Exercise - 13A

1. Draw a line segment $A B$ of length 7 cm . Using ruler and compasses, find a point P on $A B$ such that $\frac{A P}{A B}=\frac{3}{5}$.

Sol:

Steps of Construction:
Step 1: Draw a line segment $A B=7 \mathrm{~cm}$
Step 2: Draw a ray $A X$, making an acute angle $\angle B A X$.
Step 3: Along $A X$, mark 5 points (greater of 3 and 5) $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$
Step 4: Join $A_{5} B$.
Step 5: From A_{3}, draw $A_{3} P$ parallel to $A_{5} B$ (draw an angle equal to $\angle A A_{5} B$), meeting $A B$ in P.

Here, P is the point on AB such that $\frac{A P}{P B}=\frac{3}{2}$ or $\frac{A P}{A B}=\frac{3}{5}$.
2. Draw a line segment of length 7.6 cm and divide it in the ratio $5: 8$. Measure the two parts.

Sol:

Steps of Construction:
Step 1: Draw a line segment $A B=7.6 \mathrm{~cm}$
Step 2: Draw a ray $A X$, making an acute angle $\angle B A X$.
Step 3: Along $A X$, mark $(5+8=) 13$ points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}$ and A_{13} such that
$A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{6} A_{7}=A_{8} A_{9}=A_{9} A_{10}=A_{10} A_{11}=A_{11} A_{12}-A_{12} A_{13}$.
Step 4: Join $A_{13} B$.
Step 5: From A_{5}, draw $A_{5} P$ parallel to $A_{13} B$ (draw an angle equal to $\angle A A_{13} B$), meeting $A B$ in P.

Here, P is the point on $A B$ which divides it in the ratio $5: 8$.
\therefore Length of $A P=2.9 \mathrm{~cm}$ (Approx)
Length of $B P=4.7 \mathrm{~cm}$ (Approx)
3. Construct a $\triangle P Q R$, in which $\mathrm{PQ}=6 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}$ and $\mathrm{PR}=-8 \mathrm{~cm}$. Then, construct another triangle whose sides are $\frac{4}{5}$ times the corresponding sides of $\triangle P Q R$

Sol:

Steps of Construction
Step 1: Draw a line segment $Q R=7 \mathrm{~cm}$.
Step 2: With Q as center and radius 6 cm , draw an arc.
Step 3: With R as center and radius 8 cm , draw an arc cutting the previous arc at P
Step 4: Join $P Q$ and $P R$. Thus, $\triangle P Q R$ is the required triangle.
Step 5: Below $Q R$, draw an acute angle $\angle R Q X$.
Step 6: Along $O X$, mark five points $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5} such that

$$
Q R_{1}=R_{1} R_{2}=R_{2} R_{3}=R_{3} R_{4}=R_{4} R_{5} .
$$

Step 7: Join $R R_{5}$
Step 8: From R_{4}, draw $R_{4} R^{\prime} \| R R_{5}$ meeting $Q R$ at R^{\prime}.
Step 9: From R^{\prime}, draw $P^{\prime} R^{\prime} \| P R$ meeting $P Q$ in P^{\prime}.

Here, $\Delta P^{\prime} Q R^{\prime}$ is the required triangle, each of whose sides are $\frac{4}{5}$ times the corresponding sides of $\triangle P Q R$.
4. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$, and 7 cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Sol:

Steps of Construction :
Step 1: Draw a line segment $B C=4 \mathrm{~cm}$.
Step 2: With B as center, draw an angle of 90°.
Step 3: With B as center and radius equal to 3 cm , cut an arc at the right angle and name it A.

Step 4: Join $A B$ and $A C$.
Thus, $\triangle \mathrm{ABC}$ is obtained.
Step 5: Extend $B C$ to D, such that $B D=\frac{7}{5} B C=75(4) \mathrm{cm}=5.6 \mathrm{~cm}$.
Step 6: Draw $D E \| C A$, cutting $A B$ produced to E.

