7. Factorisation

Exercise 7A

1. Question

Factories:
(i) $12 x+15$
(ii) $14 m-21$
(iii) $9 n-12 n^{2}$

Answer

(i) $12 x+15$

Taking 3 as common from the whole, we get,
$12 x+15=3(4 x+5)$.
(ii) $14 m-21$,

Taking 7 as common from the whole, we get,
$14 m-21=7(2 m-3)$
(iii) $9 n-12 n^{2}$,

Taking $3 n$ as common from the whole, we get,
$9 n-12 n^{2}=3 n(3-4 n)$.

2. Question

Factories:
i. $16 a^{2}-24 a b$
ii. $15 a b^{2}-20 a^{2} b$
iii. $12 x^{2} y^{3}-21 x^{3} y^{2}$

Answer

(i) Let's take HCF of $16 a^{2}-24 a b$

Taking 8a as common from the whole, we get,
$16 a^{2}-24 a b=8 a(2 a-3 b)$.
(ii) $15 a b^{2}-20 a^{2} b$,

Taking 5ab as common from the whole, we get,
$15 a b^{2}-20 a^{2} b=5 a b(3 b-4 a)$
(iii) $12 x^{2} y^{3}-21 x^{3} y^{2}$,

Taking $3 x^{2} y^{2}$ as common from the whole, we get,
$12 x^{2} y^{3}-21 x^{3} y^{2}=3 x^{2} y^{2}(4 y-7 x)$

3. Question

Factories:
(i) $24 x^{3}-36 x^{2} y$
(ii) $10 x^{3}-15 x^{2}$
(iii) $36 x^{3} y-60 x^{2} y^{3} z$

Answer

(i) $24 x^{3}-36 x^{2} y$,

Taking $12 x^{2}$ as common from the whole, we get,
$24 x^{3}-36 x^{2} y=12 x^{2}(2 x-3 y)$
(ii) $10 x^{3}-15 x^{2}$

Taking $5 x^{2}$ as common from the whole, we get,
$10 x^{3}-15 x^{2}=5 x^{2}(2 x-3)$
(iii) $36 x^{3} y-60 x^{2} y^{3} z$

Taking $12 x^{2} y$ as common from the whole, we get,
$36 x^{3} y-60 x^{2} y^{3} z=12 x^{2} y\left(3 x-5 y^{2} z\right)$

4. Question

Factories:
i. $9 x^{3}-6 x^{2}+12 x$
ii. $8 x^{3}-72 x y+12 x$
iii. $18 a^{3} b^{3}-27 a^{2} b^{3}+36 a^{3} b^{2}$

Answer

(i) Let's find out the HCF of $9 x^{3}, 6 x^{2}, 12 x$

$3 x$ is the highest common factor which divides $9 x^{3}, 6 x^{2}$ and $12 x$.
So,
$9 x^{3}-6 x^{2}+12 x=3 x\left(3 x^{2}-2 x+4\right)$
(ii) Let's find out the HCF of $8 x^{3}, 72 x y$ and $12 x$

4 x	$8 \mathrm{x}^{3}, 72 \mathrm{xy}, 12 \mathrm{x}$
	$2 \mathrm{x}, 18 \mathrm{y}, 3$

$4 x$ is the highest common factor which divides $8 x^{3}, 72 x y$ and $12 x$.

So,
$8 x^{3}-72 x y+12 x=4 x\left(2 x^{2}-18 y+3\right)$
(iii) Let's find out the HCF of $18 a^{3} b^{3}, 27 a^{2} b^{3}, 36 a^{3} b^{2}$

$9 a^{2} b^{2}$	$18 a^{3} b^{3}, 27 a^{2} b^{3}, 36 a^{3} b^{2}$
	$2 a b, 3 b, 4 a$

$9 a^{2} b^{2}$ is the highest common factor which divides $18 a^{3} b^{3}, 27 a^{2} b^{3}, 36 a^{3} b^{2}$.
So,
$18 a^{3} b^{3}-27 a^{2} b^{3}+36 a^{3} b^{2}=9 a^{2} b^{2}(2 a b-3 b+4 a)$

5. Question

Factories:
i. $14 x^{3}+21 x^{4} y-28 x^{2} y^{2}$
ii. $-5-10 \mathrm{t}+20 \mathrm{t}^{2}$

Answer

(i) Let's find out the HCF of $14 x^{3}, 21 x^{4} y$ and $28 x^{2} y^{2}$

$7 x^{2}$ is the highest common factor of $14 x^{3}, 21 x^{4} y, 28 x^{2} y^{2}$
So,
$14 x^{3}+21 x^{4} y-28 x^{2} y^{2}=7 x^{2}\left(2 x+3 x^{2} y-4 y^{2}\right)$
(ii) Let's find out the HCF of $5,10 \mathrm{t}$ and $20 \mathrm{t}^{2}$,

5 is the highest common factor of $5,10 \mathrm{t}$ and $20 \mathrm{t}^{2}$.
So,
$-5-10 t+20 t^{2}=-5\left(1+2 t-4 t^{2}\right)$
(Note: As we have learned in the previous chapter when we multiplied - sign with - sign it become +)

6. Question

Factorise:
i. $x(x+3)+5(x+3)$
ii. $5 x(x-4)-7(x-4)$
iii. $2 m(1-n)+3(1-n)$

Answer

(i) $x(x+3)+5(x+3)$

Taking $x+3$ as common from the whole, we get,
$(x+3)(x+5)$.
Hence, $x(x+3)+5(x+3)=(x+3)(x+5)$
(ii) $5 x(x-4)-7(x-4)$

Taking $x-4$ as common from the whole, we get,
$5 x(x-4)-7(x-4)=(x-4)(5 x-7)$.
(iii) $2 m(1-n)+3(1-n)$

Taking 1 - n as common from the whole, we get,
$2 m(1-n)+3(1-n)=(1-n)(2 m+3)$.

7. Question

Factories:
$6 a(a-2 b)+5 b(a-2 b)$

Answer

$6 a(a-2 b)+5 b(a-2 b)$
Taking $a-2 b$ as common from the whole, we get,
$=(a-2 b)(6 a+5 b)$.

8. Question

Factories:
$x^{3}(2 a-b)+x^{2}(2 a-b)$

Answer

$x^{3}(2 a-b)+x^{2}(2 a-b)$
Taking $2 \mathrm{a}-\mathrm{b}$ as common from the whole, we get,
$=(2 a-b)\left(x^{3}+x^{2}\right)$.
9. Question

Factories:
$9 a(3 a-5 b)-12 a^{2}(3 a-5 b)$

Answer

Taking $3 \mathrm{a}-5 \mathrm{~b}$ as common from the whole, we get, $=(3 a-5 b)\left(9 a-12 a^{2}\right)$.

