9. Continuity and Differentiability

Exercise 9A

1. Question

Show that $f(x)=x^{2}$ is continues at $x=2$.

Answer

Left Hand Limit: $\lim _{x \rightarrow 2-} f(x)=\lim _{x \rightarrow 2-} x^{2}$
$=4$
Right Hand Limit: $\lim _{x \rightarrow 2+} f(x)=\lim _{x \rightarrow 2+} x^{2}$
$=4$
$f(2)=4$
Since, $\lim _{x \rightarrow 2} f(x)=f(2)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=2$.

2. Question

Show that $f(x)=\left(x^{2}+3 x+4\right)$ is continuous at $x=1$.

Answer

Left Hand Limit: $\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-} x^{2}+3 x+4$
$=7$
Right Hand Limit: $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}+3 x+4$
$=7$
$f(1)=7$
Since, $\lim _{x \rightarrow 1} f(x)=f(1)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=1$.

3. Question

Prove that
$f(x)=\left\{\begin{array}{c}\frac{x^{2}-x-6}{x-3}, \text { when } x \neq 3 \\ 5, \text { when } x=3\end{array}\right.$ is continuous at $x=3$

Answer

LHL: $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3-3} \frac{x^{2}-x-6}{x-3}$
$=\lim _{x \rightarrow 3^{-}} \frac{(x+2)(x-3)}{x-3}$ [By middle term splitting]
$=\lim _{x \rightarrow 3-} x+2$
$=5$
RHL: $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \frac{x^{2}-x-6}{x-3}$
$=\lim _{x \rightarrow 3+} \frac{(x+2)(x-3)}{x-3}$ [By middle term splitting]
$=\lim _{x \rightarrow 3^{+}} x+2$
$=5$
$f(3)=5$
Since, $\lim _{x \rightarrow 3} f(x)=f(3)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=3$.

4. Question

Prove that
$f(x)=\left\{\begin{array}{c}\frac{x^{2}-25}{x-5}, \text { when } x \neq 5 \\ 10, \text { when } x=5\end{array}\right.$ is continuous at $x=5$

Answer

LHL: $\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5-} \frac{x^{2}-25}{x-5}$
$=\lim _{x \rightarrow 5-} \frac{(x+5)(x-5)}{x-5}$ [By middle term splitting]
$=\lim _{x \rightarrow 5-} x+5$
$=10$
RHL: $\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{-}} \frac{x^{2}-25}{x-5}$
$=\lim _{x \rightarrow 5^{*}} \frac{(x+5)(x-5)}{x-5}$ [By middle term splitting]
$=\lim _{x \rightarrow 5^{*}} x+5$
$=10$
$f(5)=10$
Since, $\lim _{x \rightarrow 5} f(x)=f(5)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=5$.

5. Question

Prove that
$f(x)=\left\{\begin{array}{c}\frac{\sin 3 x}{x}, \text { when } x \neq 0 ; \\ 1, \text { when } x=0\end{array}\right.$ is discontinuous at $x=0$

Answer

LHL: $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-} \frac{\sin 3 x}{x}$
$=3$
$\left[\lim _{x \rightarrow a} \frac{\sin n x}{x}=n\right]$

RHL: $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\sin 3 x}{x}$
= 3
$\mathrm{f}(0)=1$
Since, $\lim _{x \rightarrow 0} f(x) \neq f(0)$
$\therefore \mathrm{f}$ is discontinuous at $\mathrm{x}=0$.

6. Question

Prove that
$f(x)=\left\{\begin{array}{c}\frac{1-\cos x}{x^{2}}, \text { when } x \neq 0 ; \\ 1, \text { when } x=0\end{array}\right.$ is discontinuous at $x=0$

Answer

LHL: $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-} \frac{1-\cos x}{x^{2}}$
$=\lim _{x \rightarrow 0-} \frac{2 \sin ^{2} \frac{x}{2}}{x^{2}}$
$=2 \lim _{x \rightarrow 0-} \frac{\left(\sin \frac{\pi}{2}\right)^{2}}{x^{2}}$
$=2 \times \frac{1}{4}$
$=\frac{1}{2}$
RHL: $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{1-\cos x}{x^{2}}$
$=\lim _{\mathrm{x} \rightarrow 0} \frac{2 \sin ^{2} \frac{\mathrm{x}}{\frac{x}{2}}}{\mathrm{x}^{2}}$
$=2 \lim _{x \rightarrow 0 .} \frac{\left(\sin ^{\frac{\pi}{2}}\right)^{2}}{x^{2}}$
$=2 \times \frac{1}{4}$
$=\frac{1}{2}$
$\mathrm{f}(0)=1$
Since, $\lim _{x \rightarrow 0} f(x) \neq f(0)$
$\therefore \mathrm{f}$ is discontinuous at $\mathrm{x}=0$.

7. Question

Prove that
$f(x)=\left\{\begin{array}{l}2-x, \text { when } x<2 ; \\ 2+x, \text { when } x \geq 2\end{array}\right.$ is discontinuous at $x=2$

Answer

LHL: $\lim _{x \rightarrow 2-} f(x)=\lim _{x \rightarrow 2-} 2+x$
$=4$

RHL: $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 2-x$
$=0$
$\lim _{x \rightarrow 2-} f(x) \neq \lim _{x \rightarrow 2+} f(x)$
$\therefore \mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=2$

8. Question

Prove that
$f(x)=\left\{\begin{array}{c}3-x, \text { when } x \leq 0 ; \\ x^{2}, \text { when } x>0\end{array}\right.$ is discontinuous at $x=0$

Answer

LHL: $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-} 3-x$
$=3$
RHL: $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}} x^{2}$
$=0$
$\lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x)$
$\therefore \mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$

