Exercise - 11A

1. Show that each of the progressions given below is an AP. Find the first term, common difference and next term of each.
(i) $9,15,21,27$, \qquad
(ii) $11,6,1,-4$, \qquad
(iii) $-1, \frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}, \ldots \ldots \ldots$.
(iv) $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \ldots \ldots$.
(v) $\sqrt{20}, \sqrt{45}, \sqrt{80}, \sqrt{125}$, \qquad

Sol:

(i) The given progression $9,15,21,27$, \qquad
Clearly, $15-9=21-15=27-21=6$ (Constant)
Thus, each term differs from its preceding term by 6 . So, the given progression is an AP.
First term $=9$
Common difference $=6$
Next term of the $\mathrm{AP}=27+6=33$
(ii) The given progression $11,6,1,-4$,.

Clearly, $6-11=1-6=-4-1=-5$ (Constant)
Thus, each term differs from its preceding term by 6 . So, the given progression is an AP.
First term $=11$
Common difference $=-5$
Next term of the $A P=-4+(-5)=-9$
(iii) The given progression $-1, \frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}$, \qquad
Clearly, $\frac{-5}{6}-(-1)=\frac{-2}{3}-\left(\frac{-5}{6}\right)=\frac{-1}{2}-\left(\frac{-2}{3}\right)=\frac{1}{6}$ (Constant)
Thus, each term differs from its preceding term by $\frac{1}{6}$. So, the given progression is an AP.
First term $=-1$
Common difference $=\frac{1}{6}$
Next tern of the $A P=\frac{-1}{2}+\frac{1}{6}=\frac{-2}{6}=\frac{-1}{3}$
(iv) The given progression $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}$,

This sequence can be written as $\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, \ldots \ldots \ldots$.
Clearly, $2 \sqrt{2}-\sqrt{2}=3 \sqrt{2}-2 \sqrt{2}=4 \sqrt{2}-3 \sqrt{2}=\sqrt{2}$ (Constant)
Thus, each term differs from its preceding term by $\sqrt{2}$, So, the given progression is an AP.
First term $=\sqrt{2}$
Common difference $=\sqrt{2}$
Next tern of the $A P=4 \sqrt{2}+\sqrt{2}=5 \sqrt{2}=\sqrt{50}$
(v) This given progression $\sqrt{20}, \sqrt{45}, \sqrt{80}, \sqrt{125}, \ldots \ldots \ldots$.

This sequence can be re-written as $2 \sqrt{5}, 3 \sqrt{5}, 4 \sqrt{5}, 5 \sqrt{5}$, $\ldots \ldots \ldots$.
Clearly, $3 \sqrt{5}-2 \sqrt{5}=4 \sqrt{5}-3 \sqrt{5}=5 \sqrt{5}-4 \sqrt{5}=\sqrt{5}$ (Constant)
Thus, each term differs from its preceding term by $\sqrt{5}$. So, the given progression is an AP.
First term $=2 \sqrt{5}=\sqrt{20}$
Common difference $=\sqrt{5}$
Next term of the $A P=5 \sqrt{5}+\sqrt{5}=6 \sqrt{5}=\sqrt{180}$
2. Find:
(i) the $20^{\text {th }}$ term of the AP $9,13,17,21$,
(ii) the $35^{\text {th }}$ term of AP $20,17,14,11$,
(iii) the $18^{\text {th }}$ term of the $\mathrm{AP} \sqrt{2}, \sqrt{18}, \sqrt{50}, \sqrt{98}$,
(iv) the $9^{\text {th }}$ term of the AP $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4}, \ldots \ldots \ldots$.
(v) the 15the term of the AP $-40,-15,10,35$,

Sol:
(i) The given $A P$ is $9,13,17,21, \ldots \ldots \ldots$.

First term, $a=9$
Common difference, $d=13-9=4$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=9+(n-1) \times 4$
$\therefore 20$ th term of the AP, $a_{20}=9+(20-1) \times 4=9+76=85$
(ii) The given AP is $20,17,14,11, \ldots$.

First term, $a=20$
Common difference, $d=17-20=-3$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=20+(n-1) \times(-3)$
$\therefore 35$ th term of the AP, $a_{35}=20+(35-1) \times(-3)=20-102=-82$
(iii) The given AP is $\sqrt{2}, \sqrt{18}, \sqrt{50}, \sqrt{98}$,

This can be re-written as $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, 7 \sqrt{2}$, \qquad
First term, $a=\sqrt{2}$
Common difference, $d=3 \sqrt{2}-\sqrt{2}=2 \sqrt{2}$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=\sqrt{2}+(n-1) \times 2 \sqrt{2}$
$\therefore 18 t h$ term of the AP, $a_{18}=\sqrt{2}+(18-1) \times 2 \sqrt{2}=\sqrt{2}+34 \sqrt{2}=35 \sqrt{2}=\sqrt{2450}$
(iv) The given AP is $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4}$,

First term, $a=\frac{3}{4}$
Common difference, $d=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=\frac{3}{4}+(n-1) \times\left(\frac{1}{2}\right)$
$\therefore 9^{\text {th }}$ term of the AP, $a_{9}=\frac{3}{4}+(9-1) \times \frac{1}{2}=\frac{3}{4}+4=\frac{19}{4}$
(v) The given AP is $-40,-15,10,35$,

First term, $a=-40$
Common difference, $d=-15-(-40)=25$
$n^{\text {th }}$ term of the AP, $a_{n}=a+(n-1) d=-40+(n-1) \times 25$
$\therefore 15$ th term of the AP, $a_{15}=-40+(15-1) \times 25=-40+350=310$
3. Find the $37^{\text {th }}$ term of the $\operatorname{AP} 6,7 \frac{3}{4}, 9 \frac{1}{2}, 11 \frac{1}{4}, \ldots \ldots \ldots$

Sol:

The given AP is $6,7 \frac{3}{4}, 9 \frac{1}{2}, 11 \frac{1}{4}, \ldots \ldots \ldots$.
First term, $a=6$ and common difference, $d=7 \frac{3}{4}-6 \Rightarrow \frac{31}{4}-6 \Rightarrow \frac{31-24}{4}=\frac{7}{4}$
Now, $T_{37}=a+(37-1) d=a+36 d$
$=6+36 \times \frac{7}{4}=6+63=69$
$\therefore 37^{\text {th }}$ term $=69$
4. Find the $25^{\text {th }}$ term of the AP $5,4 \frac{1}{2}, 4,3 \frac{1}{2}, 3, \ldots \ldots .$.

Sol:

The given AP is $5,4 \frac{1}{2}, 4,3 \frac{1}{2}, 3, \ldots \ldots$.
First term $=5$
Common difference $=4 \frac{1}{2}-5 \Rightarrow \frac{9}{2}-5 \Rightarrow \frac{9-10}{2}=-\frac{1}{2}$
$\therefore a=5$ and $d=-\frac{1}{2}$
Now, $T_{25}=a+(25-1) d=a+24 d$
$=5+24 \times\left(-\frac{1}{2}\right)=5-12=-7$
$\therefore 25^{\text {th }}$ term $=-7$
5. Find the nth term of each of the following Aps:
(i) $5,11,17,23 \ldots$
(ii) $16,9,2,-5, \ldots$.

Sol:
(i) $(6 n-1)$
(ii) $(23-7 n)$
6. If the nth term of a progression is $(4 n-10)$ show that it is an AP. Find its
(i) first term, (ii) common difference (iii) 16 the term.

Sol:

$T_{n}=\left(4_{n}-10\right) \quad$ [Given]
$T_{1}=(4 \times 1-10)=-6$
$T_{2}=(4 \times 2-10)=-2$
$T_{3}=(4 \times 3-10)=2$
$T_{4}=(4 \times 4-10)=6$
Clearly, $[-2-(-6)]=[2-(-2)]=[6-2]=4$
(Constant)
So, the terms $-6,-2,2,6, \ldots \ldots$. forms an AP.
Thus we have
(i) First term $=-6$
(ii) Common difference $=4$
(iii) $T_{16}=a+(n-1) d=a+15 d=-6+15 \times 4=54$
7. How many terms are there in the AP $6,10,14,18, \ldots ., 174$?

Sol:
In the given AP, $a=6$ and $d=(10-6)=4$
Suppose that there are n terms in the given AP.
Then, $T_{n}=174$
$\Rightarrow a+(n-1) d=174$
$\Rightarrow 6+(n-1) \times 4=174$
$\Rightarrow 2+4 n=174$
$\Rightarrow 4 n=172$
$\Rightarrow n=43$
Hence, there are 43 terms in the given AP.
8. How many terms are there in the AP $41,38,35, \ldots, 8$?

Sol:

In the given AP, $a=41$ and $d=(38-41)=-3$
Suppose that there are n terms in the given AP.
Then $T_{n}=8$
$\Rightarrow a+(n-1) d=8$
$\Rightarrow 41+(n-1) \times(-3)=8$
$\Rightarrow 44-3 n=8$
$\Rightarrow 3 n=36$
$\Rightarrow n=12$
Hence, there are 12 terms in the given AP.
9. How many terms are there in the AP $18,15 \frac{1}{2}, 13, \ldots . .,-47$.?

Sol:

The given AP is $18,15 \frac{1}{2}, 13, \ldots . .,-47$.
First term, $a=18$
Common difference, $d=15 \frac{1}{2}-18=\frac{31}{2}-18=\frac{31-36}{2}=-\frac{5}{2}$
Suppose there re n terms in the given AP. Then,
$a_{n}=-47$
$\Rightarrow 18+(n-1) \times\left(-\frac{5}{2}\right)=-47 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-\frac{5}{2}(n-1)=-47-18=-65$
$\Rightarrow n-1=-65 \times\left(-\frac{2}{5}\right)=26$
$\Rightarrow n=26+1=27$
Hence, there are 27 terms in the given AP.
10. Which term of term of the AP $3,8,13,18, \ldots$. is 88 ?

Sol:

In the given AP, first term, $a=3$ and common difference, $a=(8-3)=5$.
Let's its $n^{\text {th }}$ term be 88
Then, $T_{n}=88$
$\Rightarrow a+(n-1) d=88$
$\Rightarrow 3+(n-1) \times 5=88$
$\Rightarrow 5 n-2=88$
$\Rightarrow 5 n=90$
$\Rightarrow n=18$
Hence, the $18^{\text {th }}$ term of the given AP is 88 .
11. Which term of AP $72,68,64,60, \ldots$ is 0 ?

Sol:

In the given AP, first term, $d=72$ and common difference, $d=(68-72)=-4$.
Let its $n^{\text {th }}$ term be 0 .
Then, $T_{n}=0$
$\Rightarrow a+(n-1) d=0$
$\Rightarrow 72+(n-1) \times(-4)=0$
$\Rightarrow 76-4 n=0$
$\Rightarrow 4 n=76$
$\Rightarrow n=19$
Hence, the $19^{\text {th }}$ term of the given AP is 0 .
12. Which term of the AP $\frac{5}{6}, 1,1 \frac{1}{6}, 1 \frac{1}{3}, \ldots .$. is 3 ?

Sol:

In the given AP, first term $=\frac{5}{6}$ and common difference, $d=\left(1-\frac{5}{6}=\frac{1}{6}\right)$
Let its $n^{\text {th }}$ term be 3 .
Now, $T_{n}=3$
$\Rightarrow a+(n-1) d=3$
$\Rightarrow \frac{5}{6}+(n-1) \times \frac{1}{6}=3$
$\Rightarrow \frac{2}{3}+\frac{n}{6}=3$
$\Rightarrow \frac{n}{6}=\frac{7}{3}$
$\Rightarrow n=14$
Hence, the $14^{\text {th }}$ term of the given AP is 3 .
13. Which term of the AP $21,18,15, \ldots \ldots$ is -81 ?

Sol:

The given AP is $21,18,15, \ldots . .$.
First term, $a=21$
Common difference, $d=18-21=-3$
Suppose $n^{\text {th }}$ term of the given AP is -81 . then,

$$
a_{n}=-81
$$

$$
\Rightarrow 21+(n-1) \times(-3)=-81 \quad\left[a_{n}=a+(n-1) d\right]
$$

$$
\Rightarrow-3(n-1)=-81-21=-102
$$

$\Rightarrow n-1=\frac{102}{3}=34$
$\Rightarrow n=34+1=35$
Hence, the 35 th term of the given $A P$ is -81 .
14. Which term of the AP $3,8,13,18, \ldots$. Will be 55 more than its $20^{\text {th }}$ term?

Sol:

Here, $a=3$ and $d=(8-3)=5$
The $20^{\text {th }}$ term is given by
$T_{20}=a+(20-1) d=a+19 d=3+19 \times 5=98$
\therefore Required term $=(98+55)=153$

Let this be the $n^{t h}$ term.
Then $T_{n}=153$
$\Rightarrow 3+(n-1) \times 5=153$
$\Rightarrow 5 n=155$
$\Rightarrow n=31$
Hence, the $31^{\text {st }}$ term will be 55 more than $20^{\text {th }}$ term.
15. Which term of the AP $5,15,25, \ldots$. will be 130 more than its $31^{\text {st }}$ term?

Sol:

Here, $a=5$ and $d=(15-5)=10$
The $31^{\text {st }}$ term is given by
$T_{31}=a+(31-1) d=a+30 d=5+30 \times 10=305$
\therefore Required term $=(305+130)=435$
Let this be the $n^{\text {th }}$ term.
Then, $T_{n}=435$
$\Rightarrow 5+(n-1) \times 10=435$
$\Rightarrow 10 n=440$
$\Rightarrow n=44$
Hence, the $44^{\text {th }}$ term will be 130 more than its $31^{\text {st }}$ term.
16. If the $10^{\text {th }}$ term of an AP is 52 and $17^{\text {th }}$ term is 20 more than its $13^{\text {th }}$ term, find the AP

Sol:

In the given AP, let the first term be a and the common difference be d .
Then, $T_{n}=a+(n-1) d$
Now, we have:
$T_{10}=a+(10-1) d$
$\Rightarrow a+9 d=52$
$T_{13}=a+(13-1) d=a+12 d$
$T_{17}=a+(17-1) d=a+16 d$
But, it is given that $T_{17}=20+T_{13}$
i.e., $a+16 d=20+a+12 d$
$\Rightarrow 4 d=20$
$\Rightarrow d=5$
On substituting $d=5$ in (1), we get:
$a+9 \times 5=52$
$\Rightarrow a=7$
Thus, $a=7$ and $d=5$
\therefore The terms of the AP are $7,12,17,22, \ldots \ldots . .$.
17. Find the middle term of the $\operatorname{AP} 6,13,20, \ldots, 216$.

Sol:

The given AP is $6,13,20$, 216.

First term, $a=6$
Common difference, $d=13-6=7$
Suppose these are n terms in the given AP. Then,

$$
a_{n}=216
$$

$\Rightarrow 6+(n-1) \times 7=216 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 7(n-1)=216-6=210$
$\Rightarrow n-1=\frac{210}{7}=30$
$\Rightarrow n=30+1=31$
Thus, the given AP contains 31 terms,
\therefore Middle term of the given AP
$=\left(\frac{31+1}{2}\right)$ th term
$=16 \mathrm{th}$ term
$=6+(16-1) \times 7$
$=6+105$
$=111$
Hence, the middle term of the given AP is 111 .
18. Find the middle term of the AP $10,7,4, \ldots \ldots,(-62)$.

Sol:
The given AP is $10,7,4, \ldots . .,-62$.
First term, $a=10$
Common difference, $d=7-10=-3$
Suppose these are n terms in the given AP. Then,
$a_{n}=-62$
$\Rightarrow 10+(n-1) \times(-3)=-62 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-3(n-1)=-62-10=-72$
$\Rightarrow n-1=\frac{72}{3}=24$
$\Rightarrow n=24+1=25$
Thus, the given AP contains 25 terms.
\therefore Middle term of the given AP
$=\left(\frac{25+1}{2}\right)$ th term
$=13 \mathrm{th}$ term
$=10+(13-1) \times(-3)$
$=10-36$
$=-26$
Hence, the middle term of the given AP is -26 .
19. Find the sum of two middle most terms of the $\mathrm{AP}-\frac{4}{3},-1, \frac{-2}{3}, \ldots, 4 \frac{1}{3}$.