Thus, $\triangle E B D$ is the required triangle, each of whose sides is $\frac{7}{5}$ the corresponding sides of $\triangle A B C$.
5. Construct a $\triangle A B C$ with $\mathrm{BC}=7 \mathrm{~cm}, \angle B=60^{\circ}$ and $\mathrm{AB}=6 \mathrm{~cm}$. Construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle A B C$

Sol:

Steps of Construction
Step 1: Draw a line segment $B C=7 \mathrm{~cm}$.
Step 2: At B, draw $\angle X B C=60^{\circ}$.
Step 3: With B as center and radius 6 cm , draw an arc cutting the ray $B X$ at A.
Step 4: Join $A C$. Thus, $\triangle A B C$ is the required triangle.
Step 5: Below $B C$, draw an acute angle $\angle Y B C$.
Step 6: Along $B Y$, mark four points B_{1}, B_{2}, B_{3} and B_{4} such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.

Step 7: Join CB_{4}.
Step 8: From B_{3}, draw $B_{3} C^{\prime} \| C B_{4}$ meeting $B C$ at C^{\prime} '.
Step 9: From C^{\prime}, Draw $A^{\prime} C^{\prime} \| A C$ meeting $A B$ in A^{\prime}.

Here. $\triangle A^{\prime} B C^{\prime}$ 'is the required triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle A B C$.
6. Construct a $\triangle A B C$ in which $\mathrm{AB}=6 \mathrm{~cm}, \angle A=30^{\circ}$ and $\angle A B=60^{\circ}$. Construct another $\triangle A B^{\prime} C^{\prime}$ similar to $\triangle A B C$ with base $A B '=8 \mathrm{~cm}$.

Sol:

Steps of Construction

Step 1: Draw a line segment $A B=6 \mathrm{~cm}$.
Step 2: At A, draw $\angle X A B=30^{\circ}$.
Step 3: At B, draw $\angle Y B A=60^{\circ}$. Suppose AX and BY intersect at C.
Thus, $\triangle A B C$ is the required triangle.
Step 4: Produce $A B$ to B^{\prime}, such that $A B^{\prime}=8 \mathrm{~cm}$.
Step 5: From B^{\prime}, draw $B^{\prime} C^{\prime} \| B C$ meeting $A X$ at C^{\prime}.

Here. $\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ is the required triangle similar to $\triangle A B C$.
7. Construct a $\triangle A B C$ in which $\mathrm{BC}=8 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$. Construct another triangle similar to $\triangle A B C$ such that its sides are $\frac{3}{5}$ of the corresponding sides of $\triangle A B C$.

Sol:

Steps of Construction
Step 1: Draw a line segment $B C=8 \mathrm{~cm}$.
Step 2: At B, draw $\angle X B C=45^{\circ}$.

Step 3: At C, draw $\angle Y C B=60^{\circ}$. Suppose $B X$ and $C Y$ intersect at A.
Thus, $\triangle A B C$ is the required triangle
Step 4: Below $B C$, draw an acute angle $\angle Z B C$.
Step 5: Along $B Z$, mark five points $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ and Z_{5} such that
$B Z_{1}=Z_{1} Z_{2}=Z_{2} Z_{3}=Z_{3} Z_{4}=Z_{4} Z_{5}$.
Step 6: Join $C Z_{5}$.
Step 7: From Z_{3}, draw $Z_{3} C^{\prime} \| C Z_{5}$ meeting $B C$ at C^{\prime}.
Step 8: From C^{\prime}, draw $A^{\prime} C^{\prime} \| A C$ meeting $A B$ in A^{\prime}.

Here, $\triangle A^{\prime} B C^{\prime}$ 'is the required triangle whose sides are $\frac{3}{5}$ of the corresponding sides of $\triangle A B C$.
8. To construct a triangle similar to $\triangle A B C$ in which $\mathrm{BC}=4.5 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$, using a scale factor of $\frac{3}{7}$, BC will be divided in the ratio
(a) $3: 4$ (b) $4: 7$ (c) $3: 10$ (d) $3: 7$

Answer: (a) 3:4

Sol:

To construct a triangle similar to $\triangle A B C$ in which $B C=4.5 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$, using a scale factor of $\frac{3}{7}, B C$ will be divided in the ratio $3: 4$.

Here, $\triangle A B C \sim \triangle A^{\prime} B C^{\prime}$
$B C^{\prime}: C^{\prime} C=3: 4$
or $B C^{\prime}: B C=3: 7$
Hence, the correct answer is option A.
9. Construct an isosceles triangles whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Sol:

Steps of Construction
Step 1: Draw a line segment $B C=8 \mathrm{~cm}$.
Step 2: Draw the perpendicular bisector $X Y$ of $B C$, cutting $B C$ at D.
Step 3: With D as center and radius 4 cm , draw an arc cutting $X Y$ at A.
Step 4: Join $A B$ and $A C$. Thus, an isosceles $\triangle A B C$ whose base is 8 cm and altitude 4 cm is obtained.
Step 5: Extend $B C$ to E such that $B E=\frac{3}{2} B C=\frac{3}{2} \times 8 \mathrm{~cm}=12 \mathrm{~cm}$.
Step 6: Draw $E F \| C A$, cutting $B A$ produced in F.