9. Question

Prove that
$f(x)=\left\{\begin{aligned} & 5 x-4, \text { when } 0<x \leq 1 ; \\ & 4 x^{2}-3 x, \text { when } 1<x<2\end{aligned}\right.$ is continuous at $x=1$

Answer

LHL: $\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-} 5 x-4$
$=1$
RHL: $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4 x^{2}-3 x$
$=1$
$f(x)=5 x-4$ [this equation is taken as equality for $x=1$ lies there]
$f(1)=1$
Since, $\lim _{x \rightarrow 1} f(x)=f(1)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=1$.
10. Question

Prove that
$f(x)=\left\{\begin{array}{c}x-1, \text { when } 1 \leq x<2 ; \\ 2 x-3, \text { when } 2 \leq x \leq 3\end{array}\right.$ is continuous at $x=2$

Answer

LHL: $\lim _{x \rightarrow 2-} f(x)=\lim _{x \rightarrow 2-} x-1$
$=1$
RHL: $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 2 x-3$
$=1$
$f(x)=2 x-3$ [this equation is taken as equality for $x=1$ lies there]
$f(2)=1$
Since, $\lim _{x \rightarrow 2} f(x)=f(2)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=2$.

11. Question

Prove that
$f(x)=\left\{\begin{aligned} \cos x, & \text { when } x \geq 0 ; \\ -\cos x, & \text { when } x<0\end{aligned}\right.$ is discontinuous at $x=0$

Answer

LHL: $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-} \cos x$
$=1$
RHL: $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}-\cos x$
$=-1$
$\lim _{x \rightarrow 0-} f(x) \neq \lim _{x \rightarrow 0+} f(x)$
$\therefore f(x)$ is discontinuous at $x=0$

12. Question

Prove that
$f(x)=\left\{\begin{aligned} \frac{|x-a|}{x-a}, & \text { when } x \neq a ; \\ 1, & \text { when } x=a\end{aligned}\right.$

Answer

LHL: $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} \frac{|x-a|}{x-a}$
$=\lim _{x \rightarrow a^{-}} \frac{-(x-a)}{x-a}$
$=-1$
RHL: $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{*}} \frac{|x-a|}{x-a}$
$=\lim _{x \rightarrow a^{*}} \frac{(x-a)}{x-a}$
$=1$
$\lim _{x \rightarrow a_{-}^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$
$\therefore f(x)$ is discontinuous at $x=a$
13. Question

Prove that
$f(x)=\left\{\begin{array}{c}\frac{1}{2}(x-|x|), \text { when } x \neq 0 ; \text { is discontinuous at } x=0 \\ 2, \text { when } x=0\end{array}\right.$

Answer

LHL: $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-2} \frac{1}{(x-|x|)}$
$=\lim _{x \rightarrow 0-2} \frac{1}{2}(x-(-x))$
$=\lim _{\mathrm{x} \rightarrow \mathrm{O}^{-}} 2 \mathrm{x}$
$=0$
RHL: $\lim _{x \rightarrow 0 .} f(x)=\lim _{x \rightarrow 0.2} \frac{1}{(x-|x|)}$
$=\lim _{x \rightarrow 0-2} \frac{1}{(x-(x))}$
$=0$
$\mathrm{f}(0)=2$
Since, $\lim _{x \rightarrow 0} f(x) \neq f(0)$
$\therefore \mathrm{f}$ is discontinuous at $\mathrm{x}=0$.

14. Question

Prove that
$f(x)=\left\{\begin{array}{c}\sin \frac{1}{x}, \text { when } x \neq 0 ; \\ 0, \text { when } x=0 ;\end{array}\right.$ is discontinuous at $x=0$

Answer

$\lim _{x \rightarrow 0} \sin \frac{1}{x}=0$
$\sin \frac{1}{x}$ is bounded function between -1 and +1 .
Also, $\mathrm{f}(0)=0$
Since, $\lim _{x \rightarrow 0} f(x)=f(0)$
Hence, f is a continuous function.

15. Question

Prove that
$f(x)=\left\{\begin{aligned} 2 x, & \text { when } x<2 ; \\ 2, & \text { when } x=2 ; \\ x^{2}, & \text { when } x>2 ;\end{aligned}\right.$

Answer

LHL: $\lim _{x \rightarrow 2-} f(x)=\lim _{x \rightarrow 22^{-}} 2 x$
$=4$

RHL: $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{2}$
$=4$
$f(2)=2$
Since, $\lim _{x \rightarrow 0} f(x) \neq f(2)$
$\therefore \mathrm{f}$ is discontinuous at $\mathrm{x}=2$.

16. Question

Prove that
$f(x)=\left\{\begin{array}{l}-x, \text { when } x<0 ; \\ 1, \text { when } x=0 ; \text { is discontinuous at } x=0 \\ x, \text { when } x>0 ;\end{array}\right.$

Answer

LHL: $\lim _{x \rightarrow 0-} f(x)=-x$
$=0$
RHL: $\lim _{x \rightarrow 22^{+}} f(x)=\lim _{x \rightarrow 22^{+}} x$
$=0$
$f(0)=1$
Since, $\lim _{x \rightarrow 0} f(x) \neq f(0)$
$\therefore \mathrm{f}$ is discontinuous at $\mathrm{x}=0$.

