9. Quadrilaterals and Parallelograms

Exercise 9A

1. Question

Three angles of a quadrilateral measure $56^{\circ}, 115^{\circ}$ and 84°. Find the measure of the fourth angle.

Answer

Let the measure of the fourth angle be xo.
Since the sum of the angles of a quadrilateral is 360°, we have:
$\therefore 56^{\circ}+115^{\circ}+84^{\circ}+\mathrm{x}^{\circ}=360^{\circ}$
$\therefore 255^{\circ}+\mathrm{x}^{\circ}=360^{\circ}$
$\therefore \mathrm{x}^{\circ}=105^{\circ}$
Hence, the measure of the fourth angle is 105°.

2. Question

The angles of a quadrilateral are in the ratio $2: 4: 5: 7$. Find the angles.

Answer

Our given ratio of angles is $2: 4: 5: 7$. Let common multiplying factor be x°.
Hence, $\angle A=2 x^{\circ}, \angle B=4 x^{\circ}, \angle C=5 x^{\circ}$ and $\angle D=7 x^{\circ}$
Since the sum of the angles of a quadrilateral is 360°, we have:
$\therefore 2 \mathrm{x}+4 \mathrm{x}+5 \mathrm{x}+7 \mathrm{x}=360^{\circ}$
$\therefore 18 \mathrm{x}=360^{\circ}$
$\therefore \mathrm{x}=20^{\circ}$
$\therefore \angle A=40^{\circ} ; \angle B=80^{\circ} ; \angle C=100^{\circ} ; \angle D=140^{\circ}$
Hence, the measure of the angles are $40^{\circ}, 80^{\circ}, 100^{\circ}$ and 140°

3. Question

In the adjoining figure, $A B C D$ is a trapezium in which $A B \| D C$. If $\angle A=55^{\circ}$ and $\angle B=70^{\circ}$, find $\angle C$ and $\angle D$.

Answer

Here given that $A B C D$ is trapezium where $A B|\mid D C$.
We observe that $\angle \mathrm{A}$ and $\angle \mathrm{D}$ are the interior angles on the same side of transversal line $A D$, whereas $\angle B$ and $\angle C$ are the interior angles on the same side of transversal line $B C$.

As $\angle A$ and $\angle D$ are interior angles, we have,
$\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$\therefore \angle \mathrm{D}=180^{\circ}-\angle \mathrm{A}$
$\therefore \angle \mathrm{D}=180^{\circ}-55^{\circ}=125^{\circ}$
Similarly for $\angle \mathrm{B}$ and $\angle \mathrm{C}$,
$\angle B+\angle C=180^{\circ}$
$\therefore \angle C=180^{\circ}-\angle B$
$\therefore \angle \mathrm{C}=180^{\circ}-70^{\circ}=110^{\circ}$
Hence, measure of $\angle \mathrm{D}$ and $\angle \mathrm{C}$ are 125° and 110° respectively.

4. Question

In the adjoining figure, $A B C D$ is a square and $\triangle E D C$ is an equilateral triangle. Prove that
(i) $\mathrm{AE}=\mathrm{BE}$ (ii) $\angle \mathrm{DAE}=15^{\circ}$

Answer

(i) Here it is given that in $A B C D$ is a square and $\triangle E D C$ is an equilateral triangle.

Hence, we say that $A B=B C=C D=D A$ and $E D=E C=D C$
Now in $\triangle A D E$ and $\triangle B C E$, we have,
$A D=B C$... given
$D E=E C$... given
$\angle A D E=\angle B C E .$.
as both angles are sum of 60° and 90°
$\therefore \triangle A D E \cong \triangle B C E$
Now by cpct,
$A E=B E \ldots(1)$
(ii) Here $\angle \mathrm{ADE}=90^{\circ}+60^{\circ}=150^{\circ}$

DA = DC ... given
$D C=D E$... given
$\therefore \mathrm{DA}=\mathrm{DE}$
This means that sides of square and triangles are equal.
$\therefore \triangle A D E$ and $\triangle B C E$ are isosceles triangles.
Hence, $\angle \mathrm{DAE}=\angle \mathrm{DEA}=\frac{1}{2}\left(180^{\circ}-150^{\circ}\right)=30^{\circ} / 2=15^{\circ}$

5. Question

In the adjoining figure, $B M \perp A C$ and $D N \perp A C$. If $B M=D N$, prove that $A C$ bisects $B D$.

Answer

Given: In $A B C D$, in which $B M \perp A C$ and $D N \perp A C$ and $B M=D N$.
To prove: $A C$ bisects $B D$ ie. $D O=B O$
Proof:
Now, in \triangle OND and $\triangle O M B$, we have,
$\angle O N D=\angle O M B . .90^{\circ}$ each
$\angle D O N=\angle B O M$...Vertically opposite angles
Also, DN = BM ...Given Hence, by AAS congruence rule,
$\triangle \mathrm{OND} \cong \triangle \mathrm{OMB}$
$\therefore \mathrm{OD}=\mathrm{OB} . . . \mathrm{CPCT}$
Hence, AC bisects BD.

6. Question

In the given figure, $A B C D$ is a quadrilateral in which $A B=A D$ and $B C=D C$. Prove that
(i) $A C$ bisects $\angle A$ and $\angle C$,
(ii) $B E=D E$,
(iii) $\angle A B C=\angle A D C$.

Answer

Given: In $A B C D, A B=A D$ and $B C=D C$.
To prove: (i) $A C$ bisects $\angle A$ and $\angle C$,
(ii) $B E=D E$,
(iii) $\angle A B C=\angle A D C$.

Proof:
(i) In $\triangle A B C$ and $\triangle A D C$, we have,
$A B=A D$...given
$B C=D C$...given
$A C=A C \ldots$ common side
Hence, by SSS congruence rule,
$\triangle A B C \cong \triangle A D C$
$\therefore \angle B A C=\angle D A C$ and $\angle B C A=\angle D C A ~ . . . B y ~ c p c t$
Thus, $A C$ bisects $\angle A$ and $\angle C$.
(ii) Now, in $\triangle A B E$ and $\triangle A D E$, we have,
$A B=A D$...given
$\angle B A E=\angle D A E$...from i
$A E=A E$...common side
Hence, by SAS congruence rule,
$\triangle \mathrm{ABE} \cong \triangle \mathrm{ADE}$
$\therefore \mathrm{BE}=\mathrm{DE} . . . \mathrm{by} \mathrm{cpct}$
(iii) $\triangle A B C \cong \triangle A D C$ from ii
$\therefore \angle \mathrm{ABC}=\angle \mathrm{ADC} .$. by cpct

7. Question

In the given figure, $A B C D$ is a square and $\angle P Q R=90^{\circ}$. If $P B=Q C=D R$, prove that
(i) $Q B=R C$, (ii) $P Q=Q R$,
(iii) $\angle Q P R=45^{\circ}$.

Answer

Given: $A B C D$ is where $\angle P Q R=90^{\circ}$. and $P B=Q C=D R$,
To prove: (i) $Q B=R C$, (ii) $P Q=Q R$,
(iii) $\angle Q P R=45^{\circ}$.

Proof:
(i) Here,
$B C=C D$...Sides of square
$C Q=D R \ldots$ Given
$B C=B Q+C Q$
$\therefore \mathrm{CQ}=\mathrm{BC}-\mathrm{BQ}$
$\therefore \mathrm{DR}=\mathrm{BC}-\mathrm{BQ}$.
Also,
$C D=R C+D R$
$\therefore D R=C D-R C=B C-R C$.
From (1) and (2), we have,
$B C-B Q=B C-R C$
$\therefore \mathrm{BQ}=\mathrm{RC}$
(ii) Now in $\triangle R C Q$ and $\triangle Q B P$, we have,
$P B=Q C$...Given
$B Q=R C \ldots$ from (i)
$\angle R C Q=\angle Q B P . .90^{\circ}$ each
Hence by SAS congruence rule,
$\triangle R C Q \cong \triangle Q B P$
$\therefore \mathrm{QR}=\mathrm{PQ} .$. by cpct
(iii) $\triangle R C Q \cong \triangle Q B P$ and $Q R=P Q \ldots$ from (ii)
\therefore In $\triangle R P Q$,
$\angle \mathrm{QPR}=\angle \mathrm{QRP}=\frac{1}{2}\left(180^{\circ}-90^{\circ}\right)=\frac{90^{\circ}}{2}=45^{\circ}$
$\therefore \angle \mathrm{QPR}=45^{\circ}$

8. Question

If is a point within a quadrilateral $A B C D$, show that $O A+O B+O C+O D>A C+B D$.

Answer

Given: In $A B C D, O$ is any point within the quadrilateral.
To prove: $O A+O B+O C+O D>A C+B D$.
Proof:

We know that the sum of any two sides of a triangle is greater than the third side. So, in $\triangle A O C$, $O A+O C>A C \ldots(1)$

Also, in $\triangle B O D$,
$O B+O D>B D$.
Adding 1 and 2, we get,
$(O A+O C)+(O B+O D)>(A C+B D)$
$\therefore O A+O B+O C+O D>A C+B D$

Hence proved.

9. Question

In the adjoining figure, $A B C D$ is a quadrilateral and $A C$ is one of its diagonals. Prove that:
(i) $A B+B C+C D+D A>2 A C$
(ii) $A B+B C+C D>D A$
(iii) $A B+B C+C D+D A>A C+B D$

Answer

Given: In $A B C D, A C$ is one of diagonals.
To prove:
(i) $A B+B C+C D+D A>2 A C$
(ii) $A B+B C+C D>D A$
(iii) $A B+B C+C D+D A>A C+B D$

Proof:
(i) We know that the sum of any two sides of a triangle is greater than the third side.In $\triangle A B C$,
$A B+B C>A C \ldots(1)$
In $\triangle A C D$,
$C D+D A>A C \ldots(2)$
Adding (1) and (2), we get,
$A B+B C+C D+D A>2 A C$
(ii) In $\triangle A B C$, we have,
$A B+B C>A C$.
We also know that the length of each side of a triangle is greater than the positive difference of the length of the other two sides.

In $\triangle A C D$, we have:
$A C>D A-C D$
From (1) and (2), we have,
$A B+B C>D A-C D$
$\therefore A B+B C+C D>D A$
(ii) In $\triangle A B C$,
$A B+B C>A C \ldots(1)$
In $\triangle A C D$,
$C D+D A>A C \ldots(2)$
In $\triangle B C D$,
$B C+C D>B D$
In $\triangle A B D$,
$D A+A B>B D$
Adding 1, 2, 3 and 4, we get,
$2(A B+B C+C D+D A)>2(A C+B D)$
$\therefore A B+B C+C D+D A>A C+B D$

10. Question

Prove that the sum of all the angles of a quadrilateral is 360°.

Answer

Given: Consider a PQRS where QS is diagonal.
To prove: $\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{S}=360^{\circ}$

Proof:

For $\triangle \mathrm{PQS}$, we have,
$\angle \mathrm{P}+\angle \mathrm{PQS}+\angle \mathrm{PSQ}=180^{\circ}$
(1) ...Using Angle sum property of Triangle

Similarly, in $\triangle Q R S$, we have,
$\therefore \angle \mathrm{SQR}+\angle \mathrm{R}+\angle \mathrm{QSR}=180^{\circ}$
(2) ...Using Angle sum property of Triangle

On adding (1) and (2), we get
$\angle \mathrm{P}+\angle \mathrm{PQS}+\angle \mathrm{PSQ}+\angle \mathrm{SQR}+\angle \mathrm{R}+\angle \mathrm{QSR}=180^{\circ}+180^{\circ}$
$\therefore \angle \mathrm{P}+\angle \mathrm{PQS}+\angle \mathrm{SQR}+\angle \mathrm{R}+\angle \mathrm{QSR}+\angle \mathrm{PSQ}=360^{\circ}$
$\therefore \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{S}=360^{\circ}$
\therefore The sum of all the angles of a quadrilateral is 360°.

Exercise 9B

1. Question

In the adjoining figure, $A B C D$ is a parallelogram in which $\angle A=72^{\circ}$. Calculate $\angle B, \angle C$ and $\angle D$.