Here, $\triangle B E F$ is the required triangle similar to $\triangle A B C$ such that each side of $\triangle B E F$ is $1 \frac{1}{2}$ (or $\frac{3}{2}$) times the corresponding side of $\triangle A B C$.
10. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm . Then, construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Sol:

Steps of Construction

Step 1: Draw a line segment $B C=3 \mathrm{~cm}$.
Step 2: At B, draw $\angle X B C=90^{\circ}$.
Step 3: With B as center and radius 4 cm , draw an arc cutting $B X$ at A.
Step 4: Join $A C$. Thus, a right $\triangle A B C$ is obtained.
Step 5: Extend BC to D such that $B D=\frac{5}{3} B C=\frac{5}{3} \times 3 \mathrm{~cm}=5 \mathrm{~cm}$.
Step 6: Draw $D E \| C A$, cutting $B X$ in E.

Here. $\triangle B D E$ is the required triangle similar to $\triangle A B C$ such that each side of $\triangle B D E$ is $\frac{5}{3}$ times the corresponding side of $\triangle A B C$.

Exercise - 13B

1. Draw a circle of radius 3 cm . Form a point $P, 7 \mathrm{~cm}$ away from the centre of the circle, draw two tangents to the circle. Also, measure the lengths of the tangents.
Sol:
Steps of Construction
Step 1: Draw a circle with O as center and radius 3 cm .
Step 2: Mark a point P outside the circle such that $O P=7 \mathrm{~cm}$.
Step 3: Join $O P$. Draw the perpendicular bisector $X Y$ of $O P$. cutting $O P$ at Q.
Step 4: Draw a circle with Q as center and radius $P Q$ (or $O Q$), to intersect the given circle at the points T and T.
Step 5: Join $P T$ and $P T$.

Here, $P T$ and $P T^{\prime}$ are the required tangents.

$$
P T=P T^{\prime}=6.3 \mathrm{~cm}(\mathrm{Approx})
$$

2. Draw two tangents to a circle of radius 3.5 cm form a point P at a distance of 6.2 cm form its centre.

Sol:

Steps of Construction
Step 1: Draw a circle with O as center and radius 3.5 cm .

Step 2: Mark a point P outside the circle such that $O P=6.2 \mathrm{~cm}$.
Step 3: Join $O P$. Draw the perpendicular bisector $X Y$ of $O P$, cutting $O P$ at Q.
Step 4: Draw a circle with Q as center and radius PQ (or 0 Q), to intersect the given circle at the points T and T .
Step 5: Join PT and PT'.

Here, PT and PT^{\prime} are the required tangents.
3. Draw a circle of radius 3.5 cm . Take two points A and B on one of its extended diameter, each at a distance of 5 cm from its center. Draw tangents to the circle from each of these points A and B.

Sol:

Steps of Construction
Step 1: Draw a circle with center O and radius 3.5 cm .
Step 2: Extends its diameter on both sides and mark two points A and B on it such that $O A=O B=5 \mathrm{~cm}$.
Step 3: Draw the perpendicular bisectors of $O A$ and $O B$. Let C and D be the mid-points of $O A$ and $O B$, respectively.
Step 4: Draw a circle with C as center and radius $O C$ (or $A C$), to intersect the circle with center O, at the points P and Q.
Step 5: Draw another circle with D as center and radius $O D$ (or $B D$), to intersect the circle with center O at the points R and S.
Step 6: Join $A P$ and $A Q$, Also, join $B R$ and $B S$.

Here, $A P$ and $A Q$ are the tangents to the circle from A, Also, $B R$ and $B S$ are the tangents to the circle from B.
4. Draw a circle with center O and radius 4 cm . Draw any diameter $A B$ of this circle. Construct tangents to the circle at each of the two end points of the diameter AB.

Sol:

Step 1: Draw a circle with center O and radius 4 cm .
Step 2: Draw any diameter $A O B$ of the circle.
Step 3: At A, draw $\angle O A X=90^{\circ}$. Produce $X A=Y$.
Step 4: At B, draw $\angle O B X^{\prime}=90^{\circ}$. Produce $X^{\prime} B$ to Y^{\prime}.