17. Question

Find the value of k for which
$f(x)=\left\{\begin{array}{c}\frac{\sin 2 x}{5 x}, \text { when } x \neq 0 ; \\ \lambda, \text { when } x=0\end{array}\right.$

Answer

Since, $f(x)$ is continuous at $x=0$
$\Rightarrow \lim _{\mathrm{x} \rightarrow 0} \frac{\sin 2 \mathrm{x}}{5 \mathrm{x}}=\mathrm{f}(0)$
$\Rightarrow \frac{1}{5} \lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\lambda$
$\Rightarrow \frac{1}{5} \times 2=\lambda$
$\Rightarrow \lambda=\frac{2}{5}$

18. Question

Find the value of λ for which
$f(x)=\left\{\begin{array}{c}\frac{x^{2}-2 x-3}{x+1}, \text { when } x \neq-1 ; \\ \lambda, \text { when } x=-1\end{array}\right.$ is continuous at $x=-1$

Answer

Since, $f(x)$ is continuous at $x=0$
$\Rightarrow \lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x+1}=f(0)$
$\Rightarrow \lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{x+1}=\lambda$
$\Rightarrow \lim _{\mathrm{x} \rightarrow-1} \mathrm{x}-3=\lambda$
$\Rightarrow \lambda=-4$

19. Question

For what valve of k is the following function continuous at $x=2$
$f(x)=\left\{\begin{array}{r}2 x+1, \text { when } x<2 \\ k, \text { when } x=2 \\ 3 x-1, \text { when } x>2\end{array}\right.$

Answer

Since, $f(x)$ is continuous at $x=2$
$\Rightarrow \lim _{x \rightarrow 2^{-}} 2 x+1=\lim _{x \rightarrow 2^{+}} 3 x-1=f(2)$
$\Rightarrow \lim _{\mathrm{x} \rightarrow 2^{-}} 2 \mathrm{x}+1=\mathrm{f}(2)$
$\Rightarrow \mathrm{k}=5$

20. Question

For what valve of k is the following function
$f(x)=\left\{\begin{aligned} \frac{x^{2}-9}{x-3}, \text { when } x \neq 3 ; & \text { is continuous at } x=3 \\ k, & \text { when } x=3\end{aligned}\right.$
Ans. $k=6$

Answer

Since, $f(x)$ is continuous at $x=3$
$\Rightarrow \lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=f(3)$
$\Rightarrow \lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=f(3)$
$\Rightarrow \lim _{x \rightarrow 3}(x+3)=f(3)$
$\Rightarrow k=9$

21. Question

For what valve of k is the following function
$f(x)=\left\{\begin{array}{rl}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} ; \\ 3, & \text { if } x\end{array}=\frac{\pi}{2}\right.$ is continuous at $x=\frac{\pi}{2}$

Ans. $k=6$

Answer

f is continuous at $x=\frac{\pi}{2}$
$\Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)$
$\Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} \frac{\mathrm{kcos} x}{\pi-2 x}=3$
$\Rightarrow \lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}-h\right)}{\pi-2\left(\frac{\pi}{2}-h\right)}=3$ [Here $x=\frac{\pi}{2}-h$]
$\Rightarrow \lim _{h \rightarrow 0} \frac{\mathrm{ksinh}}{\pi-\pi+2 h}=3$
$\Rightarrow \lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{ksinh}}{2 \mathrm{~h}}=3$
$\Rightarrow \frac{\mathrm{k}}{2} \times 1=3$
$\Rightarrow k=6$

22. Question

Show that function:
$f(x)=\left\{\begin{array}{c}x^{2} \sin \frac{1}{x}, \text { if } x \neq 0 ; \\ 0, \text { if } x=0\end{array}\right.$ is continuous at $x=0$

Answer

$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$
As $\lim _{x \rightarrow 0} x^{2}=0$ and $\sin \left(\frac{1}{x}\right)$ is bounded function between -1 and +1 .
$\therefore \lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0$
Also, $f(0)=0$
Since, $\lim _{x \rightarrow 0} f(x)=f(0)$
Hence, f is a continuous function.

23. Question

Show that: $f(x)=\left\{\begin{array}{c}x+1, \text { if } x \geq 1 ; \\ x^{2}+1,\end{array}\right.$ if $x<1$ is continuous at $x=1$

Answer

: LHL: $\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}+1$
$=2$
RHL: $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x+1$
$=2$
$f(1)=2$

Since, $\lim _{x \rightarrow 1} f(x)=f(1)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=1$.

24. Question

Show that: $f(x)=\left\{\begin{array}{l}x^{3}-3, \text { if } x \leq 2 ; \\ x^{2}+1, \text { if } x>2\end{array}\right.$ is continuous at $x=2$

Answer

: LHL: $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{3}-3$
$=5$
RHL: $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{2}+1$
$=5$
$f(2)=5$
Since, $\lim _{x \rightarrow 2} f(x)=f(2)$
$\therefore \mathrm{f}$ is continuous at $\mathrm{x}=2$.

25. Question

Find the values of a and b such that the following functions continuous.

Answer

f is continuous at $x=2$
$\lim _{x \rightarrow 2-} f(x)=\lim _{x \rightarrow 2+} f(x)=f(2)$
$\lim _{x \rightarrow 22^{-}}(5)=\lim _{x \rightarrow 2+}[a x+b]=5$
$\Rightarrow 2 a+b=5$ \qquad
f is continuous at $x=10$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2+} f(x)=f(2)$
$\lim _{x \rightarrow 2^{-}}(21)=\lim _{x \rightarrow 2+}[a x+b]=21$
$\Rightarrow 10 a+b=21$
(1) - (2)
$-8 a=-16$
$a=2$
Putting a in 1
$b=1$

26. Question

Find the values of a and b such that the following functions f, defined $a s\left\{\begin{array}{l}a \sin \frac{\pi}{2}(x+1), x \leq 0 ; \\ \frac{\tan x-\sin x}{x^{3}}, x>0\end{array}\right.$ is continuous
at $x=0$