10. Question

Factorize:
$(x+5)^{2}-4(x+5)$

Answer

$(x+5)^{2}-4(x+5)$
Taking $(x+5)$ as common from the whole, we get,
$=(x+5)\{(x+5)-4\}$
$=(x+5)(x+5-4)$
$=(x+5)(x+1)$
So,
The factors of $(x+5)^{2}-4(x+5)$ are: $(x+5)$ and $(x+1)$

11. Question

Factories:
$3(a-2 b)^{2}-5(a-2 b)$

Answer

$3(a-2 b)^{2}-5(a-2 b)$
$=(a-2 b)\{3(a-2 b)-5\}$
$=(a-2 b)\{(3 a-6 b)-5\}$
$=(a-2 b)(3 a-6 b-5)$
So,
We get,
$3(a-2 b)^{2}-5(a-2 b)=(a-2 b)(3 a-6 b-5)$
12. Question

Factories:
$2 a+6 b-3(a+3 b)^{2}$

Answer

$2 a+6 b-3(a+3 b)^{2}=2(a+3 b)-3(a+3 b)^{2}$
$=(a+3 b)\{2-3(a+3 b)\}$
$=(a+3 b)\{2-3 a-9 b\}$

13. Question

Factories:
$16(2 p-3 q)^{2}-4(2 p-3 q)$

Answer

$16(2 p-3 q)^{2}-4(2 p-3 q)$
$=(2 p-3 q)\{16(2 p-3 q)-4\}$
$=(2 p-3 q)\{(32 p-48 q)-4\}$
$=(2 p-3 q)(32 p-48 q-4)$
$=4(2 p-3 q)(8 p-12 q-1)$
So,
We get,
$16(2 p-3 q)^{2}-4(2 p-3 q)=4(2 p-3 q)(8 p-12 q-1)$

14. Question

Factories:
$x(a-3)+y(3-a)$

Answer

$x(a-3)+y(3-a)$
$=x(a-3)-y(a-3)$
$=(a-3)(x-y)$

15. Question

Factories:

$12(2 x-3 y)^{2}-16(3 y-2 x)$

Answer

$12(2 x-3 y)^{2}-16(3 y-2 x)$
$=12(2 x-3 y)^{2}+16(2 x-3 y)$
[Taking $(2 x-3 y)$ common from the expression]
$=(2 x-3 y)\{12(2 x-3 y)+16\}$
$=(2 x-3 y)(24 x-36 y+16)$
[Taking 4 common from the expression]
$=4(2 x-3 y)(6 x-9 y+4)$
So,
We get,
$12(2 x-3 y)^{2}-16(3 y-2 x)=4(2 x-3 y)(6 x-9 y+4)$

16. Question

Factories:
$(x+y)(2 x+5)-(x+y)(x+3)$

Answer

$(x+y)(2 x+5)-(x+y)(x+3)$
$=(x+y)\{(2 x+5)-(x+3)\}$
$=(x+y)(2 x+5-x-3)$
$=(x+y)(2 x-x+5-3)$
$=(x+y)(x+2)$

So,
We get,
$(x+y)(2 x+5)-(x+y)(x+3)=(x+y)(x+2)$

17. Question

Factories:
$a r+b r+a t+b t$

Answer

$a r+b r+a t+b t$
First group the terms together;
$=(a r+b r)+(a t+b t)$
$=r(a+b)+t(a+b)$
$=(a+b)(r+t)$
So,
We get,
$a r+b r+a t+b t=(a+b)(r+t)$

18. Question

Factories:
$x^{2}-a x-b x+a b$

Answer

$x^{2}-a x-b x+a b$
Let's arrange the terms in a suitable form;
$x^{2}-a x-b x+a b$
$=x^{2}-b x-a x+a b$
$=\left(x^{2}-b x\right)-(a x-a b)$
$=x(x-b)-a(x-b)$
$=(x-b)(x-a)$
So we get,
$x^{2}-a x-b x+a b=(x-b)(x-a)$

19. Question

Factories:
$a b^{2}-b c^{2}-a b+c^{2}$

Answer

$a b^{2}-b c^{2}-a b+c^{2}$
Let's first arrange the terms in a suitable form;
$a b^{2}-b c^{2}-a b+c^{2}$
$=a b^{2}-a b-b c^{2}+c^{2}$
$=\left(a b^{2}-a b\right)-\left(b c^{2}-c^{2}\right)$
$=a b(b-1)-c^{2}(b-1)$
$=(b-1)\left(a b-c^{2}\right)$
So we get,
$a b^{2}-b c^{2}-a b+c^{2}=(b-1)\left(a b-c^{2}\right)$

20. Question

Factories:
$x^{2}-x z+x y-y z$

Answer

Let's first arrange the terms in a suitable form;
$x^{2}-x z+x y-y z$
$=x^{2}+x y-x z-y z$
$=\left(x^{2}+x y\right)-(x z+y z)$
$=x(x+y)-z(x+y)$
$=(x+y)(x-z)$
So we get,
$x^{2}-x z+x y-y z=(x+y)(x-z)$

21. Question

Factories:
$6 a b-b^{2}+12 a c-2 b c$

Answer

$6 a b-b^{2}+12 a c-2 b c$
$=6 a b+12 a c-b^{2}-2 b c$
$=(6 a b+12 a c)-\left(b^{2}+2 b c\right)$
$=6 a(b+2 c)-b(b+2 c)$
$=(b+2 c)(6 a-b)$
So we get,
$6 a b-b^{2}+12 a c-2 b c=(b+2 c)(6 a-b)$

22. Question

Factories:
$(x-2 y)^{2}+4 x-8 y$

Answer

$(x-2 y)^{2}+4 x-8 y$
$=(x-2 y)^{2}+4(x-2 y)$
$=(x-2 y)(x-2 y)+4(x-2 y)$
$=(x-2 y)\{(x-2 y)+4\}$
$=(x-2 y)(x-2 y+4)$
So we get,
$(x-2 y)^{2}+4 x-8 y==(x-2 y)(x-2 y+4)$

23. Question

Factories:
$y^{2}-x y(1-x)-x^{3}$

Answer

$y^{2}-x y(1-x)-x^{3}$
$=y^{2}-x y+x^{2} y-x^{3}$
$=\left(y^{2}-x y\right)+\left(x^{2} y-x^{3}\right)$
$=y(y-x)+x^{2}(y-x)$
$=(y-x)\left(y+x^{2}\right)$
So we get,
$y^{2}-x y(1-x)-x^{3}=(y-x)\left(y+x^{2}\right)$

24. Question

Factories:
$(a x+b y)^{2}+(b x-a y)^{2}$

Answer

$(a x+b y)^{2}+(b x-a y)^{2}$
By using the formulas;
$(a+b)^{2}=a^{2}+b^{2}+2 a b$ and
$(a-b)^{2}=a^{2}+b^{2}-2 a b$
$=\left(a^{2} x^{2}+b^{2} y^{2}+2 a x b y\right)+\left(b^{2} x^{2}+a^{2} y^{2}-2 b x a y\right)$
$=a^{2} x^{2}+a^{2} y^{2}+b^{2} y^{2}+b^{2} x^{2}+2 a x b y-2 b x a y$
$=a^{2}\left(x^{2}+y^{2}\right)+b^{2} x^{2}+b^{2} y^{2}+2 a x b y-2 a x b y$
$=a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(x^{2}+y^{2}\right)$
$=\left(x^{2}+y^{2}\right)\left(a^{2}+b^{2}\right)$
So we get,
$(a x+b y)^{2}+(b x-a y)^{2}=\left(x^{2}+y^{2}\right)\left(a^{2}+b^{2}\right)$

25. Question

Factories:
$a b^{2}+(a-1) b-1$

Answer

$a b^{2}+(a-1) b-1$
$=a b^{2}+b a-b-1$
$=\left(a b^{2}+b a\right)-(b+1)$
$=a b(b+1)-1(b+1)$
$=(b+1)(a b-1)$
So we get,
$a b^{2}+(a-1) b-1=(b+1)(a b-1)$

26. Question

Factories:
$x^{3}-3 x^{2}+x-3$

Answer

$x^{3}-3 x^{2}+x-3$
$=\left(x^{3}-3 x^{2}\right)+(x-3)$
$=x^{2}(x-3)+1(x-3)$
$=(x-3)\left(x^{2}+1\right)$
So we get,
$x^{3}-3 x^{2}+x-3=(x-3)\left(x^{2}+1\right)$

