Linear Equation In One Variable Ex 9A

Linear equation in one variable is an equation which can be written in the form of ax + b = 0, where a and b are realnumber constants and $a \neq 0$.

Ex.

$$x + 7 = 12$$

Equation is a mathematical sentence indicating that two expressions are equal. The symbol "=" is used to indicate equality.

Ex.

2x + 5 = 9 is a conditional equation since its truth or falsity depends on the value of x

2 + 9 = 11 is identity equation since both of its sides are identical to the same number 11.

Solution Set of a Linear Equation

Example

4x + 2 = 10 this statement is either true of

false

If x = 1, then 4x + 2 = 10 is false because 4(1) + 2 is $\neq 10$

If x = 2, then 4x + 2 = 10 is true because 4(2) + 2 = 10

ONE STEP SUBTRACTION EXAMPLE

The Opposite of Subtraction is Addition

$$x - 120 = 80$$

$$x = 200 \checkmark$$

The value which makes the equation true is 200.

x - 4 = 7	Original problem
x - 4 = 7	We want to remove the minus 4.
x - 4 + 4 = 7 + 4	The opposite of minus 4 is plus 4, so I added 4 to BOTH sides of the equation.
x = 11	-4+4 = 0, so x remains on the left and 7+4 = 11; therefore x = 11
Check:	
x - 4 = 7	This is a correct statement, so my
11 – 4 = 7	answer is x = 11 is correct!

Solving simple two-step equations

To solve an equation, find the value that makes the equation true.

Solve
$$2x + 3 = 13$$

This means: χ × 2 + 3 = 13

To solve, we reverse the process:

Use the opposite (inverse) operation and undo in reverse order.

X = 5

We have solved the equation when we get to a single value of x (here, x = 5).

Solve
$$4x + 6 = 14$$

$$4x + 6 = 14$$

- 6

÷ 4

÷ 3

Solve
$$3x - 8 = 19$$

$$3x - 8 = 19$$

Q1

Answer:

- (i) Let the required number be x.
- So, five times the number will be 5x.
- ∴ 5x = 40
- (ii) Let the required number be x.
 - So, when it is increased by 8, we get x + 8.
 - ∴ x + 8 = 15
- (iii) Let the required number be x.
 - So, when 25 exceeds the number, we get 25 x
- $\therefore 25 x = 7$
- (iv) Let the required number be x.
 - So, when the number exceeds 5, we get x 5.
- $\therefore X 5 = 3$
- (v) Let the required number be x.
 - So, thrice the number will be 3x.
- $\therefore 3x 5 = 16$
- (vi) Let the required number be x.
 - So, 12 subtracted from the number will be x-12.
 - ∴ x 12 = 24
- (vii) Let the required number be x.
 - So, twice the number will be 2x.
 - 19 2x = 11
- (viii) Let the required number be x.
 - So, the number when divided by 8 will be $\frac{x}{8}$
 - $\therefore \frac{x}{8} = 7$
- (ix) Let the required number be x.
 - So, four times the number will be 4x.
- :.4x 3 = 17
- (x) Let the required number be x.
 - So, 6 times the number will be 6x.
 - ..6x = x + 5

- (i) 7 less than the number x equals 14.
- (ii) Twice the number y equals 18.
- (iii) 11 more than thrice the number x equals 17.
- (iv) 3 less than twice the number x equals 13.
- (v) 30 less than 12 times the number y equals 6.
- (vi) When twice the number z is divided by 3, it equals 8.

Q3

Answer:

(1)

$$3x - 5 = 7$$

Substituting x = 4 in the given equation:

$$L.H.S.$$
:

$$3 \times 4 - 5$$

$$or, 12 - 5 = 7 = R.H.S.$$

$$L.H.S. = R.H.S.$$

Hence, x = 4 is the root of the given equation.

(ii)

$$3 + 2x = 9$$

Substituting x = 3 in the given equation:

$$L.H.S.$$
:

$$3 + 2 \times 3$$

or,
$$3+6=9=R.H.S.$$

$$L.H.S. = R.H.S.$$

Hence, x = 3 is the root of the given equation.

(iii)

$$5x-8=2x-2$$

Substituting x = 2 in the given equation:

$$L.H.S.$$
:

$$R.H.S.$$
:

$$5 \times 2 - 8$$

$$=2\times 2-2$$

$$or, 10 - 8 = 2$$

$$=4-2=2$$

L.H.S. = R.H.S.

Hence, x=2 is the root of the given equation.

(iv)

$$8-7y=1$$

Substituting y = 1 in the given equation:

L.H.S.:

$$8-7\times1$$

$$or, 8 - 7 = 1 = R.H.S.$$

$$L.H.S. = R.H.S.$$

Hence, y = 1 is the root of the given equation.

(v)

$$\frac{z}{7} = 8$$

Substituting z = 56 in the given equation:

$$L.H.S.$$
:

$$\frac{56}{7} = 8 = R.H.S.$$

$$L.H.S. = R.H.S.$$

Hence, z = 56 is the root of the given equation.

(i) y + 9 = 13

We try several values of y until we get the L.H.S. equal to the R.H.S.