Answer

: f is continuous at $x=0$
$\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0+} f(x)$
$\lim _{x \rightarrow 0-}\left(\operatorname{asin} \frac{\pi}{2}(x+1)\right)=\lim _{x \rightarrow 0+}\left[\frac{\tan x-\sin x}{x^{3}}\right]$
$\left(\operatorname{asin} \frac{\pi}{2}(0+1)=\lim _{x \rightarrow 0+} \frac{\sin x}{\left[\frac{\cos x}{x}-\sin x\right.}{x^{3}}^{3}\right]$
$a=\lim _{x \rightarrow 0+}\left[\frac{\sin x\left(\frac{1}{\cos }-1\right)}{x^{3}}\right]$
$=\lim _{x \rightarrow 0+}\left[\frac{\sin x\left(\frac{1}{\operatorname{cosx}}-1\right)}{x^{3}}\right]$
$=\lim _{x \rightarrow 0+}\left[\frac{\sin x(1-\cos x)}{\cos x x^{3}}\right]$
$=\lim _{x \rightarrow 0+}\left[\frac{\sin x \cdot 2 \sin ^{2} \frac{x}{2}}{\cos x x^{3}}\right]$
$=\lim _{x \rightarrow 0+}\left[\frac{\sin x \cdot 2 \sin ^{2} \frac{x}{2}}{x \cdot x^{2}}\right] \times \frac{1}{\cos x}$
$=1 \times 2 \times \frac{1}{4} \times 1$
$=\frac{1}{2}$

27. Question

Prove that the function f given $f(x)=|x-3|, x \in R$ is continuous but not differentiable at $x=3$

Answer

$f(x)=|x-3|$
Since every modulus function is continuous for all real $x, f(x)$ is continuous at $x=3$.
$f(x)=f(x)=\left\{\begin{array}{l}3-x, x<0 \\ x-3, x \geq 0\end{array}\right.$
To prove differentiable, we will use the following formula.
$\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}=f(a)$
L.H.L $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$
$=\lim _{x \rightarrow 3 \cdot} \frac{x-3-0}{x-3}$
$=\lim _{x \rightarrow 3 \cdot x-3} \frac{x-3}{x}$
$=1$
R.H.L: $\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}$
$=\lim _{x \rightarrow 3 \cdot} \frac{3-x-0}{x-3}$
$=\lim _{x \rightarrow 3} \frac{3-x}{x-3}$
$=-1$
Since, L.H.L \neq R.H.L, $f(x)$ is not differentiable at $x=5$.

Exercise 9B

1. Question

Show that function $f(x)=\left\{\begin{array}{l}(7 x+5), \text { when } x \geq 0 ; \\ (5-3 x), \text { when } x<0\end{array}\right.$ is continuous function.

Answer

Given:
$f(x)=\left\{\begin{array}{l}(7 x+5), \text { when } x \geq 0 ; \\ (5-3 x), \text { when } x<0\end{array}\right.$
Let's calculate the limit of $f(x)$ when x approaches 0 from the right
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(7 x+5)=7(0)+5$
$=5$
Therefore,
$\lim _{x \rightarrow 0^{+}} f(x)=5$
Let's calculate the limit of $f(x)$ when x approaches 0 from the left
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(5-3 x)=5-3(0)$
$=5$
Therefore,
$\lim _{x \rightarrow 0^{-}} f(x)=5$
Also, $f(0)=5$
As we can see,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)=5$
Thus, we can say that $f(x)$ is continuous function.

2. Question

Show that function $f(x)=\left\{\begin{array}{rr}\sin x, & \text { if } x<0 ; \\ x, & \text { if } x \geq 0\end{array}\right.$ is continuous.

Answer

Given:
$f(x)=\left\{\begin{array}{c}\sin x, \text { if } x<0 ; \\ x, \text { if } x \geq 0\end{array}\right.$
Left hand limit at $x=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(\sin x)=\sin (0)=0$
Therefore,
$\lim _{x \rightarrow 0^{-}} f(x)=0$
Right hand limit at $x=0$
$\lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 0^{+}}(\mathrm{x})=0$
Therefore,
$\lim _{x \rightarrow 0^{+}} f(x)=0$
Also, $f(0)=0$
As,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)=0$
Thus, we can say that $f(x)$ is continuous function.

3. Question

Show that function $f(x)=\left\{\begin{aligned} \frac{x^{n}-1}{x-1}, & \text { when } x \neq 1 ; \\ n, & \text { when } x=1\end{aligned}\right.$ is continuous.

Answer

Given:
$f(x)=\left\{\begin{array}{c}\frac{x^{n}-1}{x-1}, \text { when } x \neq 1 ; \\ n, \text { when } x=1\end{array}\right.$
Left hand limit and $\mathrm{x}=1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0} \frac{(1-h)^{\mathrm{n}}-1}{(1-h)-1}$
$\lim _{\mathrm{h} \rightarrow 0} \frac{(1-\mathrm{h})^{\mathrm{n}}-1}{1-\mathrm{h}-1}=\lim _{\mathrm{h} \rightarrow 0} \frac{(1-\mathrm{h})^{\mathrm{n}}-1}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0}-\frac{(1-\mathrm{h})^{\mathrm{n}}-1}{\mathrm{~h}}$
$=-\lim _{h \rightarrow 0} \frac{(1-h)^{n}-1}{h}$ (Because $\left.\lim _{x \rightarrow a} c . f(x)=c \lim _{x \rightarrow a} f(x)\right)$
Applying L hospital's rule $\left(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{\mathrm{f}^{\prime}(x)}{g^{\prime}(x)}\right)$
$=-\lim _{\mathrm{h} \rightarrow 0} \frac{-\mathrm{n}(1-\mathrm{h})^{\mathrm{n}-1}}{1}=-\left[-\mathrm{n}(1-0)^{\mathrm{n}-1}\right]=\mathrm{n}$
Right hand limit and $x=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0} f(1+h)=\lim _{h \rightarrow 0} \frac{(1+h)^{n}-1}{(1+h)-1}$
$\lim _{\mathrm{h} \rightarrow 0} \frac{(1+\mathrm{h})^{\mathrm{n}}-1}{1+\mathrm{h}-1}=\lim _{\mathrm{h} \rightarrow 0} \frac{(1+\mathrm{h})^{\mathrm{n}}-1}{\mathrm{~h}}$
Applying L hospital's rule $\left(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\right)$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{n}(1+\mathrm{h})^{\mathrm{n}-1}}{1}=\left[\mathrm{n}(1+0)^{\mathrm{n}-1}\right]=\mathrm{n}$
Also, $\mathrm{f}(\mathrm{x})=\mathrm{n}$ at $\mathrm{x}=1$