27. Question

Factories:
$a b\left(x^{2}+y^{2}\right)-x y\left(a^{2}+b^{2}\right)$

Answer

$a b\left(x^{2}+y^{2}\right)-x y\left(a^{2}+b^{2}\right)$
$=a b x^{2}+a b y^{2}-a^{2} x y-b^{2} x y$
$=a b x^{2}-a^{2} x y+a b y^{2}-b^{2} x y$
$=a x(b x-a y)+b y(a y-b x)$
$=a x(b x-a y)-b y(b x-a y)$
$=(b x-a y)(a x-b y)$
So we get,
$a b\left(x^{2}+y^{2}\right)-x y\left(a^{2}+b^{2}\right)=(b x-a y)(a x-b y)$

28. Question

Factories:
$x^{2}-x(a+2 b)+2 a b$

Answer

$x^{2}-x(a+2 b)+2 a b$
$=x^{2}-a x-2 b x+2 a b$
$=x^{2}-2 b x-a x+2 a b$
$=\left(x^{2}-2 b x\right)-(a x-2 a b)$
$=x(x-2 b)-a(x-2 b)$
$=(x-2 b)(x-a)$
So we get,
$x^{2}-x(a+2 b)+2 a b=(x-2 b)(x-a)$

Exercise 7B

1. Question

Factories:
$x^{2}-36$

Answer

We have,
$x^{2}-36$
Which is,
$=(x)^{2}-(6)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$x^{2}-36=(x)^{2}-(6)^{2}$
$=(x+6)(x-6)$

2. Question

Factories:
$4 a^{2}-9$

Answer

We have,
$4 a^{2}-9$
$=(2 \mathrm{a})^{2}-(3)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$4 a^{2}-9=(2 a)^{2}-(3)^{2}$
$=(2 a+3)(2 a-3)$

3. Question

Factories:
$81-49 x^{2}$

Answer

We have,
$81-49 x^{2}$
$=(9)^{2}-(7 x)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$81-49 x^{2}=(9)^{2}-(7 x)^{2}$
$=(9+7 x)(9-7 x)$

4. Question

Factories:
$4 x^{2}-9 y^{2}$

Answer

We have,
$4 x^{2}-9 y^{2}$
$=(2 \mathrm{x})^{2}-(3 \mathrm{y})^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$4 x^{2}-9 y^{2}=(2 x)^{2}-(3 y)^{2}$
$=(2 x+3 y)(2 x-3 y)$

5. Question

Factories:
$16 a^{2}-225 b^{2}$

Answer

We have,
$16 a^{2}-225 b^{2}$
$=(4 a)^{2}-(15 b)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$16 a^{2}-225 b^{2}=(4 a)^{2}-(15 b)^{2}$
$=(4 a+15 b)(4 a-15 b)$
6. Question

Factories:
$9 a^{2} b^{2}-25$

Answer

We have,
$9 a^{2} b^{2}-25$
$=(3 a b)^{2}-(5)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$9 a^{2} b^{2}-25=(3 a b)^{2}-(5)^{2}$
$=(3 a b+5)(3 a b-5)$

7. Question

Factories:
$16 a^{2}-144$

Answer

We have,
$16 a^{2}-144$
$=(4 a)^{2}-(12)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$16 a^{2}-144=(4 a)^{2}-(12)^{2}$
$=(4 a+12)(4 a-12)$
$=4(a+3) 4(a-3)$
$=16(a+3)(a-3)$

8. Question

Factories:
$63 a^{2}-112 b^{2}$

Answer

We have,
$63 a^{2}-112 b^{2}$
$=7\left(9 a^{2}-16 b^{2}\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$63 a^{2}-112 b^{2}=7\left(9 a^{2}-16 b^{2}\right)$
$=7\left\{(3 a)^{2}-(4 b)^{2}\right\}$
$=7(3 a+4 b)(3 a-4 b)$
9. Question

Factories:
$20 a^{2}-45 b^{2}$

Answer

We have,
$20 a^{2}-45 b^{2}$
$=5\left(4 a^{2}-9 b^{2}\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$20 a^{2}-45 b^{2}=5\left(4 a^{2}-9 b^{2}\right)$
$=5\left\{(2 a)^{2}-(3 b)^{2}\right\}$
$=5(2 a+3 b)(2 a-3 b)$

10. Question

Factories:
$12 x^{2}-27$

Answer

We have,
$12 x^{2}-27$
$=3\left(4 x^{2}-9\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$12 x^{2}-27=3\left(4 x^{2}-9\right)$
$=3\left\{(2 x)^{2}-(3)^{2}\right\}$
$=3(2 x+3)(2 x-3)$

11. Question

Factories:
$x^{3}-64 x$

Answer

We have,
$x^{3}-64 x$
$=x\left(x^{2}-64\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$x^{3}-64 x=x\left(x^{2}-64\right)$
$=x\left\{(x)^{2}-(8)^{2}\right\}$
$=x(x+8)(x-8)$

12. Question

Factories:
$16 x^{5}-144 x^{3}$

Answer

We have,
$16 x^{5}-144 x^{3}$
$=3 x^{3}\left(x^{2}-9\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$16 x^{5}-144 x^{3}=3 x^{3}\left(x^{2}-9\right)$
$=16 x^{3}\left\{(x)^{2}-(3)^{2}\right\}$
$=16 x^{3}(x+3)(x-3)$

13. Question

Factories:
$3 x^{5}-48 x^{3}$

Answer

We have,
$3 x^{5}-48 x^{3}$
$=3 x^{3}\left(x^{2}-16\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$3 x^{5}-48 x^{3}=3 x^{3}\left(x^{2}-16\right)$
$=3 x^{3}\left\{(x)^{2}-(4)^{2}\right\}$
$=3 x^{3}(x+4)(x-4)$

14. Question

Factories:
$16 p^{3}-4 p$

Answer

We have,
$16 p^{3}-4 p$
$=4 \mathrm{p}\left(4 \mathrm{p}^{2}-1\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$16 p^{3}-4 p=4 p\left(4 p^{2}-1\right)$
$=4 p\left\{(2 p)^{2}-(1)^{2}\right\}$
$=4 p(2 p+1)(2 p-1)$

15. Question

Factories:
$63 a^{2} b^{2}-7$

Answer

We have,
$63 a^{2} b^{2}-7$
$=7\left(9 a^{2} b^{2}-1\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$63 a^{2} b^{2}-7=7\left(9 a^{2} b^{2}-1\right)$
$=7\left\{(3 a b)^{2}-(1)^{2}\right\}$
$=7(3 a b+1)(3 a b-1)$

16. Question

Factories:
$1-(b-c)^{2}$

Answer

We have,
$1-(b-c)^{2}$
$=(1)^{2}-(b-c)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$1-(b-c)^{2}=(1)^{2}-(b-c)^{2}$
$=\{1+(b-c)\}\{1-(b-c)\}$
$=(1+b-c)(1-b+c)$

17. Question

Factories:
$(2 a+3 b)^{2}-16 c^{2}$

Answer

Given,
$(2 a+3 b)^{2}-16 c^{2}$
$=(2 a+3 b)^{2}-(4 c)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$(2 a+3 b)^{2}-16 c^{2}=(2 a+3 b)^{2}-(4 c)^{2}$
$=\{(2 a+3 b)+4 c\}\{(2 a+3 b)-4 c\}$
$=(2 a+3 b+4 c)(2 a+3 b-4 c)$