у	L.H.S.	R.H.S.	Is LHS =RHS ?
1	1 + 9 = 10	13	No
2	2 + 9 = 11	13	No
3	3 + 9 = 12	13	No
4	4 + 9 = 13	13	Yes

∴ y = 4

(ii) x - 7= 10

We try several values of x until we get the $\,$ L.H.S. equal to the R.H.S.

X	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
10	10 - 7 = 3	10	No
11	11 - 7 = 4	10	No
12	12 - 7 = 5	10	No
13	13 - 7 = 6	10	No
14	14 - 7 = 7	10	No
15	15 - 7 = 8	10	No
16	16 - 7 = 9	10	No
17	17 - 7 = 10	10	Yes

∴ x = 17

(iii) 4x = 28

We try several values of x until we get the $\,$ L.H.S. equal to the R.H.S.

X	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
1	4 × 1 = 4	28	No
2	4 × 2 = 8	28	No
3	4 × 3 = 12	28	No
4	4 × 4 = 16	28	No
5	4 × 5 = 20	28	No
6	4 × 6 = 24	28	No
7	4 × 7 = 28	28	Yes

∴ x = 7

(iv) 3y = 36

We try several values of x until we get the L.H.S. equal to the R.H.S.

	*		
у	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
6	3 × 6 = 18	36	No
7	3 × 7 = 21	36	No
8	3 × 8 = 24	36	No
9	3 × 9 = 27	36	No
10	$3 \times 10 = 30$	36	No
11	3 ×11 = 33	36	No
12	3 × 12 = 36	36	Yes

∴ y = 12

(v) 11 + x = 19

We try several values of \boldsymbol{x} until we get the L.H.S. equal to the R.H.S.

Х	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
1	11 + 1 = 12	19	No
2	11 + 2 = 13	19	No
3	11 + 3 = 14	19	No
4	11 + 4 = 15	19	No
5	11 + 5 = 16	19	No
6	11 + 6 = 17	19	No
7	11 + 7 = 18	19	No
8	11 + 8 = 19	19	Yes

∴ x = 8

(Vi) $\frac{x}{3} = 4$

Since R.H.S. is an natural number so L.H.S. must also be a natural number. Thus, x has to be a multiple of 3.

X	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
3	$\frac{3}{3} = 1$	4	No
6	$\frac{6}{3} = 2$	4	No
9	$\frac{9}{3} = 3$	4	No
12	$\frac{12}{3} = 4$	4	Yes

∴ x = 12

(vii) 2x - 3 = 9

We try several values of x until we get the L.H.S. equal to the R.H.S.

Х	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
1	2 × 1 - 3 = -1	9	No
2	2 × 2 - 3 =	9	No
3	2 × 3 - 3 = 3	9	No
4	2 × 4 - 3 = 5	9	No
5	2 × 5 - 3 = 7	9	No
6	2 × 6 - 3 = 9	9	Yes

∴ x = 6

(viii) $\frac{1}{2}x + 7 = 11$

Since, R.H.S. is a natural number so L.H.S. must be a natural number Thus, we will try values if x which are multiples of 'x'

Χ	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
2	2/2 + 7 = 8	11	No
4	4/2 + 7 = 9	11	No
6	6/2 + 7 = 10	,11	No
8	8/2 + 7 = 11	11	Yes

∴ x = 8

(ix) 2y + 4 = 3y

We try several values of y until we get the L.H.S. equal to the R.H.S.

у	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
1	2 × 1 + 4 = 6	3 × 1 = 3	No
2	2 × 2 + 4 = 8	3 × 2 = 6	No
3	2 × 3 + 4 = 10	3 × 3 = 9	No
4	2 × 4 + 4 = 12	3 × 4 = 12	Yes

∴ y = 4

(x) z - 3 = 2z - 5

We try several values of z till we get the L.H.S. equal to the R.H.S.

Z	L.H.S.	R.H.S.	Is L.H.S. = R.H.S.?
1	1 - 3 = -2	2 × 1 – 5 = –3	No
2	2 - 3 = -1	2 × 2 - 5 = -1	Yes