Sol:

The given AP is $-\frac{4}{3},-1, \frac{-2}{3}, \ldots ., 4 \frac{1}{3}$.
First term, $a=-\frac{4}{3}$
Common difference, $d=-1-\left(-\frac{4}{3}\right)=-1+\frac{4}{3}=\frac{1}{3}$
Suppose there are n terms in the given AP. Then,
$a_{n}=4 \frac{1}{3}$
$\Rightarrow-\frac{4}{3}+(n-1) \times\left(\frac{1}{3}\right)=\frac{13}{3} \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow \frac{1}{3}(n-1)=\frac{13}{3}+\frac{4}{3}=\frac{17}{3}$
$\Rightarrow n-1=17$
$\Rightarrow n=17+1=18$
Thus, the given AP contains 18 terms. So, there are two middle terms in the given AP.
The middle terms of the given AP are $\left(\frac{18}{2}\right)$ th terms and $\left(\frac{18}{2}+1\right)$ th term i.e. 9 th term and 10th term.
\therefore Sum of the middle most terms of the given AP
$=9$ th term $+10^{\text {th }}$ term
$=\left[-\frac{4}{3}+(9-1) \times \frac{1}{3}\right]+\left[-\frac{4}{3}+(10-1) \times \frac{1}{3}\right]$
$=-\frac{4}{3}+\frac{8}{3}-\frac{4}{3}+3$
$=3$
Hence, the sum of the middle most terms of the given AP is 3 .
20. Find the $8^{\text {th }}$ term from the end of the AP $7,10,13, \ldots \ldots, 184$.

Sol:
Here, $a=7$ and $d=(10-7)=3, l=184$ and $n=8^{t h}$ form the end.
Now, $\mathrm{n}^{\text {th }}$ term from the end $=[l-(n-1) d]$
$8^{\text {th }}$ term from the end $=[184-(8-1) \times 3]$

$$
=[184-(7 \times 3)]=(184-21)=163
$$

Hence, the $8^{\text {th }}$ term from the end is 163 .
21. Find the $6^{\text {th }}$ term form the end of the AP $17,14,11, \ldots \ldots,(-40)$.

Sol:

Here, $a=7$ and $d=(14-17)=-3, l=(-40)$ and $n=6$
Now, nth term from the end $=[1-(n-1) d]$
$6^{\text {th }}$ term from the end $=[(-40)-(6-1) \times(-3)]$
$=[-40+(5 \times 3)]=(-40+15)=-25$
Hence, the $6^{\text {th }}$ term from the end is -25 .
22. Is 184 a term of the AP $3,7,11,15, \ldots$?

Sol:
The given AP is $3,7,11,15, \ldots \ldots$
Here, $a=3$ and $d=7-3=4$
Let the nth term of the given AP be 184. Then,

$$
a_{n}=184
$$

$\Rightarrow 3+(n-1) \times 4=184 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 4 n-1=184$
$\Rightarrow 4 n=185$
$\Rightarrow n=\frac{185}{4}=46 \frac{1}{4}$
But, the number of terms cannot be a fraction.
Hence, 184 is not a term of the given AP.
23. Is -150 a term of the AP $11,8,5,2, \ldots \ldots$?

Sol:
The given AP is $11,8,5,2, \ldots \ldots$
Here, $a=11$ and $d=8-11=-3$
Let the nth term of the given AP be -150 . Then,
$a_{n}=-150$
$\Rightarrow 11+(n-1) \times(-3)=-150 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-3 n+14=-150$
$\Rightarrow-3 n=-164$
$\Rightarrow n=\frac{164}{3}=54 \frac{2}{3}$
But, the number of terms cannot be a fraction.
Hence, -150 is not a term of the given AP.
24. Which term of the AP $121,117,113, \ldots$ is its first negative term?

Sol:

The given AP is $121,117,113$,
Here, $a=121$ and $d=117-121=-4$
Let the nth term of the given AP be the first negative term. Then,

$$
a_{n}<0
$$

$$
\Rightarrow 121+(n-1) \times(-4)<0 \quad\left[a_{n}=a+(n-1) d\right]
$$

$$
\Rightarrow 125-4 n<0
$$

$\Rightarrow-4 n<-125$
$\Rightarrow n>\frac{125}{4}=31 \frac{1}{4}$
$\therefore n=32$
Hence, the $32^{\text {nd }}$ term is the first negative term of the given AP.
25. Which term of the AP $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots \ldots$ is the first negative term?

Sol:

The given AP is $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots \ldots$
Here, $a=20$ and $d=19 \frac{1}{4}-20=\frac{77}{4}-20=\frac{77-80}{4}=-\frac{3}{4}$
Let the nth term of the given AP be the first negative term. Then, $a_{n}<0$
$\Rightarrow 20+(n-1) \times\left(-\frac{3}{4}\right)<0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 20+\frac{3}{4}-\frac{3}{4} n<0$
$\Rightarrow \frac{83}{4}-\frac{3}{4} n<0$
$\Rightarrow-\frac{3}{4} n<-\frac{83}{4}$
$\Rightarrow n>\frac{83}{3}=27 \frac{2}{3}$
$\therefore n=28$
Hence, the $28^{\text {th }}$ term is the first negative term of the given AP.
26. The $7^{\text {th }}$ term of the an AP is -4 and its $13^{\text {th }}$ term is -16 . Find the AP.

Sol:
We have
$T_{7}=a+(n-1) d$
$\Rightarrow a+6 d=-4$
$T_{13}=a+(n-1) d$
$\Rightarrow a+12 d=-16$
On solving (1) and (2), we get
$a=8$ and $d=-2$
Thus, first term $=8$ and common difference $=-2$
\therefore The term of the AP are $8,6,4,2, \ldots$.
27. The $4^{\text {th }}$ term of an AP is zero. Prove that its $25^{\text {th }}$ term is triple its $11^{\text {th }}$ term.

Sol:
In the given AP, let the first be a and the common difference be d .
Then, $T_{n}=a+(n-1) d$

Now, $T_{4}=a+(4-1) d$
$\Rightarrow a+3 d=0$
$\Rightarrow a=-3 d$
Again, $T_{11}=a+(11-1) d=a+10 d$
$=-3 d+10 d=7 d \quad[U \operatorname{sing}(1)]$
Also, $T_{25}=a+(25-1) d=a+24 d=-3 d+24 d=21 d \quad$ [Using (1)]
i.e., $T_{25}=3 \times 7 d=\left(3 \times T_{11}\right)$

Hence, $25^{\text {th }}$ term is triple its $11^{\text {th }}$ term.
28. The $8^{\text {th }}$ term of an AP is zero. Prove that its $38^{\text {th }}$ term is triple its $18^{\text {th }}$ term.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{8}=0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+(8-1) d=0$
$\Rightarrow a+7 d=0$
$\Rightarrow a=-7 d$
Now,
$\frac{a_{38}}{a_{18}}=\frac{a+(38-1) d}{a+(18-1) d}$
$\Rightarrow \frac{a_{38}}{a_{18}}=\frac{-7 d+37 d}{-7 d+17 d}$
$\Rightarrow \frac{a_{38}}{a_{18}}=\frac{30 d}{10 d}=3$
$\Rightarrow a_{38}=3 \times a_{18}$
Hence, the $38^{\text {th }}$ term of the AP id triple its $18^{\text {th }}$ term.
29. The $4^{\text {th }}$ term of an AP is 11 . The sum of the $5^{\text {th }}$ and $7^{\text {th }}$ terms of this AP is 34 . Find its common difference

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
a_{4}=11
$$

$\Rightarrow a+(4-1) d=11$ $\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+3 d=11$
Now,

$$
\begin{equation*}
a_{5}+a_{7}=34 \tag{Given}
\end{equation*}
$$

$\Rightarrow(a+4 d)+(a+6 d)=34$
$\Rightarrow 2 a+10 d=34$
$\Rightarrow a+5 d=17$
From (1) and (2), we get
$11-3 d+5 d=17$
$\Rightarrow 2 d=17-11=6$
$\Rightarrow d=3$
Hence, the common difference of the AP is 3 .
30. The $9^{\text {th }}$ term of an AP is -32 and the sum of its $11^{\text {th }}$ and $13^{\text {th }}$ terms is -94 . Find the common difference of the AP.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{9}=-32$
$\Rightarrow a+(9-1) d=-32 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+8 d=-32$
Now,
$a_{11}+a_{13}=-94$
(Given)
$\Rightarrow(a+10 d)+(a+12 d)=-94$
$\Rightarrow 2 a+22 d=-94$
$\Rightarrow a+11 d=-47$
From (1) and (2), we get
$-32-8 d+11 d=-47$
$\Rightarrow 3 d=-47+32=-15$
$\Rightarrow d=-5$
Hence, the common difference of the AP is -5 .
31. Determine the nth term of the AP whose $7^{\text {th }}$ term is -1 and $16^{\text {th }}$ term is 17 .

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{7}=-1$
$\Rightarrow a+(7-1) d=-1 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+6 d=-1$
Also,
$a_{16}=17$
$\Rightarrow a+15 d=17$

From (1) and (2), we get
$-1-6 d+15 d=17$
$\Rightarrow 9 d=17+1=18$
$\Rightarrow d=2$
Putting $d=2$ in (1), we get
$a+6 \times 2=-1$
$\Rightarrow a=-1-12=-13$
$\therefore a_{n}=a+(n-1) d$
$=-13+(n-1) \times 2$
$=2 n-15$
Hence, the nth term of the AP is $(2 n-15)$.
32. If 4 times the $4^{\text {th }}$ term of an AP is equal to 18 times its $18^{\text {th }}$ term then find its $22^{\text {nd }}$ term.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$4 \times a_{4}=18 \times a_{18} \quad$ (Given)
$\Rightarrow 4(a+3 d)=18(a+17 d)$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 2(a+3 d)=9(a+17 d)$
$\Rightarrow 2 a+6 d=9 a+153 d$
$\Rightarrow 7 a=-147 d$
$\Rightarrow a=-21 d$
$\Rightarrow a+21 d=0$
$\Rightarrow a+(22-1) d=0$
$\Rightarrow a_{22}=0$
Hence, the $22^{\text {nd }}$ term of the AP is 0 .
33. If 10 times the $10^{\text {th }}$ term of an AP is equal to 15 times the $15^{\text {th }}$ term, show that its $25^{\text {th }}$ term is zero.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$10 \times a_{10}=15 \times a_{15}$ (Given)
$\Rightarrow 10(a+9 d)=15(a+14 d) \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 2(a+9 d)=3(a+14 d)$
$\Rightarrow 2 a+18 d=3 a+42 d$
$\Rightarrow a=-24 d$
$\Rightarrow a+24 d=0$
$\Rightarrow a+(25-1) d=0$
$\Rightarrow a_{25}=0$
Hence, the $25^{\text {th }}$ term of the AP is 0 .
34. Find the common difference of an AP whose first term is 5 and the sum of its first four terms is half the sum of the next four terms.

Sol:

Let the common difference of the AP be d.
First term, $a=5$
Now,
$a_{1}+a_{2}+a_{3}+a_{4}=\frac{1}{2}\left(a_{5}+a_{6}+a_{7}+a_{8}\right) \quad$ (Given)
$\Rightarrow a+(a+d)+(a+2 d)+(a+3 d)=\frac{1}{2}[(a+4 d)+(a+5 d)+(a+6 d)+(a+7 d)]$
$\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 4 a+6 d=\frac{1}{2}(4 a+22 d)$
$\Rightarrow 8 a+12 d=4 a+22 d$
$\Rightarrow 22 d-12 d=8 a-4 a$
$\Rightarrow 10 d=4 a$
$\Rightarrow d=\frac{2}{5} a$
$\Rightarrow d=\frac{2}{5} \times 5=2$
$(a=5)$
Hence, the common difference of the AP is 2.
35. The sum of the $2^{\text {nd }}$ and $7^{\text {th }}$ terms of an AP is 30 . If its $15^{\text {th }}$ term is 1 less than twice its $8^{\text {th }}$ term, find AP.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{2}+a_{7}=30$
(Given)
$\therefore(a+d)+(a+6 d)=30$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 2 a+7 d=30$
Also,
$a_{15}=2 a_{8}-1$
(Given)
$\Rightarrow a+14 d=2(a+7 d)-1$
$\Rightarrow a+14 d=2 a+14 d-1$
$\Rightarrow-a=-1$
$\Rightarrow a=1$
Putting $a=1$ in (1), we get
$2 \times 1+7 d=30$
$\Rightarrow 7 d=30-2=28$
$\Rightarrow d=4$
So,
$a_{2}=a+d=1+4=5$
$a_{3}=a+2 d=1+2 \times 4=9$. \qquad
Hence, the AP is $1,5,9,13, \ldots \ldots$.
36. For what value of n, the nth terms of the arithmetic progressions $63,65,67, \ldots$ and 3,10 , $17, \ldots$ are equal?

Sol:

Let the term of the given progressions be t_{n} and T_{n}, respectively.
The first AP is $63,65,67, \ldots$
Let its first term be a and common difference be d.
Then $a=63$ and $d=(65-63)=2$
So, its nth term is given by
$t_{n}=a+(n-1) d$
$\Rightarrow 63+(n-1) \times 2$
$\Rightarrow 61+2 n$
The second AP is $3,10,17, \ldots$.
Let its first term be A and common difference be D.
Then $\mathrm{A}=3$ and $\mathrm{D}=(10-3)=7$
So, its nth term is given by
$T_{n}=A+(n-1) D$
$\Rightarrow 3+(n-1) \times 7$
$\Rightarrow 7 n-4$
Now, $t_{n}=T_{n}$
$\Rightarrow 61+2 n=7 n-4$
$\Rightarrow 65=5 n$
$\Rightarrow n=13$
Hence, the 13 terms of the Al's are the same.
37. The $17^{\text {th }}$ term of AP is 5 more than twice its $8^{\text {th }}$ term. If the $11^{\text {th }}$ term of the AP is 43 , find its nth term.
Sol:
Let a be the first term and d be the common difference of the AP. Then, $a_{17}=2 a_{8}+5 \quad$ (Given)
$\therefore a+16 d=2(a+7 d)+5 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+16 d=2 a+14 d+5$
$\Rightarrow a-2 d=-5$
Also,
$a_{11}=43 \quad$ (Given)
$\Rightarrow a+10 d=43$
From (1) and (2), we get
$-5+2 d+10 d=43$
$\Rightarrow 12 d=43+5=48$
$\Rightarrow d=4$
Putting $d=4$ in (1), we get
$a-2 \times 4=-5$
$\Rightarrow a=-5+8=3$
$\therefore a_{n}=a+(n-1) d$
$=3+(n-1) \times 4$
$=4 n-1$
Hence, the nth term of the AP is $(4 n-1)$.
38. The $24^{\text {th }}$ term of an AP is twice its $10^{\text {th }}$ term. Show that its $72^{\text {nd }}$ term is 4 times its $15^{\text {th }}$ term.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{24}=2 a_{10} \quad$ (Given)
$\Rightarrow a+23 d=2(a+9 d)$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a+23 d=2 a+18 d$
$\Rightarrow 2 a-a=23 d-18 d$
$\Rightarrow a=5 d$
Now,
$\frac{a_{72}}{a_{15}}=\frac{a+71 d}{a+14 d}$
$\Rightarrow \frac{a_{72}}{a_{15}}=\frac{5 d+71 d}{5 d+14 d} \quad[\operatorname{From}(1)]$
$\Rightarrow \frac{a_{72}}{a_{15}}=\frac{76 d}{19 d}=4$
$\Rightarrow a_{72}=4 \times a_{15}$
Hence, the $72^{\text {nd }}$ term of the AP is 4 times its $15^{\text {th }}$ term.
39. The $19^{\text {th }}$ term of an AP is equal to 3 times its $6^{\text {th }}$ term. If its $9^{\text {th }}$ term is 19 , find the AP .

