7. Areas

Exercise 7A

1. Question

Find the area of the triangle whose base measures 24 cm and the corresponding height measures 14.5 cm .

Answer

Given,
Base of triangle, $b=24 \mathrm{~cm}$
Height of triangle $=14.5 \mathrm{~cm}$
We have to find out the area of the given triangle
We know that,
Area of triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 24 \times 14.5$
$=174 \mathrm{~cm}^{2}$
Hence, the area of the given triangle is $174 \mathrm{~cm}^{2}$

2. Question

The base of a triangular field is three times its altitude. If the cost of sowing the field at Rs58 per hectare is Rs783, find its base and height.

Answer

It is given that the base of the triangular field is three times greater than its altitude Let us assume height of the triangular field be x and base be $3 x$

We know that,
Area of triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times x \times 3 x$
$=\frac{3}{2} x^{2}$
We know that,

1 hectare $=10,000$ sq metre
Given,
Rate of sowing the field per hectare $=$ Rs. 58
Total cost of sowing the triangular field $=$ Rs. 783
Therefore,
Total cost $=$ Area of the triangular field \times Rs. 58
$\frac{3}{2} x^{2} \times \frac{58}{10000}=783$
$x^{2}=\frac{783}{58} \times \frac{2}{3} \times 10000$
$x^{2}=90000 m^{2}$
$x=300 \mathrm{~m}$
Hence,
Height of the triangular field $=x=300 \mathrm{~m}$
Base of triangular field $=3 x=3 \times 300=900 \mathrm{~m}$

3. Question

Find the area of triangle whose sides are $42 \mathrm{~cm}, 34 \mathrm{~cm}$ and 20 cm in length. Hence find the height corresponding to the longest side.

Answer

Given,
$\mathrm{a}=42 \mathrm{~cm}$
$\mathrm{b}=34 \mathrm{~cm}$
$\mathrm{c}=20 \mathrm{~cm}$
Therefore,
$S=\frac{42+34+20}{2}$
$=\frac{96}{2}$
$=48$
We know that,
Area $=\sqrt{S(S-a)(S-b)(S-c)}$
Putting the values of a, b and c in the formula, we get
$=\sqrt{48(48-42)(48-34)(48-20)}$
$=\sqrt{48 \times 6 \times 14 \times 28}$
$=\sqrt{4 \times 4 \times 3 \times 3 \times 2 \times 14 \times 14 \times 2}$
$=4 \times 3 \times 2 \times 14$
$=336 \mathrm{~cm}^{2}$
Longest side of the triangle $=\mathrm{b}=42 \mathrm{~cm}$
Let h be the corresponding height to the longest side
Therefore,
Area of triangle $=\frac{1}{2} \times b \times h$
$336=\frac{1}{2} \times b \times h$
$42 \times \mathrm{h}=336 \times 2$
$\mathrm{h}=\frac{336 \times 2}{42}$
$=16 \mathrm{~cm}$
Hence, corresponding height of the triangle is 16 cm

4. Question

Calculate the area of the triangle whose sides are $18 \mathrm{~cm}, 24 \mathrm{~cm}$ and 30 cm in length. Also, find the length of the altitude corresponding to the smallest side.

Answer

Given,
$a=18 \mathrm{~cm}$
$\mathrm{b}=24 \mathrm{~cm}$
$\mathrm{c}=30 \mathrm{~cm}$
Therefore,
$\mathrm{s}=\frac{18+24+30}{2}$
$=36$
We know that,
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{36(36-18)(36-24)(36-30)}$
$=\sqrt{36 \times 18 \times 12 \times 6}$
$=\sqrt{6 \times 6 \times 6 \times 3 \times 3 \times 4 \times 6}$
$=6 \times 6 \times 3 \times 2$
$=216 \mathrm{~cm}^{2}$
Smallest side $=\mathrm{a}=18 \mathrm{~cm}$
Let, h be the height corresponding to the smallest side of the triangle
Therefore,
Area of triangle $=\frac{1}{2} \times b \times h$
$216=\frac{1}{2} \times b \times h$
$18 \times \mathrm{h}=216 \times 2$
$\mathrm{h}=\frac{216 \times 2}{18}$
$=24 \mathrm{~cm}$

5. Question

Find the area of a triangular field whose sides are $91 \mathrm{~m}, 98 \mathrm{~m}$ and 105 m in length. Find the height corresponding to the longest side.