∴ z = 2

Linear Equation In One Variable Ex 9B

Q1 Answer: x + 5 = 12Subtracting 5 from both the sides: \Rightarrow x + 5 - 5 = 12 - 5 $\Rightarrow x = 7$ Verification: Substituting x = 7 in the L.H.S.: \Rightarrow 7 + 5 = 12 = R.H.S. L.H.S. = R.H.S. Hence, verified. Q2 Answer: x + 3 = -2Subtracting 3 from both the sides: $\Rightarrow x + 3 - 3 = -2 - 3$ ⇒ x = -5 Verification: Substituting x = -5 in the L.H.S.: \Rightarrow -5 + 3 = -2 = R.H.S. L.H.S. = R.H.S. Hence, verified.

```
Q3
Answer:
 x - 7 = 6
Adding 7 on both the sides:
\Rightarrow x - 7 + 7 = 6 + 7
\Rightarrow x = 13
Verification:
Substituting x = 13 in the L.H.S.:
\Rightarrow 13 - 7 = 6 = R.H.S.
L.H.S. = R.H.S.
Hence, verified.
Q4
Answer:
 x - 2 = -5
Adding 2 on both sides:
\Rightarrow x - 2 + 2 = -5 + 2
\Rightarrow x = -3
Verification:
Substituting x = -3 in the L.H.S.:
\Rightarrow -3 - 2 = -5 = R.H.S.
L.H.S. = R.H.S.
Hence, verified.
Q5
Answer:
3x - 5 = 13
\Rightarrow 3x - 5 + 5 = 13 + 5
                                     [Adding 5 on both the sides]
\Rightarrow 3x = 18
\Rightarrow \frac{3x}{3} = \frac{18}{3}
                                    [Dividing both the sides by 3]
\Rightarrow x = 6
Substituting x = 6 in the L.H.S.:
\Rightarrow 3 × 6 - 5 = 18 - 5 = 13 = R.H.S.
L.H.S. = R.H.S.
Hence, verified.
Q6
 Answer:
 \Rightarrow 4x + 7 - 7 = 15 - 7
                                    [Subtracting 7 from both the sides]
 \Rightarrow 4x = 8
 \Rightarrow \frac{4x}{4} = \frac{8}{4}
                                  [Dividing both the sides by 4]
 \Rightarrow x = 2
 Verification:
 Substituting x = 2 in the L.H.S.:
 \Rightarrow 4×2+7=8+7=15=R.H.S.
L.H.S. = R.H.S.
 Hence, verified.
Q7
Answer:
 \frac{x}{5} = 12
\Rightarrow \frac{x}{5} \times 5 = 12 \times 5
                                                  [Multiplying both the sides by 5]
\Rightarrow x = 60
Verification:
Substituting x = 60 in the L.H.S.:
\Rightarrow \frac{60}{5} = 12 = R.H.S.
⇒ L.H.S. = R.H.S
```

Hence, verified.

$$\frac{3x}{5} = 15$$

$$\Rightarrow \frac{3x}{5} \times 5 = 15 \times 5$$

$$\Rightarrow 3x = 75$$

$$\Rightarrow \frac{3x}{3} = \frac{75}{3}$$

$$\Rightarrow x = 25$$

[Multiplying both the sides by 5]

Verification:

Substituting x = 25 in the L.H.S.:

$$\Rightarrow \frac{3 \times 25}{5} = 15 = \text{R.H.S.}$$

⇒ L.H.S. = R.H.S.

Hence, verified.

Q9

Answer:

$$5x - 3 = x + 17$$

 $\Rightarrow 5x - x = 17 + 3$ [Transposing x to the L.H.S. and 3 to the R.H.S.]
 $\Rightarrow 4x = 20$
 $\Rightarrow \frac{4x}{4} = \frac{20}{4}$ [Dividing both the sides by 4]

Verification:

Substituting x = 5 on both the sides:

L.H.S.:
$$5(5) - 3$$

 $\Rightarrow 25 - 3$
 $\Rightarrow 22$

R.H.S.:
$$5 + 17 = 22$$

 \Rightarrow L.H.S. = R.H.S.
Hence, verified.

Q10

Answer:

$$\begin{array}{l} 2x - \frac{1}{2} &= 3 \\ \Rightarrow 2x - \frac{1}{2} + \frac{1}{2} = 3 + \frac{1}{2} \\ \Rightarrow 2x = \frac{6+1}{2} \\ \Rightarrow 2x = \frac{7}{2} \\ \Rightarrow \frac{2x}{2} = \frac{7}{2 \times 2} \\ \Rightarrow x = \frac{7}{4} \end{array}$$

Dividing both the sides by 3]

Substituting $x = \frac{7}{4}$ in the

$$2\left(\frac{7}{4}\right) - \frac{4}{2}$$

= $\frac{7}{2} - \frac{1}{2} = \frac{6}{2} = 3 = R.H.S$
L.H.S. = R.H.S.

Hence, verified

Q11

Answer:

$$3(x+6)=24$$
 $\Rightarrow 3\times x+3\times 6=24$ [On expanding the brackets] $\Rightarrow 3x+18=24$ $\Rightarrow 3x+18-18=24-18$ [Subtracting 18 from both the sides] $\Rightarrow 3x=6$ $\Rightarrow \frac{3x}{3}=\frac{6}{3}$ [Dividing both the sides by 3] $\Rightarrow x=2$ Verification: Substituting $x=2$ in the L.H.S.:

Substituting
$$x = 2$$
 in the L.H.S.:
 $3(2+6) = 3 \times 8 = 24 = R.H.S.$
L.H.S. = R.H.S.
Hence, verified.

$$6x + 5 = 2x + 17$$

$$\Rightarrow$$
6x $-2x = 17 - 5$

[Transposing 2x to the L.H.S. and 5 to the R.H.S.]

$$\Rightarrow$$
4x = 12

$$\Rightarrow \frac{4x}{4} = \frac{12}{4}$$

[Dividing both the sides by 4]

 \Rightarrow x = 3

Verification:

Substituting x = 3 on both the sides:

R.H.S.: 2(3) + 17

L.H.S. = R.H.S.

Hence, verified.

