.5\right) \mathrm{cm}^{2}$
$=962.5 \mathrm{~cm}^{2}$

Question 65:

Circumference of circle $=2 \pi r$
$2 \pi r-88 \Rightarrow r=\frac{88 \times 7}{2 \times 22}=14 \mathrm{~cm}$
Area of sector $=\frac{x^{2} \theta}{360}$

$$
=\left(\frac{22}{7} \times 14 \times 14 \times \frac{72}{360}\right) \mathrm{cm}^{2}=123.2 \mathrm{~cm}^{2}
$$

Question 66:

Angle described by the minute hand in 60 minutes $\theta=360^{\circ}$ Angle described by minute hand in 20 minutes
$-\left(\frac{360}{60} \times 20\right)-120^{\circ}$
Required area swept by the minute hand in 20 minutes
$=$ Area of the sector $\left(\right.$ with $r=15 \mathrm{~cm}$ and $\left.\theta=120^{\circ}\right)$
$=\left(\frac{x \pi^{2} \mathrm{e}}{360^{\circ}}\right) \mathrm{cm}^{2}=\left(3.14 \times 15 \times 15 \times \frac{120^{\circ}}{360^{\circ}}\right)$
$-235.5 \mathrm{~cm}^{2}$

Question 67:

$\theta=56^{\circ}$ and let radius is rcm
Area of sector $=\frac{\pi^{2} \theta}{360^{\circ}}-17.6 \mathrm{~cm}^{2}$
$\Rightarrow \frac{22}{7} \times r^{2} \times \frac{56^{\circ}}{360^{\circ}}=17.6$

$$
\begin{aligned}
& r^{2}=\left(\frac{17.6 \times 360 \times 7}{22 \times 56}\right) \mathrm{cm}^{2} \\
& r^{2}=36 \mathrm{~cm}^{2} \Rightarrow r=\sqrt{36} \mathrm{~cm}-6 \mathrm{~cm}
\end{aligned}
$$

Hence radius $=6 \mathrm{~cm}$

Question 68:

$\frac{\text { Area of sector with } \theta=150^{\circ}}{\text { Area of the arcle }}=\frac{\pi \times(6)^{2} \times \frac{150}{360}}{\pi \times(6)^{2}}$

$$
=\frac{150}{360}=\frac{5}{12}
$$

Required ratio $=\left(36 \pi \times \frac{90}{360}\right):\left(36 \pi \times \frac{120}{360}\right):\left(36 \pi \times \frac{150}{360}\right)$

$$
=\frac{1}{4}: \frac{1}{3}: \frac{5}{12}=3: 4: 5
$$

Question 69:

In 2 days, the short hand will complete 4 rounds
\therefore Distance travelled by its tip in 2 days
$=4$ (circumference of the circle with $r=4 \mathrm{~cm}$)
$=(4 \times 2 \times 4) \mathrm{cm}=32 \mathrm{~cm}$
In 2 days, the long hand will complete 48 rounds
\therefore length moved by its tip
$=48$ (circumference of the circle with $r=6 \mathrm{~cm}$)
$=(48 \times 2 \times 6) \mathrm{cm}=576 \mathrm{~cm}$
\therefore Sum of the lengths moved
$=(32+576)=608 \mathrm{~cm}$
$=(608 \times 3.14) \mathrm{cm}=1909.12 \mathrm{~cm}$
Question 70:
$\triangle O A B$ is equilateral.
So, $\angle A O B=60^{\circ}$

$$
\begin{aligned}
\operatorname{arcACB} & =\left(2 \pi \times 12 \times \frac{60}{360}\right) \mathrm{cm} \\
& =4 \pi \mathrm{~cm} \\
& =(4 \times 3.14) \mathrm{cm} \\
& =12.56 \mathrm{~cm}
\end{aligned}
$$

Length of arc $B D A=(2 \pi \times 12-\operatorname{arc} A C B) c m$
$=(24 п-4 п) \mathrm{cm}=(20 п) \mathrm{cm}$
$=(20 \times 3.14) \mathrm{cm}=62.8 \mathrm{~cm}$
Area of the minor segment ACBA
$-\left[\pi \times(12)^{2} \times \frac{60}{360}-\frac{\sqrt{3}}{4} \times(12)^{2}\right] \mathrm{cm}^{2}$
$-\left(3.14 \times 12 \times 12 \times \frac{60}{360}-\frac{1.73}{4} \times 12 \times 12\right) \mathrm{cm}^{2}$
$-(75.36-62.28) \mathrm{cm}^{2}-13.08 \mathrm{~cm}^{2}$

Question 71:

Let $A B$ be the chord of circle of centre O and radius $=6 \mathrm{~cm}$ such that $\angle A O B=$ 90°

Area of sector $=$ OACBO
$-\frac{x^{2} \theta}{360} \mathrm{~cm}^{2}$
$-\left(\frac{22}{7} \times 6 \times 6 \times \frac{90}{360}\right) \mathrm{cm}^{2}$
$-28.29 \mathrm{~cm}^{2}$
Area of $\triangle A O B=\frac{1}{2} r^{2} \sin \theta=\left(\frac{1}{2} \times 6 \times 6 \times \sin 90^{\circ}\right)-18 \mathrm{~cm}^{2}$
Area of minor segment ACBA
= (area of sector OACBO) - (area of $\triangle O A B)$
$=(28.29-18) \mathrm{cm}^{2}=10.29 \mathrm{~cm}^{2}$
Area of major segment BDAB