As we can see that $\operatorname{Lim}_{x \rightarrow 1^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 1^{+}} f(x)=f(x)$
Thus, $f(x)$ is continuous at $x=1$

4. Question

Show that sec x is a continuous function.

Answer

Let $f(x)=\sec x$
Therefore, $f(x)=\frac{1}{\cos x}$
$f(x)$ is not defined when $\cos x=0$
And $\cos x=0$ when, $x=\frac{\pi}{2}$ and odd multiples of $\frac{\pi}{2}$ like $-\frac{\pi}{2}$
Let us consider the function
$f(a)=\cos a$ and let c be any real number. Then,
$\lim _{a \rightarrow c^{+}} f(a)=\lim _{h \rightarrow 0} f(c+h)$
$\lim _{h \rightarrow 0} \cos (c+h)=\lim _{h \rightarrow 0}[\cos c \cos h-\sin c \sin h]$
$=\cos c \lim _{h \rightarrow 0} \cosh -\sin c \lim _{h \rightarrow 0} \sin h$
$=\cos \mathrm{c}(1)-\sin \mathrm{c}(0)$
Therefore,
$\lim _{a \rightarrow c^{+}} f(a)=\cos c$
Similarly,
$\lim _{a \rightarrow c^{-}} f(a)=f(c)=\cos c$
Therefore,
$\lim _{a \rightarrow c^{-}} f(a)=\lim _{a \rightarrow c^{+}} f(a)=f(c)=\cos c$
So, $f(a)$ is continuous at $a=c$
Similarly, $\cos x$ is also continuous everywhere
Therefore, sec x is continuous on the open interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

5. Question

Show that sec $|x|$ is a continuous function

Answer

Let $f(x)=\sec |x|$ and a be any real number. Then,
Left hand limit at $\mathrm{x}=\mathrm{a}$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} \sec |x|=\lim _{h \rightarrow 0} \sec |a-h|=\sec |a|$
Right hand limit at $x=a$
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{+}} \sec |x|=\lim _{h \rightarrow 0} \sec |a+h|=\sec |a|$
Also, $f(a)=\sec |a|$

Therefore,
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
Thus, $f(x)$ is continuous at $x=a$.

6. Question

Show that function $f(x)=\left\{\begin{array}{c}(2-x), \text { when } x \geq 1 ; \\ x, \text { when } 0 \leq x \leq 1 .\end{array}\right.$ is continuous.

Answer

We know that $\sin x$ is continuous everywhere
Consider the point $x=0$
Left hand limit:
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(\frac{\sin x}{x}\right)=\lim _{h \rightarrow 0}\left(\frac{\sin (0-h)}{0-h}\right)=\lim _{h \rightarrow 0}\left(\frac{-\sin h}{-h}\right)=1$
Right hand limit:
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin x}{x}\right)=\lim _{h \rightarrow 0}\left(\frac{\sin (0+h)}{0+h}\right)=\lim _{h \rightarrow 0}\left(\frac{\sinh }{h}\right)=1$
Also we have,
$f(0)=2$
As,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)$
Therefore, $f(x)$ is discontinuous at $x=0$.

7. Question

Discuss the continuity of $f(x)=[x]$.

Answer

Let n be any integer
$[x]=$ Greatest integer less than or equal to x.
Some values of $[x]$ for specific values of x
[3] $=3$
$[4.4]=4$
$[-1.6]=-2$
Therefore,
Left hand limit at $x=n$
$\lim _{\mathrm{x} \rightarrow \mathrm{n}^{-}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow \mathrm{n}^{-}}[\mathrm{x}]=\mathrm{n}-1$
Right hand limit at $x=n$
$\lim _{x \rightarrow n^{+}} f(x)=\lim _{x \rightarrow n^{+}}[x]=n$
Also, $\mathrm{f}(\mathrm{n})=[\mathrm{n}]=\mathrm{n}$
As $\lim _{x \rightarrow n^{-}} f(x) \neq \lim _{x \rightarrow n^{+}} f(x)$

Therefore, $f(x)=[x]$ is discontinuous at $x=n$.

8. Question

Show that $f(x)=\left\{\begin{array}{cc}(2 x-1), & \text { if } x<2 ; \\ \frac{3 x}{2}, & \text { if } x \geq 2\end{array}\right.$ is continuous.

Answer

Given function $f(x)=\left\{\begin{array}{c}(2 x-1) \text {, if } x<2 ; \\ \frac{3 x}{2}, \text { if } x \geq 2\end{array}\right.$
Left hand limit at $x=2$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2}(2 x-1)=2(2)-1=3$
Right hand limit at $x=2$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2} \frac{3 x}{2}=\frac{3(2)}{2}=3$
Also,
$f(2)=\frac{3(2)}{2}=3$
As
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)=3$
Therefore,
The function $f(x)$ is continuous at $x=2$.

9. Question

Show that $f(x)=\left\{\begin{array}{ll}x, & \text { if } x \neq 0 ; \\ 1, & \text { if } x=0\end{array}\right.$ is continuous at each point except 0 .