Q13

Answer:

$$\frac{x}{4} - 8 = 1$$

$$\Rightarrow \frac{\mathbf{z}}{4} - 8 + 8 = 1 + 8$$

[Adding 8 on both the sides]

$$\Rightarrow \frac{\dot{x}}{4} = 9$$

$$\Rightarrow \frac{x}{4} \times 4 = 9 \times 4$$

[Multiplying both the sides by 4]

Transposing $\frac{x}{3}$ to the L.H.S.]

[Multiplying both the sides by 6]

or,
$$x = 36$$

Verification:

Substituting x = 36 in the L.H.S.:

or,
$$\frac{36}{4}$$
 - 8 = 9 - 8 = 1 = R.H.S.

Hence, verified.

014

Answer:

$$\frac{x}{2} = \frac{x}{3} +$$

$$\Rightarrow \frac{x}{2} - \frac{x}{3} = 1$$

$$\Rightarrow \frac{3x-2x}{6}$$

 $\Rightarrow \frac{x}{6} - 1$

$$\Rightarrow \frac{x}{6} \times 6 = 1 \times 6$$

Verification:

Substituting x = 6 on both the sides:

R.H.S.:
$$\frac{6}{2} + 1 = 2 + 1 = 3$$

L.H.S. = R.H.S.

Hence, verified.

015

Answer:

$$3(x+2) - 2(x-1) = 7$$

$$\Rightarrow 3 \times x \ + \ 3 \times 2 \ - \ 2 \times x \ - 2 \times \text{(-1)} \ = \ 7 \hspace{1cm} \text{[On expanding the brackets]}$$

or,
$$3x + 6 - 2x + 2 = 7$$

or,
$$x + 8 = 7$$

or,
$$x + 8 - 8 = 7 - 8$$

[Subtracting 8 from both the sides]

or,
$$x = -1$$

Verification:

Substituting x = -1 in the L.H.S.:

$$3(-1+2) - 2(-1-1)$$

or,
$$3(1) - 2(-2)$$

$$or, 3 + 4 = 7 = R.H.S.$$

L.H.S. = R.H.S.

Hence, verified.

$$5(x-1)+2(x+3)+6=0$$

 $\Rightarrow 5x-5+2x+6+6=0$ (Expanding within the brackets)
 $\Rightarrow 7x+7=0$
 $\Rightarrow x+1=0$ (Dividing by 7)
 $\Rightarrow x=-1$

Verification:

Putting x = -1 in the L.H.S.: L.H.S.: 5(-1-1) + 2(-1+3) + 6= 5(-2) + 2(2) + 6= -10 + 4 + 6 = 0 = R.H.S.

Hence, verified.

Q17

Answer:

$$\begin{array}{lll} 6(1-4x)+7(2+5x)=53 & & & \\ \text{or, } 6\times 1-6\times 4x+7\times 2+7\times 5x=53 & & & \\ \text{or, } 6-24x+14+35x=53 & & \\ \text{or, } 11x+20=53 & & \\ \text{or, } 11x+20-20=53-20 & & \\ \text{or, } 11x=33 & & \\ \text{or, } \frac{11x}{11}=\frac{33}{11} & & \\ \text{[Dividing both the sides by 11]} \end{array}$$

or, x = 3Verification:

Substituting x = 3 in the L.H.S.:

$$6(1 - 4 \times 3) + 7(2 + 5 \times 3)$$

$$\Rightarrow 6(1 - 12) + 7(2 + 15)$$

$$\Rightarrow 6(-11) + 7(17)$$

$$\Rightarrow -66 + 119 = 53 = R.H.S.$$

L.H.S. = R.H.S. Hence, verified.

Q18

Answer:

16(3
$$x$$
 - 5) - 10(4 x - 8) = 40 or, 16 \times 3 x - 16 \times 5 - 10 \times 4 x - 10 \times (-8) = 40 [On expanding the brackets] or, 48 x - 80 - 40 x + 80 = 40

or, $\frac{8x}{8} = \frac{40}{8}$ or, x = 5

[Dividing both the sides by 8]

Verification:

Substituting x = 5 in the L.H.S.:

$$\begin{aligned} &16(3\times 5-5)-10(4\times 5-8)\\ &\Rightarrow 16(15-5)-10(20-8)\\ &\Rightarrow 16(10)-10(12)\\ &\Rightarrow 160-120=40=R.H.S. \end{aligned}$$

L.H.S. = R.H.S.

Hence, verified.

Q19

$$3(x+6) + 2(x+3) = 64$$

 \Rightarrow 3 × x + 3 × 6 + 2 × x + 2 × 3 = 64 [On expanding the brackets]

 \Rightarrow 3x + 18 + 2x + 6 = 64

 $\Rightarrow 5x + 24 = 64$

 $\Rightarrow 5x + 24 - 24 = 64 - 24$

⇒5x = 40

⇒x = 8

Verification:

Substituting x = 8 in the L.H.S.:

3(8+6)+2(8+3)

3(14) + 2(11)

42 + 22 = 64 = R.H.S.

L.H.S. = R.H.S.

Hence, verified.

Q20

Answer:

$$3(2-5x)-2(1-6x)=1$$

or,
$$3 \times 2 + 3 \times (-5x) - 2 \times 1 - 2 \times (-6x) = 1$$
 [On expanding the brackets]

[Transposing n/6 to the L.H.S. and 5 to the R.H.S.]