Answer

Given,
$\mathrm{a}=91 \mathrm{~m}$
$\mathrm{b}=98 \mathrm{~m}$
$\mathrm{c}=105 \mathrm{~m}$
Therefore,
$S=\frac{91+98+105}{2}$
$=\frac{294}{2}$
$=147$
We know that,
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{147(147-91)(147-98)(147-105)}$
$=\sqrt{147 \times 56 \times 49 \times 42}$
$=\sqrt{49 \times 3 \times 7 \times 2 \times 2 \times 2 \times 49 \times 7 \times 3 \times 2}$
$=49 \times 3 \times 2 \times 2 \times 7$
$=4116 \mathrm{~m}^{2}$
Longest side $=\mathrm{c}=105 \mathrm{~cm}$
Let, h be the height corresponding to the longest side of the triangle
Area of triangle $=\frac{1}{2} \times b \times h$
$4116=\frac{1}{2} \times b \times h$
$4116 \times 2=2 \times 4116$
$\mathrm{h}=\frac{2 \times 4116}{105}$
$=78.4 \mathrm{~m}$

6. Question

The sides of triangle are in the ratio $5: 12: 13$ and its perimeter is 150 m . Find the area of triangle.

Answer

Let the sides of the given triangle be $5 x, 12 x$ and $13 x$
Given,
Perimeter of the triangle $=150 \mathrm{~m}$
Perimeter of the triangle $=(5 x+12 x+13 x)$
$150=30 x$
Therefore,
$x=\frac{150}{30}=5 \mathrm{~m}$
Thus,
Sides of the triangle are:
$5 \mathrm{x}=5 \times 5=25 \mathrm{~m}$
$12 \mathrm{x}=12 \times 5=60 \mathrm{~m}$
$13 x=13 \times 5=65 m$
Let,
$\mathrm{a}=25 \mathrm{~m}, \mathrm{~b}=60 \mathrm{~m}$ and $\mathrm{c}=65 \mathrm{~m}$
Therefore,
$\mathrm{s}=\frac{1}{2}(a+b+c)$
$=\frac{1}{2}(25+60+65)$
$=\frac{1}{2}(150)$
$=75 \mathrm{~m}$
We know that,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{75(75-25)(75-60)(75-65)}$
$=\sqrt{75 \times 50 \times 15 \times 10}$
$=\sqrt{25 \times 3 \times 25 \times 2 \times 5 \times 3 \times 5 \times 2}$
$=\sqrt{25 \times 25 \times 5 \times 5 \times 3 \times 3 \times 2 \times 2}$
$=25 \times 5 \times 3 \times 2$
$=750 \mathrm{sq} \mathrm{m}$
Hence, area of triangle is 750 sq m .

7. Question

The perimeter of a triangular field is 540 m and its sides are in the ratio $25: 17: 12$. Find the area of the triangle. Also, find the cost of ploughing the field at Rs. 18.80 per $10 \mathrm{~m}^{2}$.

Answer

Let the sides of the given triangle be $25 x, 17 x$ and $12 x$
Given,
Perimeter of the triangle $=540 \mathrm{~m}$
$540=25 x+17 x+12 x$
$540=54 x$
$x=\frac{540}{54}$
$\mathrm{x}=10 \mathrm{~m}$
Thus, sides of the triangle are:
$25 \mathrm{x}=25 \times 10=250 \mathrm{~m}$
$17 \mathrm{x}=17 \times 10=170 \mathrm{~m}$
$12 \mathrm{x}=12 \times 10=120 \mathrm{~m}$
Let,
$\mathrm{a}=250 \mathrm{~m}, \mathrm{~b}=170 \mathrm{~m}$ and $\mathrm{c}=120 \mathrm{~m}$
Therefore,
$\mathrm{s}=\frac{1}{2}(a+b+c)$
$=\frac{1}{2}(250+170+120)$
$=\frac{1}{2}(540)$
$=270 \mathrm{~m}$
Therefore,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{270(270-250)(270-170)(270-120)}$
$=\sqrt{3 \times 3 \times 3 \times 10 \times 10 \times 2 \times 10 \times 10 \times 10 \times 5 \times 3}$
$=3 \times 3 \times 10 \times 10 \times 10$
$=9000 \mathrm{~m}^{2}$
Cost of ploughing the field at the rate of Rs. 18.80 per $10 \mathrm{~m}^{2}=\frac{18.80}{10} \times 9000$
$=$ Rs. 16920
Therefore, cost of ploughing the field is Rs. 16920

8. Question

Two sides of a triangular field are 85 m and 154 m in length and its perimeter is 324 m . Find:
(i) The area of the field and
(ii) The length of the perpendicular from the opposite vertex of the side measuring 154 m .