Sol:
Let a be the first term and d be the common difference of the AP. Then,
$a_{19}=3 a_{6} \quad$ (Given)
$\Rightarrow a+18 d=3(a+5 d) \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+18 d=3 a+15 d$
$\Rightarrow 3 a-a=18 d-15 d$
$\Rightarrow 2 a=3 d$
Also,
$a_{9}=19$
(Given)
$\Rightarrow a+8 d=19$
From (1) and (2), we get
$\frac{3 d}{2}+8 d=19$
$\Rightarrow \frac{3 d+16 d}{2}=19$
$\Rightarrow 19 d=38$
$\Rightarrow d=2$
Putting $d=2$ in (1), we get
$2 a=3 \times 2=6$
$\Rightarrow a=3$
So,
$a_{2}=a+d=3+2=5$
$a_{3}=a+2 d=3+2 \times 2=7, \ldots \ldots \ldots$.
Hence, the AP is $3,5,7,9, \ldots \ldots$.
40. If the pth term of an AP is q and its q th term is p then show that its $(p+q)$ th term is zero.

Sol:
In the given AP , let the first be a and the common difference be d .

Then, $T_{n}=a+(n-1) d$
$\Rightarrow T p=a+(p-1) d=q$
$\Rightarrow T_{q}=a+(q-1) d=p$
On subtracting (i) from (ii), we get:
$(q-p) d=(p-q)$
$\Rightarrow d=-1$
Putting $d=-1$ in (i), we get:
$a=(p+q-1)$
Thus, $a=(p+q-1)$ and $d=-1$
Now, $T_{p+q}=a+(p+q-1) d$
$=(p+q-1)+(p+q-1)(-1)$
$=(p+q-1)-(p+q-1)=0$
Hence, the $(p+q)^{\text {th }}$ term is 0 (zero).
41. The first and last terms of an AP are a and 1 respectively. Show that the sum of the nth term from the beginning and the nth term form the end is $(a+1)$.

Sol:

In the given AP, first term $=a$ and last term $=l$.
Let the common difference be d.
Then, nth term from the beginning is given by
$T_{n}=a+(n-1) d$
Similarly, nth term from the end is given by
$T_{n}=\{l-(n-1) d\}$
Adding (1) and (2), we get
$a+(n-1) d+\{l-(n-1) d\}$
$=a+(n-1) d+l-(n-1) d$
$=a+1$
Hence, the sum of the nth term from the beginning and the nth term from the end $(a+1)$.
42. How many two-digit number are divisible by 6 ?

Sol:

The two digit numbers divisible by 6 are 12, 18, 24,, 96
Clearly, these number are in AP.
Here, $a=12$ and $d=18-12=6$
Let this AP contains n terms. Then,
$a_{n}=96$
$\Rightarrow 12+(n-1) \times 6=96 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 6 n+6=96$
$\Rightarrow 6 n=96-6=90$
$\Rightarrow n=15$
Hence, these are 15 two-digit numbers divisible by 6 .
43. How many two-digits numbers are divisible by 3 ?

Sol:

The two-digit numbers divisible by 3 are 12, 15, 18, ... 99 .
Clearly, these number are in AP.
Here, $a=12$ and $d=15-12=3$
Let this AP contains n terms. Then,
$a_{n}=99$
$\Rightarrow 12+(n-1) \times 3=99 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 3 n+9=99$
$\Rightarrow 3 n=99-9=90$
$\Rightarrow n=30$
Hence, there are 30 two-digit numbers divisible by 3 .
44. How many three-digit numbers are divisible by 9 ?

Sol:

The three-digit numbers divisible by 9 are 108, 117, 126,...., 999.
Clearly, these number are in AP.
Here. $a=108$ and $d=117-108=9$
Let this AP contains n terms. Then.
$a_{n}=999$
$\Rightarrow 108+(n-1) \times 9=999 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 9 n+99=999$
$\Rightarrow 9 n=999-99=900$
$\Rightarrow n=100$
Hence: there are 100 three-digit numbers divisible by 9 .
45. Hoe many numbers are there between 101 and 999 , which are divisible by both 2 and 5 ?

Sol:

The numbers which are divisible by both 2 and 5 are divisible by 10 also.
Now, the numbers between 101 and 999 which are divisible 10 are $110,120,130, . ., 990$.
Clearly, these number are in AP

Here, $a=110$ and $d=120-110=10$
Let this AP contains n terms. Then,
$a_{n}=990$
$\Rightarrow 110+(n-1) \times 10=990 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 10 n+100=990$
$\Rightarrow 10 n=990-100=890$
$\Rightarrow n=89$
Hence, there are 89 numbers between 101 and 999 which are divisible by both 2 and 5 .
46. In a flower bed, there are 43 rose plants in the first row, 41 in second, 39 in the third, and so on. There are 11 rose plants in the last row. How many rows are there in the flower bed?
Sol:
The numbers of rose plants in consecutive rows are $43,41,39, \ldots, 11$.
Difference of rose plants between two consecutive rows $=(41-43)=(39-41)=-2$
[Constant]
So, the given progression is an AP
Here, first term $=43$
Common difference $=-2$
Last term 11
Let n be the last term, then we have:
$T_{n}=a+(n-1) d$
$\Rightarrow 11=43+(n-1)(-2)$
$\Rightarrow 11=45-2 n$
$\Rightarrow 34=2 n$
$\Rightarrow n=17$
Hence, the $17^{\text {th }}$ term is 11 or there are 17 rows in the flower bed.
47. A sum of ₹ 2800 is to be used to award four prizes. If each prize after the first is ₹ 200 less than the preceding prize, find the value of each of the prizes.

Sol:

Let the amount of the first prize be ₹a
Since each prize after the first is ₹ 200 less than the preceding prize, so the amounts of the four prizes are in AP.
Amount of the second prize $=₹(a-200)$
Amount of the third prize $=₹(a-2 \times 200)=(a-400)$
Amount of the fourth prize $=₹(a-3 \times 200)=(a-600)$
Now,

Total sum of the four prizes $=2,800$
$\therefore ₹ a+₹(a-200)+₹(a-400)+₹(a-600)=₹ 2,800$
$\Rightarrow 4 a-1200=2800$
$\Rightarrow 4 a=2800+1200=4000$
$\Rightarrow a=1000$
\therefore Amount of the first prize $=₹ 1,000$
Amount of the second prize $=₹(1000-200)=₹ 800$
Amount of the third prize $=₹(1000=400)=₹ 600$
Amount of the fourth prize $=₹(1000-600)=₹ 400$
Hence, the value of each of the prizes is ₹ 1,000 , ₹ 800 , ₹ 600 and ₹ 400 .

Exercise - 11B

1. Determine k so that $(3 \mathrm{k}-2),(4 \mathrm{k}-6)$ and $(\mathrm{k}+2)$ are three consecutive terms of an AP.

Sol:

It is given that $(3 k-2),(4 k-6)$ and $(k+2)$ are three consecutive terms of an AP.

$$
\begin{aligned}
& \therefore(4 k-6)-(3 k-2)=(k+2)-(4 k-6) \\
& \Rightarrow 4 k-6-3 k+2=k+2-4 k+6 \\
& \Rightarrow k-4=-3 k+8 \\
& \Rightarrow k+3 k=8+4 \\
& \Rightarrow 4 k=12 \\
& \Rightarrow k=3
\end{aligned}
$$

Hence, the value of k is 3 .
2. Find the value of x for which the numbers $(5 x+2),(4 x-1)$ and $(x+2)$ are in AP.

Sol:

It is given that $(5 x+2),(4 x-1)$ and $(x+2)$ are in AP.

$$
\begin{aligned}
& \therefore(4 x-1)-(5 x+2)=(x+2)-(4 x-1) \\
& \Rightarrow 4 x-1-5 x-2=x+2-4 x+1 \\
& \Rightarrow-x-3=-3 x+3 \\
& \Rightarrow 3 x-x=3+3 \\
& \Rightarrow 2 x=6 \\
& \Rightarrow x=3
\end{aligned}
$$

Hence, the value of x is 3 .
3. If $(3 y-1),(3 y+5)$ and $(5 y+1)$ are three consecutive terms of an AP then find the value of y.
Sol:
It is given that $(3 y-1),(3 y+5)$ and $(5 y+1)$ are three consecutive terms of an AP.
$\therefore(3 y+5)-(3 y-1)=(5 y+1)-(3 y+5)$
$\Rightarrow 3 y+5-3 y+1=5 y+1-3 y-5$
$\Rightarrow 6=2 y-4$
$\Rightarrow 2 y=6+4=10$
$\Rightarrow y=5$
Hence, the value of y is 5 .
4. Find the value of x for which $(x+2), 2 x,() 2 x+3)$ are three consecutive terms of an AP.

Sol:

Since $(x+2), 2 x$ and $(2 x+3)$ are in AP, we have
$2 x-(x+2)=(2 x+3)-2 x$
$\Rightarrow x-2=3$
$\Rightarrow x=5$
$\therefore x=5$
5. Show that $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $\left(a^{2}+b^{2}\right)$ are in AP.

Sol:

The given numbers are $(a-b)^{2},\left(a^{2}+b^{2}\right)$ and $(a+b)^{2}$.
Now,
$\left(a^{2}+b^{2}\right)-(a-b)^{2}=a^{2}+b^{2}-\left(a^{2}-2 a b+b^{2}\right)=a^{2}+b^{2}-a^{2}+2 a b-b^{2}=2 a b$
$(a+b)^{2}-\left(a^{2}+b^{2}\right)=a^{2}+2 a b+b^{2}-a^{2}-b^{2}=2 a b$
So, $\left(a^{2}+b^{2}\right)-(a-b)^{2}=(a+b)^{2}-\left(a^{2}+b^{2}\right)=2 a b \quad$ (Constant)
Since each term differs from its preceding term by a constant, therefore, the given numbers are in AP.
6. Find the three numbers in AP whose sum is 15 and product is 80 .

Sol:

Let the required numbers be $(a-d), a$ and $(a+d)$.
Then $(a-d)+a+(a+d)=15$
$\Rightarrow 3 a=15$
$\Rightarrow a=5$
Also, $(a-d) \cdot a \cdot(a+d)=80$
$\Rightarrow a\left(a^{2}-d^{2}\right)=80$
$\Rightarrow 5\left(25-d^{2}\right)=80$
$\Rightarrow d^{2}=25-16=9$
$\Rightarrow d= \pm 3$
Thus, $a=5$ and $d= \pm 3$
Hence, the required numbers are $(2,5$ and 8$)$ or $(8,5$ and 2$)$.
7. The sum of three numbers in AP is 3 and their product is -35 . Find the numbers.

Sol:

Let the required numbers be $(a-d), a$ and $(a+d)$.
Then $(a-d)+a+(a+d)=3$
$\Rightarrow 3 a=3$
$\Rightarrow a=1$
Also, $(a-d) \cdot a \cdot(a+d)=-35$
$\Rightarrow a\left(a^{2}-d^{2}\right)=-35$
$\Rightarrow 1 .\left(1-d^{2}\right)=-35$
$\Rightarrow d^{2}=36$
$\Rightarrow d= \pm 6$
Thus, $a=1$ and $d= \pm 6$
Hence, the required numbers are $(-5,1$ and 7$)$ or $(7,1$ and -5$)$.
8. Divide 24 in three parts such that they are in AP and their product is 440 .

Sol:

Let the required parts of 24 be $(a-d), a$ and $(a+d)$ such that they are in AP.
Then $(a-d)+a+(a+d)=24$
$\Rightarrow 3 a=24$
$\Rightarrow a=8$
Also, $(a-d) \cdot a \cdot(a+d)=440$
$\Rightarrow a\left(a^{2}-d^{2}\right)=440$
$\Rightarrow 8\left(64-d^{2}\right)=440$
$\Rightarrow d^{2}=64-55=9$
$\Rightarrow d= \pm 3$
Thus, $a=8$ and $d= \pm 3$
Hence, the required parts of 24 are $(5,8,11)$ or $(11,8,5)$.
9. The sum of three consecutive terms of an AP is 21 and the sum of the squares of these terms is 165 . Find these terms

Sol:

Let the required terms be $(a-d), a$ and $(a+d)$.
Then $(a-d)+a+(a+d)=21$
$\Rightarrow 3 a=21$
$\Rightarrow a=7$
Also, $(a-d)^{2}+a^{2}+(a+d)^{2}=165$
$\Rightarrow 3 a^{2}+2 d^{2}=165$
$\Rightarrow\left(3 \times 49+2 d^{2}\right)=165$
$\Rightarrow 2 d^{2}=165-147=18$
$\Rightarrow d^{2}=9$
$\Rightarrow d= \pm 3$
Thus, $a=7$ and $d= \pm 3$
Hence, the required terms are $(4,7,10)$ or $(10,7,4)$.
10. The angles of quadrilateral are in whose AP common difference is 10°. Find the angles.

Sol:

Let the required angles be $(a-15)^{\circ},(a-5)^{\circ},(a+5)^{\circ}$ and $(a+15)^{\circ}$, as the common difference is 10 (given).
Then $(a-15)^{\circ}+(a-5)^{\circ}+(a+5)^{\circ}+(a+15)^{\circ}=360^{\circ}$
$\Rightarrow 4 a=360$
$\Rightarrow a=90$
Hence, the required angles of a quadrilateral are
$(90-15)^{\circ},(90-5)^{\circ},(90+5)^{\circ}$ and $(90+15)^{\circ}$; or $75^{\circ}, 85^{\circ}, 95^{\circ}$ and 105°.
11. Find four numbers in $A P$ whose sum is 8 and the sum of whose squares is 216 .

Sol:
$(4,6,8,10)$ or $(10,8,6,4)$
12. Divide 32 into four parts which are the four terms of an $A P$ such that the product of the first and fourth terms is to product of the second and the third terms as 7:15.

Sol:

Let the four parts in AP be $(a-3 d),(a-d),(a+d)$ and $(a+3 d)$.Then,
$(a-3 d)+(a-d)+(a+d)+(a+3 d)=32$
$\Rightarrow 4 a=32$
$\Rightarrow a=8$
Also,
$(a-3 d)(a+3 d):(a-d)(a+d)=7: 15$
$\Rightarrow \frac{(8-3 d)(8+3 d)}{(8-d)(8+d)}$
$\Rightarrow \frac{64-9 d^{2}}{64-d^{2}}=\frac{7}{15}$
$\Rightarrow 15\left(64-9 d^{2}\right)=7\left(64-d^{2}\right)$
$\Rightarrow 960-135 d^{2}=448-7 d^{2}$
$\Rightarrow 135 d^{2}-7 d^{2}=960-448$
$\Rightarrow 128 d^{2}=512$
$\Rightarrow d^{2}=4$
$\Rightarrow d= \pm 2$
When $a=8$ and $d=2$,
$a-3 d=8-3 \times 2=8-6=2$
$a-d=8-2=6$
$a+d=8+2=10$
$a+3 d=8+3 \times 2=8+6=14$
When $a=8$ and $d=-2$,
$a-3 d=8-3 \times(-2)=8+6=14$
$a-d=8-(-2)=8+2=10$
$a+d=8-2=6$
$a+3 d=8+3 \times(-2)=8-6=2$
Hence, the four parts are $2,6,10$ and 14 .
13. The sum of first three terms of an AP is 48 . If the product of first and second terms exceeds 4 times the third term by 12 . Find the AP.

Sol:

Let the first three terms of the AP be $(a-d), a$ and $(a+d)$. Then,
$(a-d)+a+(a+d)=48$
$\Rightarrow 3 a=48$
$\Rightarrow a=16$
Now,
$(a-d) \times a=4(a+d)+12 \quad$ (Given)
$\Rightarrow(16-d) \times 16=4(16+d)+12$
$\Rightarrow 256-16 d=64+4 d+12$
$\Rightarrow 16 d+4 d=256-76$
$\Rightarrow 20 d=180$
$\Rightarrow d=9$
When $a=16$ and $d=9$,
$a-d=16-9=7$
$a+d=16+9=25$
Hence, the first three terms of the AP are 7, 16, and 25.