[Dividing both the sides by 12]

[Subtracting 24 from both the sides]

[Dividing both the sides by 5]

or, 6 - 15x - 2 + 12x = 1

or, 4 - 3x = 1

or, 3 =3x

or, x = 1

Verification:

Substituting x = 1 in the L.H.S.:

$$3(2-5\times1)-2(1-6\times1)$$

$$\Rightarrow 3(2-5)-2(1-6)$$

$$\Rightarrow$$
 3(-3) -2(-5)

$$\Rightarrow$$
 -9 + 10 = 1 = R.H.S.

L.H.S. = R.H.S.

Hence, verified.

Q21

$$\frac{n}{4} - 5 = \frac{n}{6} + \frac{1}{3}$$

$$\frac{n}{4} - 3 = \frac{n}{6} + \frac{n}{2}$$
or, $\frac{n}{4} - \frac{n}{6} = \frac{1}{2} + 5$

or,
$$\frac{3n-2n}{12} = \frac{1+10}{2}$$

or,
$$\frac{n}{10} = \frac{1}{2}$$

or,
$$\frac{n}{12} \times 12 = \frac{11}{2} \times 12$$

Verification:

Substituting n = 66 on both the sides:

$$\frac{66}{4} - 5 = \frac{33}{2} - 5 = \frac{33 - 10}{2} = \frac{23}{2} = \frac{23}{2} R.H.S.$$
: $\frac{66}{6} + \frac{1}{2} = 11 + \frac{1}{2} = \frac{22 + 1}{2} = \frac{23}{2}$

L.H.S. = R.H.S.

Hence, verified.

Q22

$$\begin{array}{l} \frac{2m}{3} \ +8 = \frac{m}{2} - 1 \\ \text{or,} \ \frac{2m}{3} - \frac{m}{2} = -1 - 8 \\ \textbf{\textit{or,}} \ \frac{4m - 3m}{6} = -9 \end{array}$$

[Transposing m/2 to the L.H.S. and 8 to the R.H.S.]

$$or$$
, $\frac{m}{6} = -9$

$$\begin{array}{ll} \textit{or}, \; \frac{\textit{m}}{\textit{6}} \; = \; -9 \\ \text{or}, \; \frac{\textit{m}}{\textit{6}} \times \textit{6} \; = \; -9 \times \textit{6} \end{array}$$

Verification:

Substituting x = -54 on both the sides:

L.H.S.:

$$\frac{2(-54)}{3} + 8 = \frac{-54}{2} - 1$$

$$= \frac{-108}{3} + 8$$

$$= -36 + 8$$

$$= -28$$

R.H.S.:

$$R.H.S.$$
:
 $\frac{-54}{2} - 1$
 $= -27 - 1$
 $= -28$
L.H.S. = R.H.S.

Hence, verified

Q23

Answer:

$$rac{2x}{5} - rac{3}{2} = rac{x}{2} + 1$$
 or, $rac{2x}{5} - rac{x}{2} = 1 + rac{3}{2}$ or, $rac{4x - 5x}{10} = rac{2 + 3}{2}$

[Transposing x/2 to the L.H.S. and 3/2 to

$$or, \frac{10}{10} = \frac{1}{2}$$
 $or, \frac{-x}{10} = \frac{5}{2}$

or,
$$\frac{-x}{10} = \frac{5}{2}$$

or, $\frac{-x}{10} \left(-10\right) = \frac{5}{2} \times \left(-10\right)$

[Multiplying both the sides by -10]

or
$$x = -25$$

Substituting x = -25 on both the sides:

$$L.H.S.: \frac{2(-25)}{5} - \frac{3}{2}$$

$$= \frac{-50}{5} - \frac{3}{2}$$

$$= -10 - \frac{3}{2} = \frac{-23}{2}$$

$$R.H.S.: \frac{2}{2} + 1 = \frac{25+2}{2} = \frac{2}{2}$$

L.H.S. = R.H.S.

Hence, verified.

Q24

Answer:

$$\begin{array}{c} \frac{x-3}{5} - 2 = \frac{2x}{5} \\ \text{or, } \frac{x}{5} - \frac{3}{5} - 2 = \frac{2x}{5} \\ \text{or, } -\frac{3}{5} - 2 = \frac{2x}{5} - \frac{x}{5} \\ \text{or, } \frac{-3-10}{5} = \frac{x}{5} \\ \text{or, } \frac{-13}{5} = \frac{x}{5} \\ \text{or, } \frac{-13}{5} \left(5\right) = \frac{x}{5} \times \left(5\right) \end{array}$$

[Transposing x/5 to the R.H.S.]

or,
$$\frac{-3-10}{5} = \frac{x}{5}$$

or,
$$\frac{-13}{5} = \frac{x}{5}$$

[Multiplying both the sides by 5]

Substituting x = -13 on both the sides:

$$L.H.S.: \frac{-13-3}{5} - 2$$

$$=\frac{-16}{5}-2=\frac{-16-10}{5}=\frac{-26}{5}$$
 R.H.S.: $\frac{2\times(-13)}{5}=\frac{-26}{5}$

L.H.S. = R.H.S.