18. Question

Factories:
$(I+m)^{2}-(I-m)^{2}$

Answer

We have,

$$
(1+m)^{2}-(1-m)^{2}
$$

By using the formula $a^{2}-b^{2}=(a+b)(a-b)$ Here, $a=(1+m)$ and $b=(1-m)$
$\Rightarrow(I+m)^{2}-(I-m)^{2}=\{(I+m)+(I-m)\}\{(I+m)-(I-m)\}$

$$
\begin{aligned}
& =(1+m+l-m)(I+m-I+m) \quad=(2 l)(2 m) \\
& =4 \mathrm{~lm}
\end{aligned}
$$

19. Question

Factories:
$(2 x+5 y)^{2}-1$

Answer

Given,
$(2 x+5 y)^{2}-(1)^{2}$
$=(2 x+5 y)^{2}-(1)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$(2 x+5 y)^{2}-(1)^{2}=(2 x+5 y)^{2}-(1)^{2}$
$=\{(2 x+5 y)+1\}\{(2 x+5 y)-1\}$
$=(2 x+5 y+1)(2 x+5 y-1)$

20. Question

Factories:
$36 c^{2}-(5 a+b)^{2}$

Answer

Given,
$36 c^{2}-(5 a+b)^{2}$
$=(6 c)^{2}-(5 a+b)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$36 c^{2}-(5 a+b)^{2}=(6 c)^{2}-(5 a+b)^{2}$
$=\{(6 \mathrm{c})+(5 \mathrm{a}+\mathrm{b})\}\{(6 \mathrm{c})-(5 \mathrm{a}+\mathrm{b})\}$
$=(6 c+5 a+b)(6 c-5 a-b)$

21. Question

Factories:
$(3 x-4 y)^{2}-25 z^{2}$

Answer

Given,
$(3 x-4 y)^{2}-25 z^{2}$
$=(3 x-4 y)^{2}-(5 z)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$(3 x-4 y)^{2}-25 z^{2}=(3 x-4 y)^{2}-(5 z)^{2}$
$=\{(3 x-4 y)+5 z\}\{(3 x-4 y)-5 z\}$
$=(3 x-4 y+5 z)(3 x-4 y-5 z)$

22. Question

Factories:
$x^{2}-y^{2}-2 y-1$

Answer

Given,
$x^{2}-y^{2}-2 y-1$
$=x^{2}-\left(y^{2}+2 y+1\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$x^{2}-y^{2}-2 y-1=x^{2}-\left(y^{2}+2 y+1\right)$
$=(x)^{2}-(y+1)^{2}$
$=\{x+(y+1)\}\{x-(y+1)\}$
$=(x+y+1)(x-y-1)$

23. Question

Factories:
$25-a^{2}-b^{2}-2 a b$

Answer

Given,
$25-a^{2}-b^{2}-2 a b$
$=25-\left(a^{2}+b^{2}+2 a b\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$25-a^{2}-b^{2}-2 a b=25-\left(a^{2}+b^{2}+2 a b\right)$
$=25-(a+b)^{2}$
$=(5)^{2}-(a+b)^{2}$
$=\{5+(a+b)\}\{5-(a+b)\}$
$=(5+a+b)(5-a-b)$

24. Question

Factories:
$25 a^{2}-4 b^{2}+28 b c-49 c^{2}$

Answer

Given,
$25 a^{2}-4 b^{2}+28 b c-49 c^{2}$
$=25 a^{2}-\left(4 b^{2}-28 b c+49 c^{2}\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$25 a^{2}-4 b^{2}+28 b c-49 c^{2}=25 a^{2}-\left(4 b^{2}-28 b c+49 c^{2}\right)$
$=(5 a)^{2}-(2 b-7 c)^{2}$
$=\{5 a+(2 b-7 c)\}\{5 a-(2 b-7 c)\}$
$=(5 a+2 b-7 c)(5 a-2 b+7 c)$

25. Question

Factories:
$9 a^{2}-b^{2}+4 b-4$

Answer

Given,
$9 a^{2}-b^{2}+4 b-4$
$=9 a^{2}-\left(b^{2}-4 b+4\right)$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$9 a^{2}-b^{2}+4 b-4=9 a^{2}-\left(b^{2}-4 b+4\right)$
$=(3 a)^{2}-(b-2)^{2}$
$=\{3 a+(b-2)\}\{3 a-(b-2)\}$
$=(3 a+b-2)(3 a-b+2)$

26. Question

Factories:
$100-(x-5)^{2}$

Answer

Given,
$100-(x-5)^{2}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$100-(x-5)^{2}=(10)^{2}-(x-5)^{2}$
$=\{10+(x-5)\}\{10-(x-5)\}$
$=(10+x-5)(10-x+5)$
$=(5+x)(15-x)$

27. Question

Evaluate $\left\{(405)^{2}-(395)^{2}\right\}$

Answer

Given,
$\left\{(405)^{2}-(395)^{2}\right\}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$\left\{(405)^{2}-(395)^{2}\right\}=(405+395)(405-395)$
$=(800 \times 10)$
$=8000$

28. Question

Evaluate $\left\{(7.8)^{2}-(2.2)^{2}\right\}$.

Answer

We have,
$\left\{(7.8)^{2}-(2.2)^{2}\right\}$
By using the formula $a^{2}-b^{2}=(a+b)(a-b)$
We get,
$\left\{(7.8)^{2}-(2.2)^{2}\right\}=(7.8+2.2)(7.8-2.2)$
$=(10 \times 5.6)$
$=56$
So,
$\left\{(7.8)^{2}-(2.2)^{2}\right\}=56$

Exercise 7C

1. Question

Factorize:
$x^{2}+8 x+16$

Answer

Given,
$x^{2}+8 x+16$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=x^{2}+2 \times(x) \times 4+(4)^{2}$
$=(x+4)^{2}$

2. Question

Factorize:
$x^{2}+14 x+49$

Answer

Given;
$x^{2}+14 x+49$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=x^{2}+2 \times(x) \times 7+(7)^{2}$
$=(x+7)^{2}$

3. Question

Factorize:
$1+2 x+x^{2}$

Answer

Given,
$1+2 x+x^{2}=x^{2}+2 x+1$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=x^{2}+2 \times(x) \times 1+(1)^{2}$
$=(x+1)^{2}$
$=(x+1)(x+1)$
4. Question

Factorize:
$9+6 z+z^{2}$

Answer

Given,
$9+6 z+z^{2}=z^{2}+6 z+9$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=z^{2}+2 \times z \times 3+(3)^{2}$
$=(3+z)^{2}$

5. Question

Factorize:
$x^{2}+6 a x+9 a^{2}$

Answer

Given;
$x^{2}+6 a x+9 a^{2}$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=x^{2}+2 \times(x) \times 3 a+(3 a)^{2}$
$=(x+3 a)^{2}$
6. Question

Factorize:
$4 y^{2}+20 y+25$

Answer

Given;
$4 y^{2}+20 y+25$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$

We get,
$=(2 \mathrm{y})^{2}+2 \times 2 \mathrm{y} \times 5+(5)^{2}$
$=(2 y+5)^{2}$

7. Question

Factorize:
$36 a^{2}+36 a+9$

Answer

Given,
$36 a^{2}+36 a+9$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=(6 \mathrm{a})^{2}+2 \times 6 \mathrm{a} \times 3+(3)^{2}$
$=(6 a+3)^{2}$
8. Question