Exercise - 11C

1. The first three terms of an AP are respectively $(3 y-1),(3 y+5)$ and $(5 y+1)$, find the value of y.

Sol:

The terms $(3 y-1),(3 y+5)$ and $(5 y+1)$ are in AP.
$\therefore(3 y+5)-(3 y-1)=(5 y+1)-(3 y+5)$
$\Rightarrow 3 y+5-3 y+1=5 y+1-3 y-5$
$\Rightarrow 6=2 y-4$
$\Rightarrow 2 y=10$
$\Rightarrow y=5$
Hence, the value of y is 5 .
2. If $k,(2 k-1)$ and $(2 k+1)$ are the three successive terms of an AP, find the value of k.

Sol:

It is given that $k,(2 k-1)$ and $(2 k+1)$ are the three successive terms of an AP.
$\therefore(2 k-1)-k=(2 k+1)-(2 k-1)$
$\Rightarrow k-1=2$
$\Rightarrow k=3$
Hence, the value of k is 3 .
3. If $18, a,(b-3)$ are in AP, then find the value of $(2 a-b)$

Sol:

It is given that $18, a,(b-3)$ are in AP.
$\therefore a-18=(b-3)-a$
$\Rightarrow a+a-b=18-3$
$\Rightarrow 2 a-b=15$
Hence, the required value is 15 .
4. If the numbers $\mathrm{a}, 9, \mathrm{~b}, 25$ from an AP, find a and b .

Sol:
It is given that the numbers $a, 9, b, 25$ from an AP.
$\therefore 9-a=b-9=25-b$
So,
$b-9=25-b$
$\Rightarrow 2 b=34$
$\Rightarrow b=17$
Also,
$9-a=b-9$
$\Rightarrow a=18-b$
$\Rightarrow a=18-17 \quad(b=17)$
$\Rightarrow a=1$
Hence, the required values of a and b are 1 and 17, respectively.
5. If the numbers $(2 n-1),(3 n+2)$ and $(6 n-1)$ are in AP, find the value of n and the numbers

Sol:

It is given that the numbers $(2 n-1),(3 n+2)$ and $(6 n-1)$ are in AP.
$\therefore(3 n+2)-(2 n-1)=(6 n-1)-(3 n+2)$
$\Rightarrow 3 n+2-2 n+1=6 n-1-3 n-2$
$\Rightarrow n+3=3 n-3$
$\Rightarrow 2 n=6$
$\Rightarrow n=3$
When, $n=3$
$2 n-1=2 \times 3-1=6-1=5$
$3 n+2=3 \times 3+2=9+2=11$
$6 n-1=6 \times 3-1=18-1=17$
Hence, the required value of n is 3 and the numbers are 5, 11 and 17 .
6. How many three-digit natural numbers are divisible by 7 ?

Sol:

The three digit natural numbers divisible by 7 are $105,112,119$.
Clearly, these number are in AP.
Here, $a=105$ and $d=112-105=7$
Let this AP contains n terms. Then,
$a_{n}=994$
$\Rightarrow 105+(n-1) \times 7=994 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 7 n+98=994$
$\Rightarrow 7 n=994-98=986$
$\Rightarrow n=128$
Hence, there are 128 three digit numbers divisible by 7.
7. How many three-digit natural numbers are divisible by 9 ?

Sol:
The three-digit natural numbers divisible by 9 are 108,117, 126 \qquad 999.

Clearly, these number are in AP.
Here. $a=108$ and $d=117-108=9$
Let this AP contains n terms. Then,
$a_{n}=999$
$\Rightarrow 108+(n-1) \times 9=999 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 9 n+99=999$
$\Rightarrow 9 n=999-99=900$
$\Rightarrow n=100$
Hence, there are 100 three-digit numbers divisible by 9 .
8. If the sum of first m terms of an AP is $\left(2 m^{2}+3 m\right)$ then what is its second term?

Sol:

Let S_{m} denotes the sum of first m terms of the AP.
$\therefore S_{m}=2 m^{2}+3 m$
$\Rightarrow S_{m-1}=2(m-1)^{2}+3(m-1)=2\left(m^{2}-2 m+1\right)+3(m-1)=2 m^{2}-m-1$
Now,
$m^{\text {th }}$ term of AP, $a_{m}=S_{m}-S_{m-1}$
$\therefore a_{m}=\left(2 m^{2}+3 m\right)-\left(2 m^{2}-m-1\right)=4 m+1$
Putting $m=2$, we get
$a_{2}=4 \times 2+1=9$

Hence, the second term of the AP is 9 .
9. What is the sum of first n terms of the AP a, $3 \mathrm{a}, 5 \mathrm{a}, \ldots$.

Sol:

The given AP is $3 a, 5 a, \ldots . . .$.
Here,
First term, A = a
Common difference, $D=3 a-a=2 a$
\therefore Sum of the n terms, S_{n}
$=\frac{n}{2}[2 \times a+(n-1) \times 2 a] \quad\left\{S_{n}=\frac{n}{2}[2 A+(n-1) D]\right\}$
$=\frac{n}{2}(2 a+2 a n-2 a)$
$=\frac{n}{2} \times 2 a n$
$=a n^{2}$
Hence, the required sum is $a n^{2}$.
10. What is the $5^{\text {th }}$ term form the end of the AP $2,7,12, \ldots ., 47$?

Sol:
The given AP is $2,7,12, \ldots, 47$.
Let us re-write the given AP in reverse order i.e. 47, 42, .., 12, $7,2$.
Now, the 5th term from the end of the given AP is equal to the 5th term from beginning of the AP 47, 42,.... ,12, 7, 2.
Consider the AP 47, 42,.., 12, 7, 2.
Here, $a=47$ and $d=42-47=-5$
5th term of this AP
$=47+(5-1) \times(-5)$
$=47-20$
$=27$
Hence, the 5th term from the end of the given AP is 27.
11. If a_{n} denotes the nth term of the AP $2,7,12,17, \ldots$ find the value of $\left(a_{30}-a_{20}\right)$.

Sol:

The given AP is $2,7,12,17, \ldots \ldots \ldots$
Here, $a=2$ and $d=7-2=5$
$\therefore a_{30}-a_{20}$
$=[2+(30-1) \times 5]-[2+(20-1) \times 5] \quad\left[a_{n}=a+(n-1) d\right]$
$=147-97$
$=50$
Hence, the required value is 50 .
12. The nth term of an $A P$ is $(3 n+5)$. Find its common difference.

Sol:

We have
$T_{n}=(3 n+5)$
Common difference $=T_{2}-T_{1}$
$T_{1}=3 \times 1+5=8$
$T_{2}=3 \times 2+5=11$
$d=11-8-3$
Hence, the common difference is 3 .
13. The nth term of an $A P$ is $(7-4 n)$. Find its common difference.

Sol:

We have
$T_{n}=(7-4 n)$
Common difference $=T_{2}-T_{1}$
$T_{1}=7-4 \times 1=3$
$T_{2}=7-4 \times 2=-1$
$d=-1-3=-4$
Hence, the common difference is -4 .
14. Write the next term for the AP $\sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \ldots \ldots$.

Sol:

The given AP is $\sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \ldots \ldots$
On simplifying the terms, we get:
$2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, \ldots \ldots$.
Here, $a=2 \sqrt{2}$ and $d=(3 \sqrt{2}-2 \sqrt{2})=\sqrt{2}$
\therefore Next term, $T_{4}=a+3 d=2 \sqrt{2}+3 \sqrt{2}=5 \sqrt{2}=\sqrt{50}$
15. Write the next term of the AP $\sqrt{2}, \sqrt{8}, \sqrt{18}$, \qquad

Sol:

The given AP is $\sqrt{2}, \sqrt{8}, \sqrt{18}$, \qquad
On simplifying the terms, we get:
$\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, \ldots \ldots$.
Here, $a=\sqrt{2}$ and $d=(2 \sqrt{2}-\sqrt{2})=\sqrt{2}$
\therefore Next term, $T_{4}=a+3 d=\sqrt{2}+3 \sqrt{2}=4 \sqrt{2}=\sqrt{32}$
16. Which term of the AP $21,18,15, \ldots$ is zero?

Sol:
In the given AP, first term, $a=21$ and common difference, $d=(18-21)=-3$
Let's its $n^{\text {th }}$ term be 0 .
Then, $T_{n}=0$
$\Rightarrow a+(n-1) d=0$
$\Rightarrow 21+(n-1) \times(-3)=0$
$\Rightarrow 24-3 n=0$
$\Rightarrow 3 n=24$
$\Rightarrow n=8$
Hence, the $8^{\text {th }}$ term of the given AP is 0 .
17. Find the sum of the first n natural numbers.

Sol:

The first n natural numbers are $1,2,3,4,5, \ldots \ldots ., \mathrm{n}$
Here, $\mathrm{a}=1$ and $\mathrm{d}=(2-1)=1$
Sum of n terms of an AP is given by

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& =\left(\frac{n}{2}\right) \times[2 \times 1+(n-1) \times 1] \\
& =\left(\frac{n}{2}\right) \times[2+n-1]=\left(\frac{n}{2}\right) \times(n+1)=\frac{n(n+1)}{2}
\end{aligned}
$$

18. Find the sum of first n even natural numbers.

Sol:

The first n even natural numbers are $2,4,6,8,10, \ldots, n$.

Here, $a=2$ and $d=(4-2)=2$
Sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\left(\frac{n}{2}\right) \times[2 \times 2+(n-1) \times 2]$
$=\left(\frac{n}{2}\right) \times[4+2 n-2]=\left(\frac{n}{2}\right) \times(2 n+2)=n(n+1)$
Hence, the required sum is $n(n+1)$.
19. The first term of an $A P$ is p and its common difference is q . Find its $10^{\text {th }}$ term.

Sol:

Here, $a=p$ and $d=q$
Now, $T_{n}=a+(n-1) d$
$\Rightarrow T_{n}=p+(n-1) q$
$\therefore T_{10}=p+9 q$
20. If $\frac{4}{5}, a, 2$ are in AP, find the value of a.

Sol:

If 45, a and 2 are three consecutive terms of an AP, then we have:
$a-45=2-a$
$\Rightarrow 2 a=2+45$
$\Rightarrow 2 a=145$
$\Rightarrow a=75$
21. If $(2 p+1), 13,(5 p-3)$ are in AP, find the value of p.

Sol:

Let $(2 p+1), 13,(5 p-3)$ be three consecutive terms of an AP.
Then $13-(2 p+1)=(5 p-3)-13$
$\Rightarrow 7 p=28$
$\Rightarrow p=4$
\therefore When $p=4,(2 p+1), 13$ and $(5 p-3)$ from three consecutive terms of an AP.
22. If $(2 p-1), 7,3 p$ are in $A P$, find the value of p.

Sol:

Let $(2 p-1), 7$ and $3 p$ be three consecutive terms of an AP.
Then $7-(2 p-1)=3 p-7$
$\Rightarrow 5 p=15$
$\Rightarrow p=3$
\therefore When $p=3,(2 p-1), 7$ and $3 p$ form three consecutive terms of an AP.
23. If the sum of first p terms of an AP is $\left(a p^{2}+b p\right)$, find its common difference.

Sol:

Let S_{p} denotes the sum of first p terms of the AP.
$\therefore S_{p}=a p^{2}+b p$
$\Rightarrow S_{p-1}=a(p-1)^{2}+b(p-1)$
$=a\left(p^{2}-2 p+1\right)+b(p-1)$
$=a p^{2}-(2 a-b) p+(a-b)$
Now,
$p^{\text {th }}$ term of $A P, a_{p}=S_{p}-S_{p-1}$
$=\left(a p^{2}+b p\right)-\left[a p^{2}-(2 a-b) p+(a-b)\right]$
$=a p^{2}+b p-a p^{2}+(2 a-b) p-(a-b)$
$=2 a p-(a-b)$
Let d be the common difference of the AP.
$\therefore d=a_{p}-a_{p-1}$
$=[2 a p-(a-b)]=[2 a(p-1)-(a-b)]$
$=2 a p-(a-b)-2 a(p-1)+(a-b)$
$=2 a$
Hence, the common difference of the AP is 2 a .
24. If the sum of first n terms is $\left(3 n^{2}+5 n\right)$, find its common difference.

Sol:
Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=3 n^{2}+5 n$
$\Rightarrow S_{n-1}=3(n-1)^{2}+5(n-1)$
$=3\left(n^{2}-2 n+1\right)+5(n-1)$
$=3 n^{2}-n-2$
Now,
$n^{\text {th }}$ term of $A P, a_{n}=S_{n}-S_{n-1}$
$=\left(3 n^{2}+5 n\right)-\left(3 n^{2}-n-2\right)$
$=6 n+2$
Let d be the common difference of the AP.
$\therefore d=a_{n}-a_{n-1}$
$=(6 n+2)-[6(n-1)+2]$
$=6 n+2-6(n-1)-2$
$=6$
Hence, the common difference of the AP is 6 .
25. Find an AP whose $4^{\text {th }}$ term is 9 and the sum of its $6^{\text {th }}$ and $13^{\text {th }}$ terms is 40 .

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
a_{4}=9
$$

$\Rightarrow a+(4-1) d=9$ $\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+3 d=9$
Now,
$a_{6}+a_{13}=40$
(Given)
$\Rightarrow(a+5 d)+(a+12 d)=40$
$\Rightarrow 2 a+17 d=40$
From (1) and (2), we get

$$
\begin{aligned}
& 2(9-3 d)+17 d=40 \\
& \Rightarrow 18-6 d+17 d=40 \\
& \Rightarrow 11 d=40-18=22 \\
& \Rightarrow d=2
\end{aligned}
$$

Putting $d=2$ in (1), we get
$a+3 \times 2=9$
$\Rightarrow a=9-6=3$
Hence, the AP is $3,5,7,9,11, \ldots \ldots$.

Exercise - 11D

1. Find the sum of each of the following Aps:
(i) $2,7,12,17, \ldots \ldots$ to 19 terms.
(ii) $9,7,5,3 \ldots$ to 14 terms
(iii) $-37,-33,-29, \ldots$ to 12 terms.
(iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \ldots$. to 11 terms.
(v) $0.6,1.7,2.8, \ldots$. to 100 terms

Sol:
(i) The given AP is $2,7,12,17, \ldots \ldots \ldots$

Here, $a=2$ and $d=7-2=5$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{19}=\frac{19}{2}[2 \times 2+(19-1) \times 5]$
$=\frac{19}{2} \times(4+90)$
$=\frac{19}{2} \times 94$
$=893$
(ii) The given AP is $9,7,5,3, \ldots \ldots$................

Here, $a=9$ and $d=7-9=-2$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{14}=\frac{14}{2}[2 \times 9+(14-1) \times(-2)]$
$=7 \times(18-26)$
$=7 \times(-8)$
$=-56$
(iii) The given AP is $-37,-33,-29, \ldots \ldots \ldots$

Here, $a=-37$ and $d=-33-(-37)=-33+37=4$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{12}=\frac{12}{2}[2 \times(-37)+(12-1) \times 4]$
$=6 \times(-74+44)$
$=6 \times(-30)$

$$
=-180
$$

(iv) The given AP is $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \ldots \ldots$

Here, $a=\frac{1}{15}$ and $d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have

$$
\begin{aligned}
& S_{11}=\frac{11}{2}\left[2 \times\left(\frac{1}{15}\right)+(11-1) \times \frac{1}{60}\right] \\
& =\frac{11}{2} \times\left(\frac{2}{15}+\frac{10}{60}\right) \\
& =\frac{11}{2} \times\left(\frac{18}{60}\right) \\
& =\frac{33}{20}
\end{aligned}
$$

(v) The given AP is $0.6,1.7,2.8, \ldots$.

Here, $a=0.6$ and $d=1.7-0.6=1.1$
Using formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we haye
$S_{100}=\frac{100}{2}[2 \times 0.6+(100-1) \times 1.1]$
$=50 \times(1.2+108.9)$
$=50 \times 110.1$
$=5505$
2. Find the sum of each of the following arithmetic series:
(i) $7+10 \frac{1}{2}+14+\ldots+84$
(ii) $34+32+30+\ldots+10$
(iii) $(-5)+(-8)+(-11)+\ldots+(-230)$

Sol:
(i) The given arithmetic series is $7+10 \frac{1}{2}+14+\ldots .+84$.