Hence, verified.

$$\begin{array}{l} \frac{3x}{10} - 4 = 14 \\ \text{or, } \frac{3x}{10} - 4 + 4 = 14 + 4 \\ \text{or, } \frac{3x}{10} = 18 \\ \text{or, } \frac{3x}{10} \times 10 = 18 \times 10 \\ \text{or, } \frac{3x}{10} \times 10 = 18 \times 10 \\ \text{or, } \frac{3x}{3} = \frac{180}{3} \\ \text{or, } x = 60 \end{array}$$
 [Dividing both the sides by 3]

Verification:

Substituting x = 60 on both the sides:

$$\frac{3\times60}{10} - 4$$

$$= \frac{180}{10} - 4 = 18 - 4 = 14 = R.H.S.$$

L.H.S. = R.H.S. Hence, verified.

Q26

Answer:

$$\begin{array}{l} \frac{3}{4}\left(x-1\right)=x-3\\ \Rightarrow\frac{3}{4}\times x-\frac{3}{4}\times 1=x-3\\ \Rightarrow\frac{3x}{4}-\frac{3}{4}=x-3\\ \Rightarrow\frac{3x}{4}-x=-3+\frac{3}{4}\\ \Rightarrow\frac{3x-4x}{4}=\frac{-12+3}{4}\\ \Rightarrow\frac{-x}{4}=\frac{-9}{4}\\ \Rightarrow\frac{-x}{4}\times (-4)=\frac{-9}{4}\times (-4) \end{array} \qquad \begin{array}{l} \text{[Transposing x to the L.H.S. and } -\frac{3}{4}\text{ to the R.H.S.]} \end{array}$$

Verification:

Substituting x = 9 on both the sides:

L.H.S.:
$$\frac{3}{4}(9-1)$$

= $\frac{3}{4}(8)$
= 6
R.H.S.: $9-3=6$

L.H.S. = R.H.S. Hence, verified.

Linear Equation In One Variable Ex 9C

Linear equation in one variable is an equation which can be written in the form of ax + b = 0, where a and b are realnumber constants and $a \neq 0$.

Ex.

$$x + 7 = 12$$

Equation is a mathematical sentence indicating that two expressions are equal. The symbol "=" is used to indicate equality.

Ex.

2x + 5 = 9 is a conditional equation

since its truth or falsity depends on
the value of x

2 + 9 = 11 is identity equation since both of its sides are identical to the same number 11.

Solution Set of a Linear Equation

Example

4x + 2 = 10 this statement is either true of

false

If x = 1, then 4x + 2 = 10 is false because 4(1) + 2 is $\neq 10$

If x = 2, then 4x + 2 = 10 is true because 4(2) + 2 = 10

ONE STEP SUBTRACTION EXAMPLE

The Opposite of Subtraction is Addition

$$x - 120 = 80$$

$$x = 200 \checkmark$$

The value which makes the equation true is 200.

x - 4 = 7	Original problem
x - 4 = 7	We want to remove the minus 4.
x - 4 + 4 = 7 + 4	The opposite of minus 4 is plus 4, so I added 4 to BOTH sides of the equation.
x = 11	-4+4 = 0, so x remains on the left and 7+4 = 11; therefore x = 11
Check:	
x - 4 = 7	This is a correct statement, so my
11 – 4 = 7	answer is x = 11 is correct!

Solving simple two-step equations

To solve an equation, find the value that makes the equation true.

Solve
$$2x + 3 = 13$$

This means: $x \times 2 + 3 = 13$
To solve, we reverse the process:

Solve
$$4x + 6 = 14$$

 $4x + 6 = 14$
 $4x = 8$
 $x = 2$

Solve
$$3x - 8 = 19$$

 $3x - 8 = 19$
 $3x = 27$
 $x = 9$

Q3

Answer:

Let the required number be x.

According to the question:

or,
$$5x = x + 80$$

or,
$$5x - x = 80$$

[Transposing x to the L.H.S.]

equation when we

get to a single value of \times (here, \times = 5).

or,
$$\frac{4x}{4} = \frac{80}{4}$$

[Dividing both the sides by 4]

Thus, the required number is 20.

Answer:

Let the three consecutive natural numbers be x, (x+1),

According to the question:

$$x + (x + 1) + (x + 2) = 114$$

$$X + (X + 1) + (X + 2) = 114$$

or, $X + X + 1 + X + 2 = 114$

or,
$$3x + 3 - 3 = 114 - 3$$

[Subtracting 3 from both the sides]

[Dividing both the sides by 3]

or,
$$\frac{3z}{3} = \frac{111}{3}$$

or,
$$x = 37$$

$$x = 37$$

or,
$$x + 1 = 37 + 1 = 38$$

Required numbers are

or
$$x + 2 = 37 + 2 = 39$$

Thus, the required numbers are 37, 38 and 39

Q5

Answer:

Let the required number be x.

When Raju multiplies it with 17, the number becomes 17x.