Answer

In $A B C D, \angle A=72^{\circ}$
We know that opposite angles of a parallelogram are equal.
Hence, $\angle A=\angle C$ and $\angle B=\angle D$
$\therefore \angle C=72^{\circ}$
$\angle A$ and $\angle B$ are adjacent angles.
$\therefore \angle A+\angle B=180^{\circ}$
$\angle B=180^{\circ \circ}-\angle A$
$\angle B=180^{\circ}-72^{\circ}=108^{\circ}$
$\therefore \angle B=\angle D=108^{\circ}$
Hence, $\angle B=\angle D=108^{\circ}$ and $\angle C=72^{\circ}$

2. Question

In the adjoining figure, $A B C D$ is a parallelogram in which $\angle D A B=80^{\circ}$ and $\angle D B C=60^{\circ}$. Calculate $\angle C D B$ and $\angle A D B$.

Answer

It is given that $A B C D$ is parallelogram and $\angle D A B=80^{\circ}$ and $\angle D B C=60^{\circ}$

We need to find measure of $\angle C D B$ and $\angle A D B$
In $A B C D, A D \| B C, B D$ as transversal,
$\angle D B C=\angle A D B=60^{\circ}$...Alternate interior angles
As $\angle D A B$ and $\angle A D C$ are adjacent angles,
$\angle D A B+\angle A D C=180^{\circ}$
$\therefore \angle A D C=180^{\circ \circ}-\angle D A B$
$\angle A D C=180^{\circ}-80^{\circ}=100^{\circ}$
Also,
$\angle A D C=\angle A D B+\angle C D B$
$\therefore \angle A D C=100^{\circ}$
$\angle A D B+\angle C D B=100^{\circ}$
From (i) and (ii), we get:
$60^{\circ}+\angle C D B=100^{\circ}$
$\Rightarrow \angle C D B=100^{\circ}-60^{\circ}=40^{\circ}$
Hence, $\angle C D B=40^{\circ}$ and $\angle A D B=60^{\circ}$

3. Question

In the adjoining figure, $A B C D$ is a parallelogram in which $\angle A=60^{\circ}$. If the bisectors of $\angle A$ and $\angle B$ meet $D C$ at P, prove that
(i) $\angle A P B=90^{\circ}$, (ii) $A D=D P$ and $P B=P C=B C$, (iii) $D C=2 A D$.

Answer

Given: $A B C D$ is a parallelogram. The bisectors of $\angle A$ and $\angle B$ meet $D C$ at P_{1}.
To prove: (i) $\angle A P B=90^{\circ}$, (ii) $A D=D P$ and $P B=P C=B C$, (iii) $D C=2 A D$.
Proof:
$\therefore \angle A=\angle \mathrm{C}$ and $\angle B=\angle \mathrm{D} .$. Opposite angles
And $\angle A+\angle B=180^{\circ} \ldots$ Adjacent angles
$\therefore \angle B=180^{\circ}-\angle A$
$180^{\circ}-60^{\circ}=120^{\circ} \ldots$ as $\angle A=60^{\circ}$
$\therefore \angle A=\angle \mathrm{C}=60^{\circ}$ and $\angle B=\angle \mathrm{D}=120^{\circ}$
(i) In $\triangle A P B$,
$\angle P A B=\frac{60^{\circ}}{2}=30^{\circ}$ and $\angle P B A=\frac{120^{\circ}}{2}=60^{\circ}$
$\therefore \angle A P B=180^{\circ}-\left(30^{\circ}+60^{\circ}\right)=90^{\circ}$
(ii) In $\triangle A D P, \angle P A D=30^{\circ}$ and $\angle A D P=120^{\circ}$
$\therefore \angle A P B=180^{\circ}-\left(30^{\circ}+120^{\circ}\right)=30^{\circ}$
Hence,
$\angle P A D=\angle A P B=30^{\circ}$
Hence, $\triangle A D P$ is an isosceles triangle and $A D=D P$.In $\triangle P B C$,
$\angle \mathrm{PBC}=60^{\circ}$
$\angle B P C=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$ and $\angle B C P=60^{\circ}$... Opposite angle of $\angle A$
$\therefore \angle P B C=\angle B P C=\angle B C P$
Hence, $\triangle P B C$ is an equilateral triangle and, therefore, $P B=P C=B C$.
(iii) $D C=D P+P C$

From (ii), we have

$$
\begin{aligned}
& D C=A D+B C \ldots A D=B C D C=A D+A D \\
& D C=2 A D
\end{aligned}
$$

4. Question

In the adjoining figure, $A B C D$ is a parallelogram in which $\angle B A O=35^{\circ}, \angle D A O=40^{\circ}$ and $\angle C O D=105^{\circ}$.
Calculate (i) $\angle A B O$, (ii) $\angle O D C$, (iii) $\angle O D C$, (iv) $\angle C B D$.

Answer
In $A B C D, \angle B A O=35^{\circ}, \angle D A O=40^{\circ}$ and $\angle C O D=105^{\circ}$.
(i) In $\triangle A O B$,
$\angle B A O=35^{\circ}$
$\angle A O B=\angle C O D=105^{\circ}$...Vertically opposite angels
$\therefore \angle A B O=180^{\circ}-\left(35^{\circ}+105^{\circ}\right)=40^{\circ} \ldots$ Using Angle sum property of Triangle
(ii) $\angle O D C$ and $\angle A B O$ are alternate angles for transversal $B D$
$\therefore \angle O D C=\angle A B O=40^{\circ}$
(iii) $\angle A C B=\angle C A D=40^{\circ \circ}$...Alternate angles for transversal AC
(iv) $\angle C B D=\angle A B C-\angle A B D$
$\angle A B C=180^{\circ}-\angle B A D$...Adjacent angles are supplementary
$\angle A B C=180^{\circ}-75^{\circ}=105^{\circ}$
$\angle C B D=105^{\circ}-\angle A B D$... as $\angle A B D=\angle A B O$
$\angle C B D=105^{\circ}-40^{\circ}=65^{\circ}$

5. Question

In a||gm $A B C D$, if $\angle A=(2 x+25)^{\circ}$ and $\angle B=(3 x-5)^{\circ}$, find the value of x and the measure of each angle of the parallelogram.

Answer

It is given that in ABCD, $\angle A=(2 x+25)^{\circ}$ and $\angle B=(3 x-5)^{\circ}$,
We know that opposite angles of parallelogram are equal.
$\therefore \angle A=\angle C$ and $\angle B=\angle D$
Also,
$\angle A+\angle B=180^{\circ}$...Adjacent angles of parallelogram are supplementary
$\therefore(2 x+25)^{\circ}+(3 x-5)^{\circ}=180^{\circ}$
$5 x^{\circ}+20^{\circ}=180^{\circ}$
$5 x^{\circ}=160^{\circ}$
$x^{\circ}=32^{\circ}$
$\therefore \angle A=2 \times 32+25=89^{\circ}$
$\therefore \angle B=3 \times 32-5=91^{\circ}$
Hence, $x=32^{\circ}, \angle A=\angle C=89^{\circ}$ and $\angle B=\angle \mathrm{D}=91^{\circ}$

6. Question

If an angle of a parallelogram is four-fifths of its adjacent angle, find the angles of the parallelogram.

Answer

Let $A B C D$ be the parallelogram.
We know that opposite angles of parallelogram are equal.
$\therefore \angle A=\angle C$ and $\angle B=\angle D B y$ given conditions,

Let $\angle A=x^{\circ}$ and $\angle B=\frac{4 x^{0}}{5}$

Also, adjacent angles of parallelogram are supplementary,
$\therefore x^{\circ}+\frac{4 \mathrm{x}^{a}}{5}=180^{\circ}$
$\frac{9 x^{\circ}}{5}=180^{\circ}$
$\therefore \mathrm{x}=100^{\circ}$
Hence, $\angle A=100^{\circ}$ and $\angle B=\frac{4 \times 100^{\circ}}{5}=80^{\circ}$

Hence, $\angle A=\angle C=100^{\circ} ; \angle B=\angle D=80^{\circ}$

7. Question

Find the measure of each angle of a parallelogram, if one of its angles is 30° less than twice the smallest angle.

Answer

Let $A B C D$ be the parallelogram.
We know that opposite angles of parallelogram are equal.
$\therefore \angle A=\angle C$ and $\angle B=\angle D$
Let $\angle A$ be the smallest angle whose measure is x°.
$\therefore \angle B=(2 x-30)^{\circ}$
We know that adjacent angles of parallelogram are supplementary,
$\angle A+\angle B=180^{\circ}$
$x+2 x-30^{\circ}=180^{\circ}$
$3 x=210^{\circ}$
$x=70^{\circ}$
$\therefore \angle B=2 \times 70^{\circ}-30^{\circ}=110^{\circ}$
Hence, $\angle A=\angle C=70^{\circ}$ and $\angle B=\angle D=110^{\circ}$

8. Question

$A B C D$ is a parallelogram in which $A B=9.5 \mathrm{~cm}$ and its perimeter is 30 cm . Find the length of each side of the parallelogram.

Answer

Here $A B C D$ is parallelogram.
We know that the opposite sides of a parallelogram are parallel and equal.
Hence, $A B=D C=9.5 \mathrm{~cm}$
Also let $B C=A D=x \mathrm{~cm}$
Now,
Perimeter of $A B C D=30 \mathrm{~cm} .$. (given)
$\therefore A B+B C+C D+D A=30 \mathrm{~cm}$
$\therefore 9.5+x+9.5+x=30$
$\therefore 19+2 x=30$
$\therefore 2 x=11$
$\therefore x=5.5 \mathrm{~cm}$
Hence, length of each side is $A B=D C=9.5 \mathrm{~cm}$ and $B C=D A=5.5 \mathrm{~cm}$

9. Question

In each of the figures given below, $A B C D$ is a rhombus. Find the value of x and y in each case.

(i)

(ii)

(iii)

Answer

(i) $A B C D$ is a rhombus.

We know that rhombus is type of parallelogram whose all sides are equal.
In $\triangle A B C, \angle B A C=\angle B C A=\frac{1}{2}\left(180^{\circ}-110^{\circ}\right)=35^{\circ}$

Hence $x=35^{\circ}$
But AB || DC ...opposite sides of rhombus are parallel
$\angle B A C=\angle D C A$...for transversal $A C$
$\therefore \angle B A C=\angle D C A=35^{\circ}$
Hence, $x=y=35^{\circ}$
(ii) $A B C D$ is a rhombus.

We know that the diagonals of a rhombus are perpendicular bisectors of each other.
\therefore in $\triangle A O B$,
$\angle O A B=40^{\circ}, \angle A O B=90^{\circ}$
$\therefore \angle A B O=180^{\circ}-\left(40^{\circ}+90^{\circ}\right)=50^{\circ}$
Hence $x=50^{\circ}$
Now in $\triangle D A B$,
$A B=A D \ldots$ as rhombus has all sides equal.
ie. $\triangle A O B$ is isosceles triangle.
Also base angles of isosceles triangle are equal.
Hence, $x=y=50^{\circ}$
(iii) $A B C D$ is a rhombus.

We know that rhombus is type of parallelogram whose all sides are equal.
So in $\triangle D C B$,
$D C=B C$
$\therefore \angle C D B=\angle C B D=\mathrm{y}^{\circ}$ base angles of isosceles triangle are equal.
Now, $\mathrm{x}=\angle C A B$...alternate angles with transversal $A C$
$\therefore \mathrm{x}=\frac{1}{2} \angle B A D$
$\therefore x=\frac{1}{2} \times 62^{\circ}$
$\therefore x=31^{\circ}$
In $\triangle D O C$,
We know sum of angles of triangle is 180°
$\angle C D O+\angle D O C+\angle O C D=180^{\circ}$
$\therefore \angle C D O+90^{\circ}+31^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{CDO}=59^{\circ}$
$\therefore \mathrm{y}=59^{\circ}$
Hence, $x=31^{\circ}$ and $y=59^{\circ}$

10. Question

The lengths of the diagonals of a rhombus are 24 cm and 18 cm respectively. Find the length of each side of the rhombus.