Answer

Given function is $f(x)=\left\{\begin{array}{c}x, \text { if } x \neq 0 ; \\ 1, \text { if } x=0\end{array}\right.$
Left hand limit at $x=0$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)=0$
Right hand limit at $x=0$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h)=0$
Also,
$f(0)=1$
As,
$\operatorname{Lim}_{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) \neq f(0)$
$f(x)=x$ for other values of x expect $0 f(x)=1,2,3,4 \ldots$
Therefore,
$f(x)$ is not continuous everywhere expect at $x=0$

10. Question

Locate the point of discontinuity of the function
$f(x)=\left\{\begin{array}{r}\left(x^{3}-x^{2}+2 x-2\right), \\ 4, \\ 4, \\ \text { if } x=0\end{array}\right.$

Answer

Given function $f(x)=\left\{\begin{array}{c}\left(x^{3}-x^{2}+2 x-2\right), \text { if } x \neq 1 ; \\ 4, \text { if } x=1\end{array}\right.$;
Left hand limit at $x=1: \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{3}-x^{2}+2 x-2\right)$
$=\lim _{h \rightarrow 0}\left\{(1-h)^{3}-(1-h)^{2}+2(1-h)-2\right\}$
$=\lim _{h \rightarrow 0}(1-h)^{3}-\lim _{h \rightarrow 0}(1-h)^{2}+2 \lim _{h \rightarrow 0}(1-h)-2$
$=1-1+2-2$
$=0$
Right hand limit at $x=1: \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{3}-x^{2}+2 x-2\right)$
$=\lim _{h \rightarrow 0}\left\{(1+h)^{3}-(1+h)^{2}+2(1+h)-2\right\}$
$=\lim _{h \rightarrow 0}(1+h)^{3}-\lim _{h \rightarrow 0}(1+h)^{2}+2 \lim _{h \rightarrow 0}(1+h)-2$
$=1-1+2-2$
$=0$
Also, $f(1)=4$
As we can see that,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \neq f(1)$
Therefore,
$f(x)$ is not continuous at $x=1$

11. Question

Discus the continuity of the function $f(x)=|x|+|x-1|$ in the interval of $[-1,2]$

Answer

Given function $f(x)=|x|+|x-1|$
A function $f(x)$ is said to be continuous on a closed interval [a,b] if and only if,
(i) f is continuous on the open interval (a, b)
(ii) $\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a})$
(iii) $\lim _{\mathrm{x} \rightarrow \mathrm{b}^{-}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{b})$

Let's check continuity on the open interval (-1, 2)
As $-1<x<2$
Left hand limit:
$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{h \rightarrow 0}\{|-1-h|+|(-1-h)-1|\}$
$=|-1-0|+|(-1-0)-1|$
$=1+2$
$=3$
Right hand limit:
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0}\{|2+h|+|(2+h)-1|\}$
$=|2|+|2-1|$
$=2+1$
$=3$
Left hand limit $=$ Right hand limit
Here $a=-1$ and $b=2$
Therefore,
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{h \rightarrow 0}\{|-1+h|+|(-1+h)-1|\}$
$=|-1+0|+|(-1+0)-1|$
$=|-1|+|-1-1|$
$=1+2=3$
Also $f(-1)=|-1|+|-1-1|=1+2=3$
Now,
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0}\{|2-h|+|(2-h)-1|\}$
$=|2-0|+|(2-0)-1|$
$=|2|+|2-1|$
$=2+1=3$
Also $f(2)=|2|+|2-1|=2+1=3$
Therefore,
$f(x)$ is continuous on the closed interval [-1, 2].

Exercise 9C

1. Question

Show that $f(x)=x^{3}$ is continuous as well as differentiable at $x=3$.

Answer

Given:
$f(x)=x^{3}$
If a function is differentiable at a point, it is necessarily continuous at that point.
Left hand derivative (LHD) at $x=3$
$\lim _{x \rightarrow 3^{-}} \frac{f(x)-f(3)}{x-3}=\lim _{h \rightarrow 0} \frac{f(3-h)-f(3)}{(3-h)-3}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{(3-\mathrm{h})^{3}-3^{3}}{(3-\mathrm{h})-3}=\lim _{\mathrm{h} \rightarrow 0} \frac{(3-\mathrm{h})^{3}-27}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0}-\frac{\mathrm{h}\left\{(3-\mathrm{h})^{2}+3(3-\mathrm{h})+9\right\}}{\mathrm{h}}$
$=\lim _{h \rightarrow 0}-\left\{(3-h)^{2}+3(3-h)+9\right\}=\lim _{h \rightarrow 0}-\left[-\left\{-(3-h)^{2}-3(3-h)-9\right\}\right]$
$=\lim _{\mathrm{h} \rightarrow 0}-\left\{-\mathrm{h}^{2}+9 \mathrm{~h}-27\right\}=\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h}^{2}-9 \mathrm{~h}+27=0^{2}-9(0)+27=27$
Right hand derivative (RHD) at $x=3$
$\lim _{x \rightarrow 3^{+}} \frac{f(x)-f(3)}{x-3}=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{(3+h)-3}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{(3+\mathrm{h})^{3}-3^{3}}{(3+\mathrm{h})-3}=\lim _{\mathrm{h} \rightarrow 0} \frac{(3+\mathrm{h})^{3}-27}{\mathrm{~h}}=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}\left\{(3+\mathrm{h})^{2}+3(3+\mathrm{h})+9\right\}}{\mathrm{h}}$
$=\lim _{h \rightarrow 0}\left\{(3+h)^{2}+3(3+h)+9\right\}=\lim _{h \rightarrow 0}(3+h)^{2}+3(3+h)+9$
$=\lim _{\mathrm{h} \rightarrow 0}\left\{\mathrm{~h}^{2}+9 \mathrm{~h}+27\right\}=0^{2}+9(0)+27=27$
LHD $=$ RHD
Therefore, $f(x)$ is differentiable at $x=3$.
$\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} x^{3}=3^{3}=27$
Also, $f(3)=27$
Therefore, $\mathrm{f}(\mathrm{x})$ is also continuous at $\mathrm{x}=3$.