Answer

Given,
First side of the triangular field $=85 \mathrm{~m}$
Second side of the triangular field $=154 \mathrm{~m}$
Let the third side be x

Perimeter of the triangular field $=324 \mathrm{~m}$
$85 m+154 m+x=324 m$
$x=324-239$
$\mathrm{x}=85 \mathrm{~m}$
Let the three sides of the triangle be:
$\mathrm{a}=85 \mathrm{~m}, \mathrm{~b}=154 \mathrm{n} \mathrm{m}$ and $\mathrm{c}=85 \mathrm{~m}$
Now,
$\mathrm{s}=\frac{1}{2}(a+b+c)$
$=\frac{(85+154+85)}{2}$
$=\frac{324}{2}$
$=162$
We know that,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{162 \times 77 \times 8 \times 77}$
$=\sqrt{2 \times 9 \times 9 \times 11 \times 2 \times 2 \times 2 \times 7 \times 11}$
$=\sqrt{11 \times 11 \times 9 \times 9 \times 7 \times 7 \times 2 \times 2 \times 2 \times 2}$
$=11 \times 9 \times 7 \times 2 \times 2$
$=2771 \mathrm{~m}^{2}$
We also know that,
Area of triangle $=\frac{1}{2} \times$ base \times height
$2772=\frac{1}{2} \times 154 \times h$
$2772=77 h$
$\mathrm{h}=\frac{2772}{77}$
$\mathrm{h}=36 \mathrm{~m}$
Therefore,
The length of the perpendicular from the opposite vertex on the side measuring 154 m is 36 m .

9. Question

Find the area of an isosceles triangle each of whose equal sides measures 13 cm and whose base measures 20 cm .

Answer

Let,
$a=13 \mathrm{~cm}$
$\mathrm{b}=13 \mathrm{~cm}$
And,
$C=20 \mathrm{~cm}$
Now,
$\mathrm{s}=\frac{1}{2}(a+b+c)$
$=\frac{(13+13+20)}{2}$
$=\frac{46}{2}=23 \mathrm{~cm}$
We know that,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{23(23-13)(23-13)(23-20)}$
$=\sqrt{23 \times 10 \times 10 \times 3}$
$=10 \sqrt{69}$
$=10 \times 8.306$
$=83.06 \mathrm{~cm}^{2}$
Therefore,
Area of isosceles triangle $=83.06 \mathrm{~cm}^{2}$

10. Question

The base of an isosceles triangle measures 80 cm and its area is $360 \mathrm{~cm}^{2}$. Find the perimeter of the triangle.

Answer

Let us assume $\triangle A B C$ be an isosceles triangle and let $A L$ perpendicular $B C$

It is given that,
$B C=80 \mathrm{~cm}$
Area of triangle $A B C=360 \mathrm{~cm}^{2}$
We know that,
Area of triangle $=\frac{1}{2} \times$ base \times height
$\frac{1}{2} \times B C \times A L=360 \mathrm{~cm}^{2}$
$\frac{1}{2} \times 80 \times h=360 \mathrm{~cm}^{2}$
$40 \times h=360 \mathrm{~cm}^{2}$
$h=\frac{360}{40}$
$=9 \mathrm{~cm}$
Now,
$\mathrm{BL}=\frac{1}{2}(B C)$
$=\left(\frac{1}{2} \times 80\right)$
$=40 \mathrm{~cm}$
$\mathrm{a}=\sqrt{B L^{2}+A L^{2}}$
$=\sqrt{(40)^{2}+(9)^{2}}$
$=\sqrt{1600+81}$
$=\sqrt{1681}$
$=41 \mathrm{~cm}$
Therefore,
Perimeter of the triangle $=(41+41+80)=162 \mathrm{~cm}$

11. Question

The perimeter of an isosceles triangle is 42 cm and its base is $1 \frac{1}{2}$ times, each of the equal sides.
Find:
(i) The length of each side of the triangle
(ii) The area of the triangle
(iii) The height of the triangle.