According to the question:

$$17x + 4 = 225$$

or,
$$17x + 4 - 4 = 225 - 4$$

[Subtracting 4 from both the sides]

or,
$$\frac{17x}{17} = \frac{221}{17}$$

[Dividing both the sides by 17]

Thus, the required number is 13.

Let the required number be x.

According to the question, the number is tripled and 5 is added to it

or,
$$3x + 5 = 50$$

or,
$$3x + 5 - 5 = 50 - 5$$

[Subtracting 5 from both the sides]

or,
$$\frac{3x}{3} = \frac{45}{3}$$

[Dividing both the sides by 3]

Thus, the required number is 15.

Q7

Answer:

Let one of the number be x.

 \therefore The other number = (x + 18)

According to the question:

$$x + (x + 18) = 92$$

or,
$$2x + 18 - 18 = 92 - 18$$

[Subtracting 18 from both the sides]

or,
$$\frac{2x}{2} = \frac{74}{2}$$

[Dividing both the sides by 2]

Required numbers are:

$$x = 37$$

Q8

Answer:

Let one of the number be 'x'

∴ Second number = 3x

According to the question:

$$x + 3x = 124$$

or,
$$4x = 124$$

or,
$$\frac{4x}{4} = \frac{124}{4}$$

[Dividing both the sides by 4]

Thus, the required number is x = 31 and $3x = 3 \times 31 = 93$.

Q9

Answer:

Let one of the number be x.

∴ Second number = 5x

According to the question:

$$5x - x = 132$$

or,
$$\frac{4x}{4} = \frac{132}{4}$$

[Dividing both the sides by 4]

Thus, the required numbers are x = 33 and $5x = 5 \times 33 = 165$.

Q10

Answer:

Let one of the even number be x.

Then, the other consecutive even number is (x + 2).

According to the question:

$$x + (x + 2) = 74$$

or,
$$2x + 2 = 74$$

or,
$$2x + 2 - 2 = 74 - 2$$
 [Subtracting 2 from both the sides]

or,
$$\frac{2x}{2} = \frac{72}{2}$$

[Dividing both the sides by 2]

or, x = 36

Thus, the required numbers are x = 36 and x + 2 = 38.

Q11

Answer:

Let the first odd number be x.

Then, the next consecutive odd numbers will be (x + 2) and (x + 4).

According to the question:

$$x + (x + 2) + (x + 4) = 21$$

or,
$$3x + 6 = 21$$

or,
$$3x + 6 - 6 = 21 - 6$$
 [Subtracting 6 from both the sides]

or,
$$\frac{3x}{3} = \frac{15}{3}$$

[Dividing both the sides by 3]

.: Required numbers are:

$$\chi = 5$$

$$x + 2 = 5 + 2 = 7$$

$$x + 4 = 5 + 4 = 9$$

Q12

Answer:

Let the present age of Ajay be x years

Since Reena is 6 years older than Ajay, the present age of Reena will be (x+6) years.

According to the question

$$x + (x + 6) = 28$$

or,
$$2x + 6 = 28$$

or,
$$2x + 6 - 6 = 28 + 6$$

[Subtracting 6 from both the sides]

or,
$$\frac{2x}{2} = \frac{22}{2}$$

: Present age of Ajay = 11 years

Present age of Reena = x +6 = 11 + 6

= 17 years

Q13

Answer:

Let the present age of Vikas be x years.

Since Deepak is twice as old as Vikas, the present age of Deepak will be 2x years.

According to the question:

$$2x - x = 11$$

∴ Present age of Vikas = 11 years

Present age of Deepak = $2x = 2 \times 11$

= 22 years

Let the present age of Rekha be x years.

As Mrs. Goel is 27 years older than Rekha, the present age of Mrs. Goel will be (x + 27) years.

After 8 years:

Rekha's age = (x + 8) years

Mrs. Goel's age = (x + 27 + 8)

= (x + 35) years

According to the question:

(x + 35) = 2(x + 8)

or, $x + 35 = 2 \times x + 2 \times 8$

[On expanding the brackets]

or, x + 35 = 2x + 16

or. 35 - 16 = 2x - x

[Transposing 16 to the L.H.S. and x to the R.H.S.]

or, x = 19

: Present age of Rekha = 19 years

Present age of Mrs. Goel = x + 27

= 19 + 27

= 46 years

Q15

Answer:

Let the present age of the son be x years.

As the man is 4 times as old as his son, the present age of the man will be (4x) years.

After 16 years:

Son's age = (x + 16) years

Man's age = (4x + 16) years

According to the question:

(4x + 16) = 2(x + 16)

or, $4x + 16 = 2 \times x + 2 \times 16$

[On expanding the brackets]

or, 4x + 16 = 2x + 32

or, 4x - 2x = 32 - 16

[Transposing 16 to the R.H.S. and 2x to the L.H.S.]

or, 2x = 16

or, $\frac{2x}{2} = \frac{16}{2}$

[Dividing both the sides by 2]

or, x = 8

: Present age of the son = 8 years

Present age of the man = $4x = 4 \times 8$

Q16

Let the present age of the son be x years.

As the man is 3 times as old as his son, the present age of the man will be (3x) years.