Here, $X A Y$ and $X^{\prime} B Y^{\prime}$ are the tangents to the circle at the end points of the diameter $A B$.
5. Draw a circle with the help of a bangle. Take any point P outside the circle. Construct the pair of tangents form the point P to the circle
Sol:

Steps of Construction

Step 1: Draw a circle with the help of a bangle
Step 2: Mark a point P outside the circle.
Step 3: Through P. draw a secant $P A B$ to intersect the circle at A and B.
Step 4: Produce $A P$ to C such that $P A=P C$.
Step 5: Draw a semicircle with $C B$ as diameter.
Step 6: Draw $P D \perp B C$, intersecting the semicircle at D.
Step 7: With P as center and $P D$ as radius, draw arcs to intersect the circle at T and T'.
Step 8: Join $P T$ and $P T ' S$.

Here, $P T$ and $P T^{\prime}$ are the required pair of tangents.
6. Draw a line segment AB of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle form the centre of the other circle.

Sol:

Steps of Construction
Step 1: Draw a line segment $A B=8 \mathrm{~cm}$.
Step 2: With A as center and radius 4 cm , draw a circle.
Step 3: With B as center and radius 3 cm , draw another circle.
Step 4: Draw the perpendicular bisector $X Y$ of $A B$, cuffing $A B$ at C.
Step 5: With C as center and radius $A C$ (or $B C$), draw a circle intersecting the circle with center A at P and P': and the circle with center B at Q and Q'.
Step 6: Join BP and BP' Also, join $A Q$ and $A Q^{\prime}$.

Here. AQ and AQ' are the tangents from A to the circle with center B. Also, BP and BP' are the tangents from B to the circle with center A.
7. Draw a circle of radius 4.2. Draw a pair of tangents to this circle inclined to each other at an angle of 45°

Sol:

Steps of Construction:
Step 1: Draw a circle with center O and radius $=4.2 \mathrm{~cm}$.
Step 2: Draw any diameter $A O B$ of this circle.
Step 3: Construct $\angle B O C=45^{\circ}$. such that the radius $O C$ meets the circle at C.
Step4: Draw $A M \perp A B$ and $C N \perp O C$.
AM and CN intersect at P .

Thus, $P A$ and $P C$ are the required tangents to the given circle inclined at an angle of 45°.
8. Write the steps of construction for drawing a pair of tangents to a circle of radius 3 cm , which are inclined to each other at an angle of 60°.

Sol:

Steps of Construction
Step 1: Draw a circle with center O and radius 3 cm .
Step 2: Draw any diameter $A O B$ of the circle.
Step 3: Construct $\angle B O C=60^{\circ}$ such that radius $O C$ cuts the circle at C.
Step 4: Draw $A M \perp A B$ and $C N \perp O C$. Suppose AM and CN intersect each other at P.

Here, AP and CP are the pair of tangents to the circle inclined to each other at an angle of 60°.
9. Draw a circle of radius 32 cm . Draw a tangent to the circle making an angle 30° with a line passing through the centre.

Sol:

Steps Of construction:
Step 1: Draw a circle with center O and radius 3 cm .
Step 2: Draw radius OA and produce it to B.
Step 3: Make $\angle A O P=60^{\circ}$
Step 4: Draw $P Q \perp O P$, meeting $O B$ at Q .
Step 5: Then, $P Q$ is the desired tangent, such that $\angle O Q P=30^{\circ}$

10. Construct a tangent to a circle of radius 4 cm form a point on the concentric circle of radius 6 cm and measure its length. Also, verify the measurement by actual calculation.

Sol:

Steps of Construction
Step 1: Mark a point O on the paper
Step 2: With O as center and radii 4 cm and 6 cm , draw two concentric circles.

Step 3: Mark a point P on the outer circle.
Step 4: Join OP.
Step 5: Draw the perpendicular bisector $X Y$ of $O P$, cutting $O P$ at Q.
Step 6: Draw a circle with Q as center and radius $O Q$ (or $P Q$), to intersect the inner circle in points T and T '.
Step 7: Join PT and PT'.