Here, $a=7, d=10 \frac{1}{2}-7=\frac{21}{2}-7=\frac{21-4}{2}=\frac{7}{2}$ and $l=84$.
Let the given series contains n terms. Then,
$a_{n}=84$
$\Rightarrow 7+(n-1) \times \frac{7}{2}=84 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow \frac{7}{2} n+\frac{7}{2}=84$
$\Rightarrow \frac{7}{2} n=84-\frac{7}{2}=\frac{161}{2}$
$\Rightarrow n=\frac{161}{7}=23$
\therefore Required sum $=\frac{23}{2} \times(7+84) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{23}{2} \times 91$
$=\frac{2030}{2}$
$1046 \frac{1}{2}$
(ii) The given arithmetic series is $34+32+30+\ldots .+10$.

Here, $a=34, d=32-34=-2$ and $l=10$.
Let the given series contain n terms. Then,
$a_{n}=10$
$\Rightarrow 34+(n-1) \times(-2)=10$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow-2 n+36=10$
$\Rightarrow-2 n=10-36=-26$
$\Rightarrow n=13$
\therefore Required sum $=\frac{13}{2} \times(34+10) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{13}{2} \times 44$
$=286$
(iii) The given arithmetic series is $(-5)+(-8)+(-11)+\ldots \ldots .+(-230)$.

Here, $a=-5, d=-8-(-5)=-8+5=-3$ and $l=230$.
Let the given series contain n terms. Then,

$$
\begin{aligned}
& a_{n}=-230 \\
& \Rightarrow-5+(n-1) \times(-3)=-230 \quad\left[a_{n}=a+(n-1) d\right] \\
& \Rightarrow-3 n-2=-230 \\
& \Rightarrow-3 n=-230+2=-228 \\
& \Rightarrow n=76 \\
& \therefore \text { Required sum }=\frac{76}{2} \times[(-5)+(-230)] \quad\left[S_{n}=\frac{n}{2}(a+l)\right] \\
& =\frac{76}{2} \times(-235) \\
& =-8930
\end{aligned}
$$

3. Find the sum of first n terms of an AP whose nth term is $(5-6 n)$. Hence, find the sum of its first 20 terms.
Sol:
Let a_{n} be the nth term of the AP.
$\therefore a_{n}=5-6 n$
Putting $n=1$, we get
First term, $a=a_{1}=5-6 \times 1=-1$
Putting $n=2$, we get
$a_{2}=5-6 \times 2=-7$
Let d be the common difference of the AP.
$\therefore d=a_{2}-a_{1}=-7-(-1)=-7+1=-6$.
Sum of first n tern of the AP, S_{n}

$$
\begin{aligned}
& =\frac{n}{2}[2 \times(-1)+(n-1) \times(-6)] \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\} \\
& =\frac{n}{2}(-2-6 n+6) \\
& =n(2-3 n) \\
& =2 n-3 n^{2}
\end{aligned}
$$

Putting $n=20$, we get
$S_{20}=2 \times 20-3 \times 20^{2}=40-1200=-1160$
4. The sum of the first n terms of an AP is $\left(3 n^{2}+6 n\right)$. Find the nth term and the $15^{\text {th }}$ term of this AP.

Sol:

Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=3 n^{2}+6 n$
$\Rightarrow S_{n-1}=3(n-1)^{2}+6(n-1)$
$=3\left(n^{2}-2 n+1\right)+6(n-1)$
$=3 n^{2}-3$
$\therefore n^{\text {th }}$ term of the AP, a_{n}
$=S_{n}-S_{n-1}$
$=\left(3 n^{2}+6 n\right)-\left(3 n^{2}-3\right)$
$=6 n+3$
Putting $n=15$, we get
$a_{15}=6 \times 15+3=90+3=93$
Hence, the $n^{\text {th }}$ term is $(6 n+3)$ and $15^{\text {th }}$ term is 93 .
5. The sum of the first n terms of an AP is given by $S_{n}=\left(3 n^{2}-n\right)$. Find its (i) nth term,
(ii) first term and
(iii) common difference.

Sol:

Given: $S_{n}=\left(3 n^{2}-n\right)$
Replacing n by $(n-1)$ in (i), we get:
$S_{n-1}=3(n-1)^{2}-(n-1)$
$=3\left(n^{2}-2 n+1\right)-n+1$
$=3 n^{2}-7 n+4$
(i) Now, $T_{n}=\left(S_{n}-S_{n-1}\right)$

$$
\begin{align*}
& =\left(3 n^{2}-n\right)-\left(3 n^{2}-7 n+4\right)=6 n-4 \\
& \therefore n^{\text {th }} \text { term, } T_{n}=(6 n-4) \quad \ldots \ldots . .(i i) \tag{ii}
\end{align*}
$$

(ii) Putting $n=1$ in (ii), we get:

$$
T_{1}=(6 \times 1)-4=2
$$

(iii) Putting $n=2$ in (ii), we get:

$$
T_{2}=(6 \times 2)-4=8
$$

\therefore Common difference, $d=T_{2}-T_{1}=8-2=6$
6. The sum of the first n terms of an AP is $\left(\frac{5 n^{2}}{2}+\frac{3 n}{2}\right)$. Find its nth term and the $20^{\text {th }}$ term of this AP.
Sol:
$S_{n}=\left(\frac{5 n^{2}}{2}+\frac{3 n}{2}\right)=\frac{1}{2}\left(5 n^{2}+3 n\right)$
Replacing n by $(n-1)$ in (i), we get:
$S_{n-1}=\frac{1}{2} \times\left[5(n-1)^{2}+3(n-1)\right]$
$=\frac{1}{2} \times\left[5 n^{2}-10 n+5+3 n-3\right]=\frac{1}{2} \times\left[5 n^{2}-7 n+2\right]$
$\therefore T_{n}=S_{n}-S_{n-1}$
$=\frac{1}{2}\left(5 n^{2}+3 n\right)-\frac{1}{2} \times\left[5 n^{2}-7 n+2\right]$
$=\frac{1}{2}(10 n-2)=5 n-1$
Putting $n=20$ in (ii), we get
$T_{20}=(5 \times 20)-1=99$
Hence, the $20^{\text {th }}$ term is 99 .
7. The sum of the first n term sofa an AP is $\left(\frac{3 n^{2}}{2}+\frac{5 n}{2}\right)$. Find its nth term and the $25^{\text {th }}$ term

Sol:

Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=\frac{3 n^{2}}{2}+\frac{5 n}{2}$
$\Rightarrow S_{n-1}=\frac{3(n-1)^{2}}{2}+\frac{5(n-1)}{2}$
$=\frac{3\left(n^{2}-2 n+1\right)}{2}+\frac{5(n-1)}{2}$
$=\frac{3 n^{2}-n-2}{2}$
$\therefore n^{\text {th }}$ term of the AP, a_{n}
$=S_{n}-S_{n-1}$

$$
\begin{aligned}
& =\left(\frac{3 n^{2}+5 n}{2}\right)-\left(\frac{3 n^{2}-n-2}{2}\right) \\
& =\frac{6 n+2}{2} \\
& =3 n+2
\end{aligned}
$$

Putting $n=25$, we get

$$
a_{25}=3 \times 25+1=75+1=76
$$

Hence, the nth term is $(3 n+1)$ and $25^{\text {th }}$ term is 76 .
8. How many terms of the AP $21,18,15, \ldots$ must be added to get the sum 0 ?

Sol:
Thee given AP is $21,18,15, \ldots \ldots \ldots$
Here, $a=21$ and $d=18-21=-3$
Let the required number of terms be n. Then,
$S_{n}=0$
$\Rightarrow \frac{n}{2}[2 \times 21+(n-1) \times(-3)]=0 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow \frac{n}{2}(42-3 n+3)=0$
$\Rightarrow n(45-3 n)=0$
$\Rightarrow n=0$ or $45-3 n=0$
$\Rightarrow n=0$ or $n=15$
$\therefore n=15 \quad$ (Number of terms cannot be zero)
Hence, the required number of terms is 15 .
9. How many terms of the AP $9,17,25, \ldots$ must be taken so that their sum is 636 ?

Sol:
The given AP is $9,17,25, \ldots \ldots$
Here, $a=9$ and $d=17-9=8$
Let the required number of terms be n . Then,
$S_{n}=636$
$\Rightarrow \frac{n}{2}[2 \times 9+(n-1) \times 8]=636 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow \frac{n}{2}(18+8 n-8)=636$
$\Rightarrow \frac{n}{2}(10+8 n)=636$
$\Rightarrow n(5+4 n)=636$
$\Rightarrow 4 n^{2}+5 n-636=0$
$\Rightarrow 4 n^{2}-48 n+53 n-636=0$
$\Rightarrow 4 n(n-12)+53(n-12)=0$
$\Rightarrow(n-12)(4 n+53)=0$
$\Rightarrow n-12=0$ or $4 n+53=0$
$\Rightarrow n=12$ or $n=-\frac{53}{4}$
$\therefore n=12 \quad$ (Number of terms cannot negative)
Hence, the required number of terms is 12 .
10. How many terms of the AP $63,60,57,54, \ldots$. must be taken so that their sum is 693 ?

Explain the double answer.

Sol:

The given AP is $63,60,57,54, \ldots \ldots \ldots$.
Here, $a=63$ and $d=60-63=-3$
Let the required number of terms be n. Then,

$$
S_{n}=693
$$

$$
\Rightarrow \frac{n}{2}[2 \times 63+(n-1) \times(-3)]=693 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}
$$

$$
\Rightarrow \frac{n}{2}(126-3 n+3)=693
$$

$$
\Rightarrow n(129-3 n)=1386
$$

$$
\Rightarrow 3 n^{2}-129 n+1386=0
$$

$$
\Rightarrow 3 n^{2}-66 n-63 n+1386=0
$$

$$
\Rightarrow 3 n(n-22)-63(n-22)=0
$$

$$
\Rightarrow(n-22)(3 n-63)=0
$$

$$
\Rightarrow n-22=0 \text { or } 3 n-63=0
$$

$$
\Rightarrow n=22 \text { or } n=21
$$

So, the sum of 21 terms as well as that of 22 terms is 693 . This is because the $22^{\text {nd }}$ term of the AP is 0 .
$a_{22}=63+(22-1) \times(-3)=63-63=0$
Hence, the required number of terms is 21 or 22.
11. How many terms of the AP $20,19 \frac{1}{3}, 18 \frac{2}{3}, \ldots$ must be taken so that their sum is 300 ? Explain the double answer.

Sol:

The given AP is $20,19 \frac{1}{3}, 18 \frac{2}{3}, \ldots \ldots$.
Here, $a=20$ and $d=19 \frac{1}{3}-20=\frac{58}{3}-20=\frac{58-60}{3}=-\frac{2}{3}$
Let the required number of terms be n. Then,
$S_{n}=300$
$\Rightarrow \frac{n}{2}\left[2 \times 20+(n-1) \times\left(-\frac{2}{3}\right)\right]=300 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow \frac{n}{2}\left(40-\frac{2}{3} n+\frac{2}{3}\right)=300$
$\Rightarrow \frac{n}{2} \times \frac{(122-2 n)}{3}=300$
$\Rightarrow 122 n-2 n^{2}=1800$
$\Rightarrow 2 n^{2}-122 n+1800=0$
$\Rightarrow 2 n^{2}-50 n-72 n+1800=0$
$\Rightarrow 2 n(n-25)-72(n-25)=0$
$\Rightarrow(n-25)(2 n-72)=0$
$\Rightarrow n-25=0$ or $2 n-72=0$
$\Rightarrow n=25$ or $n=36$
So, the sum of first 25 terms as well as that of first 36 terms is 300 . This is because the sum of all terms from $26^{\text {th }}$ to $36^{\text {th }}$ is 0 .
12. Find the sum of all odd numbers between 0 and 50 .

Sol:

All odd numbers between 0 and 50 are 1, 3, 5, 7, 4
This is an AP in which $a=1, d=(3-1)=2$ and $l=49$.
Let the number of terms be n .
Then, $T_{n}=49$
$\Rightarrow a+(n-1) d=49$
$\Rightarrow 1+(n-1) \times 2=49$
$\Rightarrow 2 n=50$
$\Rightarrow n=25$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{25}{2}[1+49]=25 \times 25=625$
Hence, the required sum is 625 .
13. Find the sum of all natural numbers between 200 and 400 which are divisible by 7 .

Sol:

Natural numbers between 200 and 400 which are divisible by 7 are 203, $210, \ldots .399$.
This is an AP with $a=203, \mathrm{~d}=7$ and $l=399$.
Suppose there are n terms in the AP. Then,
$a_{n}=399$
$\Rightarrow 203+(n-1) \times 7=399 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 7 n+196=399$
$\Rightarrow 7 n=399-196=203$
$\Rightarrow n=29$
\therefore Required sum $=\frac{29}{2}(203+399)$

$$
\left[S_{n}=\frac{n}{2}(a+l)\right]
$$

$=\frac{29}{2} \times 602$
$=8729$
Hence, the required sum is 8729 .
14. Find the sum of first forty positive integers divisible by 6 .

Sol:

The positive integers divisible by 6 are $6,12,18, \ldots \ldots$
This is an AP with $a=6$ and $d=6$.
Also, $n=40$
(Given)

Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{40}=\frac{40}{2}[2 \times 6+(40-1) \times 6]$
$=20(12+234)$
$=20 \times 246$
$=4920$
Hence, the required sum is 4920 .
15. Find the sum of first 15 multiples of 8 .

Sol:

The first 15 multiples of 8 are $8,16,24,32, \ldots \ldots$
This is an AP in which $a=8, d=(16-8)=8$ and $n=15$.
Thus, we have:
$l=a+(n-1) d$
$=8+(15-1) 8$
$=120$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{15}{2}[8+120]=15 \times 64=960$
Hence, the required sum is 960 .
16. Find the sum of all multiples of 9 lying between 300 and 700 .

Sol:

The multiples of 9 lying between 300 and 700 are 306, 315, 693.

This is an AP with $a=306, d=9$ and $l=693$.
Suppose these are n terms in the AP. Then,

$$
a_{n}=693
$$

$\Rightarrow 306+(n-1) \times 9=693$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 9 n+297=693$
$\Rightarrow 9 n=693-297=396$
$\Rightarrow n=44$
\therefore Required sum $=\frac{44}{2}(306=693)$

$$
\left[S_{n}=\frac{n}{2}(a+l)\right]
$$

$=22 \times 999$
$=21978$
Hence, the required sum is 21978.
17. Find the sum of all three-digits natural numbers which are divisible by 13 .

Sol:

All three-digit numbers which are divisible by 13 are 104, 117, 130, 143,....... 938.
This is an AP in which $a=104, \mathrm{~d}=(117-104)=13$ and $l=938$
Let the number of terms be n
Then $T_{n}=938$
$\Rightarrow a+(n-1) d=988$
$\Rightarrow 104+(n-1) \times 13=988$
$\Rightarrow 13 n=897$
$\Rightarrow n=69$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{69}{2}[104+988]=69 \times 546=37674$
Hence, the required sum is 37674 .
18. Find the sum of first 100 even number which are divisible by 5 .

Sol:

The first few even natural numbers which are divisible by 5 are $10,20,30,40, \ldots$
This is an AP in which $a=10, d=(20-10)=10$ and $n=100$
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\left(\frac{100}{2}\right) \times[2 \times 10+(100-1) \times 10] \quad[\because a=10, d=10$ and $n=100]$
$=50 \times[20+990]=50 \times 1010=50500$
Hence, the sum of the first hundred even natural numbers which are divisible by 5 is 50500.
19. Find the sum of the following.
$\left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+$. . up to n terms.