Answer

Let $A B C D$ be rhombus.

Here, $A C$ and $B D$ are the diagonals of $A B C D$, where $A C=24 \mathrm{~cm}$ and $B D=18 \mathrm{~cm}$.
Let the diagonals intersect each other at O .
We know that the diagonals of a rhombus are perpendicular bisectors of each other.
$\therefore \triangle A O B$ is a right angle triangle in which $O A=\frac{24}{2}=12 \mathrm{~cm}$ and $O B=\frac{18}{2}=9 \mathrm{~cm}$.

Now, $A B^{2}=O A^{2}+O B^{2} \ldots$ Pythagoras theorem
$\therefore A B^{2}=(12)^{2}+(9)^{2}$
$\therefore A B^{2}=144+81=225$
$\therefore A B=15 \mathrm{~cm}$
Hence, the side of the rhombus is 15 cm

11. Question

Each side of a rhombus is 10 cm long and one of its diagonals measures 16 cm . Find the length of the other diagonal and hence find the area of the rhombus.

Answer

Let $A B C D$ be rhombus.

We know that rhombus is type of parallelogram whose all sides are equal.
$\therefore A B=B C=C D=D A=10 \mathrm{~cm}$
Let the diagonals $A C$ and $B D$ intersect each other at O, where $A C=16 \mathrm{~cm}$ and let $B D=x$
We know that the diagonals of a rhombus are perpendicular bisectors of each other.
$\therefore \triangle A O B$ is a right angle triangle, in which $O B=B D \div 2=x \div 2$ and $O A=A C \div 2=16 \div 2=8 \mathrm{~cm}$.

Now, $A B=O A^{2}+O B^{2} \ldots$ by pythagoras theorem $. \therefore 10^{2}=\left(\frac{x}{2}\right)^{2}+8^{2}$
ie. $100-64=\frac{x^{2}}{4}$
$36 \times 4=x^{2}$
$\therefore x^{2}=144$
$\therefore x=12 \mathrm{~cm}$
Hence, the length of the other diagonal is 12 cm
We know that area of rhombus is,
Area of rhombus $=\frac{1}{2} \times($ Diagonal 1$) \times($ Diagonal 2$)$

Hence,
Area of $A B C D=\frac{1}{2} \times A C \times B D$
$=\frac{1}{2} \times 16 \times 12$
$=96 \mathrm{~cm}^{2}$
Hence, the area of rhombus is $96 \mathrm{~cm}^{2}$

12. Question

In each of the figures given below, $A B C D$ is a rectangle. Find the values of x and y in each case.

(ii)

Answer

(i) Here, $A B C D$ is rectangle.

We know that the diagonals of a rectangle are congruent and bisect each other.
\therefore In $\triangle A O B$, we have $O A=O B$
This means that $\triangle A O B$ is isosceles triangle.
We know that base angles of isosceles triangle are equal.
$\therefore \angle O A B=\angle O B A=35^{\circ}$
$\therefore \therefore x=90^{\circ}-35^{\circ}=55^{\circ}$
Also, $\angle A O B=180^{\circ}-\left(35^{\circ}+35^{\circ}\right)=110^{\circ}$
$\therefore y=\angle A O B=110^{\circ} \ldots$ Vertically opposite angles
Hence, $x=55^{\circ}$ and $y=110^{\circ}$
(ii) Here, $A B C D$ is rectangle.

We know that the diagonals of a rectangle are congruent and bisect each other.
\therefore In $\triangle A O B$, we have $O A=O B$
This means that $\triangle A O B$ is isosceles triangle.
We know that base angles of isosceles triangle are equal.
$\therefore \angle O A B=\angle O B A=\frac{1}{2} \times\left(180^{\circ}-110^{\circ}\right)=35^{\circ}$
$\therefore y=\angle B A C=35^{\circ} \ldots$ alternate angles with transversal AC
Also, $x=90^{\circ}-y \ldots: \angle C=90^{\circ}=x+y$
$\therefore x=90^{\circ}-35^{\circ}=55^{\circ}$
Hence, $x=55^{\circ}$ and $y=35^{\circ}$

13. Question

In the adjoining figures, $A B C D$ is a square. A line segment $C X$ cuts $A B$ at x and the diagonal $B D$ at O such that $\angle C O D=80^{\circ}$ and $\angle O X A=x^{\circ}$. Find the value of x.

Answer

Here, $A B C D$ is square.
Here $A C$ and $B D$ are diagonals.
We know that the angles of a square are bisected by the diagonals.
$\therefore \angle O B X=45^{\circ} \because \angle A B C=90^{\circ}$ and $B D$ bisects $\angle A B C$
And $\angle B O X=\angle C O D=80^{\circ}$... Vertically opposite angles
\therefore In $\triangle B O X$, we have:
$\angle A X O=\angle O B X+\angle B O X \ldots$ Exterior angle theorem
$\Rightarrow \angle A X O=45^{\circ}+80^{\circ}=125^{\circ}$
$\therefore x=125^{\circ}$

14. Question

In the adjoining figures, $A L$ and $C M$ are perpendiculars to the diagonal $B D$ of a \|gm $A B C D$. Prove that
(i) $\triangle A L D \cong \triangle C M B$, (ii) $A L=C M$.

Answer

Here, $A B C D$ is parallelogram.
Hence, $A D \| B C$ and $A D=B C$
(i) In $\triangle A L D$ and $\triangle C M B$, we have, $\mathrm{AD}=\mathrm{BC}$
$\angle A L D=\angle C M B$ (90 ${ }^{\circ}$ each)
$\angle A D L=\angle C B M$ (Alternate interior angle) $: \therefore \triangle A L D \cong \triangle C M B$
(ii) As $\triangle A L D \cong \triangle C M B$...from 1.: $A L=C M$...by cpct

15. Question

In the adjoining figures, $A B C D$ is a parallelogram in which the bisectors of $\angle A$ and $\angle B$ intersect at a point P. Prove that $\angle A P B=90^{\circ}$.

Answer

$A B C D$ is parallelogram.
We know that the sum of the adjacent angles in parallelogram is 180°
$\therefore \angle A+\angle B=180^{\circ}$
$\therefore \frac{\angle \mathrm{A}}{2}+\frac{\angle \mathrm{B}}{2}=\frac{180^{\circ}}{2}=90^{\circ}$

In $\triangle A P B$, we have:
$\angle P A B=\angle A / 2$
$\angle P B A=\angle B / 2$
$\therefore \angle \mathrm{APB}=180-(\angle P A B+\angle P B A) . .$. Angle sum property of triangle
$\therefore \angle A P B=180-\left(\frac{\angle \mathrm{A}}{2}+\frac{\angle \mathrm{B}}{2}\right)$
$\therefore \angle A P B=180-90=90^{\circ}$
Hence, proved.

16. Question

In the adjoining figures, $A B C D$ is a parallelogram. If P and Q are points on $A D$ and $B C$ respectively such that $A P=\frac{1}{3} A D$ and $C Q=\frac{1}{3} B C$, prove that $A Q C P$ is a parallelogram.

Answer

$A B C D$ is parallelogram
We know that opposite sides and angles of parallelogram are equal.
$\therefore \angle B=\angle D$ and $A D=B C$ and $A B=D C$
Also, $A D \| B C$ and $A B \| D C$
It is given that $A P=\frac{1}{3} A D$ and $C Q=\frac{1}{3} B C$
Hence, $A P=C Q \ldots \because A D=B C$
In $\triangle D P C$ and $\triangle B Q A$, we have,
$A B=C D$
$\angle B=\angle D$
$D P=Q B \ldots$ as $A P=\frac{1}{3} A D$ and $C Q=\frac{1}{3} B C$,
Hence, by SAS test for congruency,
$\triangle D P C \cong \triangle B Q A$
$\therefore P C=Q A \ldots$ by $c p c t$
Hence, from above, in AQCP, we have,
$A P=C Q$ and $P C=Q A$
\therefore AQCP is a parallelogram.

17. Question

In the adjoining figures, $A B C D$ is a parallelogram whose diagonals intersect each other at O. A line segment $E O F$ is drawn to meet $A B$ at E and $D C$ at F. Prove that $O E=O F$.

Answer

$A B C D$ is parallelogram.
\therefore in $\triangle O D F$ and $\triangle O B E$, we have:
$O D=O B$... Diagonals bisects each other
$\angle D O F=\angle B O E$... Vertically opposite angles
$\angle \mathrm{FDO}=\angle O B E \ldots$ Alternate interior angles
Hence, by SAA test for congruency,
$\triangle O D F \cong \triangle O B E$
$\therefore O F=O E$...by cpct
Hence, proved.

18. Question

In the adjoining figures, $A B C D$ is a parallelogram in which $A B$ is produced to E so that $B E=A B$. Prove that $E D$ bisects $B C$.

Answer

$A B C D$ is parallelogram.
In $\triangle O D C$ and $\triangle O E B$, we have,
$D C=B E$...as $D C=A B$
$\angle C O D=\angle B O E$... Vertically opposite angles are equal
$\angle O C D=\angle O B E$... Alternate angles with transversal BC
Hence, by SAA test for congruency, we get,
$\triangle O D C \cong \triangle O E B$
$\therefore O C=O B \ldots b y c p c t$

We know that $B C=O C+O B$.
\therefore ED bisects BC.

19. Question

In the adjoining figures, $A B C D$ is a parallelogram and E is the midpoint of side $B C$. If $D E$ and $A B$ when produced meet at F, prove that $A F=2 A B$.

Answer

$A B C D$ is parallelogram.
Also given that $B E=C E$
In $A B C D, A B \| D C$
$\angle D C E=\angle E B F \ldots$ Alternate angles with transversal DF
In $\triangle D C E$ and $\triangle B F E$, we have,
$\angle D C E=\angle E B F$...from above
$\angle D E C=\angle B E F ~ . .$. Vertically opposite angles
Also, $B E=C E$... givenHence, by ASA congruence rule,
$\triangle \mathrm{DCE} \cong \triangle \mathrm{BFE}$
$\therefore \mathrm{DC}=\mathrm{BF} \ldots$ by cpct
But $D C=A B$, as $A B C D$ is a parallelogram.
$\therefore \mathrm{DC}=\mathrm{AB}=\mathrm{BF}$
Now, $A F=A B+B F$
From above, we get,
$A F=A B+A B=2 A B$
Hence, proved.

20. Question

A $\triangle A B C$ is given. If lines are drawn through A, B, C, parallel respectively to the sides $B C, C A$ and $A B$, forming $\triangle P Q R$, as shown in the adjoining figure, show that $B C=\frac{1}{2} Q R$.

Answer

Here given that $B C \| Q A$ and $C A \| Q B$ which means that $B C Q A$ is a parallelogram.
$\therefore \mathrm{BC}=\mathrm{QA}$.
Similarly, $B C \| A R$ and $A B \| C R$, which means $B C R A$ is a parallelogram.
$\therefore B C=A R \ldots$ (2)
But $Q R=Q A+A R$
From (1) and (2), we get,
$Q R=B C+B C$
$\therefore Q R=2 B C$
Hence, $B C=\frac{1}{2} Q R$

21. Question

In the adjoining figure, $\triangle A B C$ is a triangle and through A, B, C lines are drawn, parallel respectively to $B C, C A$ and $A B$, intersecting at P, Q and R. Prove that the perimeter of $\triangle P Q R$ is double the perimeter of $\triangle A B C$.