Here, PT and PT' are the required tangents.
PT = PT' 4.5 cm (Approx)
Verification by actual calculation
Join OT to form a right Δ OTP (Radius is perpendicular to the tangent at the point of contact)
In right $\triangle O T P$,
$O P^{2}=O T^{2}+P T^{2}$
(Pythagoras Theorem)
$\Rightarrow P T=\sqrt{O P^{2}-O T^{2}}$
$\Rightarrow P T=\sqrt{6^{2}-4^{2}}=\sqrt{36-16}=\sqrt{20} \approx 4.5 \mathrm{~cm}$
$(O P=6 \mathrm{~cm}$ and $O T=4 \mathrm{~cm})$

Exercise - Formative Assessment

11. Draw a line segment $A B$ of length 5.4 cm . Divide it into six equal parts. Write the steps of construction.

Sol:

Steps of Construction:
Step 1: Draw a line segment $A B=5.4 \mathrm{~cm}$.
Step 2: Draw a ray AX, making an acute angle, $\angle B A X$.
Step 3: Jong $A X$, mark 6 points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ such that,
$A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}$.
Step 4: Join $A_{6} B$.
Step 5: Draw $A_{1} C A_{2} D, A_{3} D, A_{4} F$ and $A_{5} A_{6}$.

Thus, AB is divided into six equal parts.
12. Draw a line segment $A B$ of length 6.5 cm and divided it in the ratio $4: 7$. Measure each of the two parts.
Sol:
Steps of Construction:
Step 1: Draw a line segment $A B=6.5 \mathrm{~cm}$.
Step 2: Draw a ray $A X$, making an acute angle $\angle B A X$.
Step 3: Jong $A X$, mark $(4+7)=11$ points $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}, A_{10}, A_{11}$ such that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}=A_{6} A_{7}=A_{7} A_{8}=A_{8} A_{9}=A_{9} A_{10}=A_{10} A_{11}$
Step 4: Join $A_{11} B$.
Step 5: From A_{4}, draw $A_{4} C \| A_{11} B$, meeting AB at C
Thus, C is the point on AB , which divides it in the ratio $4: 7$.

Thus, $A C: C B=4: 7$
From the figure,
$A C=2.36 \mathrm{~cm}$
$C B=4.14 \mathrm{~cm}$
13. Construct a $\triangle A B C$ in which $\mathrm{B}=6.5 \mathrm{~cm}, \mathrm{AB}=4.5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$

Sol:

Steps of Construction:
Step 1: Draw a line segment $B C=6.5 \mathrm{~cm}$.
Step 2: With B as center, draw an angle of 60°.
Step 3: With B as center and radius equal to 4.5 cm , draw an arc, cutting the angle at A

Step 4: Join AB and AC.
Thus, $\triangle A B C$ is obtained.
Step 5: Below $B C$, draw an acute $\angle C B X$.
Step 6: Along $B X$, mark off four points $B_{1}, B_{2}, B_{3}, B_{4}$. such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
Step 7: Join $B_{4} C$.
Step 8: From B_{3}.draw $B_{3} D \| B_{4} C$, meeting $B C$ at D.
Step 9: From D, draw $D E \| C A$, meeting AB at E .

Thus, $\triangle E B D$ is the required triangle, each of whose sides is $\frac{3}{4}$ the corresponding sides of $\triangle A B C$.
14. Construct a $\triangle A B C$ in which $\mathrm{BC}=5 \mathrm{~cm}, \angle C=60^{\circ}$ and altitude from A equal to 3 cm . Construct a $\triangle A D E$ similar to $\triangle A B C$ such that each side of $\triangle A D E$ is $\frac{3}{2}$ times the corresponding side of $\triangle A B C$. Write the steps of construction.

Sol:

Steps of Construction:
Step 1: Draw a line l.
Step 2: Draw an angle of 90° at M on l
Step 3: Cut an arc of radius 3 cm on the perpendicular. Mark the point as A
Step 4: With A as center, make an angle of 30° and let it cut l at C. We get $\angle A C B=60^{\circ}$.
Step 5: Cut an arc of 5 cm from C on l and mark the point as B.
Step 6: Join AB.
Thus, $\triangle A B C$ is obtained
Step 7: Extend AB to D , such that $B D=B C$.
Step 8: Draw $D E \| B C$, cutting AC produced to E.

Then, $\triangle A D E$ is the required triangle, each of whose sides is of the corresponding sides of $\triangle A B C$.
15. Construct an isosceles triangle whose base is 9 cm and altitude 5 cm . Construct another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the first isosceles triangle.