Factorize:
$9 m^{2}+24 m+16$

Answer

Given,
$9 m^{2}+24 m+16$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=(3 m)^{2}+2 \times 3 \mathrm{~m} \times 4+(4)^{2}$
$=(3 m+4)^{2}$
9. Question

Factorize:
$z^{2}+z+\frac{1}{4}$

Answer

Given,
$z^{2}+z+\frac{1}{4}$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=z^{2}+2 \times z \times \frac{1}{2}+\left(\frac{1}{2}\right)^{2}$
$=\left(z+\frac{1}{2}\right)$
10. Question

Factorize:
$49 a^{2}+84 a b+36 b^{2}$

Answer

Given,
$49 a^{2}+84 a b+36 b^{2}$
By using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$
We get,
$=(7 a)^{2}+2 \times 7 a \times 6 b+(6 b)^{2}$
$=(7 a+6 b)^{2}$

11. Question

Factorize:
$p^{2}-10 p+25$

Answer

Given,
$p^{2}-10 p+25$
By using the formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$
We get,
$=p^{2}-2 \times p \times 5+(5)^{2}$
$=(p-5)^{2}$

12. Question

Factorize:
$121 a^{2}-88 a b+16 b^{2}$

Answer

Given,
$121 a^{2}-88 a b+16 b^{2}$
By using the formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$
We get,
$=(11 a)^{2}-2 \times 11 a \times 4 b+(4 b)^{2}$
$=(11 a-4 b)^{2}$

13. Question

Factorize:
$1-6 x+9 x^{2}$

Answer

Given,
$1-6 x+9 x^{2}=9 x^{2}-6 x+1$
By using the formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$

We get,
$=(3 x)^{2}-2 \times(3 x) \times 1+(1)^{2}$
$=(3 x-1)^{2}$

14. Question

Factorize:
$9 y^{2}-12 y+4$

Answer

Given,
$9 y^{2}-12 y+4$
By using the formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$
We get,
$=(3 y)^{2}-2 \times 3 y \times 2+(2)^{2}$
$=(3 y-z)^{2}$

15. Question

Factorize:
$16 x^{2}-24 x+9$

Answer

Given,
$16 x^{2}-24 x+9$
By using the formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$
$=(4 x)^{2}-2 \times(4 x) \times 3+(3)^{2}$
$=(4 x-3)^{2}$
16. Question

Factorize:
$m^{2}-4 m n+4 n^{2}$

Answer

Given,
$m^{2}-4 m n+4 n^{2}$
By using the formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$
$=m^{2}-2 \times m \times 2 n+(2 n)^{2}$
$=(m-2 n)^{2}$

17. Question

Factorize:
$a^{2} b^{2}-6 a b+9 c^{2}$

Answer

Given,
$a^{2} b^{2}-6 a b+9 c^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
We get,
$=(a b)^{2}-2 \times a b \times 3 c+(3 c)^{2}$
$=(a b-3 c)^{2}$

18. Question

Factorize:
$m^{4}+2 m^{2} n^{2}+n^{4}$

Answer

Given,
$m^{4}+2 m^{2} n^{2}+n^{4}$
By using the formula $(a+b)^{2}=a^{2}+b^{2}+2 a b$
We get,
$=\left(m^{2}\right)^{2}+2 \times m^{2} \times n^{2}+\left(n^{2}\right)^{2}$
$=\left(m^{2}+n^{2}\right)$

19. Question

Factorize:
$(1+m)^{2}-41 m$

Answer

Given,
$(1+m)^{2}-41 m$
By using the formula $(a+b)^{2}=a^{2}+b^{2}+2 a b$
We get,
$(I+m)^{2}-41 m=\left(I^{2}+m^{2}+21 m\right)-41 m$
$=I^{2}+m^{2}+2 I m-4 I m$
$=\mathrm{I}^{2}+\mathrm{m}^{2}-2 \mathrm{~lm}$
$=(1)^{2}+(m)^{2}-2 \times 1 \times m$
$=(\mathrm{l}-\mathrm{m})^{2}$

Exercise 7D

1. Question

Factorize:
$x^{2}+5 x+6$

Answer

Given,
$x^{2}+5 x+6$
Now first find the numbers whose-

Sum $=5$ and
Product $=6$
Required numbers are 2 and 3,
So we get;
$x^{2}+5 x+6$
$=x^{2}+2 x+3 x+6$
$=x(x+2)+3(x+2)$
$=(x+2)(x+3)$

2. Question

Factorize:
$y^{2}+10 y+24$

Answer

Given,
$y^{2}+10 y+24$
Now first find the numbers whose-
Sum = 10 and
Product $=24$
Required numbers are 6 and 4,
So we get;
$y^{2}+10 y+24=y^{2}+6 y+4 y+24$
$=y(y+6)+4(y+6)$
$=(y+6)(y+4)$

3. Question

Factorize:
$z^{2}+12 z+27$

Answer

$z^{2}+12 z+27$
Now first find the numbers whose-
Sum $=12$ and
Product $=27$
Required numbers are 9 and 3,
So we get;
$z^{2}+12 z+27$
$=z^{2}+9 z+3 z+27$
$=z(z+9)+3(z+9)$
$=(z+9)(z+3)$

4. Question

Factorize:
$p^{2}+6 p+8$

Answer

Given,
$p^{2}+6 p+8$
Now first find the numbers whose-
Sum $=6$ and
Product $=8$
Required numbers are 4 and 2,
So we get;
$p^{2}+6 p+8$
$=p^{2}+4 p+2 p+8$
$=p(p+4)+2(p+4)$
$=(p+4)(p+2)$

5. Question

Factorize:
$x^{2}+15 x+56$

Answer

Given,
$x^{2}+15 x+56$
Now first find the numbers whose-
Sum = 15 and
Product $=56$
Required numbers are 7 and 8,
So we get;
$x^{2}+15 x+56$
$=x^{2}+7 x+8 x+56$
$=x(x+7)+8(x+7)$
$=(x+7)(x+8)$

6. Question

Factorize:
$y^{2}+19 y+60$

Answer

$y^{2}+19 y+60$
Now first find the numbers whose-
Sum = 19 and

Product $=60$
Required numbers are 15 and 4,
So we get;
$y^{2}+19 y+60$
$=y^{2}+15 y+4 y+60$
$=y(y+15)+4(y+15)$
$=(y+15)(y+4)$

7. Question

Factorize:
$x^{2}+13 x+40$

Answer

Given,
$x^{2}+13 x+40$
Now first find the numbers whose-
Sum = 13 and
Product $=40$
Required numbers are 8 and 5,
So we get;
$x^{2}+13 x+40$
$=x^{2}+8 x+5 x+40$
$=x(x+8)+5(x+8)$
$=(x+8)(x+5)$

8. Question

Factorize:
$q^{2}-10 q+21$

Answer

Given,
$q^{2}-10 q+21$
Now first find the numbers whose-
Sum $=-10$ and
Product $=21$
Required numbers are 7 and 3,
So we get;
$q^{2}-10 q+21$
$=q^{2}-7 q-3 q+21$
$=q(q-7)-3(q-7)$
$=(q-7)(q-3)$
9. Question

Factorize:
$p^{2}+6 p-16$

Answer

Given,
$p^{2}+6 p-16$
Now first find the numbers whose-
Sum $=6$ and
Product $=-16$
Required numbers are 8 and 2,
So we get;
$p^{2}+6 p-16$
$=p^{2}+8 p-2 p-16$
$=p(p+8)-2(p+8)$
$=(p+8)(p-2)$