Answer

Here, Perimeter of $\triangle A B C=A B+B C+C A$
And Perimeter of $\triangle P Q R=P Q+Q R+P R$
Given that $B C \| Q A$ and $C A \| Q B$ which means $B C Q A$ is a parallelogram.
$\therefore \mathrm{BC}=\mathrm{QA}$
Similarly, $B C \| A R$ and $A B \| C R$, which means $B C R A$ is a parallelogram.
$\therefore B C=A R$
But, $Q R=Q A+A R$
From 1 and 2,
$Q R=B C+B C$
$\therefore Q R=2 B C$
$\therefore \mathrm{BC}=\frac{1}{2} \mathrm{QR}$
Similarly, $C A=\frac{1}{2} P Q$ and $A B=\frac{1}{2} P R$
Now,
Perimeter of $\triangle A B C=A B+B C+C A$
$=\frac{1}{2} Q R+\frac{1}{2} P Q+\frac{1}{2} P R$
$=\frac{1}{2}(\mathrm{PR}+\mathrm{QR}+\mathrm{PQ})$
This states that,
Perimeter of $\triangle A B C=\frac{1}{2}$ (Perimeter of $\left.\triangle P Q R\right)$
\therefore Perimeter of $\triangle P Q R=2 \times$ Perimeter of $\triangle A B C$

Exercise 9C

1. Question

In the adjoining figure, $A B C D$ is a trapezium in which $A B \| D C$ and E is the midpoint of $A D$. A line segment $E F \| A B$ meets $B C$ at F. Show that E is the midpoint of $B C$.

Answer

Here, $A B C D$ is trapezium.
Join $B D$ to cut $E F$ at O.
It is given that, in $\triangle D A B, E$ is the mid point of $A D$ and $E O \| A B$.
$\therefore O$ is the midpoint of $B D$...By converse of mid point theorem

Now in $\triangle B D C, O$ is the mid point of $B D$ and $O F|\mid D C$.
$\therefore F$ is the midpoint of $B C$... By converse of mid point theorem

2. Question

In the adjoining figure, $A B C D$ is a $\| \mathrm{gm}$ in which E and F are the midpoints of $A B$ and $C D$ respectively. If $G H$ is a line segment that cuts $A D, E F$ and $B C$ at G, P and H respectively, prove that $G P=P H$.

Answer

Here, $A B C D$ is parallelogram.
By the properties of parallelogram,
$A D \| B C$ and $A B \| D C$
$A D=B C$ and $A B=D C$
Also,
$A B=A E+B E$ and $D C=D F+F C$
This means that,
$A E=B E=D F=F C$
Now, $D F=A E$ and $D F \| A E$, that is $A E F D$ is a parallelogram.
Hence, $A D$ || EF
Similarly, BEFC is also a parallelogram.
Hence, $E F|\mid B C$
$\therefore A D\|E F\| B C$
Thus, $A D, E F$ and $B C$ are three parallel lines cut by the transversal line $D C$ at D, F and C, respectively such that $D F=F C$.

Also, the lines $A D, E F$ and $B C$ are also cut by the transversal $A B$ at A, E and B, respectively such that $A E=B E$.

Similarly, they are also cut by GH.
Hence by intercept theorem,
$\therefore \mathrm{GP}=\mathrm{PH}$
Hence proved.

3. Question

In the adjoining figure, $A B C D$ is a trapezium in which $A B \| D C$ and P, Q are the midpoints of $A D$ and BC respectively. DQ and AB when produced meet at E Also, AC and PQ intersect at R . Prove that (i) $\mathrm{DQ}=\mathrm{QE}$, (ii) $\mathrm{PR} \| A B$, (iii) $A R=R C$.

Answer

Here, $A B C D$ is trapezium.
Hence, $A B$ || $D C$
Also given that $A P=P D$ and $B Q=C Q$
(i) In $\triangle Q C D$ and $\triangle Q B E$, we have,
$\angle D Q C=\angle B Q E \ldots$...Vertically opposite angles
$\angle D C Q=\angle E B Q \ldots$...Alternate angles with transversal $B C$
$B Q=C Q \ldots P$ is the midpoint
Hence, by AAS test of congruency,
$\triangle Q C D \cong \triangle Q B E$
Hence, $D Q=Q E$...by cpct
(ii) Also, in $\triangle A D E, P$ and Q are the midpoints of $A D$ and $D E$ respectively
$\therefore P Q \| A E$
Hence, $P Q||A B|| D C$
ie. $A B\|P R\| D C$
(iii) $P Q, A B$ and $D C$ are cut by transversal $A D$ at P such that $A P=P D$.

Also they are cut by transversal $B C$ at Q such that $B Q=Q C$.
Similarly, lines $P Q, A B$ and $D C$ are also cut by $A C$ at R.
Hence, by intercept theorem,
$\therefore A R=R C$

4. Question

In the adjoining figure, AD is a median of $\triangle \mathrm{ABC}$ and $\mathrm{DE} \| \mathrm{BA}$. Show that BE is also a median of $\triangle \mathrm{ABC}$.

Answer

In $\triangle A B C, A D$ is median.
$\therefore B D=D C$
We know that the line drawn through the midpoint of one side of a triangle and parallel to another side bisects the third side.

So, in $\triangle A B C, D$ is the mid point of $B C$ and $D E \| B A$.
Hence, DE bisects AC.
$\therefore A E=E C$
This means that E is the midpoint of $A C$.
$\therefore B E$ is median of $\triangle A B C$.

5. Question

In the adjoining figure, AD and BE are the medians of $\triangle \mathrm{ABC}$ and $\mathrm{DF} \| \mathrm{BE}$. Show that $\mathrm{CF}=\frac{1}{4} \mathrm{AC}$.

Answer
Here in $\triangle A B C$ AD and $B E$ are medians.
Hence, in $\triangle A B C$, we have: $A C=A E+E C$
But $A E=E C \ldots$ as E is midpoint of $A C$
$\therefore A C=2 E C . . .(1)$
Now in $\triangle B E C$,
$D F \| B E$
Also, $E F=C F \ldots$ by midpoint theorem, as D is the midpoint of $B C$
But,
$E C=E F+C F$
$\therefore E C=2 C F \ldots(2)$

From 1 and 2, we get,
$A C=4 C F$
$\therefore C F=\frac{1}{4} A C$.

6. Question

In the adjoining figure, $A B C D$ is a parallelogram. E is the midpoint of $D C$ and through D, a line segment is drawn parallel to $E B$ to meet $C B$ produced at G and it cuts $A B$ at F. Prove that
(i) $A D=\frac{1}{2} G C$, (ii) $D G=2 E B$.

Answer

$A B C D$ is parallelogram.
(i) In $\triangle D C G$, we have:
$D G|\mid E B$
$D E=E C \ldots E$ is the midpoint of $D C$)
Also, $G B=B C$... by midpoint theorem
$\therefore B$ is the midpoint of GC.
Also, $G C=G B+B C$
$G C=2 B C$
$G C=2 A D \ldots$ as $A D=B C$
$\therefore A D=\frac{1}{2} G C$
(ii) Now, in $\triangle D C G, D G \| E B$ and E is the midpoint of $D C$ and B is the midpoint of $G C$.
$\therefore \mathrm{EB}=\frac{1}{2} \mathrm{DG} \ldots$ by midpoint theorem
$\therefore \mathrm{DG}=2 \mathrm{~EB}$

7. Question

Prove that the line segments joining the middle points of the sides of a triangle divide it into four congruent triangles.

Let triangle be $\triangle A B C . D, E$ and F are the midpoints of sides $A B, B C$ and $C A$, respectively.

By midpoint theorem, for D and E as midpoints of sides $A B$ and $B C$,
$D E / / A C$
Similarly, DF // BC and EF // AB.
$\therefore A D E F, B D F E$ and $D F C E$ are all parallelograms.
But, $D E$ is the diagonal of the $B D F E$.
$\therefore \triangle B D E \cong \triangle F E D$
Similarly, DF is the diagonal of the parallelogram ADEF.
$\therefore \triangle \mathrm{DAF} \cong \triangle \mathrm{FED}$
And, EF is the diagonal of the parallelogram DFCE.
$\therefore \triangle \mathrm{EFC} \cong \triangle \mathrm{FED}$
Hence, all the four triangles are congruent.

8. Question

In the adjoining figure, D, E, F are the midpoints of the sides $B C, C A$ and $A B$ respectively, of $\triangle A B C$. Show that $\angle E D F=\angle A, \angle D E F=\angle B$ and $\angle D F E=\angle C$.

Answer

Here, in $\triangle A B C, D, E, F$ are the midpoints of the sides $B C, C A$ and $A B$ respectively.
By mid point theorem, as F and E are the mid points of sides $A B$ and $A C$,
$F E \| B C$
Similarly, $D E \| F B$ and $F D \| A C$.
Therefore, $A F D E, B D E F$ and $D C E F$ are all parallelograms.
We know that opposite angles in parallelogram are equal.
\therefore In AFDE, we have,
$\angle A=\angle E D F$
In $B D E F$, we have,

$$
\angle B=\angle D E F
$$

In DCEF, we have,
$\angle C=\angle D F E$
Hence proved.

9. Question

Show that the quadrilateral formed by joining the midpoints of the pairs of adjacent sides of a rectangle is a rhombus.

Answer

Let $A B C D$ be the rectangle and P, Q, R and S be the midpoints of $A B, B C, C D$ and $D A$, respectively.

Join diagonals of the rectangle.
In $\triangle A B C$, we have, by midpoint theorem, $\therefore P Q \| A C$ and $P Q=\frac{1}{2} A C$
Similarly, $S R \| A C$ and $S R=\frac{1}{2} A C$.
$A s, P Q \| A C$ and $S R \| A C$, then also $P Q \| S R$
Also, $P Q=S R$, each equal to $\frac{1}{2} A C$.
So, $P Q R S$ is a parallelogram
Now, in $\triangle S A P$ and $\triangle Q B P$, we have,
$A S=B Q \angle A=\angle B=90^{\circ} A P=B P$
\therefore By SAS test of congruency,
$\Delta S A P \cong \triangle Q B P$
Hence, $P S=P Q$...by cpct ...(2)

Similarly, $\triangle S D R \cong \triangle Q C R$
$\therefore S R=R Q \ldots$ by $c p c t$...(3)
Hence, from 1, 2 and 3 we have,
$P Q=P Q=S R=R Q H$ ence, $P Q R S$ is a rhombus.
Hence, the quadrilateral formed by joining the midpoints of the pairs of adjacent sides of a rectangle is a rhombus.

10. Question

Show that the quadrilateral formed by joining the midpoints of the pairs of adjacent sides of a rhombus is a rectangle.

Answer

In $\triangle A B C, P$ and Q are mid points of $A B$ and $B C$ respectively.
$\therefore P Q \| A C$ and $P Q=1 / 2 A C \ldots$ (1) \ldots Mid point theorem
Similarly in $\triangle A C D, R$ and S are mid points of sides $C D$ and $A D$ respectively.
$\therefore S R \| A C$ and $S R=1 / 2 A C$...(2) ...Mid point theorem
From (1) and (2), we get
$P Q \| S R$ and $P Q=S R$
Hence, PQRS is parallelogram (pair of opposite sides is parallel and equal)
Now, RS || AC and QR || BD.
Also, $A C \perp B D \ldots$ as diagonals of rhombus are perpendicular bisectors of each other.
$\therefore \mathrm{RS} \perp \mathrm{QR}$.
Thus, PQRS is a rectangle.
Hence, the quadrilateral formed by joining the midpoints of the pairs of adjacent sides of a rhombus is a rectangle.

11. Question

Show that the quadrilateral formed by joining the midpoints of the pairs of adjacent sides of a square is a square.

Answer

Let $A B C D$ be the square and P, Q, R and S be the midpoints of $A B, B C, C D$ and $D A$, respectively. Join diagonals of the square.

In $\triangle A B C$, we have, by midpoint theorem,
$\therefore P Q \| A C$ and $P Q=\frac{1}{2} A C$
Similarly, $S R \| A C$ and $S R=\frac{1}{2} A C$.
As, $P Q \| A C$ and $S R \| A C$, then also $P Q \| S R$
Also, $P Q=S R$, each equal to $\frac{1}{2} A C \ldots$ (1)
So, $P Q R S$ is a parallelogram
Now, in $\triangle S A P$ and $\triangle Q B P$, we have,
$A S=B Q$
$\angle A=\angle B=90^{\circ}$
$A P=B P$
\therefore By SAS test of congruency,
$\Delta S A P \cong \triangle Q B P$
Hence, $P S=P Q$...by cpct ...(2)
Similarly, $\triangle S D R \cong \triangle Q C R$
$\therefore S R=R Q$... by cpct ...(3)
Hence, from 1, 2 and 3 we have,
$P Q=P Q=S R=R Q$
We know that the diagonals of a square bisect each other at right angles.
$\therefore \angle E O F=90^{\circ}$
Now, $R Q$ II $D B$
$\Rightarrow R E \| F O$
Also, $S R \| A C$
$\Rightarrow F R \| O E$
$\therefore O E R F$ is a parallelogram.
So, $\angle F R E=\angle E O F=90^{\circ}$ (Opposite angles are equal)
Thus, $P Q R S$ is a parallelogram with $\angle R=90^{\circ}$ and $P Q=P S=S R=R Q$.
This means that PQRS is square.
Hence, the quadrilateral formed by joining the midpoints of the pairs of adjacent sides of a square is a square.