Sol:

Steps of Construction:
Step 1: Draw a line segment $B C=9 \mathrm{~cm}$
Step 2: With B as center, draw an arc each above and below $B C$.
Step 3: With C as center, draw an arc each above and below $B C$.
Step 4: Join their points of intersection to obtain the perpendicular bisector of $B C$. Let it intersect BC at D
Step 5: From D, cut an arc of radius 5 cm and mark the point as A
Step 6: Join AB and AC
Thus $\triangle A B C$ is obtained
Step 5: Below $B C$. make an acute $\angle C B X$.
Step 6: Along $B X$, mark off four points $B_{1}, B_{2}, B_{3}, B_{4}$ such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$
Step 7: Join $B_{4} C$.
Step 8: From B_{3}. draw $B_{2} E \| B_{4} C$ meeting BC at E .
Step 9: From E. draw $E F \| C A$ meeting AB al F .

Thus, $\triangle F B E$ is the required triangle, each of whose sides is $\frac{3}{4}$ the corresponding sides of the first triangle.
16. Draw a $\triangle A B C$, right-angled at B such that $\mathrm{AB}=3 \mathrm{~cm}$ and $\mathrm{BC}=4 \mathrm{~cm}$. Now, Construct a triangle similar to $\triangle A B C$, each whose sides is $\frac{7}{5}$ times the corresponding side of $\triangle A B C$.

Sol:

Steps of Construction
Sept 1: Draw a line segment $B C=4 \mathrm{~cm}$
Sept 2: With B as center draw an angle of 90°
Step 3: With B as center and radius equal to 3 cm cat an arc at the night angle and name it A Step 4: Join AB and AC

Thus, $\triangle A B C$ is obtained
Step 5: Extend BC to D, such that $B D=\frac{7}{5} B C=\frac{7}{5}(4) \mathrm{cm}=5.6 \mathrm{~cm}$
Step 6: Draw $D E \| C A$ cutting $A B$ produced to E

Thus, $\triangle E B D$ is the required triangle, each of whose sides is $\frac{7}{5}$ the corresponding sides of $\triangle A B C$.
17. Draw a circle of radius 4.8 cm . Take a point P on it. Without using the centre of the circle, construct a tangent at the point P . Write the steps of construction.

Sol:

Steps of Construction:
Step 1: Draw a circle of radius 4.8 cm .
Step 2: Mark a point P on it.
Step 3: Draw any chord PQ.
Step 4: Take a point R on the major arc QP
Step 5: Join PR and RQ.
Step6: Draw $\angle Q P T=\angle P R Q$
Step 7: Produce $T P$ to T, as shown in the figure.

TPT is the required tangent.
18. Draw a circle of radius 3.5 cm . Draw a pair of tangents to this circle which are inclined to each other at an angle of 60°. Write the steps of construction.

Sol:

Steps of Construction:
Step 1: Draw a circle with center O and radius $=3.5 \mathrm{~cm}$
Step 2: Draw any diameter $A O B$ of this circle
Step 3: Construct $\angle B O C=60^{\circ}$, such that the radius OC meets the circle at C .
Step 4: Draw $M A \perp A B$ and $N C \perp O C$.
Let AM and CN intersect at P.

Then, PA and PC are the required tangents to the given circle that are inclined at an angle of 60°
19. Draw a circle of radius 4 cm . Draw tangent to the circle making an angle of 60° with a line passing through the centre.

Sol:

Steps of construction
Step 1: Draw a circle with center O and radius 4 cm
Step 2: Draw radius OA and produce it to B.
Step 3: Make $\angle A O P=30^{\circ}$
Step 4: Draw $P Q \perp O P$, meeting $O B$ at Q.
Step 5: Then, $P Q$ is the desired tangent, such that $\angle O Q P=60^{\circ}$

20. Draw two concentric circles of radii 4 cm and 6 cm . Construct a tangent to the smaller circle from a point on the larger circle. Measure the length of this tangent.
Sol:
Step of Construction:
Step 1: Draw a circle with O as center and radius 6 cm
Step 2: Draw another circle with O as center and radius 4 cm
Step2: Mark a point P on the circle with radius 6 cm
Step 3: Join $O P$ and bisect it at M.
Step 4: Draw a circle with M as center and radius equal to $M P$ to intersect the given circle with radius 4 cm at points T and T .
Step5: Join PT and PT’.

Thus, PT or PT' the required tangents and measure 4.4 cm each.