- (area of cirde) - (area of minor segment)
$=\left[\left(\frac{22}{7} \times 5 \times 6\right)-10.29\right] \mathrm{cm}^{2}$
- $(113.14-10.29) \mathrm{cm}^{2}-102.85 \mathrm{~cm}^{2}$

Question 72:

Let $O A=5 \sqrt{ } 2 \mathrm{~cm}, O B=5 \sqrt{ } 2 \mathrm{~cm}$
And $A B=10 \mathrm{~cm}$

Then, $O A^{2}+O B^{2}-A B^{2}$
$\Rightarrow \angle A O B=90^{\circ}$
Area of the sector OACBO

$$
\begin{aligned}
& =\frac{\pi r^{2} \theta}{360} \mathrm{~cm}^{2} \\
& =\left(3.14 \times(5 \sqrt{2}) \times(5 \sqrt{2}) \times \frac{90}{360}\right) \mathrm{cm}^{2} \\
& =39.25 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of $\triangle A O B=\frac{1}{2} r^{2} \sin \theta=\left(\frac{1}{2} \times 5 \sqrt{2} \times 5 \sqrt{2} \times \sin 90^{\circ}\right)$
$=25 \mathrm{~cm}^{2}$
Area of minor segment $=($ area of sector OACBO $)-($ area of $\triangle O A B)$
$=(39.25-25) \mathrm{cm}^{2}=14.25 \mathrm{~cm}^{2}$
Area of the major segment BDAB
= area of cirde - area of minor segment
$=\left(\frac{22}{7} \times 5 \sqrt{2} \times 5 \sqrt{2}-14.25\right) \mathrm{cm}^{2}$
$=\left(\frac{1100}{7}-14.25\right) \mathrm{cm}^{2}=(157-14.25) \mathrm{cm}^{2}$
$=142.75 \mathrm{~cm}^{2}$

Question 73:

Area of sector OACBO

$$
=\frac{\pi^{2} \theta}{360} \mathrm{~cm}^{2}=\left(\frac{22}{7} \times 42 \times 42 \times \frac{120}{360}\right) \mathrm{cm}^{2}=1848 \mathrm{~cm}^{2}
$$

Area of $\triangle O A B=\frac{1}{2} r^{2} \sin \theta$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 42 \times 42 \times \sin 120^{\circ}\right. \\
& =\left(21 \times 42 \times \frac{\sqrt{3}}{2}\right) \mathrm{cm}^{2} \\
& =(21 \times 21 \times 1.73) \mathrm{cm}^{2}=762.93 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of minor segment ACBA

- (area of sector OACBO) - (area of the $\triangle \mathrm{OAB}$)
- ($1848-762.93$) $\mathrm{cm}^{2}=1085.07 \mathrm{~cm}^{2}$

Area of major segment BADB

- (area of the oirde) - (area of minor segment)
$=\frac{22}{7} \times 42 \times 42-1085.07$
- $(5544-1085.07) \mathrm{cm}^{2}=4458.93 \mathrm{~cm}^{2}$

Question 74:

Let $A B$ be the chord of circle of centre O and radius $=30 \mathrm{~cm}$ such that $A O B=$ 60°

Area of the sector OACBO
$=\frac{\pi x^{2} \theta}{360} \mathrm{~cm}^{2}$
$-\left(3.14 \times 30 \times 30 \times \frac{60}{360}\right) \mathrm{cm}^{2}$
$-471 \mathrm{~cm}^{2}$
Area of $\triangle O A B=\frac{1}{2} \mathrm{r}^{2} \sin \theta=\left(\frac{1}{2} \times 30 \times 30 \times \sin 60^{\circ}\right) \mathrm{cm}^{2}$
$-\left(\frac{1}{2} \times 30 \times 30 \times \frac{\sqrt{3}}{2}\right) \mathrm{cm}^{2}-(225 \sqrt{3}) \mathrm{cm}^{2}$

- $(225 \times 1.73) \mathrm{cm}^{2}-389.25 \mathrm{~cm}^{2}$

Area of the minor segment ACBA
$=($ area of the sector OACBO$)-($ area of the $\triangle \mathrm{OAB})$
$=(471-389.25) \mathrm{cm}^{2}=81.75 \mathrm{~cm}^{2}$
Area of the major segment BADB
$=$ (area of circle) - (area of the minor segment)
$=[(3.14 \times 30 \times 30)-81.75)] \mathrm{cm}^{2}=2744.25 \mathrm{~cm}^{2}$

Question 75:

Let the major arc be $\times \mathrm{cm}$ long
Then, length of the minor $\operatorname{arc}=\frac{1}{5} \times \mathrm{cm}$
Circumference $=\left(x+\frac{1}{5} x\right) \mathrm{cm}=\frac{6 x}{5} \mathrm{~cm}$

$$
\frac{6 x}{5}=2 x \frac{22}{7} \times \frac{21}{2} \Rightarrow x-55 \mathrm{~cm}
$$

Required area $=\left(\frac{1}{2} \times 55 \times \frac{21}{2}\right) \mathrm{cm}^{2}$

$$
\left[\text { Aree }=\frac{1}{2} r\right]
$$

$=288.75 \mathrm{~cm}^{2}$

Question 76:

Radius of the front wheel $=40 \mathrm{~cm}=\frac{2}{5} \mathrm{~m}$
Circumference of the front wheel $=\left(2 \pi \times \frac{2}{5}\right) m=\frac{4 \pi}{5} m$
Distance moved by it in 800 revolution
$-\left(\frac{4 \pi}{5} \times 800\right) m-(640 x) m$
Circumference of rear wheel $=(2 \pi \times 1) m=(2 \pi) m$
Required number of revolutions $=\left(\frac{640 x}{2 \pi}\right)-320$