12. Question

Prove that the line segments joining the midpoints of opposite sides of a quadrilateral bisect each other.

Answer

In $\triangle A D C, S$ and R are the midpoints of $A D$ and $D C$ respectively.
By midpoint theorem,
Hence $S R \| A C$ and $S R=\frac{1}{2} A C$... (1)
Similarly, in $\triangle A B C, P$ and Q are midpoints of $A B$ and $B C$ respectively.
$P Q\left|\mid A C\right.$ and $P Q=\frac{1}{2} A C \ldots$ (2) \ldots By midpoint theorem
From equations (1) and (2), we get
$P Q \| S R$ and $P Q=S R$
Here, one pair of opposite sides of quadrilateral PQRS is equal and parallel.
Hence PQRS is a parallelogram
Hence the diagonals of parallelogram PQRS bisect each other.
Thus PR and QS bisect each other.
Hence, the line segments joining the midpoints of opposite sides of a quadrilateral bisect each other.

13. Question

In the given figure, $A B C D$ is a quadrilateral whose diagonals intersect at right angles. Show that the quadrilateral formed by joining the midpoints of the pairs of adjacent sides is a rectangle.

Answer

Here, in $A B C D$, diagonals intersect at 90°
Also, in $A B C D, P, Q, R$ and S be the midpoints of $A B, B C, C D$ and $D A$, respectively.
In $\triangle A B C$, we have,
$\therefore P Q \| A C$ and $P Q=\frac{1}{2} A C \ldots$ by midpoint theorem
Similarly, in $\triangle D A C$,
$S R \| A C$ and $S R=\frac{1}{2} A C$...by midpoint theorem
Now, $P Q \| A C$ and $S R \| A C$
$\therefore P Q \| S R$
Also, $P Q=S R=\frac{1}{2} A C$
Hence, $P Q R S$ is parallelogram.
We know that the diagonals of the given quadrilateral bisect each other at right angles.
$\therefore \angle E O F=90^{\circ}$
Also, $R Q$ II $D B$
$\therefore R E \| F O$
Also, $S R$ \| $A C$
$\therefore F R \| O E$
\therefore OERF is a parallelogram.
So, $\angle F R E=\angle E O F=90^{\circ}$...Opposite angles of parallelogram are equal
Thus, $P Q R S$ is a parallelogram with $\angle R=90^{\circ}$.
$\therefore P Q R S$ is a rectangle.

CCE Questions

1. Question

Three angles of a quadrilateral are $80^{\circ}, 95^{\circ}$ and 112°. Its fourth angle is
A. 78°
B. 73°
C. 85°
D. 100°

Answer

Let the fourth angle be x
$80^{\circ}+95^{\circ}+112^{\circ}+x^{\circ}=360^{\circ}$ (Sum of angles of quadrilateral)
$287^{\circ}+x^{0}=360^{\circ}$
$x=360^{\circ}-287^{\circ}$
$=73^{\circ}$
Hence, option (B) is correct

2. Question

Three angles of a quadrilateral are in the ratio $3: 4: 5: 6$. The smallest of these angles is
A. 45°
B. 60°
C. 36°
D. 48°

Answer

Let the angles be $3 x, 4 x, 5 x$ and $6 x$
$3 x+4 x+5 x+6 x=360^{\circ}$ (Sum of angles of a quadrilateral)
$18 x=360^{\circ}$
$x=\frac{360}{18}$
$x=20^{\circ}$
\therefore Angles of the quadrilateral are:
$3 x=3 \times 20^{\circ}=60^{\circ}$
$4 x=4 \times 20^{\circ}=80^{\circ}$
$5 x=5 \times 20^{\circ}=100^{\circ}$
$6 x=6 \times 20^{\circ}=120^{\circ}$
Hence, the smallest angle is 60°
\therefore Option (B) is correct

3. Question

In the given figure, $A B C D$ is a parallelogram in which $\angle B A D=75^{\circ}$ and $\angle C B D=60^{\circ}$. Then, $\angle B D C=$?

A. 60°
B. 75°
C. 45°
D. 50°

Answer

It is given in the question that,
In parallelogram $A B C D: \angle B A D=75^{\circ}, \angle C B D=60^{\circ}$
Now, $\angle \mathrm{DAB}=\angle \mathrm{DCB}=75^{\circ}$ (Opposite angles)
Also, in triangle DBC we know that sum of angles of a triangle is 180°
$\angle \mathrm{DBC}+\angle \mathrm{BDC}+\angle \mathrm{DCB}=180^{\circ}$
$60^{\circ}+\angle B D C+75^{\circ}=180^{\circ}$
$135^{\circ}+\angle B D C=180^{\circ}$
$\angle B D C=180^{\circ}-135^{\circ}$
$\angle B D C=45^{\circ}$
Hence, option (C) is correct

4. Question

In which of the following figures are the diagonals equal?
A. Parallelogram
B. Rhombus
C. Trapezium
D. Rectangle

Answer

As we know that from all the quadrilaterals given below, diagonals of a rectangle are equal
Hence, option (D) is correct

5. Question

If the diagonals of a quadrilateral bisect each other at right angles, then the figure is a
A. Trapezium
B. Parallelogram
C. Rectangle
D. Rhombus

Answer

As we know that from all the quadrilaterals given below the diagonals of rhombus bisect each other at right angles

Hence, option (D) is correct

6. Question

The lengths of the diagonals of a rhombus are 16 cm and 12 cm . The length of each side of the rhombus is
A. 10 cm
B. 12 cm
C. 9 cm
D. 8 cm

Answer

Let us assume a rhombus ABCD where,
$A B=B C=C D=D A$
Now, in triangle OBC by using Pythagoras theorem we get:
$B C^{2}=O B^{2}+O C^{2}$
$B C^{2}=6^{2}+8^{2}$
$B C^{2}=36+64$
$B C^{2}=100$
$B C=\sqrt{ } 100$
$B C=10 \mathrm{~cm}$
$\therefore A B=B C=C D=D A=10 \mathrm{~cm}$
Hence, option (A) is correct

7. Question

The length of each side of a rhombus is 10 cm and one of its diagonals is of length 16 cm . The length of the other diagonal is
A. 13 cm
B. 12 cm
C. $2 \sqrt{39} \mathrm{~cm}$
D. 6 cm

Answer

It is given in the question that,
$A B C D$ is rhombus where, $A B=B C=C D=D A$
Now, by using Pythagoras theorem in triangle BOC we have:
$B C^{2}=O B^{2}+O C^{2}$
$(10)^{2}=O B^{2}+(8)^{2}$
$100=O B^{2}+64$
$O B^{2}=100-64$
$\mathrm{OB}^{2}=36$
$O B=6 \mathrm{~cm}$
\therefore Length of diagonal, $\mathrm{BC}=\mathrm{OB}+\mathrm{OD}$
$B C=6+6$
$B C=12 \mathrm{~cm}$
Hence, option (B) is correct

8. Question

If $A B C D$ is a parallelogram with two adjacent angles $\angle A=\angle B$, then the parallelogram is a
A. rhombus
B. trapezium
C. rectangle
D. none of these

Answer

It is given in the question that,
$A B C D$ is a parallelogram where two adjacent angles $\angle A=\angle B$
We know that, sum of adjacent angles is 180°
$\therefore \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$2 \angle A=180^{\circ}$
$\angle A=180 / 2$
$\angle A=90^{\circ}$
As, $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=\angle \mathrm{D}=90^{\circ}$
$\therefore \mathrm{ABCD}$ is a rectangle as all the angles are equal to 90°
Hence, option (C) is correct

9. Question

In a quadrilateral $A B C D$, if $A O$ and $B O$ are the bisectors of $\angle A$ and $\angle B$ respectively, $\angle C=70^{\circ}$ and $\angle D=$ 30°. Then, $\angle A O B=$?
A. 40°
B. 50°
C. 80°
D. 100°

Answer

It is given in the question that, $A B C D$ is a quadrilateral where $A O$ and $B O$ are the bisectors of $\angle A$ and $\angle B$

We know that, sum of all angles of a quadrilateral is equal to 360°
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$\angle A+\angle B+70^{\circ}+30^{\circ}=360^{\circ}$
$\angle A+\angle B=360^{\circ}-100^{\circ}$
$\angle A+\angle B=260^{\circ}$
$1 / 2(\angle A+\angle B)=1 / 2 \times 260^{\circ}$
$1 / 2\left(\angle A+\angle B=130^{\circ}\right.$
Now, in triangle AOB
$1 / 2(\angle A+\angle B)+\angle A O B=180^{\circ}$
$130^{\circ}+\angle A O B=180^{\circ}$
$\angle A O B=180^{\circ}-130^{\circ}$
$\angle \mathrm{AOB}=50^{\circ}$
Hence, option (B) is correct

10. Question

The bisectors of any two adjacent angles of a parallelogram intersect at
A. 30°
B. 45°
C. 60°
D. 90°

Answer

We know that,
Sum of two adjacent angles $=180^{\circ}$
Also, sum of bisector of adjacent angles $=180 / 2=90^{\circ}$
As sum of angles of a triangle $=180^{\circ}$
\therefore Sum of 2 adjacent angles + Intersection angle $=180^{\circ}$
$90^{\circ}+$ Intersection angle $=180^{\circ}$
\therefore Intersection angle $=180^{\circ}-90^{\circ}$
$=90^{\circ}$
Hence, option (D) is correct

11. Question

The bisectors of the angles of a parallelogram enclose a
A. Rhombus
B. Square
C. Rectangle
D. Parallelogram

Answer

From all the given quadrilateral we know that the bisectors of the angles of a parallelogram enclose a rectangle

Hence, option (C) is correct

12. Question

The figure formed by joining the mid-points of the adjacent sides of a quadrilateral is a
A. Rhombus
B. Square
C. Rectangle
D. Parallelogram

Answer

We know that, the figure formed by joining the mid-points of the adjacent sides of a quadrilateral is a parallelogram

Hence, option (D) is correct

13. Question

The figure formed by joining the mid-points of the adjacent sides of a square is a
A. Rhombus
B. Square
C. Rectangle
D. Parallelogram

Answer

We know that, the figure formed by joining the mid-points of the adjacent sides of a square is a square

Hence, option (B) is correct

14. Question

The figure formed by joining the mid-points of the adjacent sides of a parallelogram is a
A. rhombus
B. square
C. rectangle
D. parallelogram

Answer

We know that, the figure formed by joining the mid-points of the adjacent sides of a parallelogram is parallelogram

Hence, option (D) is correct

15. Question

The figure formed by joining the mid-points of the adjacent sides of a rectangle is a
A. rhombus
B. square
C. rectangle
D. parallelogram

Answer

We know that, the figure formed by joining the mid-points of the adjacent sides of a rectangle is a rhombus

Hence, option (A) is correct

16. Question

The figure formed by joining the mid-points of the adjacent sides of a rhombus is a
A. rhombus
B. square
C. rectangle
D. parallelogram

Answer

We know that, the figure formed by joining the mid-points of the adjacent sides of a rhombus is a rectangle

Hence, option (C) is correct

17. Question

If an angle of a parallelogram is two-third of its adjacent angle, the smallest angle of the parallelogram is
A. 108°
B. 54°
C. 72°
D. 81°

Answer

We know that,
Sum of two adjacent angles is equal to 180°
$\therefore \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
According to the condition given in the question, we have
$\angle A=x^{\circ}$ then $\angle B=2 / 3 x^{\circ}$
$\therefore \mathrm{x}^{\circ}+2 \mathrm{x} / 3^{\circ}=180^{\circ}$
$5 x / 3^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}=\frac{180 \times 3}{5}$
$\Rightarrow \mathrm{x}=540^{\circ} / 5$
$\Rightarrow x=108^{\circ}$
$\therefore \angle \mathrm{A}=108^{\circ}$ and,
$\angle B=2 / 3 \times 108^{\circ}$
$\angle B=2 \times 36^{\circ}=72^{\circ}$

Thus, the smallest angle $=\angle B=72^{\circ}$
Hence, option (C) is correct

18. Question

If one angle of a parallelogram is 24° less than twice the smallest angle, then the largest angle of the parallelogram is
A. 68°
B. 102°
C. 112°
D. 136°

Answer

As per the question,
Let the smallest angle be x° and the largest angle be $(2 x-24)^{\circ}$
Since, the sum of adjacent angles of a parallelogram is 180°
$\therefore \mathrm{x}+(2 \mathrm{x}-24)=180^{\circ}$
$3 x-24=180^{\circ}$
$x=68^{\circ}$
Hence, the largest angle is: $2 x-24=2(68)-24=136-24=112$
\therefore Option A is correct

19. Question

In the given figure, $A B C D$ is a parallelogram in which $\angle B D C=45^{\circ}$ and $\angle B A D=75^{\circ}$. Then, $\angle C B D=$?