2. Question

Show that $f(x)=(x-1)^{1 / 3}$ is not differentiable at $x=1$.

Answer

Given function $f(x)=(x-1)^{1 / 3}$
LHD at $\mathrm{x}=1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{(1-h)-1}=\lim _{h \rightarrow 0} \frac{\left.f(1-h)-1)^{\frac{1}{3}(1-1}\right)^{\frac{1}{2}}}{(1-h)-1}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{(-\mathrm{h})^{\frac{1}{3}}(0){ }^{\frac{1}{3}}}{-\mathrm{h}}=\frac{0}{0}=$ Not defined
RHD at $\mathrm{x}=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{(1+h)-1}=\lim _{h \rightarrow 0} \frac{f(1+h)-1\}^{\frac{1}{3}(1-1)^{\frac{1}{3}}}}{(1+h)-1}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{(-\mathrm{h})^{\frac{1}{3}}(0)^{\frac{1}{3}}}{-\mathrm{h}}=\frac{0}{0}=$ Not defined
Since, LHD and RHD doesn't exists
Therefore, $f(x)$ is not differentiable at $x=1$.

3. Question

Show that constant function is always differentiable

Answer

Let a be any constant number.
Then, $f(x)=a$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
We know that coefficient of a linear function is
$\mathrm{a}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$

Since our function is constant, $y_{1}=y_{2}$
Therefore, $\mathrm{a}=0$
Now,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{a-a}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=\lim _{h \rightarrow 0} 0=0$
Thus, the derivative of a constant function is always 0 .

4. Question

Show that $f(x)=|x-5|$ is continuous but not differentiable at $x=5$

Answer

Left hand limit at $x=5$
$\lim _{x \rightarrow 5^{-}}|x-5|=\lim _{x \rightarrow 5}(5-x)=0$
Right hand limit at $x=5$
$\lim _{x \rightarrow 5^{+}}|x-5|=\lim _{x \rightarrow 5}(x-5)=0$
Also $f(5)=|5-5|=0$
As,
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5)$
Therefore, $f(x)$ is continuous at $x=5$
Now, lets see the differentiability of $f(x)$
LHD at $x=5$
$\lim _{x \rightarrow 5^{-}} \frac{f(x)-f(5)}{x-5}=\lim _{h \rightarrow 0} \frac{f(5-h)-f(5)}{5-h-5}=\lim _{h \rightarrow 0} \frac{|5-(5-h)|-|5-5|}{-h}=\lim _{h \rightarrow 0}-\frac{h}{h}=-1$
RHD at $x=5$
$\lim _{x \rightarrow 5^{+}} \frac{f(x)-f(5)}{x-5}=\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{5+h-5}=\lim _{h \rightarrow 0} \frac{|(5+h)-5|-|5-5|}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1$
Since, LHD \neq RHD
Therefore,
$f(x)$ is not differentiable at $x=5$

5. Question

Show that $f(x)$ is continuous but not differentiable at $x=1$

Answer

Left hand limit at $\mathrm{x}=1$
$\operatorname{Lim}_{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} x=1$
$f(x)=x$ is polynomial function and a polynomial function is continuous everywhere
Right hand limit at $x=1$
$\operatorname{Lim}_{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}(2-x)=(2-1)=1$
$f(x)=2-x$ is polynomial function and a polynomial function is continuous everywhere
Also, $f(1)=1$
As we can see that,
$\operatorname{Lim}_{x \rightarrow 1^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 1^{+}} f(x)=f(1)$
Therefore,
$f(x)$ is continuous at $x=1$
Now,
LHD at $\mathrm{x}=1$
$\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x-1}{x-1}=\lim _{x \rightarrow 1} \frac{1}{1}=\lim _{x \rightarrow 1} 1=1$
RHD at $\mathrm{x}=1$
$\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{2-x-(2-1)}{x-1}=\lim _{x \rightarrow 1} \frac{2-x-1}{x-1}=\lim _{x \rightarrow 1} \frac{-(x-1)}{x-1}$
$\lim _{x \rightarrow 1}-\frac{1}{1}=\lim _{x \rightarrow 1}-1=-1$
As, LHD \neq RHD
Therefore,
$f(x)$ is not differentiable at $x=1$

6. Question

Show that $f(x)=[x]$ is neither continuous nor derivable at $x=2$.

Answer

Left hand limit at $x=2$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0}[2-h]=\lim _{h \rightarrow 0} 1=1$
Right hand limit at $x=2$
$\lim _{\mathrm{x} \rightarrow 2^{+}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}(2+\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0}[2+\mathrm{h}]=\lim _{\mathrm{h} \rightarrow 0} 2=2$
As left hand limit \neq right hand limit
Therefore, $\mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=2$
Lets see the differentiability of $f(x)$:
LHD at $\mathrm{x}=2$
$\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{h \rightarrow 0} \frac{f(x-h)-f(2)}{(x-h)-2}=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{(2-h)-2}$

$$
=\lim _{h \rightarrow 0}-\frac{1-2}{h}
$$

$\lim _{h \rightarrow 0}-\frac{(-1)}{h}=\infty$
RHD at $x=2$
$\lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(2)}{(x+h)-2}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{(2+h)-2}=\lim _{h \rightarrow 0} \frac{2-2}{h}$
$\lim _{h \rightarrow 0} \frac{0}{h}=0$
As, LHD \neq RHD