Sol:

On simplifying the given series, we get:

$$
\begin{aligned}
& \left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+\ldots n \text { terms } \\
& =(1+1+1+\ldots \ldots . . n \text { terms })-\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots \ldots . .+\frac{n}{n}\right) \\
& =n-\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots \ldots . .+\frac{n}{n}\right)
\end{aligned}
$$

Here, $\left(\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots \ldots+\frac{n}{n}\right)$ is an AP whose first term is $\frac{1}{n}$ and the common difference
is $\left(\frac{2}{n}-\frac{1}{n}\right)=\frac{1}{n}$.
The sum of terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=n-\left[\frac{n}{2}\left\{2 \times\left(\frac{1}{n}\right)+(n-1) \times\left(\frac{1}{n}\right)\right\}\right]$
$=n-\left[\frac{n}{2}\left[\left(\frac{2}{n}\right)+\left(\frac{n-1}{n}\right)\right]\right]=n-\left\{\frac{n}{2}\left(\frac{n+1}{n}\right)\right\}$
$=n-\left(\frac{n+1}{2}\right)=\frac{n-1}{2}$
20. In an AP. It is given that $S_{5}+S_{7}=167$ and $S_{10}=235$, then find the AP, where S_{n} denotes the sum of its first n terms.
Sol:
Let a be the first term and d be the common difference of thee AP. Then,
$S_{5}+S_{7}=167$
$\Rightarrow \frac{5}{2}(2 a+4 d)+\frac{7}{2}(2 a+6 d)=167 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 5 a+10 d+7 a+21 d=167$
$\Rightarrow 12 a+31 d=167$
Also,
$S_{10}=235$
$\Rightarrow \frac{10}{2}(2 a+9 d)=235$
$\Rightarrow 5(2 a+9 d)=235$
$\Rightarrow 2 a+9 d=47$
Multiplying both sides by 6 , we get
$12 a+54 d=282$
Subtracting (1) from (2), we get
$12 a+54 d-12 a-31 d=282-167$
$\Rightarrow 23 d=115$
$\Rightarrow d=5$
Putting $d=5$ in (1), we get
$12 a+31 \times 5=167$
$\Rightarrow 12 a+155=167$
$\Rightarrow 12 a=167-155=12$
$\Rightarrow a=1$
Hence, the AP is $1,6,11,16, \ldots \ldots$.
21. In an AP, the first term is 2 , the last term is 29 and the sum of all the terms is 155 . Find the common difference.

Sol:

Here, $a=2, l=29$ and $S_{n}=155$
Let d be the common difference of the given AP and n be the total number of terms.
Then, $T_{n}=29$
$\Rightarrow a+(n-1) d=29$
$\Rightarrow 2+(n-1) d=29$
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[a+l]=155$
$\Rightarrow \frac{n}{2}[2+29]=\left(\frac{n}{2}\right) \times 31=155$
$\Rightarrow n=10$
Putting the value of n in (i), we get:
$\Rightarrow 2+9 d=29$
$\Rightarrow 9 d=27$
$\Rightarrow d=3$
Thus, the common difference of the given AP is 3 .
22. In an $A P$, the first term is -4 , the last term is 29 and the sum of all its terms is 150 . Find its common difference.

Sol:

Suppose there are n terms in the AP.
Here, $a=-4, l=29$ and $S_{n}=150$
$S_{n}=150$
$\Rightarrow \frac{n}{2}(-4+29)=150 \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$\Rightarrow n=\frac{150 \times 2}{25}=12$
Thus, the AP contains 12 terms.
Let d be the common difference of the AP.
$\therefore a_{12}=29$
$\Rightarrow-4+(12-1) \times d=29$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 11 d=29+4=33$
$\Rightarrow d=3$
Hence, the common difference of the AP is 3 .
23. The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is their sum?

Sol:

Suppose there are n terms in the AP.
Here, $a=17, d=9$ and $l=350$
$\therefore a_{n}=350$
$\Rightarrow 17+(n-1) \times 9=350 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 9 n+8=350$
$\Rightarrow 9 n=350-8=342$
$\Rightarrow n=38$
Thus, there are 38 terms in the AP.
$\therefore S_{38}=\frac{28}{2}(17+350)$
$=19 \times 367$
$=6973$
Hence, the required sum is 6973 .
24. The first and last terms of an AP are 5 and 45 respectively. If the sum of all its terms is 400 , find the common difference and the number of terms.
Sol:
Suppose there are n term in the AP.
Here, $a=5, l=45$ and $S_{n}=400$
$S_{n}=400$
$\Rightarrow \frac{n}{2}(5+45)=400$

$$
\left[S_{n}=\frac{n}{2}(a+l)\right]
$$

$\Rightarrow \frac{n}{2} \times 50=400$
$\Rightarrow n=\frac{400 \times 2}{50}=16$
Thus, there are 16 terms in the AP.
Let d be the common difference of the AP.
$\therefore a_{16}=45$
$\Rightarrow 5+(16-1) \times d=45 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 15 d=45-5=40$
$\Rightarrow d=\frac{40}{15}=\frac{8}{3}$
Hence, the common difference of the AP is $\frac{8}{3}$.
25. In an AP, the first term is 22 , nth terms is -11 and sum of first n terms is 66 . Find the n and hence find the 4 common difference.

Sol:

Here, $a=22, T_{n}=-11$ and $S_{n}=66$
Let d be the common difference of the given AP.
Then, $T_{n}=-11$
$\Rightarrow a+(n-1) d d=22+(n-1) d=-11$
$\Rightarrow(n-1) d=-33$
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=66 \quad$ [Substituting the value off $(n-1) d$ from (i)]
$\Rightarrow \frac{n}{2}[2 \times 22+(-33)]=\left(\frac{n}{2}\right) \times 11=66$
$\Rightarrow n=12$
Putting the value of n in (i), we get:
$11 d=-33$
$\Rightarrow d=-3$
Thus, $n=12$ and $d=-3$
26. The $12^{\text {th }}$ term of an AP is -13 and the sum of its first four terms is 24 . Find the sum of its first 10 terms.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
a_{12}=-13
$$

$\Rightarrow a+11 d=-13$
$\ldots \ldots .(1) \quad\left[a_{n}=a+(n-1) d\right]$
Also,
$S_{4}=24$
$\Rightarrow \frac{4}{2}(2 a+3 d)=24$
$\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 2 a+3 d=12$

Solving (1) and (2), we get
$2(-13-11 d)+3 d=12$
$\Rightarrow-26-22 d+3 d=12$
$\Rightarrow-19 d=12+26=38$
$\Rightarrow d=-2$
Putting $d=-2$ in (1), we get
$a+11 \times(-2)=-13$
$\Rightarrow a=-13+22=9$
\therefore Sum of its first 10 terms, S_{10}
$=\frac{10}{2}[2 \times 9+(10-1) \times(-2)]$
$=5 \times(18-18)$
$=5 \times 0$
$=0$
Hence, the required sum is 0 .
27. The sum of the first 7 terms of an AP is 182 . If its $4^{\text {th }}$ and $17^{\text {th }}$ terms are in the ratio $1: 5$, find the AP.
Sol:
Let a be the first term and d be the common difference of the AP.
$\therefore S_{7}=182$
$\Rightarrow \frac{7}{2}(2 a+6 d)=182 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow a+3 d=26$
Also,

$$
\begin{align*}
& a_{4}: a_{17}=1: 5 \\
& \Rightarrow \frac{a+3 d}{a+16 d}=\frac{1}{5} \quad\left[a_{n}=a+(n-1) d\right] \\
& \Rightarrow 5 a+15 d=a+16 d \\
& \Rightarrow d=4 a
\end{align*}
$$

Solving (1) and (2), we get
$a+3 \times 4 a=26$
$\Rightarrow 13 a=26$
$\Rightarrow a=2$
Putting $a=2$ in (2), we get
$d=4 \times 2=8$
Hence, the required AP is $2,10,18,26, \ldots \ldots \ldots$
28. The sum of the first 9 terms of an AP is 81 and that of its first 20 terms is 400 . Find the first term and common difference of the AP.

Sol:

Here, $a=4, d=7$ and $l=81$
Let the nth term be 81 .
Then $T_{n}=81$
$\Rightarrow a+(n-1) d=4+(n-1) 7=81$
$\Rightarrow(n-1) 7=77$
$\Rightarrow(n-1)=11$
$\Rightarrow n=12$
Thus, there are 12 terms in the AP.
The sum of n terms of an AP is given by
$S_{n}=\frac{n}{2}[a+l]$
$\therefore S_{12}=\frac{12}{2}[4+81]=6 \times 85=510$
Thus, the required sum is 510 .
29. The sum of the first 7 terms of an AP is 49 and the sum of its first 17 term is 289 . Find the sum of its first n terms.
Sol:
Let a be the first term and d be the common difference of the given AP.
Then, we have:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{7}=\frac{7}{2}[2 a+6 d]=7[a+3 d]$
$S_{17}=\frac{17}{2}[2 a+16 d]=17[a+8 d]$
However, $S_{7}=49$ and $S_{17}=289$
Now, $7(a+3 d)=49$
$\Rightarrow a+3 d=7$
Also, $17[a+8 d]=289$
$\Rightarrow a+8 d=17$
Subtracting (i) from (ii), we get:
$5 d=10$
$\Rightarrow d=2$
Putting $d=2$ in (i), we get
$a+6=7$
$\Rightarrow a=1$
Thus, $a=1$ and $d=2$
\therefore Sum of n terms of $\mathrm{AP}=\frac{n}{2}[2 \times 1+(n-1) \times 2]=n[1+(n-1)]=n^{2}$
30. Two Aps have the same common difference. If the fist terms of these Aps be 3 and 8 respectively. Find the difference between the sums of their first 50 terms.

Sol:

Let a_{1} and a_{2} be the first terms of the two APs.
Here, $a_{1}=8$ and $a_{2}=3$
Suppose d be the common difference of the two Aps
Let S_{50} and $S^{\prime}{ }_{50}=\frac{50}{2}\left[2 a_{1}+(50-1) d\right]-\frac{50}{2}\left[2 a_{2}+(50-1) d\right]$
$=25(2 \times 8 \times 49 d)-25(2 \times 3+49 d)$
$=25 \times(16-6)$
$=250$
Hence, the required difference between the two sums is 250 .
31. The sum first 10 terms of an AP is -150 and the sum of its next 10 terms is -550 . Find the AP.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$S_{10}=-150$
$\Rightarrow \frac{10}{2}(2 a+9 d)=-150$
(Given)
$\Rightarrow 5(2 a+9 d)=-150$
$\Rightarrow 2 a+9 d=-30$

$$
\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}
$$

It is given that the sum of its next 10 terms is -550 .

Now,
$S_{20}=$ Sum of first 20 terms $=$ Sum of first 10 terms + Sum of the next 10 terms $=$
$-150+(-550)=-700$
$\therefore S_{20}=-700$
$\Rightarrow \frac{20}{2}(2 a+19 d)=-700$
$\Rightarrow 10(2 a+19 d)=-700$
$\Rightarrow 2 a+19 d=-70$
Subtracting (1) from (2), we get
$(2 a+19 d)-(2 a+9 d)=-70-(-30)$
$\Rightarrow 10 d=-40$
$\Rightarrow d=-4$
Putting $d=-4$ in (1), we get
$2 a+9 \times(-4)=-30$
$\Rightarrow 2 a=-30+36=6$
$\Rightarrow a=3$
Hence, the required AP is $3,-1,-5,-9$,
32. The $13^{\text {th }}$ terms of an AP is 4 times its $3^{\text {rd }}$ term. If its $5^{\text {th }}$ term is 16 , Find the sum of its first 10 terms.

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{13}=4 \times a_{3}$
(Given)
$\Rightarrow a+12 d=4(a+2 d)$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a+12 d=4 a+8 d$
$\Rightarrow 3 a=4 d$
Also,
$a_{5}=16$
(Given)
$\Rightarrow a+4 d=16$
Solving (1) and (2), we get
$a+3 a=16$
$\Rightarrow 4 a=16$
$\Rightarrow a=4$
Putting $a=4$ in (1), we get
$4 d=3 \times 4=12$
$\Rightarrow d=3$

Using the formula, $S_{4}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 4+(10-1) \times 3]$
$=5 \times(8+27)$
$=5 \times 35$
$=175$
Hence, the required sum is 175 .
33. The $16^{\text {th }}$ term of an AP is 5 times its $3^{\text {rd }}$ term. If its $10^{\text {th }}$ term is 41 , find the sum of its first 15 terms.
Sol:
Let a be the first term and d be the common difference of the AP. Then,
$a_{16}=5 \times a_{3}$ (Given)
$\Rightarrow a+15 d=5(a+2 d)$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a+15 d=5 a+10 d$
$\Rightarrow 4 a=5 d$
Also,
$a_{10}=41$
(Given)
$\Rightarrow a+9 d-41$
Solving (1) and (2), we get
$a+9 \times \frac{4 a}{5}=41$
$\Rightarrow \frac{5 a+36 a}{5}=41$
$\Rightarrow \frac{41 a}{5}=41$
$\Rightarrow a=5$
Putting $a=5$ in (1), we get
$5 d=4 \times 5=20$
$\Rightarrow d=4$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{15}=\frac{15}{2}[2 \times 5+(15-1) \times 4]$
$=\frac{15}{2} \times(10+56)$
$=\frac{15}{2} \times 66$
$=495$
Hence, the required sum is 495.
34. An AP 5, 12, 19, ... has 50 term. Find its last term. Hence, find the sum of its last 15 terms.

Sol:
The given AP is $5,12,19, \ldots . .$.
Here, $a=5, d=12-5=7$ and $n=50$.
Since there are 50 terms in the AP, so the last term of the AP is a_{50}
$l=a_{50}=5+(50-1) \times 7$
$\left[a_{n}=a+(n-1) d\right]$
$=5+343$
$=348$
Thus, the last term of the AP is 348.
Now,
Sum of the last 15 terms of the AP
$=S_{50}-S_{35}$
$=\frac{50}{2}[2 \times 5+(50-1) \times 7]-\frac{35}{2}[2 \times 5+(35-1) \times 7]$
$\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$=\frac{50}{2} \times(10+343)-\frac{35}{2} \times(10+238)$
$=\frac{50}{2} \times 353-\frac{35}{2} \times 248$
$=\frac{17650-8680}{2}$
$=\frac{8970}{2}$
$=4485$
Hence, the require sum is 4485 .
35. An AP $8,10,12, \ldots$ has 60 terms. Find its last term. Hence, find the sum of its last 10 terms.
Sol:
The given AP is $8,10,12, \ldots \ldots$.

Here, $a=8, d=10-8=2$ and $n=60$
Since there are 60 terms in the AP, so the last term of the AP is a_{60}.
$l=a_{60}=8+(60-1) \times 2 \quad\left[a_{n}=a+(n-1) d\right]$
$=8+118$
$=126$
Thus, the last term of the AP is 126 .
Now,
Sum of the last 10 terms of the AP
$=S_{60}-S_{50}$
$=\frac{60}{2}[2 \times 8+(60-1) \times 2]-\frac{50}{2}[2 \times 8+(50-1) \times 2]$
$\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$=30 \times(16+118)-25 \times(16+98)$
$=30 \times 134-25 \times 114$
$=4020-2850$
$=1170$
Hence, the required sum is 1170 .
36. The sum of the $4^{\text {th }}$ and $8^{\text {th }}$ terms of an AP is 24 and the sum of its $6^{\text {th }}$ and $10^{\text {th }}$ terms is 44 .

Find the sum of its first 10 terms.
Sol:
Let a be the first and d be the common difference of the AP.
$\therefore a_{4}+a_{8}=24$
$\Rightarrow(a+3 d)+(a+7 d)=24 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 2 a+10 d=24$
$\Rightarrow a+5 d=12$
Also,
$\therefore a_{6}+a_{10}=44$
(Given)
$\Rightarrow(a+5 d)+(a+9 d)=44$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 2 a+14 d=44$
$\Rightarrow a+7 d=22$
Subtracting (1) from (2), we get
$(a+7 d)-(a+5 d)=22-12$
$\Rightarrow 2 d=10$
$\Rightarrow d=5$

Putting $d=5$ in (1), we get
$a+5 \times 5=12$
$\Rightarrow a=12-25=-13$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times(-13)+(10-1) \times 5]$
$=5 \times(-26+45)$
$=5 \times 19$
$=95$
Hence, the required sum is 95 .
37. The sum of fist m terms of an AP is $\left(4 m^{2}-m\right)$. If its nth term is 107 , find the value of n. Also, Find the $21^{\text {st }}$ term of this AP.