A. 45°
B. 55°
C. 60°
D. 75°

Answer

As per the question,
$\angle B A D=\angle B C D=75^{\circ}$ (opposite angles of parallelogram)
Now, in $\triangle B C D$,
$\angle B C D+\angle C B D+\angle B C D=180^{\circ}$
$45+\angle C B D+75=180^{\circ}$
$\angle C B D=60^{\circ}$
\therefore Option C is correct

20. Question

If area of $a \| g m$ with sides a and b is A and that of a rectangle with sides a and b is B, then
A. $A>B$
B. $A=B$
C. $A<B$
D. $A \geq B$

Answer

Let the height of the parallelogram be ' h '
Now, $\mathrm{h}<\mathrm{b}$ (Since, perpendicular distance is the shortest)
$\therefore \mathrm{a} \times \mathrm{h}<\mathrm{a} \times \mathrm{b}$
$A<B$
\therefore Option C is correct

21. Question

In the given figure, $A B C D$ is a \|gm and E is the mid-point of $B C$. Also, $D E$ and $A B$ when produced meet at F. Then,

A. $\mathrm{AF}=\frac{3}{2} \mathrm{AB}$
B. $A F=2 A B$
C. $A F=3 A B$
D. $A F^{2}=2 A B^{2}$

Answer

According to the condition given in the question, we have
In triangle DCE and FBE
$B E=E C(E$ is the mid-point of $B C)$
$\angle \mathrm{CED}=\angle \mathrm{BEF}$ (Vertically opposite angles)
$\angle \mathrm{CDE}=\angle \mathrm{EFB}$ (Alternate interior angles)
$\therefore \triangle \mathrm{DCE} \cong \triangle \mathrm{FBE}$ (By AAS congruence rule)
$D C=B F(B Y C P C T)$
As $A B$ is parallel to $D C$, then $A B=D C$
$\therefore \mathrm{AB}=\mathrm{DC}=\mathrm{BF}$
$A F=A B+B F$
$A F=A B+A B$
$A F=2 A B$
Hence, option (B) is correct

22. Question

The parallel sides of a trapezium are a and b respectively. The line joining the mid-points of its nonparallel sides will be
A. $\frac{1}{2}(\mathrm{a}-\mathrm{b})$
B. $\frac{1}{2}(\mathrm{a}+\mathrm{b})$
c. $\frac{2 a b}{(a+b)}$
D. $\sqrt{a b}$

Answer

It is given in the question that,
$A B C D$ is a trapezium
Draw EF parallel to $A B$ and $D C$, and join $B D$ intersecting $E F$ at point M.
Now, E is the midpoint of $A D$ and $E M \| A B$. Hence, using midpoint theorem,
$E M=1 / 2 A B$
$\Rightarrow E M=1 / 2 b$
Similarly, FM $=1 / 2$
$\Rightarrow D C=1 / 2 \mathrm{a}$
$E F=E M+F M$
$E F=1 / 2 a+1 / 2 b$
$E F=1 / 2(a+b)$
\therefore Option B is correct

23. Question

In a trapezium $A B C D$, if E and F be the mid-point of the diagonals $A C$ and $B D$ respectively. Then, $E F=$?

A. $\frac{1}{2} \mathrm{AB}$
B. $\frac{1}{2} \mathrm{CD}$
c. $\frac{1}{2}(\mathrm{AB}+\mathrm{CD})$
D. $\frac{1}{2}(\mathrm{AB}-\mathrm{CD})$

Answer

Construction: Join CF and extent it to cut $A B$ at point M
Firstly, in triangle MFB and triangle DFC
$D F=F B$ (As F is the mid-point of $D B$)
$\angle D F C=\angle$ MFB (Vertically opposite angle)
$\angle D F C=\angle F B M$ (Alternate interior angle)
\therefore By ASA congruence rule
$\triangle \mathrm{MFB} \cong$ DFC
Now, in triangle CAM
E and F are the mid-points of $A C$ and $C M$ respectively
$\therefore \mathrm{EF}=1 / 2(\mathrm{AM})$
$E F=1 / 2(A B-M B)$
$E F=1 / 2(A B-C D)$
Hence, option D is correct

24. Question

In the given figure, $A B C D$ is a parallelogram, M is the mid-point of $B D$ and $B D$ bisects $\angle B$ as well as $\angle \mathrm{D}$. Then, $\angle \mathrm{AMB}=$?

A. 45°
B. 60°
C. 90°
D. 30°

Answer

Since, $A B C D$ is a parallelogram,
$\therefore \angle \mathrm{B}=\angle \mathrm{D}$ (opposite angle)
$1 / 2 \angle B=1 / 2 \angle D$
$\angle A D B=\angle A B D$
\therefore ADB is an isosceles triangle.
Since, M is the midpoint of BD
$\therefore A M$ is a median of $\triangle A D B$.
Now, $\angle A M B=90^{\circ}$ (AM is perpendicular to BD)
\therefore Option C is correct

25. Question

In the given figure, $A B C D$ is a rhombus. Then,

A. $A C^{2}+B D^{2}=A B^{2}$
B. $A C^{2}+B D^{2}=2 A B^{2}$
C. $A C^{2}+B D^{2}=4 A B^{2}$
D. $2\left(A C^{2}+B D^{2}\right)=3 A B^{2}$

Answer

Since, we know that the diagonals of a rhombus bisect each other at 90°.
Hence, $O A=\frac{1}{2} A C, O B=\frac{1}{2} B D$ and $\angle A O B=90^{\circ}$
$A B^{2}=O A^{2}+O B^{2}$
$A B^{2}=\left(\frac{1}{2} A C\right)^{2}+\left(\frac{1}{2} B D\right)^{2}$
$=\frac{1}{4}(A C)^{2}+\frac{1}{4}(B D)^{2}$
$A B^{2}=\frac{1}{4}\left(A C^{2}+B D^{2}\right)$
$4 A B^{2}=\left(A C^{2}+B D^{2}\right)$
\therefore Option C is correct

26. Question

In a trapezium $A B C D$, if $A B \| C D$, then $\left(A C^{2}+B D^{2}\right)=$?

A. $B C^{2}+A D^{2}+2 B C \cdot A D$
B. $A B^{2}+C D^{2}+2 A B \cdot C D$
C. $A B^{2}+C D^{2}+2 A D \cdot B C$
D. $B C^{2}+A D^{2}+2 A B \cdot C D$

Answer

Draw perpendicular from D on $A B$ meeting it on E and from C on $A B$ meeting $A B$ at F
\therefore DEFC will be a parallelogram and thus, $\mathrm{EF}=\mathrm{CD}$
Now, In $\triangle A B C$
Since, $\angle B$ is acute
$\therefore A C^{2}=B C^{2}+A B^{2}-2 A B \times A E(i)$
Similarly, In $\triangle A B D$,
Since $\angle A$ is acute
$\therefore B D^{2}=A D^{2}+A B^{2}-2 A B \times A F$ (ii)
Adding (i) and (ii),
$A C^{2}+B D^{2}=\left(B C^{2}+A D^{2}\right)+\left(A B^{2}+A B^{2}\right)-2 A B(A E+B F)$
$=\left(B C^{2}+A D^{2}\right)+2 A B(A B-A E-B F)[$ Since, $A B=A E+E F+F B$ and $A B-A E=B E]$
$=\left(B C^{2}+A D^{2}\right)+2 A B(B E-B F)$
$=\left(B C^{2}+A D^{2}\right)+2 A B \cdot E F$
Now, we know that CD $=\mathrm{EF}$
Thus, $A C^{2}+B D^{2}=\left(B C^{2}+A D^{2}\right)+2 A B \cdot C D$
\therefore Option D is correct

27. Question

Two parallelograms stand on equal bases and between the same parallels. The ratio of their areas is
A. $1: 2$
B. $2: 1$
C. $1: 3$
D. $1: 1$

Answer

We know that,
Area of a parallelogram $=$ base \times height
Now, if both parallelograms are on the same base and between the same parallels, then their heights will be equal.

Hence, their areas will also be equal
\therefore Option D is correct

28. Question

In the given figure, $A D$ is a median of $\triangle A B C$ and E is the mid-point of $A D$. If $B E$ is joined and produced to meet $A C$ in F, then $A F=$?

A. $\frac{1}{2} \mathrm{AC}$
B. $\frac{1}{3} \mathrm{AC}$
C. $\frac{2}{3} \mathrm{AC}$
D. $\frac{3}{4} \mathrm{AC}$

Answer

Let G be the mid-point of FC and join DG

In $\triangle B C F$,
G is the mid-point of $F C$ and D is the mid-point of $B C$
Thus, DG|| BF
DG || EF
Now, In \triangle ADG,
E is the mid-point of $A D$ and $E F$ is parallel to $D G$.
Thus, F is the mid-point of AG.
$A F=F G=G C[G$ is the mid-point of $F C]$
Hence, $A F=\frac{1}{3} \mathrm{AC}$
\therefore Option B is correct

29. Question

If $\angle A, \angle B, \angle C$ and $\angle D$ of a quadrilateral $A B C D$ taken in order, are in the ratio $3: 7: 6: 4$, then $A B C D$ is a
A. Rhombus
B. Kite
C. Trapezium
D. Parallelogram

Answer

Let the required angles be $3 x, 7 x, 6 x$ and $4 x$
$3 x+7 x+6 x+4 x=360^{\circ}$ (Sum of angles of quadrilateral)
$20 x=360^{\circ}$
$x=18^{\circ}$
Hence, angles are:
$3 x=3 \times 18^{\circ}=54^{\circ}$
$7 \mathrm{x}=7 \times 18^{\circ}=126^{\circ}$
$6 x=6 \times 18^{\circ}=108^{\circ}$
$4 \mathrm{x}=4 \times 18^{\circ}=72^{\circ}$
Now we can observe that, $54^{\circ}+126^{\circ}=180^{\circ}$ and $72^{\circ}+108^{\circ}=180^{\circ}$
Thus, $A B C D$ is a trapezium.
Hence option C is correct.

30. Question

Which of the following is not true for a parallelogram?
A. Opposite sides are equal.
B. Opposite angles are equal.
C. Opposite angles are bisected by the diagonals.
D. Diagonals bisect each other.

Answer

We know that,
In any parallelogram, opposite angles are bisected by the diagonals
\therefore Option C is correct

31. Question

If APB and CQD are two parallel lines, then the bisectors of $\angle A P Q, \angle B P Q, \angle C Q P$ and $\angle P Q D$ enclose a
A. square
B. rhombus
C. rectangle
D. kite

Answer

It is given in the question that,
APB and CQD are two parallel lines,
Thus, the bisectors of $\angle \mathrm{CQP}, \angle \mathrm{APQ}, \angle \mathrm{BPQ}$ and $\angle \mathrm{PQD}$ enclose a rectangle.
Hence, option C is correct.