10. Question

Factorize:
$x^{2}-10 x+24$

Answer

Given,
$x^{2}-10 x+24$
Now first find the numbers whose-
Sum $=-10$ and
Product $=24$
Required numbers are 6 and 4,
So we get;
$x^{2}-10 x+24$
$=x^{2}-6 x-4 x+24$
$=x(x-6)-4(x-6)$
$=(x-6)(x-4)$

11. Question

Factorize:
$x^{2}-23 x+42$

Answer

Given,
$x^{2}-23 x+42$
Now, first we have to find out the numbers whose-
Sum $=-23$ and
Product $=42$
The numbers are 21 and 2 ,
So,
$x^{2}-23 x+42=x^{2}-21 x-2 x+42$
$=x(x-21)-2(x-21)$
$=(x-21)(x-2)$

12. Question

Factorize:
$x^{2}-17 x+16$

Answer

Given,
$x^{2}-17 x+16$
Now, first we have to find out the numbers whose-
Sum $=-17$ and
Product $=16$
The numbers are 16 and 1,
So,
$x^{2}-17 x+16=x^{2}-16 x-1 x+16$
$=x(x-16)-1(x-16)$
$=(x-16)(x-1)$

13. Question

Factorize:
$y^{2}-21 y+90$

Answer

Given,
$y^{2}-21 y+90$
Now, first we have to find out the numbers whose-
Sum $=-21$ and
Product $=90$
The numbers are 15 and 6,
So,
$y^{2}-21 y+90=y^{2}-15 y-6 y+90$
$=y(y-15)-6(y-15)$
$=(y-15)(y-6)$

14. Question

Factorize:
$x^{2}-22 x+117$

Answer

Given,
$x^{2}-22 x+117$
Now, first we have to find out the numbers whose-
Sum $=-22$ and
Product $=117$
The numbers are 13 and 9 ,
So,
$x^{2}-22 x+117=x^{2}-13 x-9 x+117$
$=x(x-13)-9(x-13)$
$=(x-13)(x-9)$
15. Question

Factorize:
$x^{2}-9 x+20$

Answer

$x^{2}-9 x+20$
Now, first we have to find out the numbers whose -
Sum $=-9$ and
Product $=20$
The numbers are 5 and 4,
So,
$x^{2}-9 x+20=x^{2}-5 x-4 x+20$
$=x(x-5)-4(x-5)$
$=(x-5)(x-4)$

16. Question

Factorize:
$x^{2}+x-132$

Answer

$x^{2}+x-132$
Now, first we have to find out the numbers whose-
Sum $=1$ and
Product $=-132$
The numbers are 12 and 11,
So,
$x^{2}+x-132=x^{2}+12 x-11 x-132$
$=x(x+12)-11(x+12)$
$=(x+12)(x-11)$

17. Question

Factorize:
$x^{2}+5 x-104$

Answer

$x^{2}+5 x-104$
Now, first we have to find out the numbers whose-
Sum $=5$ and
Product $=-104$
The numbers are 13 and 8,
So,
$x^{2}+5 x-104=x^{2}+13 x-8 x-104$
$=x(x+13)-8(x+13)$
$=(x+13)(x-8)$

18. Question

Factorize:
$y^{2}+7 y-144$

Answer

$$
y^{2}+7 y-144
$$

Now, first we have to find out the numbers whose-
Sum $=7$ and
Product $=-144$
The numbers are 16 and - 9 ,
So,
$y^{2}+7 y-144$
$=y^{2}+16 y-9 y-144$
$=y(y+16)-9(y+16)$
$=(y+16)(y-9)$

19. Question

Factorize:
$z^{2}+19 z-150$

Answer

Given,

Now, first we have to find out the numbers whose-
Sum = 19 and
Product $=-150$
The numbers are 25 and 6,
So,
$z^{2}+19 z-150$
$=z^{2}+25 z-6 z-150$
$=z(z+25)-6(z+25)$
$=(z+25)(z-6)$

20. Question

Factorize:
$y^{2}+y-72$

Answer

Given,
$y^{2}+y-72$
Now, first we have to find out the numbers whose-
Sum $=1$ and
Product $=-72$
The numbers are 9 and 8,
So,
$y^{2}+y-72$
$=y^{2}+9 y-9 y-72$
$=y(y+9)-9(y+9)$
$=(y+9)(y-9)$

21. Question

Factorize:
$a^{2}+6 a-91$

Answer

$a^{2}+6 a-91$
Now, first we have to find out the numbers whose-
Sum $=6$ and
Product $=-91$
The numbers are 13 and 7,
So,
$a^{2}+6 a-91$
$=a^{2}+13 a-7 a-91$
$=a(a+13)-7(a+13)$
$=(a+13)(a-7)$

22. Question

Factorize:
$p^{2}-4 p-77$

Answer

$p^{2}-4 p-77$
Now, first we have to find out the numbers whose-
Sum $=-4$ and
Product $=-77$
The numbers are 11 and 7,
So,
$p^{2}-4 p-77$
$=p^{2}-11 p+7 p-77$
$=p(p-11)+7(p-11)$
$=(p-11)(p+7)$

23. Question

Factorize:
$x^{2}-7 x-30$

Answer

$x^{2}-7 x-30$
Now, first we have to find out the numbers whose-
Sum $=-7$ and
Product $=-30$
The numbers are 10 and 3 ,
So,
$x^{2}-7 x-30$
$=x^{2}-10 x+3 x-30$
$=x(x-10)+3(x-10)$
$=(x-10)(x+3)$

24. Question

Factorize:
$x^{2}-11 x-42$

Answer

$x^{2}-11 x-42$
Now, first we have to find out the numbers whose-

Sum $=-11$ and
Product $=-42$
The numbers are 14 and 3 ,
So,
$x^{2}-11 x-42$
$=x^{2}-14 x+3 x-42$
$=x(x-14)+3(x+14)$
$=(x-14)(x+3)$

25. Question

Factorize:
$x^{2}-5 x-24$

Answer

$x^{2}-5 x-24$
Now, first we have to find out the numbers whose-
Sum $=-5$ and
Product $=-24$
The numbers are - 8 and 3 ,
So,
$x^{2}-5 x-24$
$=x^{2}-8 x+3 x-24$
$=x(x-8)+3(x-8)$
$=(x-8)(x+3)$

26. Question

Factorize:
$y^{2}-6 y-135$

Answer

Given;
$y^{2}-6 y-135$
Now first find the numbers whose-
Sum $=-6$ and
Product $=-135$
Required numbers are 15 and 9,
So we get;
$y^{2}-6 y-135$
$=y^{2}-15 y+9 y-135$
$=y(y-15)+9(y-15)$
$=(y-15)(y+9)$

27. Question

Factorize:
$z^{2}-12 z-45$

Answer

Given
$z^{2}-12 z-45$
Now first find the numbers whose-
Sum $=-12$ and
Product $=-45$
Required numbers are 15 and 3,
So we get;
$z^{2}-12 z-45$
$=z^{2}-15 z+3 z-45$
$=z(z-15)+3(z-15)$
$=(z-15)(z+3)$

28. Question

Factorize:
$x^{2}-4 x-12$

Answer

Given,
$x^{2}-4 x-12$
Now first find the numbers whose-
Sum $=-4$ and
Product $=-12$
Required numbers are 6 and 2,
So we get;
$x^{2}-4 x-12$
$=x^{2}-6 x+2 x-12$
$=x(x-6)+2(x-6)$
$=(x-6)(x+2)$