Therefore,
$f(x)$ is not derivable at $x=2$

7. Question

Show that function
$f(x)=\left\{\begin{aligned} &(1-x), \text { when } x<1 ; \\ &\left(x^{2}-1\right), \text { when } x \geq 1 .\end{aligned}\right.$ is continuous but not differentiable at $x=1$

Answer

Given function $f(x)=\left\{\begin{array}{l}(1-x), \text { when } x<1 ; \\ \left(x^{2}-1\right), \text { when } x \geq 1 .\end{array}\right.$
Left hand limit at $x=1$:
$\operatorname{Lim}_{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(1-x)=1-1=0$
Right hand limit at $x=1$:
$\operatorname{Lim}_{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(x^{2}-1\right)=1^{2}-1=0$
Also, $f(1)=1^{2}-1=0$
As,
$\operatorname{Lim}_{x \rightarrow 1^{-}} f(x)=\operatorname{Lim}_{x \rightarrow 1^{+}} f(x)=f(1)$
Therefore,
$f(x)$ is continuous at $x=1$
Now, let's see the differentiability of $f(x)$:
LHD at $x=2$:
$\operatorname{Lim}_{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{(1-x)-(1-2)}{x-2}=\lim _{x \rightarrow 2} \frac{1-x-1+2}{x-2}=\lim _{x \rightarrow 2} \frac{-(x-2)}{x-2}$
$=\lim _{x \rightarrow 2}-1=-1$
RHD at $x=2$:
$\operatorname{Lim}_{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\left(x^{2}-1\right)-\left(2^{2}-1\right)}{x-2}=\lim _{x \rightarrow 2} \frac{x^{2}-1-3}{x-2}=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
$=\lim _{x \rightarrow 2} \frac{x^{2}-2^{2}}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=2+2=4$
As, LHD \neq RHD
Therefore,
$f(x)$ is not differentiable at $x=2$

8. Question

Let $f(x)=\left\{\begin{array}{ll}(2+x), & \text { if } x \geq 0 ; \\ (2-x), & \text { if } x<0 .\end{array}\right.$ Show that $f(x)$ is not derivable at $x=0$.

Answer

Given function $f(x)=\left\{\begin{array}{l}(2+x), \text { if } x \geq 0 ; \\ (2-x), \text { if } x<0 .\end{array}\right.$

LHD at $\mathrm{x}=0$:
$\operatorname{Lim}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{(2-x)-(2)}{x-0}=\lim _{x \rightarrow 0} \frac{-x}{x}$
$=\lim _{x \rightarrow 0}-1=-1$
RHD at $\mathrm{x}=0$:
$\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{(2+x)-(2)}{x-0}=\lim _{x \rightarrow 0} \frac{x}{x}=\lim _{x \rightarrow 0} 1=1$
As, LHD \neq RHD
Therefore,
$f(x)$ is not differentiable at $x=0$
9. Question

If $f(x)=|x|$ show that $f^{\prime}(2)=1$

Answer

Given function is $f(x)=|x|$
LHD at $\mathrm{x}=2$:
$\operatorname{Lim}_{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{2-h-2}=\lim _{h \rightarrow 0} \frac{|2-h|-|2|}{-h}=\lim _{h \rightarrow 0} \frac{-h}{-h}$
$\lim _{h \rightarrow 0} 1=1$
RHD at $x=2$:
$\operatorname{Lim}_{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{2+h-2}=\lim _{h \rightarrow 0} \frac{|2+h|-|2|}{h}=\lim _{h \rightarrow 0} \frac{h}{h}$
$\lim _{h \rightarrow 0} 1=1$
As, LHD $=$ RHD
Therefore, $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ is differentiable at $\mathrm{x}=2$
Now $f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|2+h|-|2|}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$
Therefore,
$f^{\prime}(2)=1$

10. Question

Find the values of a and b so that the function
$f(x)=\left\{\begin{array}{c}\left(x^{2}+3 x+a\right), \text { when } x \leq 1 ; \\ (b x+2), \text { when } x>1\end{array}\right.$ is differentiable at each $x \in R$

Answer

It is given that $f(x)$ is differentiable at each $x \in R$
For $\mathrm{x} \leq 1$,
$f(x)=x^{2}+3 x+$ a i.e. a polynomial
for $x>1$,
$f(x)=b x+2$, which is also a polynomial

Since, a polynomial function is everywhere differentiable. Therefore, $f(x)$ is differentiable for all $x>1$ and for all $x<1$.
$f(x)$ is continuous at $x=1$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$
$\operatorname{Lim}_{x \rightarrow 1}\left(x^{2}+3 x+a\right)=\lim _{x \rightarrow 1}(b x+2)=1+3+a$
$1^{2}+3(1)+a=b(1)+2=4+a$
$4+a=b+2$
$a-b+2=0$
As function is differentiable, therefore, LHD $=$ RHD
LHD at $x=1$:
$\operatorname{Lim}_{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}+3 x+a-(4+a)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x-1}=\lim _{x \rightarrow 1} \frac{(x+4)(x-1)}{x-1}$
$=\lim _{x \rightarrow 1}(x+4)=1+4=5$
RHD at $x=1$:
$\operatorname{Lim}_{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{(b x+2)-(4+a)}{x-1}=\lim _{x \rightarrow 1} \frac{b x-2-a}{x-1}=\lim _{x \rightarrow 1} \frac{b x-b}{x-1}=\lim _{x \rightarrow 1} \frac{b(x-1)}{x-1}$
$=\lim _{\mathrm{x} \rightarrow 1} \mathrm{~b}=\mathrm{b}$
As, LHD $=$ RHD
Therefore,
$5=b$
Putting b in (1), we get,
$a-b+2=0$
$a-5+2=0$
$a=3$
Hence,
$\mathrm{a}=3$ and $\mathrm{b}=5$