32. Question

The diagonals $A C$ and $B D$ of a parallelogram $A B C D$ intersect each other at the point O such that $\angle D A C$ $=30^{\circ}$ and $\angle A O B=70^{\circ}$. Then, $\angle D B C=$?

A. 40°
B. 35°
C. 45°
D. 50°

Answer

In the given figure,
$\angle O A D=\angle O C B$ (Alternate interior angle)
$\angle O C B=30^{\circ}$
$\angle A O B+\angle B O C=180^{\circ}$ (Linear pair)
$70^{\circ}+\angle B O C=180^{\circ}$
$\angle B O C=110^{\circ}$
Now, In $\triangle B O C$,
$\angle \mathrm{OBC}+\angle \mathrm{BOC}+\angle \mathrm{OCB}=180^{\circ}$
$\angle O B C+110^{\circ}+30^{\circ}=180^{\circ}$
$\angle O B C=40^{\circ}$
$\therefore \angle \mathrm{DBC}=40^{\circ}$
Hence, Option A is correct.

33. Question

Three statements are given below:
I. In a ||gm, the angle bisectors of two adjacent angles enclose a right angle.
II. The angle bisectors of a \|gm form a rectangle.
III. The triangle formed by joining the mid-points of the sides of an isosceles triangle is not necessarily an isosceles triangle.

Which is true?
A. I only
B. II only
C. I and II
D. II and III

Answer

We can clearly observe that statement I and statement II are correct. Whereas Statement III is not correct because the triangle formed by joining the midpoints of the sides of an isosceles triangle is always an isosceles triangle

Therefore, Option C is correct

34. Question

Three statements are given below:
I. In a rectangle $A B C D$, the diagonal $A C$ bisects $\angle A$ as well as $\angle C$.
II. In a square $A B C D$, the diagonal $A C$ bisects $\angle A$ as well as $\angle C$.
III. In a rhombus $A B C D$, the diagonal $A C$ bisects $\angle A$ as well as $\angle C$.

Which is true?
A. I only
B. II and III
C. I and III
D. I and II

Answer

We can clearly observe that statement II and statement III are correct and Statement I is wrong because the diagonals of a rectangle does not bisect $\angle A$ and $\angle C$. And this is so because the adjacent sides are unequal in a rectangle.
\therefore Option B is correct

35. Question

In each of the questions one question is followed by two statements I and II. Choose the correct option.

Is quadrilateral $A B C D$ a \|gm?
I. Diagonals AC and BD bisect each other.
II. Diagonals AC and BD are equal.
A. if the question can be answered by one of the given statements alone and not by the other;
B. if the question can be answered by either statement alone;
C. if the question can be answered by both the statements together but not by any one of the two;
D. if the question cannot be answered by using both the statements together.

Here, as we know that if the diagonals of a quadrilateral bisects each other, then it is a parallelogram.
But as per II, if the diagonals of a quadrilateral are equal, then it is not necessarily a parallelogram which is not true. Thus, II does not give the answer.

Therefore Option A is correct.

36. Question

In each of the questions one question is followed by two statements I and II. Choose the correct option.

Is quadrilateral $A B C D$ a rhombus?
I. Quad. $A B C D$ is a \|gm.
II. Diagonals AC and BD are perpendicular to each other.
A. if the question can be answered by one of the given statements alone and not by the other;
B. if the question can be answered by either statement alone;
C. if the question can be answered by both the statements together but not by any one of the two;
D. if the question cannot be answered by using both the statements together.

Answer

Here, we can observe that neither I not II can alone justify the answer to the given question. But if we consider both I and II together then they completely satisfies the answer.
\therefore Option C is correct.

37. Question

In each of the questions one question is followed by two statements I and II. Choose the correct option.

Is ||gm ABCD a square?
I. Diagonals of $\| g m A B C D$ are equal.
II. Diagonals of \|Igm ABCD intersect at right angles.
A. if the question can be answered by one of the given statements alone and not by the other;
B. if the question can be answered by either statement alone;
C. if the question can be answered by both the statements together but not by any one of the two;
D. if the question cannot be answered by using both the statements together.

Answer

We know that when the diagonals of a parallelogram are equal, it might be a square or a rectangle. But if the diagonals of that parallelogram intersect at a right angle, then it is definitely a square. Thus, it can be concluded that both I and II together will give the answer.

Therefore, Option C is correct.

38. Question

In each of the questions one question is followed by two statements I and II. Choose the correct option.

Is quad. ABCD a parallelogram?
I. Its opposite sides are equal.
II. Its opposite angles are equal.
A. if the question can be answered by one of the given statements alone and not by the other;
B. if the question can be answered by either statement alone;
C. if the question can be answered by both the statements together but not by any one of the two;
D. if the question cannot be answered by using both the statements together.

Answer

We know that a quadrilateral is a parallelogram when either I or II holds true.
Hence, the correct answer is (b)

39. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)
If three angles of a quadrilateral are 130°,	The sum of all the angle of a
70°, and 60°, then the fourth angle is	
100°.	quadrilateral is 360°.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Let the fourth angle be x ,
$130^{\circ}+70^{\circ}+60^{\circ}+x^{\circ}=360^{\circ}$ (angle sum of quadrilateral)
$x^{\circ}=360^{\circ}-\left(130^{\circ}+70^{\circ}+60^{\circ}\right)$
$x^{\circ}=100^{\circ}$
Thus, it can be observed that reason and assertion both are true and the reason explains the assertion.

Therefore Option A is correct.

40. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)
ABCD is a quadrilateral in which P, Q, R and S are the mid-points of AB, BC, CD and DA respectively. Then, PQRS is a parallelogram.	The line segment joining the mid points of any two sides of a triangle is parallel to the third side and equal to half of it.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

It is given that, $A B C D$ is a quadrilateral in which P, Q, R and S are the mid-points of $A B, B C, C D$ and DA respectively. Then, PQRS is a parallelogram

Also, the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Hence, both assertion and reason are true and reason is correct explanation of the assertion
\therefore Option (a) is correct

41. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)
In a rhombus ABCD, the diagonal $A C$ bisects $\angle A$ as well as $\angle C$.	The diagonals of a rhombus bisect each other at right angles.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

It is given that,
In a rhombus $A B C D$, the diagonal $A C$ bisects $\angle A$ as, well as $\angle C$ which is true
And we know that, the diagonals of a rhombus bisect each other at right angles.
Hence, both assertion and reason are true but reason is not the correct explanation of assertion
\therefore Option (b) is correct

42. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)
	Every parallelogram is a rectangle.
parallelogram form a rectangle.	

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

The statement given in assertion is not true as every parallelogram is not a rectangle whereas, statement given in the reason is true as the angle bisectors of a parallelogram form a rectangle

Hence, assertion is false whereas reason is true
\therefore Option (d) is correct

43. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)		
The diagonals of a $\\| g m$ bisect each other.	If the diagonals of a $\\| g m$ are equal and intersect at right angles, then the parallelogram is a square.		

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

We know that,
The diagonals of a \|gm bisect each other
Also we know that, if the diagonals of a |Igm are equal and intersect at right angles, then the parallelogram is a square

Hence, option (b) is correct

44. Question

Match the following columns:

Column I	Column II
(a) Angle bisectors of a parallelogram form a	(p) parallelogram
(b) The quadrilateral formed	
by joining the mid-points of	
the pairs of adjacent sides of	
a square is a	(q) rectangle

The correct answer is:
(a) \qquad (b) -........,
(c) - \qquad (d)........- ,

Answer

The correct match for the above given table is as follows:

Column I	Column II
(a) Angle bisectors of a parallelogram form a	(q) Rectangle
(b) The quadrilateral formed by joining the mid-points of the pairs of adjacent sides of a square is a	(r) Square
(c) The quadrilateral formed by joining the mid-points	(s) Rhombus

45. Question

Match the following columns:

Column I	Column II
(a) In the given figure, ABCD is a trapezium in which AB $=10$ cm and CD $=7 \mathrm{~cm}$. If P and Q are the mid-points of $A D$ and BC respectivelv. then $P O=$	(p) equal

The correct answer is:
(a) \qquad (b) -........,
(c) (d) -.........,

Answer
a) $P Q=\frac{1}{2}(A B+C D)$
$P Q=\frac{1}{2}(17)$
$P Q=8.5 \mathrm{~cm}$
(b) $\mathrm{OR}=\frac{1}{2}(\mathrm{PR})$
$\mathrm{OR}=\frac{1}{2}(13)$
$\mathrm{OR}=6.5 \mathrm{~cm}$
(c) We know that,

The diagonals of a square are equal
(d) We also know that,

The diagonals of a rhombus bisect each other at right angles
\therefore The correct match is as follows:
(a) $-(r)$
(b)-(s)
(c) $-(p)$
(d) $-(q)$

Formative Assessment (Unit Test)

1. Question

Which is false?
A. In a \|gm, the diagonals are equal.
B. In a \|Igm, the diagonals bisect each other.
C. If a pair of opposite sides of a quadrilateral is equal, then it is a \|gm.
D. If the diagonals of a \|gm are perpendicular to each other, then it is a rhombus.

Answer

from the above given four statements option A is false as we know that in any parallelogram the diagonals are not equal

Hence, option A is correct

2. Question

If P is a point on the median $A D$ of a $\triangle A B C$, then $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C P)$.

A. True
B. False

Answer

In $\triangle A B C$,
Since, AD is the median
Thus, BD = DC
Let the height of $\triangle A B C$ be h
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABD})$
$1 / 2 \times h \times B D=1 / 2 \times h \times B D$
$1 / 2 \times h \times B D=1 / 2 \times h \times C D$
$\therefore \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A D C)$
Let H be the height of $\triangle B P D$ and $\triangle P D C$
$\therefore \operatorname{ar}(\triangle \mathrm{BPD})=\operatorname{ar}(\triangle \mathrm{PDC})$
Now, $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A B P)+\operatorname{ar}(\triangle B P D)$
And, $\operatorname{ar}(\triangle A C D)=\operatorname{ar}(\triangle A C P)+\operatorname{ar}(\triangle P D C)$
Thus, $\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACP})$
\therefore Option A is correct

3. Question

The angles of a quadrilateral are in the ratio 1:3:5:6. Find its greatest angle.

Answer

Let the angles be $x, 3 x, 5 x$ and $6 x$.
$x+3 x+5 x+6 x=360^{\circ}$ (sum of angles of quadrilateral)
$15 x^{\circ}=360^{\circ}$
$x^{\circ}=24^{\circ}$
Therefore, angles are as follows:
$x^{\circ}=24^{\circ}$
$3 x^{0}=24^{\circ} \times 3=72^{\circ}$
$5 x^{\circ}=24^{\circ} \times 5=120^{\circ}$
$6 x^{\circ}=24^{\circ} \times 6=144^{0}$
Hence, 144° is the greatest angle.

4. Question

In a $\triangle A B C, D$ and E are the mid-points of $A B$ and $A C$ respectively and $D E=5.6 \mathrm{~cm}$. Find the length of $B C$.

Answer

We know that in $\triangle A B C, D$ and E are the midpoints of $A B$ and $A C$, respectively.
Now using mid-point theorem,
$D E=\frac{1}{2}(B C)$
$B C=2 \times D E$
$B C=2 \times 5.6$
$=11.2 \mathrm{~cm}$
Thus, $\mathrm{BC}=11.2 \mathrm{~cm}$

5. Question

In the given figure, $A D$ is the median and $D E \| A B$. Prove that $B E$ is the median.

Answer

In $\triangle A B C$, using mid point theorem
We know that D is the mid-point of $B C$ and $D E \| A B$.
Thus, $A E=E C$ and $D E=\frac{1}{2}(A B)$

Now, E is the mid point of AC
Thus, BE is the median

6. Question

In the given figure, lines I, m and n are parallel lines and the lines p and q are transversals. If $A B=5$ $\mathrm{cm}, \mathrm{BC}=15 \mathrm{~cm}$, then $\mathrm{DE}: \mathrm{EF}=$?