29. Question

Factorize:
$3 x^{2}+10 x+8$

Answer

Given,
$3 x^{2}+10 x+8$
Now first find the numbers whose-
Sum = 10 and
Product $=3 \times 8=24$
Required numbers are 6 and 4,
So we get;
$3 x^{2}+10 x+8$
$=3 x^{2}+6 x+4 x+8$
$=3 x(x+2)+4(x+2)$
$=(x+2)(3 x+4)$

30. Question

Factorize:
$3 y^{2}+14 y+8$

Answer

Given,
$3 y^{2}+14 y+8$
Now first find the numbers whose-
Sum = 14 and
Product $=3 \times 8=24$
Required numbers are 12 and 2 ,
So we get;
$3 y^{2}+14 y+8=3 y^{2}+12 y+2 y+8$
$=3 y(y+4)+2(y+4)$
$=(y+4)(3 y+2)$

31. Question

Factorize:
$3 z^{2}-10 z+8$

Answer

Given,
$3 z^{2}-10 z+8$
Now, first we have to find out the numbers whose-
Sum $=-10$ and
Product $=3 \times 8=24$
The numbers are 6 and 4,
So,
$3 z^{2}-10 z+8$
$=3 z^{2}-6 z-4 z+8$
$=3 z(z-2)-4(z-2)$
$=(z-2)(3 z-4)$

32. Question

Factorize:
$2 x^{2}+x-45$

Answer

Given,
$2 x^{2}+x-45$
Now first find the numbers whose-
Sum $=1$ and
Product $=-45 \times 2=-90$
Required numbers are 10 and 9,
So we get;
$2 x^{2}+x-45$
$=2 x^{2}+10 x-9 x-45$
$=2 x(x+5)-9(x+5)$
$=(x+5)(2 x-9)$

33. Question

Factorize:
$6 p^{2}+11 p-10$

Answer

Given,
$6 p^{2}+11 p-10$
Now first find the numbers whose
Sum $=11$ and
Product $=-10 \times 6=-60$
Required numbers are 15 and 4,
So we get;
$=6 p^{2}+15 p-4 p-10$
$=3 p(2 p+5)-2(2 p+5)$
$=(2 p+5)(3 p-2)$

34. Question

Factorize:
$2 x^{2}-17 x-30$

Answer

Given,
$2 x^{2}-17 x-30$
Now first find the numbers whose-
Sum $=-17$ and
Product $=-30 \times 2=-60$
Required numbers are 20 and 3,
So we get;
$2 x^{2}-17 x-30$
$=2 x^{2}-20 x+3 x-30$
$=2 x(x-10)+3(x-10)$
$=(x-10)(2 x+3)$

35. Question

Factorize:
$7 y^{2}-19 y-6$

Answer

Given,
$7 y^{2}-19 y-6$
Now first find the numbers whose-
Sum $=-19$ and
Product $=-6 \times 7=-42$
Required numbers are 21 and 2,
So we get;
$7 y^{2}-19 y-6$
$=7 y^{2}-21 y+2 y-6$
$=7 \mathrm{y}(\mathrm{y}-3)+2(\mathrm{y}-3)$
$=(y-3)(7 y+2)$

36. Question

Factorize:
$28-31 x-5 x^{2}$
Answer
Given,
$28-31 x-5 x^{2}$
Now first find the numbers whose-
Sum $=-31$ and
Product $=-5 \times 28=140$
Required numbers are 35 and 4,
So we get;
$28-31 x-5 x^{2}$
$=28+4 x-35 x-5 x^{2}$
$=4(7+x)-5 x(7+x)$
$=(7+x)(4-5 x)$

37. Question

Factorize:
$3+23 z-8 z^{2}$

Answer

Given,
$3+23 z-8 z^{2}$
Now first find the numbers whose-
Sum $=23$ and
Product $=-8 \times 3=24$
Required numbers are 24 and 1 ,
So we get;
$3+23 z-8 z^{2}$
$=3+24 z-z-8 z^{2}$
$=3(1+8 z)-z(1+8 z)$
$=(1+8 z)(3-z)$
38. Question

Factorize:
$6 x^{2}-5 x-6$

Answer

Given,
$6 x^{2}-5 x-6$
Now first find the numbers whose-
Sum $=-5$ and
Product $=-6 \times 6=-36$
Required numbers are 9 and 4,
So we get;
$=6 x^{2}-9 x+4 x-6$
$=3 x(2 x-3)+2(2 x-3)$
$=(2 x-3)(3 x+2)$

39. Question

Factorize:
$3 m^{2}+24 m+36$

Answer

Given,
$3 m^{2}+24 m+36$
Now first find the numbers whose-
Sum = 24 and
Product $=36 \times 3=108$
Required numbers are 18 and 6,
So we get;
$3 m^{2}+24 m+36$
$=3 m^{2}+18 m+6 m+36$
$=3 m(m+6)+6(m+6)$
$=(m+6)(3 m+6)$

40. Question

Factorize:
$4 n^{2}-8 n+3$

Answer

Given,
$4 n^{2}-8 n+3$
Now first find the numbers whose-
Sum $=-8$ and
Product $=4 \times 3=12$
Required numbers are 6 and 2,
So we get;
$4 n^{2}-8 n+3$
$=4 n^{2}-2 n-6 n+3$
$=2 n(2 n-1)-3(2 n-3)$
$=(2 n-1)(2 n-3)$

41. Question

Factorize:
$6 x^{2}-17 x-3$

Answer

Given,
$6 x^{2}-17 x-3$
Now, first we have to find out the numbers whose-
Sum $=-17$ and
Product $=6 \times-3=-18$
The numbers are 18 and 1 ,

So,
$6 x^{2}-17 x-3$
$=6 x^{2}-18 x+1 x-3$
$=6 x(x-3)+1(x-3)$
$=(x-3)(6 x+1)$

42. Question

Factorize:
$7 x^{2}-19 x-6$

Answer

Given,
$7 x^{2}-19 x-6$
Now, first we have to find out the numbers whose-
Sum $=-19$ and
Product $=7 \times-6=-42$
The numbers are 21 and 2 ,
So,
$7 x^{2}-19 x-6$
$=7 x^{2}-21 x+2 x-6$
$=7 x(x-3)+2(x-3)$
$=(x-3)(7 x+2)$

Exercise 7E

1. Question

$\left(7 a^{2}-63 b^{2}\right)=?$
A. $(7 a-9 b)(9 a+7 b)$
B. $(7 a-9 b)(7 a+9 b)$
C. $9(a-3 b)(a+3 b)$
D. $7(a-3 b)(a+3 b)$

Answer

$\left(7 a^{2}-63 b^{2}\right)=7\left(a^{2}-9 b^{2}\right)($ taking 7 as common from whole)
$=7(a-3 b)(a+3 b) \because a^{2}-b^{2}=(a-b)(a+b)$

2. Question

$\left(2 x-32 x^{3}\right)=$?
A. $2(x-4)(x+4)$
B. $2 x(1-2 x)^{2}$
C. $2 x(1+2 x)^{2}$
D. $2(1-4 x)(1+4 x)$

Answer

$\left(2 x-32 x^{3}\right)=2 x\left(1-16 x^{2}\right)$ (taking $2 x$ as common from whole)
$=2 x(1-4 x)(1+4 x) \because a^{2}-b^{2}=(a-b)(a+b)$

3. Question

$x^{3}-144 x=?$
A. $x(x-12)^{2}$
B. $x(x+12)^{2}$
C. $x(x-12)(x+12)$
D. none of these

Answer

$x^{3}-144 x=x\left(x^{2}-144\right)$ (taking x as common from whole)
$=x(x-12)(x+12) \because a^{2}-b^{2}=(a-b)(a+b)$

4. Question

$2-50 x^{2}=?$
A. $2(1-5 x)^{2}$
B. $2(1+5 x)^{2}$
C. $(2-5 x)(2+5 x)$
D. $2(1-5 x)(1+5 x)$

Answer

$2-50 x^{2}=2\left(1-25 x^{2}\right)$ (taking 2 as common from whole)
$=2(1-5 x)(1+5 x) \because a^{2}-b^{2}=(a-b)(a+b)$

5. Question

$a^{2}+b c+a b+a c=?$
A. $(a+b)(a+c)$
B. $(a+b)(b+c)$
C. $(b+c)(c+a)$
D. $a(a+b+c)$

Answer

$a^{2}+b c+a b+a c=a^{2}+a b+b c+a c$
Rearranging the terms and taking a and c as common respectively.
$=a(a+b)+c(a+b)$
$=(a+c)(a+b)$.