Sol:

Let S_{m} denotes the sum of the first m terms of the AP. Then,
$S_{m}=4 m^{2}-m$
$\Rightarrow S_{m-1}=4(m-1)^{2}-(m-1)$
$=4\left(m^{2}-2 m+1\right)-(m-1)$
$=4 m^{2}-9 m+5$
Suppose a_{m} denote the $m^{\text {th }}$ term of the AP.
$\therefore a_{m}=S_{m}-S_{m-1}$
$=\left(4 m^{2}-m\right)-\left(4 m^{2}-9 m+5\right)$
$=8 m-5$
Now,
$a_{n}=107$
(Given)
$\Rightarrow 8 n-5=107$
[From (1)]
$\Rightarrow 8 n=107+5=112$
$\Rightarrow n=14$
Thus, the value of n is 14 .
Putting $m=21$ in (1), we get
$a_{21}=8 \times 21-5=168-5=163$
Hence, the $21^{\text {st }}$ term of the AP is 163 .
38. The sum of first q terms of an AP is $\left(63 q-3 q^{2}\right)$. If its pth term is -60 , find the value of p. Also, find the $11^{\text {th }}$ term of its AP.

Sol:

Let S_{q} denote the sum of the first q terms of the AP. Then,
$S_{q}=63 q-3 q^{2}$
$\Rightarrow S_{q-1}=63(q-1)-3(q-1)^{2}$
$=63 q-63-3\left(q^{2}-2 q+1\right)$
$=-3 q^{2}+69 q-66$
Suppose a_{q} denote the $q^{\text {th }}$ term of the AP.
$\therefore a_{q}=S_{q}-S_{q-1}$
$=\left(63 q-3 q^{2}\right)-\left(-3 q^{2}+69 q-66\right)$
$=-6 q+66$
Now,
$a_{p}=-60$
(Given)
$\Rightarrow-6 p+66=-60 \quad[$ From (1)]
$\Rightarrow-6 p=-60-66=-126$
$\Rightarrow p=21$
Thus, the value of p is 21 .
Putting $q=11$ in (1), we get
$a_{11}=-6 \times 11+66=-66+66=0$
Hence, the 11th term of the AP is 0 .
39. Find the number of terms of the AP $-12,-9,-6, . ., 21$. If 1 is added to each term of this AP then the sum of all terms of the AP thus obtained.

Sol:

The given AP is $-12,-9,-6, \ldots . ., 21$.
Here, $a=-12, d=-9-(-12)=-9+12=3$ and $l=2 l$
Suppose there are n terms in the AP.
$\therefore l=a_{n}=21$
$\Rightarrow-12+(n-1) \times 3=21 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 3 n-15=21$
$\Rightarrow 3 n=21+15=36$
$\Rightarrow n=12$
Thus, there are 12 terms in the AP.

If 1 is added to each term of the AP , then the new AP so obtained is $-11,-8,-5$, 22.

Here, first term, $A=-11$; last term, $L=22$ and $n=12$
\therefore Sum of the terms of this AP
$=\frac{12}{2}(-11+22)$
$\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=6 \times 11$
$=66$
Hence, the required sum is 66 .
40. Sum of the first 14 terms of and AP is 1505 and its first term is 10 . Find its $25^{\text {th }}$ term.

Sol:

Let d be the common difference of the AP.
Here, $a=10$ and $n=14$
Now,
$S_{14}=1505$
(Given)
$\Rightarrow \frac{14}{2}[2 \times 10+(14-1) \times d]=1505 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 7(20+13 d)=1505$
$\Rightarrow 20+13 d=215$
$\Rightarrow 13 d=215-20=195$
$\Rightarrow d=15$
$\therefore 25^{\text {th }}$ term of the AP, a_{25}
$=10+(25-1) \times 15 \quad\left[a_{n}=a+(n-1) d\right]$
$=10+360$
$=370$
Hence, the required term is 370 .
41. Find the sum of fist 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Sol:

Let a be the first term and d be the common difference of the AP. Then,

$$
d=a_{3}-a_{2}=18-14=4
$$

Now,
$a_{2}=14$
(Given)
$\Rightarrow a+d=14$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a+4=14$
$\Rightarrow a=14-4=10$

Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{51}=\frac{51}{2}[2 \times 10+(51-1) \times 4]$
$=\frac{51}{2}(20+200)$
$=\frac{51}{2} \times 220$
$=5610$
Hence, the required sum is 5610 .
42. In a school, students decided to plant trees in and around the school to reduce air pollution. It was decided that the number of trees that each section of each class will plant will be double of the class in which they are studying. If there are 1 to 12 classes in the school and each class has two section, find how many trees were planted by student. Which value is shown in the question?

Sol:

Number of trees planted by the students of each section of class $1=2$
There are two sections of class 1 .
\therefore Number of trees planted by the students of class $1=2 \times 2=4$
Number of trees planted by the students of each section of class $2=4$
There are two sections of class 2 .
\therefore Number of trees planted by the students of class $2=2 \times 4=8$
Similarly,
Number of trees planted by the students of class $3=2 \times 6=12$
So, the number of trees planted by the students of different classes are $4,8,12, \ldots$.
\therefore Total number of trees planted by the students $=4+8+12+\ldots \ldots$ up to 12 terms
This series is an arithmetic series.
Here, $a=4, d=8-4=4$ and $n=12$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{12}=\frac{12}{2}[2 \times 4+(12-1) \times 4]$
$=6 \times(8+44)$
$=6 \times 52$
$=312$
Hence, the total number of trees planted by the students is 312.
The values shown in the question are social responsibility and awareness for conserving nature.
43. In a potato race, a bucket is placed at the starting point, which is 5 m from the first potato, and the other potatoes are placed 3 m apart in a straight line. There are 10 potatoes in the line. A competitor starts from the bucket, picks up the nearest potato, runs back with it, drops it in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and he continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?

Sol:

Distance covered by the competitor to pick and drop the first potato $=2 \times 5 \mathrm{~m}=10 \mathrm{~m}$
Distance covered by the competitor to pick and drop the second potato
$=2 \times(5+3) m=2 \times 8 m=16 \mathrm{~m}$
Distance covered by the competitor to pick and drop the third potato
$=2 \times(5+3+3) m=2 \times 11 m=22 \mathrm{~m}$ and so on.
\therefore Total distance covered by the competitor $=10 m+16 m+22 m+\ldots \ldots$ up to 10 terms This is an arithmetic series.
Here, $a=10, d=16-10=6$ and $n=10$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 10+(10-1) \times 6]$
$=5 \times(20+54)$
$=5 \times 74$
$=370$
Hence, the total distance the competitor has to run is 370 m .
44. There are 25 trees at equal distance of 5 m in a line with a water tank, the distance of the water tank from the nearest tree being 10 m . A gardener waters all the trees separately, starting from the water tank and returning back to the water tank after watering each tree to get water for the next. Find the total distance covered by the gardener in order to water all the trees.

Sol:

Distance covered by the gardener to water the first tree and return to the water tank $=10 \mathrm{~m}+10 \mathrm{~m}=20 \mathrm{~m}$
Distance covered by the gardener to water the second tree and return to the water tank $=15 \mathrm{~m}+15 \mathrm{~m}=30 \mathrm{~m}$
Distance covered by the gardener to water the third tree and return to the water tank $=20 \mathrm{~m}+20 \mathrm{~m}=40 \mathrm{~m}$ and so on.
\therefore Total distance covered by the gardener to water all the trees $=20 m+30 m+40 m+\ldots .$. up to 25 terms
This series is an arithmetic series.
Here, $a=20, d=30-20=10$ and $n=25$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d$, $]$ we get
$S_{25}=\frac{25}{2}[2 \times 20+(25-1) \times 10]$
$=\frac{25}{2}(40+240)$
$=\frac{25}{2}=280$
$=3500$
Hence, the total distance covered by the gardener to water all the trees 3500 m .
45. A sum of $₹ 700$ is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is ₹20 less than its preceding prize, find the value of each prize.

Sol:

Let the value of the first prize be a.
Since the value of each prize is 20 less than its preceding prize, so the values of the prizes are in AP with common difference - ₹ 20 .

$$
\begin{align*}
& \Rightarrow \frac{40}{2}[2 a+(40-1) d]=36000 \\
\therefore d=-₹ & \Rightarrow 20(2 a+39 d)=36000 \\
& \Rightarrow 2 a+39 d=1800 \tag{2}
\end{align*}
$$

Number of cash prizes to be given to the students, $\mathrm{n}=7$
Total sum of the prizes, $S_{7}=₹ 700$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{7}=\frac{7}{2}[2 a+(7-1) \times(-20)]=700$
$\Rightarrow \frac{7}{2}(2 a-120)=700$
$\Rightarrow 7 a-420=700$
$\Rightarrow 7 a=700+420=1120$
$\Rightarrow a=160$
Thus, the value of the first prize is $₹ 160$.
Hence, the value of each prize is ₹ 160 , ₹ 140 , ₹ 120 , ₹ 100 , ₹ 80 , ₹ 60 and ₹ 40 .
46. A man saved $₹ 33000$ in 10 months. In each month after the first, he saved $₹ 100$ more than he did in the preceding month. How much did he save in the first month?

Sol:

Let the money saved by the man in the first month be ₹a
It is given that in each month after the first, he saved ₹ 100 more than he did in the preceding month. So, the money saved by the man every month is in AP with common difference ₹100.
$\therefore d=₹ 100$
Number of months, $n=10$
Sum of money saved in 10 months, $S_{10}=₹ 33,000$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 a+(10-1) \times 100]=33000$
$\Rightarrow 5(2 a+900)=33000$
$\Rightarrow 2 a+900=6600$
$\Rightarrow 2 a=6600-900=5700$
$\Rightarrow a=2850$
Hence, the money saved by the man in the first month is ₹ 2,850 .
47. A man arranges to pay off debt of $₹ 36000$ by 40 monthly instalments which form an arithmetic series. When 30 of the installments are paid, he dies leaving on-third of the debt unpaid. Find the value of the first instalment.

Sol:

Let the value of the first installment be ₹ a.
Since the monthly installments form an arithmetic series, so let us suppose the man increases the value of each installment by ₹ d every month.
\therefore Common difference of the arithmetic series $=₹ d$
Amount paid in 30 installments $=₹ 36,000-\frac{1}{3} \times ₹ 36,000=₹ 36,000-₹ 12,000=₹ 24,000$
Let S_{n} denote the total amount of money paid in the n installments. Then,
$S_{30}=24,000$
$\Rightarrow \frac{30}{2}[2 a+(30-1) d]=24000$
$\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 15(2 a+29 d)=24000$
$\Rightarrow 2 a+29 d=1600$
Also,
$S_{40}=₹ 36,000$
$\Rightarrow \frac{40}{2}[2 a+(40-1) d]=36000$
$\Rightarrow 20(2 a+39 d)=36000$
$\Rightarrow 2 a+39 d=1800$
(2)

Subtracting (1) from (2), we get
$(2 a+39 d)-(2 a+29 d)=1800-1600$
$\Rightarrow 10 d=200$
$\Rightarrow d=20$
Putting $d=20$ in (1), we get
$2 a+29 \times 20=1600$
$\Rightarrow 2 a+580=1600$
$\Rightarrow 2 a=1600-580=1020$
$\Rightarrow a=510$
Thus, the value of the first installment is ₹510.
48. A contract on construction job specifies a penalty for delay of completion beyond a certain date as follows: ₹ 200 for the first day, ₹ 250 for the second day, ₹ 300 for the third day, etc. the penalty for each succeeding day being ₹50 more than for the preceding day. How much money the contractor has to pay as penalty, if he has delayed the work by 30 days?

Sol:

It is given that the penalty for each succeeding day is 50 more than for the preceding day, so the amount of penalties are in AP with common difference ₹50
Number of days in the delay of the work $=30$
The amount of penalties are ₹ 200 , ₹ 250 , ₹ $300, \ldots$ up to 30 terms.
\therefore Total amount of money paid by the contractor as penalty,
$S_{30}=₹ 200+₹ 250+₹ 300+$ \qquad up to 30 terms
Here, $a=₹ 200, d=₹ 50$ and $n=30$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{30}=\frac{30}{2}[2 \times 200+(30-1) \times 50]$
$=15(400-1450)$
$=15 \times 1850$
$=27750$
Hence, the contractor has to pay ₹27,750 as penalty

Exercise - Multiple Choice Questions

1. The common difference of the $\mathrm{AP} \frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{2}, \ldots . .$. is
(a) p (b) $-p$ (c) -1 (d) 1

Answer: (c) -1

Sol:

The given AP is $\frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{2}, \ldots \ldots .$.
\therefore Common difference, $d=\frac{1-p}{p}-\frac{1}{p}=\frac{1-p-1}{p}=\frac{-p}{p}=-1$
2. The common difference of the $\mathrm{AP} \frac{1}{3}, \frac{1-3 b}{3}, \frac{1-6 b}{3}, \ldots$. . is
(a) $\frac{1}{3}$ (b) $\frac{-1}{3}$ (c) b (d) - b

Answer: (d) -b
Sol:
The given AP is $\frac{1}{3}, \frac{1-3 b}{3}, \frac{1-6 b}{3}, \ldots \ldots$
\therefore Common difference, $d=\frac{1-3 b}{3}-\frac{1}{3}=\frac{1-3 b-1}{3}=\frac{-3 b}{3}=-b$
3. The next term of the AP $\sqrt{7}, \sqrt{28}, \sqrt{63}, \ldots$ is
(a) $\sqrt{70}$ (b) $\sqrt{84}$ (c) $\sqrt{98}$ (d) $\sqrt{112}$

Answer: (d) $\sqrt{112}$

Sol:

The given terms of the AP can be written as $\sqrt{7}, \sqrt{4 \times 7}, \sqrt{9 \times 7}, \ldots \ldots . . . i . e . ~ \sqrt{7}, 2 \sqrt{7}, 3 \sqrt{7}, \ldots \ldots$.
\therefore Next term $=4 \sqrt{7}=\sqrt{16 \times 7}=\sqrt{112}$
4. If $4, x_{1}, x_{2}, x_{3}, 28$ are in AP then x_{3}, ?
(a) 19 (b) 23 (c) 22 (d) cannot be determined

Answer: (c) 22
Sol:
Here, $a=4, l=28$ and $n=5$
Then, $T_{5}=28$
$\Rightarrow a+(n-1) d=28$
$\Rightarrow 4+(5-1) d=28$
$\Rightarrow 4 d=24$
$\Rightarrow d=6$
Hence, $x_{3}=28-6=22$
5. If the nth term of an AP is $(2 n+1)$ then the sum of its first three terms is
(a) $6 \mathrm{n}+3$ (b) 15 (c) 12 (d) 21

Answer: (b) 15
Sol:
nth term of the AP, $a_{n}=2 n+1$
(Given)
\therefore First term, $a_{1}=2 \times 1+1=2+1=3$
Second term, $a_{2}=2 \times 2+1=4+1=5$
Third term, $a_{3}=2 \times 3+1=6+1=7$
\therefore Sum of the first three terms $a_{1}+a_{2}+a_{3}=3+5+7=15$
6. The sum of first n terms of an AP is $\left(3 n^{2}+6 n\right)$. The common difference of the AP is (a) 6 (b) 9 (c) 15 (d) -3

Sol:
Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=3 n^{2}+6 n$
$\Rightarrow S_{n-1}=3(n-1)^{2}+6(n-1)$
$=3\left(n^{2}-2 n+1\right)+6(n-1)$
$=3 n^{2}-3$
So,
$n^{\text {th }}$ term of the AP, $a_{n}=S_{n}-S_{n-1}$
$=\left(3 n^{2}+6 n\right)-\left(3 n^{2}-3\right)$
$=6 n+3$
Let d be the common difference of the AP.
$\therefore d=a_{n}-a_{n-1}$
$=(6 n+3)-[6(n-1)+3]$
$=6 n+3-6(n-1)-3$
$=6$
Thus, the common difference of the AP is 6 .
7. The sum of first n terms of an AP is $\left(5 n-n^{2}\right)$. The nth term of the AP is
(a) $(5-2 n)(b)(6-2 n)(c)(2 n-5)(d)(2 n-6)$