Answer

Here, we have:
| || m || n
And p and q are the transversal lines
Thus, $\mathrm{AB}: \mathrm{BC}=5: 15$
$A B: B C=1: 3$
\therefore Using intercept theorem,
$D E: E F=1: 3$

7. Question

$A B C D$ is a rectangle in which diagonal $B D$ bisects $\angle B$. Show that $A B C D$ is a square.

Answer

Let there be a rectangle $A B C D$ with $A B=C D$ and $B C=A D$ and $\angle A=\angle B=\angle C=\angle D=90^{\circ}$

Since, $B D$ bisects $\angle B$
$\angle A B D=\angle D B C(i)$
And, $\angle A D B=\angle D B C$ [Alternate interior angles]
$\angle A B D=\angle A D B$. [From (i)]
$\mathrm{AB}=\mathrm{DA}$. (Sides opposite to equal angles)
$\therefore A B=C D=D A=B C$
Since, all the sides are equal and all the angles are equal to 90°, thus the quadrilateral is a square.
Hence, $A B C D$ is a square.

8. Question

The diagonals of a rectangle $A B C D$ intersect at the point O. If $\angle B O C=50^{\circ}$, then $\angle O A D=$?

A. 50°
B. 55°
C. 65°
D. 75°

Answer

$\angle B O C=\angle A O D$ (Vertically opposite angles)
Angle AOD $=50^{\circ}$
In $\triangle A O D$, Since, the diagonals are equal, thus the bisectors will also be equal)
Thus, $O A=O D$
$\therefore \angle O A D=\angle O D A$
$=\frac{1}{2}\left(180^{\circ}-50^{\circ}\right)$
$=\frac{1}{2}\left(130^{\circ}\right)$
$=65^{\circ}$
\therefore Option C is correct

9. Question

Match the following column:

Column I	Column II	
(a) Sum of all the angles of a quadrilateral is	(p) Right angles	
(b) In a \\|gm, the angle bisectors of two adjacent angles intersect at	(q) Rectangle	
(c) Angle bisectors of a Ilgm form a	(r) 90°	
	(s) 4 right angles	
(d) The diagonals of a square are equal and bisect each other at an angle of		

The correct answer is:
(a) \qquad (b) -........,
(c) -......, (d) -.........,

Answer

The correct match for the above given table is as follows:

Column I	Column II	
(a) Sum of all the angles of a quadrilateral is	(s) 4 right angles	
(b) In a \\|gm, the angle bisectors of two adjacent angles intersect at	(p) Right angles	
(c) Angle bisectors of a Ilgm form a	(q) Rectangle	
	(r) 909	
(d) The diagonals of a square are equal and bisect each other at an angle of		

10. Question

The diagonals of a rhombus, $A B C D$ intersect at the point O. If $\angle B D C=50^{\circ}$, then $\angle O A B=$?

A. 50°
B. 40°
C. 25°
D. 20°

Answer

$\angle B D C=\angle A B D$ (Alternate interior angles)
$\angle A B D=50^{\circ}$
Now, In $\triangle A O B$,
$\angle D B A=50^{\circ}$ and $\angle A O B=90^{\circ}$
Thus, $\angle \mathrm{OAB}=180^{\circ}-\left(90^{\circ}+50^{\circ}\right)$
$\angle O A B=180^{\circ}-140^{\circ}$
$\angle O A B=40^{\circ}$
\therefore Option B is correct.

11. Question

$A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$, then $\angle A=\angle B$ is

A. true
B. false

Answer

Construction: Draw perpendicular line from D and C to $A B$ such that it cuts $A B$ at F and E, respectively.

Now, In $\triangle A D F$ and $\triangle B C E$,
$A D=B C$ (Given)
$\angle A F D=\angle B E C\left(90^{\circ}\right.$ each $)$
DF $=$ CE (Perpendicular distance between the same parallels)
\therefore By SSA axiom
$\triangle A D F \cong \triangle B C E$
$\angle A=\angle B$ (by c.p.c.t.)
Therefore Option A is correct.

12. Question

Look at the statements given below:

I. If $A D, B E$ and $C F$ be the altitudes of a $\triangle A B C$ such that $A D=B E=C F$, then $\triangle A B C$ is an equilateral triangle.
II. If D is the mid-point of hypotenuse $A C$ of a right $\triangle A B C$, then $B D=A C$.
III. In an isosceles $\triangle A B C$ in which $A B=A C$, the altitude $A D$ bisects $B C$.

Which is true?
A. I only B. II only
C. I and III D. II and III

Answer

We can clearly observe that statement I and statement III are correct.
We can prove the statement as follows:
In $\triangle A B C$, altitudes $A D, B E$ and $C F$ are equal

Now, In $\triangle A B E$ and $\triangle A C F$,
$B E=C F$ (Given)
$\angle A=\angle A$ (common)
$\angle A E B=\angle A F C\left(\right.$ Each $\left.90^{\circ}\right)$
Therefore, by AAS axiom,
$\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
$A B=A C$ (by cpct)
In the same way, $\triangle B C F \cong \triangle B A D$
thus, $B C=A B$ (by cpct)
Therefore $A B=A C=B C$
Thus, $\triangle A B C$ is an equilateral triangle.
We can prove the IIIrd statement as follows:
Let $\triangle A B C$ be an isosceles triangle with $A D$ as an altitude

Now, In $\triangle A B D$ and $\triangle A D C$,
$A B=A C$ (Given)
$\angle B=\angle C$ (Angles opposite to equal sides)
$\angle B D A=\angle C D A\left(\right.$ each $\left.90^{\circ}\right)$
Therefore by AAS axiom,
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ADC}$
$B D=D C$ (by congruent parts of congruent triangles)
$\therefore \mathrm{D}$ is the mid-point of BC and hence $A D$ bisects $B C$.

13. Question

In the given figure, D and E are two points on side $B C$ of $\triangle A B C$ such that $B D=D E=E C$. Prove that
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{AEC})$.

Answer

Area of a triangle $=1 / 2($ Base \times Height $)$
Now, draw $A L$ perpendicular to $B C$ and h be the height of $\triangle A B C$ i.e. $A L$
Thus, Height of $\triangle A B D=$ Height of $\triangle A D E=$ Height of $\triangle A E C$
It is given that the bases $B D, D E$ and $E C$ of $\triangle A B D, \triangle A D E$ and $\triangle A E C$ respectively are equal.
Now, since base and height both are equal of all the triangles therefore,
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{AEC})$

14. Question

In the given figure $A B C D, D C F E$ and $A B F E$ are parallelograms. Show that $\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle B C F)$.

Answer

Now, here in $\triangle A D E$ and $\triangle B C F$,
$A D=B C$ (Opposite sides of parallelogram $A B C D$
$\mathrm{DE}=\mathrm{CF}$ (Opposite sides of parallelogram DCEF)
$A E=B F$ (Opposite sides of parallelogram ABFE)
\therefore By SSS axiom,
$\triangle A D E \cong \triangle B C F$
And,
$\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{BCF})(\mathrm{By} \mathrm{cpct})$

15. Question

In the given figure, $A B C D$ is a trapezium in which $A B \| D C$ and diagonals $A C$ and $B D$ intersect at O. Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$.

Answer

Here, in trapezium $A B C D$,
$A B \| D C$ and $A C$ and $B D$ are the diagonals intersecting at O.
Now, since $\triangle A C D$ and $\triangle B C D$ lie on the same base and between the same parallels.
Thus, $\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{BCD})$
Subtracting $\operatorname{ar}(\triangle C O D)$ from both the sides, we get:
$\operatorname{ar}(\triangle \mathrm{ACD})-\operatorname{ar}(\triangle C O D)=\operatorname{ar}(\triangle \mathrm{BCD})-\operatorname{ar}(\triangle C O D)$
$\therefore \operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$

16. Question

Show that a diagonal divides a parallelogram into two triangles of equal area.

Answer

Let there be a parallelogram $A B C D$ and with one of its diagonal as $A C$.

Now, In $\triangle C D A$ and $\triangle A B C$,
$D A=B C$ (Opposite sides of parallelogram ABCD)
$A C=A C$ (Common)
$C D=A B$ (Opposite sides of parallelogram ABCD)
\therefore By SSS axiom
$\triangle C D A \cong \triangle A B C$
$\operatorname{ar}(\triangle C D A)=\operatorname{ar}(\triangle \mathrm{ABC})$ (by cpct)
Thus, we can say that the diagonal of a parallelogram divides it into two triangles of equal area.

17. Question

In the given figure, $A C$ is a diagonal of quad. $A B C D$ in which $B L \perp A C$ and $D M \perp A C$. Prove that or $($ quad. $A B C D)=\frac{1}{2} \times \mathrm{AC} \times(\mathrm{BL}+\mathrm{DM})$.

Answer

Here we have $A B C D$ as a quadrilateral with one of its diagonal as $A C$ and $B L$ and $D M$ are perpendicular to AC

Thus, $\operatorname{ar}(A B C D)=\operatorname{ar}(\triangle A D C)+\operatorname{ar}(\triangle A B C)$
Since, $(B L \perp A C)$ and $(D M \perp A C)$
\therefore Area of $A B C D=\left(\frac{1}{2} \times A C \times B L\right)+\left(\frac{1}{2} \times A C \times D M\right)$
$=\frac{1}{2} \times A C \times(B L+D M)$

18. Question

IIgm ABCD and rectangle ABEF have the same base $A B$ and are equal in areas. Show that the perimeter of the \|gm is greater than that of the rectangle.

Answer

Here we know that parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and between the same parallels such that:
$A B=C D$ and $A B=E F$
So, CD = FE
Now, adding $A B$ on both sides
$A B+C D=A B+F E(i)$
Since we know that hypotenuse is the longest side of a triangle
$\therefore A D>A F$ (ii)
And, $B C>B E$ (iii)
Adding (ii) and (iii),
$A D+B C>A F+B E$ (iv)
Now, Perimeter of $A B C D=A B+B C+C D+A D$
And, Perimeter of $A B E F=A B+B E+F E+A F$
Adding (i) and (iv),
$A B+C D+A D+B C>A B+F E+A F+B E$
Thus, we can say that the perimeter of parallelogram $A B C D$ is greater than that of rectangle $A B E F$.

19. Question

In the adjoining figure, $A B C D$ is a \|gm and E is the mid-point of side $B C$. If $D E$ and $A B$ when produced meet at F, prove that $A F=2 A B$.

Answer

Here we have parallelogram $A B C D$ with $A B \| D C$
Thus, DC \| BF
Now, in $\triangle D E C$ and $\triangle F E B$,
$\angle D C F=\angle E B F$ (Alternate interior angle)
$C E=B E$ (E is the mid-point of $B C$
$\angle C E D=\angle B E F$ (Vertically opposite angle)
Therefore, by ASA axiom,
$\Delta \mathrm{DEC} \cong \triangle \mathrm{FEB}$
$C D=B F(b y c p c t)$
And $C D=A B$ (Opposite sides of a parallelogram $A B C D$)
So, $A F=A B+B F=A B+A B=2 A B$

20. Question

In the adjoining figure, $A B C D$ and $P Q R C$ are rectangles, where Q is the mid-point of $A C$.
Prove that (i) $D P=P C$ (ii) $P R=\frac{1}{2} \mathrm{AC}$.

Answer

(i) Here, we have
$\angle C R Q=\angle C B A=90^{\circ}$
Thus, RQ \| $A B$
Now, In $\triangle A B C$,

Q is the mid-point of $A C$ and $Q R \| A B$.
Thus, R is the mid-point of $B C$.
In the same way, P is the midpoint of DC .
Hence, DP = PC
(ii) Here, let us join B to D.

Now, In $\triangle C D B$,
P and R are the mid points of $D C$ and $B C$ respectively.
Since, $A C=B D$

Thus, $P R \| D B$ and $P R=\frac{1}{2} D B=\frac{1}{2} A C$