5 years ago:

Son's age = (x - 5) years

Man's age = (3x - 5) years

According to the question:

$$(3x - 5) = 4(x - 5)$$

or,
$$3x - 5 = 4 \times x - 4 \times 5$$

[On expanding the brackets]

or,
$$3x - 5 = 4x - 20$$

or,
$$20 - 5 = 4x - 3x$$

[Transposing 3x to the R.H.S. and 20 to the L.H.S.]

com

or, x = 15

: Present age of the son = 15 years

Present age of the man = $3x = 3 \times 15$

= 45 years

Q17

Answer:

Let the present age of Fatima be x years.

After 16 years:

Fatima's age = (x + 16) years

According to the question:

$$x + 16 = 3(x)$$

or,
$$16 = 3x - x$$

[Transposing x to the R.H.S.]

or, 16 = 2x

or,
$$\frac{2x}{2} = \frac{16}{2}$$

[Dividing both the sides by 2]

or, x = 8

: Present age of Fatima = 8 years

Q18

Answer:

Let the present age of Rahim be x

After 32 years:

Rahim's age = (x + 32) years

8 years ago:

Rahim's age = (x - 8) years

According to the question:

$$x + 32 = 5(x - 8)$$

or,
$$x + 32 = 5x - 5 \times 8$$

or,
$$x + 32 = 5x - 40$$

[Transposing 'x' to the R.H.S. and 40 to the L.H.S.]

or, 72 = 4x

or,
$$\frac{4x}{4} = \frac{72}{4}$$

[Dividing both the sides by 4]

or, x = 18

Thus, the present age of Rahim is 18 years.

Q19

Answer:

Let the number of 50 paisa coins be x.

Then, the number of 25 paisa coins will be 4x.

According to the question:

$$0.50(x) + 0.25(4x) = 30$$

or,
$$0.5x + x = 30$$

or,
$$1.5x = 30$$

or,
$$\frac{1.5z}{1.5} = \frac{30}{1.5}$$

[Dividing both the sides by 1.5]

or, x = 20

Thus, the number of 50 paisa coins is 20.

Number of 25 paisa coins = $4x = 4 \times 20 = 80$

Let the price of one pen be Rs x.

According to the question:

$$5x = 3x + 17$$

or,
$$5x - 3x = 17$$
 [Transposing 3x to the L.H.S.]

or,
$$2x = 17$$

or,
$$\frac{2x}{2} = \frac{17}{2}$$
 [Dividing both the sides by 2]

or,
$$x = 8.50$$

: Price of one pen = Rs 8.50

Q21

Answer:

Let the number of girls in the school be x.

Then, the number of boys in the school will be (x + 334).

Total strength of the school = 572

$$x + (x + 334) = 572$$

or,
$$2x + 334 = 572$$

or,
$$2x + 334 - 334 = 572 - 334$$
 {Subtracting 334 from both the sides]

or,
$$2x = 238$$

or,
$$\frac{2x}{2} = \frac{238}{2}$$
 [Dividing both the sides by 2]

: Number of girls in the school = 119

Q22

Answer:

Let the breadth of the park be x metres.

Then, the length of the park will be 3x metres.

Perimeter of the park = 2 (Length + Breadth) =
$$2(3x + x)$$
 m

Given perimeter = 168 m

$$\therefore 2(3x + x) = 168$$

or,
$$\frac{8x}{8} = \frac{168}{8}$$

 \therefore Breadth of the park = x = 21 m

Length of the park = $3x = 3 \times 21 = 63 \text{ m}$

Q23

Answer:

Let the breadth of the hall be x metres.

Then, the length of the hall will be (x + 5) metres.

Perimeter of the hall = 2(Length + Breadth) = 2(x + 5 + x) metres

Given perimeter of the rectangular hall = 74 metres

$$\therefore 2(x + 5 + x) = 74$$

or,
$$2(2x+5)=74$$

or,
$$2 \times 2x + 2 \times 5 = 74$$

[On expanding the brackets]

[On expanding the brackets]

[Dividing both the sides by 8]

or,
$$4x + 10 = 74$$

or,
$$4x + 10 - 10 = 74 - 10$$

[Subtracting 10 from both the sides]

or,
$$4x = 64$$

or,
$$\frac{4x}{4} = \frac{64}{4}$$

or, $x = 16$ metres

[Dividing both the sides by 4]

$$\therefore$$
 Breadth of the park = x

Length of the park = x + 5 = 16 + 5

Let the breadth of the rectangle be x cm.

Then, the length of the rectangle will be (x + 7) cm.

Perimeter of the rectangle = 2(Length + Breadth) = 2(x + 7 + x) cm

Given perimeter of the rectangle = Length of the wire = 86 cm

$$\therefore 2(x + 7 + x) = 86$$

or,
$$2(2x+7) = 86$$

or,
$$2 \times 2x + 2 \times 7 = 86$$

[On expanding the brackets]

or,
$$4x + 14 = 86$$

[Subtracting 14 from both the sides]

or, 4x = 72

or,
$$\frac{4x}{4} = \frac{72}{4}$$

[Dividing by 4 on both the sides]

or, x = 18 metres

Breadth of the hall = x

= 18 metres

Length of the hall = x + 7= 18 + 7

= 25 metres