Answer: (b) (6-2n)
Sol:
Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=5 n-n^{2}$
$\Rightarrow S_{n-1}=5(n-1)-(n-1)^{2}$
$=5 n-5-n^{2}+2 n-1$
$=7 n-n^{2}-6$
$\therefore n^{\text {th }}$ term of the AP, $a_{n}=S_{n}-S_{n-1}$
$=\left(5 n-n^{2}\right)-\left(7 n-n^{2}-6\right)$
$=6-2 n$
Thus, the nth term of the AP is $(6-2 n)$.
8. The sum of the first n terms of an AP is $\left(4 n^{2}+2 n\right)$. The nth term of this AP is (a) $(6 n-2)(b)(7 n-3)(c)(8 n-2)(d)(8 n+2)$

Answer: (c) ($8 \mathrm{n}-2$)

Sol:

Let S_{n} denotes the sum of first n terms of the AP.
$\therefore S_{n}=4 n^{2}+2 n$
$\Rightarrow S_{n-1}=4(n-1)^{2}+2(n-1)$
$=4\left(n^{2}-2 n+1\right)+2(n-1)$
$=4 n^{2}-6 n+2$
$\therefore n^{\text {th }}$ term of the AP, $a_{n}=S_{n}-S_{n-1}$
$=\left(4 n^{2}+2 n\right)-\left(4 n^{2}-6 n+2\right)$
$=8 n-2$
Thus, the $n^{\text {th }}$ term of thee AP is $(8 n-2)$
9. The $7^{\text {th }}$ term of an AP is -1 and its $16^{\text {th }}$ term is 17 . The nth term of the AP is (a) $(3 n+8)(b)(4 n-7)(c)(15-2 n)(d)(2 n-15)$

Answer: (d) ($2 \mathrm{n}-15$)

Sol:

Let a be the first term and d be the common difference of the AP. Then, nth term of the AP, $a_{n}=a+(n-1) d$
Now,
$a_{7}=-1 \quad$ (Given)
$\Rightarrow a+6 d=-1$
Also,
$a_{16}=17 \quad$ (Given)
$\Rightarrow a+15 d=17$
Subtracting (1) from (2), we get
$(a+15 d)-(a+6 d)=17-(-1)$
$\Rightarrow 9 d=18$
$\Rightarrow d=2$
Putting $d=2$ in (1), we get
$a+6 \times 2=-1$
$\Rightarrow a=-1-12=-13$
\therefore nth term of the AP, $a_{n}=-13+(n-1) \times 2=2 n-15$
10. The $5^{\text {th }}$ term of an AP is -3 and its common difference is -4 . The sum of the first 10 terms is
(a) 50 (b) -50 (c) 30 (d) -30

Answer: (b) -50

Sol:

Let a be the first term of the AP.
Here. $d=-4$
$a_{5}=-3 \quad$ (Given)
$\Rightarrow a+(5-1) \times(-4)=-3$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a-16=-3$
$\Rightarrow a=16-3=13$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 13+(10-1) \times(-4)]$
$=5 \times(26-36)$
$=5 \times(-10)$
$=-50$
Thus, the sum of its first 10 terms is -50 .
11. The $5^{\text {th }}$ term of an AP is 20 and the sum of its $7^{\text {th }}$ and $11^{\text {th }}$ terms is 64 . The common difference of the AP is
(a) 4 (b) 5 (c) 3 (d) 2

Answer: (c) 3
Sol:
Let a be the first term and d be the common difference of the AP. Then,

$$
a_{5}=20
$$

$\Rightarrow a+(5-1) d=20$ $\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+4 d=20$
Now,
$a_{7}+a_{11}=64 \quad$ (Given)
$\Rightarrow(a+6 d)+(a+10 d)=64$
$\Rightarrow 2 a+16 d=64$
$\Rightarrow a+8 d=32$
From (1) and (2), we get
$20-4 d+8 d=32$
$\Rightarrow 4 d=32-20=12$
$\Rightarrow d=3$

Thus, the common difference of the AP is 3 .
12. The $13^{\text {th }}$ term of an AP is 4 times its $3^{\text {rd }}$ term. If its $5^{\text {th }}$ term is 16 then the sum of its first ten terms is
(a) 150 (b)
(b) 175 (c) 160 (
(d) 135

Answer: (b) 175

Sol:

Let a be the first term and d be the common difference of the AP. Then,
$a_{13}=4 \times a_{3}$ (Given)
$\Rightarrow a+12 d=4(a+2 d)$

$$
\left[a_{n}=a+(n-1) d\right]
$$

$\Rightarrow a+12 d=4 a+8 d$
$\Rightarrow 3 a=4 d$
Also
$a_{5}=16$
(Given)
$\Rightarrow a+4 d=16$
Solving (1) and (2), we get
$a+3 a=16$
$\Rightarrow 4 a=16$
$\Rightarrow a=4$
Putting $a=4$ in (1), we get
$4 d=3 \times 4=12$
$\Rightarrow d=3$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{10}=\frac{10}{2}[2 \times 4+(10-1) \times 3]$
$=5 \times(8+27)$
$=5 \times 35$
$=175$
Thus, the sum of its first 10 terms is 175 .
13. An AP $5,12,9, \ldots$ has 50 terms. Its last term is
(a) 343
(b) 353 (c) 348
(d) 362

Answer: (c) 348

Sol:

The given AP is $5,12,19, \ldots \ldots$
Here, $a=5, d=12-5=7$ and $n=50$

Since there are 50 terms in the AP, so the last term of the AP is a_{50}.
$a_{50}=5+(50-1) \times 7 \quad\left[a_{n}=a+(n-1) d\right]$
$=5+343$
$=348$
Thus, the last term of the AP is 348.
14. The sum of the first 20 odd natural numbers is
(a) 100 (b) 210 (c) 400 (d) 420

Answer: (c) 400
Sol:
The first 20 odd natural numbers are $1,3,5, . ., 39$.
These numbers are in AP.
Here. $\mathrm{a}=1, l=39$ and $\mathrm{n}=20$
\therefore Sum of first 20 odd natural numbers
$=\frac{20}{2}(1+39) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=10 \times 40$
$=400$
15. The sum of first 40 positive integers divisible by 6 is
(a) 2460
(b) 3640
(c) 4920 (d) 4860

Answer: (c) 4920

Sol:

The positive integers divisible by 6 are $6,12,18, \ldots$.
This is an AP with $a=6$ and $d=6$.
Also, $n=40$ (Given)
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{40}=\frac{40}{2}[2 \times 6+(40-1) \times 6]$
$=20(12+234)$
$=20 \times 246$
$=4920$
Thus, the required sum is 4920
16. How many two digit numbers are divisible by 3 ?
(a) 25
(b) 30 (c) 32 (d) 36

Answer: (b) 30

Sol:

The two-digit numbers divisible by 3 are $12,15,18, \ldots \ldots 99$.
Clearly, these number are in AP.
Here, $a=12$ and $d=15-12=3$
Let this AP contains n terms. Then.
$a_{n}=99$
$\Rightarrow 12+(n-1) \times 3=99 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 3 n+9=99$
$\Rightarrow 3 n=99-9=90$
$\Rightarrow n=30$
Thus, there are 30 two-digit numbers divisible by 3 .
17. How many three-digit number are divisible by 9 ?
(a) 86
(b) 90 (c)
(c) 96
(d) 100

Answer: (d) 100
Sol:
The three-digit numbers divisible by 9 are $108,117,126, \ldots 999$.
Clearly, these numbers are in AP.
Here, $a=108$ and $d=117-108=9$
Let this AP contains n terms. Then,

$$
a_{n}=999
$$

$\Rightarrow 108+(n-1) \times 9=999$
$\Rightarrow 9 n+99=999$
$\Rightarrow 9 n=999-99=900$
$\Rightarrow n=100$
Thus, there are 100 three-digit numbers divisible by 9 .
18. What is the common difference of an AP in which $a_{18}-a_{14}=32$?
(a) 8 (b) -8 (c) 4 (d) -4

Answer: (a) 8

Sol:

Let a be the first term and d be the common difference of the AP. Then.
$a_{18}-a_{14}=32$
$\Rightarrow(a+17 d)-(a+13 d)=32 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow 4 d=32$
$\Rightarrow d=8$
Thus, the common difference of the AP is 8 .
19. If a_{n} denotes the nth term of the AP $3,8,13,18, \ldots$ then what is the value of $\left(a_{30}-a_{20}\right)$?

$$
\text { (a) } 40 \text { (b) } 36 \text { (c) } 50 \text { (d) } 56
$$

Answer: (c) 50

Sol:

The given AP is $3,8,13,18 \ldots$.
Here, $a=3$ and $d=8-3=5$
$\therefore a_{30}-a_{20}$
$=[3+(30-1) \times 5]-[3+(20-1) \times 5] \quad\left[a_{n}=a+(n-1) d\right]$
$=148-98$
$=50$
Thus, the required value is 50 .
20. Which term of the AP $72,63,54, \ldots$ is 0 ?
(a) $8^{\text {th }}$
(b) $9^{\text {th }}$ (c) $10^{\text {th }}$
(d) $11^{\text {th }}$

Answer: (b) $9^{\text {th }}$
Sol:
The given AP is $72,63,54, \ldots .$.
Here, $a=72$ and $d=63-72=-9$
Suppose nth term of the given AP is 0 . Then.
$a_{n}=0$
$\Rightarrow 72+(n-1) \times(-9)=0 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-9 n+81=0$
$\Rightarrow n=\frac{81}{9}=9$
Thus, the 9th term of the given AP is 0 .
21. Which term of the AP $25,20,15, \ldots$ is the first negative term?
(a) $10^{\text {th }}$ (b) $9^{\text {th }}$ (c) $8^{\text {th }}$ (d) $7^{\text {th }}$

Answer: (d) $7^{\text {th }}$

Sol:

The given AP is $25,20,15, \ldots \ldots$
Here, $a=25$ and $d=20-25=-5$
Let the nth term of the given AP be the first negative term. Then,

$$
\begin{aligned}
& a_{n}<0 \\
& \Rightarrow 25+(n-1) \times(-5)<0 \quad\left[a_{n}=a+(n-1) d\right] \\
& \Rightarrow 30-5 n<0 \\
& \Rightarrow-5 n<-30
\end{aligned}
$$

$\Rightarrow n>\frac{30}{5}=6$
$\therefore n=7$
Thus, the 7th term is the first negative term of the given AP.
22. Which term of the AP $21,42,63,84, \ldots$ is 210 ?
(a) $9^{\text {th }}$ (b) $10^{\text {th }}$ (c) $11^{\text {th }}$ (d) $12^{\text {th }}$

Answer: (b) $10^{\text {th }}$
Sol:
Here, $a=21$ and $d=(42-21)=21$
Let 210 be the nth term of the given AP.
Then, $T_{n}=210$
$\Rightarrow a+(n-1) d=210$
$\Rightarrow 21+(n-1) \times 21=210$
$\Rightarrow 21 n=210$
$\Rightarrow n=10$
Hence, 210 is the $10^{\text {th }}$ term of the AP.
23. What is $20^{\text {th }}$ term form the end of the AP $3,8,13, \ldots ., 253$?
(a) 163 (b) 158 (c) 153 (d) 148

Answer: (b) 158

Sol:

The given AP is $3,8,13, \ldots, 253$.
Let us re-write the given AP in reverse order i.e. $253,248, . ., 13,8,3$.
Now, the 20th term from the end of the given AP is equal to the 20th term from beginning of the AP 253, 248,. 13, 8, 3.
Consider the AP 253, 248,.... 13, 8, 3 .
Here, $a=253$ and $d=248-253=-5$
$\therefore 20$ th term of this AP
$=253+(20-1) \times(-5)$
$=253-95$
$=158$
Thus, the 20th term from the end of the given AP is 158.
24. $(5+13+21+\ldots+181)=$?
(a) 2476 (b) 2337 (c) 2219 (d) 2139

Answer: (d) 2139
Sol:

Here, $a=5, d=(13-5)=8$ and $l=181$
Let the number of terms be n.
Then, $T_{n}=181$
$\Rightarrow a+(n-1) d=181$
$\Rightarrow 5+(n-1) \times 8=181$
$\Rightarrow 8 n=184$
$\Rightarrow n=23$
\therefore Required sum $=\frac{n}{2}(a+l)$
$=\frac{23}{2}(5+181)=23 \times 93=2139$
Hence, the required sum is 2139 .
25. The sum of first 16 terms of the AP $10,6,2, \ldots$ is
(a) 320 (b) -320 (c) -352 (d) -400

Answer: (b) -320
Sol:
Here, $a=10, d=(6-10)=-4$ and $n=16$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{16}=\frac{16}{2}[2 \times 10+(16-1) \times(-4)]$
$[\because a=10, d=-4$ and $n=16]$
$=8 \times[20-60]=8 \times(-40)=-320$
Hence, the sum of the first 16 terms of the given AP is -320 .
26. How many terms of the AP $3,7,11,15, \ldots$ will make the sum 406 ?
(a) 10 (b) 12 (c) 14 (d) 20

Answer: (c) 14

Sol:

Here, $a=3$ and $d=(7-3)=4$
Let the sum of n terms be 406 .
Then, we have:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=406$
$\Rightarrow \frac{n}{2}[2 \times 3+(n-1) \times 4]=406$
$\Rightarrow n[3+2 n-2]=406$
$\Rightarrow 2 n^{2}-28 n+29 n-406$
$\Rightarrow 2 n^{2}+n-406=0$
$\Rightarrow 2 n^{2}-28 n+29 n-406=0$
$\Rightarrow 2 n(n-14)+29(n-14)=0$
$\Rightarrow(2 n+29)(n-14)=0$
$\Rightarrow n=14 \quad(\because n$ can't be a fraction)
Hence, 14 terms will make the sum 406.
27. The $2^{\text {nd }}$ term of an AP is 13 and $5^{\text {th }}$ term is 25 . What is its 17 term?
(a) 69 (b) 73 (c) 77 (d) 81

Answer: (b) 73
Sol:
$T_{2}=a+d=13$
$T_{5}=a+4 d=25$
On subtracting (i) from (ii), we get:
$\Rightarrow 3 d=12$
$\Rightarrow d=4$
On putting the value of d in (i), we get:
$\Rightarrow a+4=13$
$\Rightarrow a=9$
Now, $T_{17}=a+16 d=9+16 \times 4=73$
Hence, the $17^{\text {th }}$ term is 73 .
28. The $17^{\text {th }}$ term of an AP exceeds its $10^{\text {th }}$ term by 21 . The common difference of the AP is
(a) 3 (b) 2 (c) -3 (d) -2

Answer: (a) 3
Sol:
$T_{10}=a+9 d$
$T_{17}=a+16 d$
Also, $a+16 d=21+T_{10}$
$\Rightarrow a+16 d=21+9 d$
$\Rightarrow 7 d=21$
$\Rightarrow d=3$
Hence, the common difference of the AP is 3 .
29. The $8^{\text {th }}$ term of an AP is 17 and its $14^{\text {th }}$ term is 29 . The common difference of the AP is
(a) 3 (b) 2 (c) 5 (d) -2

Answer: (b) 2
Sol:
$T_{8}=a+7 d=17$
$T_{14}=a+13 d=29$
On subtracting (i) from (ii), we get:
$\Rightarrow 6 d=12$
$\Rightarrow d=12$
Hence, the common difference is 2 .
30. The $7^{\text {th }}$ term of an AP is 4 and its common difference is -4 . What is its first term?
(a) 16 (b) 20 (c) 24 (d) 28

Answer: (d) 28
Sol:
$T_{7}=a+6 d$
$\Rightarrow a+6 \times(-4)=4$
$\Rightarrow a=4+24=28$
Hence, the first term us 28.