6. Question

$p q^{2}+q(p-1)-1=?$
A. $(p q+1)(q-1)$
B. $p(q+1)(q-1)$
C. $q(p-1)(q+1)$
D. $(p q-1)(q+1)$

Answer

$p q^{2}+q(p-1)-1=p q^{2}+q p-q-1$
$=p q(q+1)-1(q+1)$
$=(p q-1)(q+1)$

7. Question

$a b-m n+a n-b m=?$
A. $(a-b)(m-n)$
B. $(a-m)(b+n)$
C. $(a-n)(m+b)$
D. $(m-a)(n-b)$

Answer

$=a b-m n+a n-b m=a b+a n-m n-b m$
$=a(b+n)-m(n+b)$
$=(a-m)(b+n)$.
8. Question
$a b-a-b+1=?$
A. $(a-1)(b-1)$
B. $(1-a)(1-b)$
C. $(a-1)(1-b)$
D. $(1-a)(b-1)$

Answer

$a b-a-b+1$
$=a(b-1)-1(b-1)$ (taking a and -1 as common)
$=(a-1)(b-1)$.

9. Question

$x^{2}-x z+x y-y z=?$
A. $(x-z)(x+z)$
B. $(x-y)(x-z)$
C. $(x+y)(x-z)$
D. $(x-z)(z-x)$

Answer

$=x^{2}-x z+x y-y z$
$=x(x-z)+y(x-z)$ (taking x and y as common resp.)
$=(x+y)(x-z)$.

10. Question

$12 m^{2}-27=?$
A. $(2 m-3)(3 m-9)$
B. $3(2 m-9)(3 m-1)$
C. $3(2 m-9)(2 m+1)$
D. none of these

Answer

$12 m^{2}-27=3\left(4 m^{2}-9\right)$ (taking 3 as common from whole)
$=3(2 m-3)(2 m+3) \because a^{2}-b^{2}=(a-b)(a+b)$

11. Question

$x^{3}-x=$?
A. $x\left(x^{2}-x\right)$
B. $x\left(x-x^{2}\right)$
C. $x(1+x)(1-x)$
D. $x(x+1)(1-x)$

Answer

$x^{3}-x=x\left(x^{2}-1\right)$ (taking x as common from whole)
$=x(x-1)(x+1) \because a^{2}-b^{2}=(a-b)(a+b)$

12. Question

$1-2 a b-\left(a^{2}+b^{2}\right)=$?
A. $(1+a-b)(1+a+b)$
B. $(1+a+b)(1-a+b)$
C. $(1+a+b)(1-a-b)$
D. $(1+a-b)(1-a+b)$

Answer

$1-2 a b-\left(a^{2}+b^{2}\right)=1-2 a b-a^{2}-b^{2}$
$=1-\left(2 a b+a^{2}+b^{2}\right)$
$=1-(a+b)^{2}$
$=(1-a-b)(1+a+b) \because a^{2}-b^{2}=(a-b)(a+b)$

13. Question

$x^{2}+6 x+8=$?
A. $(x+3)(x+5)$
B. $x+3)(x+4)$
C. $(x+2)(x+4)$
D. $(x+1)(x+8)$

Answer

$x^{2}+6 x+8$

Factorizing the equation and taking x and 2 as common,
$=x^{2}+4 x+2 x+8$
$=x(x+4)+2(x+4)$
$=(x+2)(x+4)$.

14. Question

$x^{2}+4 x-21=?$
A. $(x-7)(x+3)$
B. $(x+7)(x-3)$
C. $(x-7)(x-3)$
D. $(x+7)(x+3)$

Answer

$x^{2}+4 x-21$
Factorizing the equation and taking x and -3 as common,
$=x^{2}+7 x-3 x-21$
$=x(x+7)-3(x+7)$
$=(x-3)(x+7)$.

15. Question

$y^{2}+2 y-3=?$
A. $(y-1)(y+3)$
B. $(y+1)(y-3)$
C. $(y-1)(y-3)$
D. $(y+2)(y-3)$

Answer

$y^{2}+2 y-3$
Factorizing the equation and takingy and - 1 as common,
$=y^{2}+3 y-y-3$
$=y(y+3)-1(y+3)$
$=(y+3)(y-1)$.

16. Question

$40+3 x-x^{2}=?$
A. $(5+x)(x-8)$
B. $(5-x)(8+x)$
C. $(5+x)(8-x)$
D. $(5-x)(8-x)$

Answer

$40+3 x-x^{2}$
Factorizing the equation and taking 8 and $-x$ as common,
$=40+8 x-3 x-x^{2}$
$=8(5+x)-x(5+x)$
$=(8-x)(5+x)$.

17. Question

$2 x^{2}+5 x+3=?$
A. $(x+3)(2 x+1)$
B. $(x+1)(2 x+3)$
C. $(2 x+5)(x-3)$
D. none of these

Answer

$2 x^{2}+5 x+3$
Factorizing the equation and taking $2 x$ and 3 as common,
$=2 x^{2}+2 x+3 x+3$
$=2 x(x+1)+3(x+1)$
$=(2 x+3)(x+1)$.

18. Question

$6 a^{2}-13 a+6=?$
A. $(2 a+3)(3 a-2)$
B. $(2 a-3)(3 a+2)$
C. $(3 a-2)(2 a-3)$
D. $(3 a+1)(2 a-3)$

Answer

$6 a^{2}-13 a+6$
Factorizing the equation and taking 3 a and -2 as common,
$=6 a^{2}-9 a-4 a+6$
$=3 a(2 a-3)-2(2 a-3)$
$=(3 a-2)(2 a-3)$.

19. Question

$4 z^{2}-8 z+3=?$
A. $(2 z-1)(2 z-3)$
B. $(2 z+1)(3-2 z)$
C. $(2 z+3)(3 z+1)$
D. $(z-1)(4 z-3)$

Answer

$4 z^{2}-8 z+3$
Factorizing the equation and taking $2 z$ and -1 as common,
$=4 z^{2}-6 z-2 z+3$
$=2 z(2 z-3)-1(2 z-3)$
$=(2 z-1)(2 z-3)$.

20. Question

$3+23 y-8 y^{2}=$?
A. $(1-8 y)(3+y)$
B. $(1+8 y)(3-y)$
C. $(1-8 y)(y-3)$
D. $(8 y-1)(y+3)$

Answer

$3+23 y-8 y^{2}$
Factorizing the equation and taking 3 and -y as common,
$=3+24 y-y-8 y^{2}$
$=3(1+8 y)-y(1+8 y)$
$=(3-y)(1+8 y)$.