Answer

We know that,
In any isosceles triangle, the lateral sides are of equal length
Let,
The lateral side of the triangle be x
Given,
Base of the triangle $=\frac{3}{2} \times x$
(i) We have to find out length of each side of the triangle:

Perimeter of the triangle $=42 \mathrm{~cm}$ (Given)
$\mathrm{x}+\mathrm{x}+\frac{3}{2} x=42 \mathrm{~cm}$
$2 x+2 x+3 x=84 c m$
$7 \mathrm{x}=84 \mathrm{~cm}$
$\mathrm{x}=\frac{84}{7} \mathrm{~cm}$
$x=12 \mathrm{~cm}$
Therefore,
Length of lateral side of the triangle $=x=12 \mathrm{~cm}$
Base $=\frac{3}{2} \times x=\frac{3}{2} \times 12$
$=18 \mathrm{~cm}$
Hence,
Length of each side of the triangle is $12 \mathrm{~cm}, 12 \mathrm{~cm}$ and 18 cm
(ii) Now, we have to find out area of the triangle:

Let,
$a=12 \mathrm{~cm}$
$\mathrm{b}=12 \mathrm{~cm}$
And,
$\mathrm{c}=18 \mathrm{~cm}$
Now,
$s=\frac{1}{2}(a+b+c)$
$=\frac{1}{2}(12+12+18)$
$=\frac{1}{2}(42)$
$=21 \mathrm{~cm}$
We know that,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-12)(21-12)(21-18)}$
$=\sqrt{21 \times 9 \times 9 \times 3}$
$=\sqrt{3 \times 7 \times 9 \times 9 \times 3}$
$=27 \sqrt{7}$
$=71.42 \mathrm{~cm}^{2}$
Therefore, area of the given triangle is $71,42 \mathrm{~cm}^{2}$
(iii) We have to calculate height of the triangle:

We know that,
Area of triangle $=\frac{1}{2} \times$ base \times height
$71.42 \mathrm{~cm}^{2}=\frac{1}{2} \times 18 \times h$
$71.42 \mathrm{~cm}^{2}=9 \times \mathrm{h}$
$\mathrm{h}=\frac{71.42}{9}=7.94 \mathrm{~cm}$
Therefore, height of the triangle is 7.94 cm

12. Question

If the area of the equilateral triangle is $36 \sqrt{3} \mathrm{~cm}^{2}$, find its perimeter.

Answer

Given,
Area of the equilateral triangle $=36 \sqrt{3} \mathrm{~cm}^{2}$
Let us assume a be the length of the side of an equilateral triangle We know that,

Area of an equilateral triangle $=\frac{\sqrt{3} \times a^{2}}{4}$ sq units
$36 \sqrt{3}=\frac{\sqrt{3} \times a^{2}}{4}$
$a^{2}=\frac{36 \times \sqrt{3} \times 4}{\sqrt{3}}$
$a^{2}=36 \times 4$
$a^{2}=144$
$a=12 \mathrm{~cm}$
We know that,
Perimeter of an equilateral triangle $=3 \times a$
$=3 \times 12$
$=36 \mathrm{~cm}$
Hence, perimeter of the given equilateral triangle is 36 cm .

13. Question

If the area of the equilateral triangle is $81 \sqrt{3} \mathrm{~cm}^{2}$, find its height.

Answer

Let us assume a be the side of the equilateral triangle
We know that,
Area of an equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$ sq units
It is given that,
Area of the equilateral triangle $=81 \sqrt{3} \mathrm{~cm}^{2}$
$81 \sqrt{3} \mathrm{~cm}^{2}=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$
$a^{2}=\frac{81 \sqrt{3} \times 4}{\sqrt{3}}=324$
$a=\sqrt{324}=18 \mathrm{~cm}$

Height of an equilateral triangle $=\frac{\sqrt{3}}{2} a$
Since, the value of a is 18 cm
Therefore,
Height $=\frac{\sqrt{3}}{2} \times 18$
$=9 \sqrt{3} \mathrm{~cm}$

14. Question

The base of a right - angles triangle measures 48 cm and its hypotenuse measures 50 cm . Find the area of the triangle.

Answer

Given that,
Base $=B C=48 \mathrm{~cm}$
Hypotenuse $=A C=50 \mathrm{~cm}$
Let us assume $A B=x \mathrm{~cm}$
By using Pythagoras theorem, we get
$A C^{2}=A B^{2}+B C^{2}$
Putting the value of $B C, A C$ and $A B$ we get:
$50^{2}=x^{2}+48^{2}$
$x^{2}=50^{2}-48^{2}$
$x^{2}=2500-2304$
$x^{2}=196$
$x=\sqrt{196}$
$x=14 \mathrm{~cm}$
We know that,
Area of right angle triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 48 \times 14$
$=24 \times 14$
$=336 \mathrm{~cm}^{2}$

15. Question

Each side of an equilateral triangle measures 8 cm . Find:
(i) The area of the triangle, correct to 2 places of decimal
(ii) The height of the triangle, correct to 2 places of decimal.

Take $\sqrt{3}=1.732$

Answer

(i) We know that,

Area of an equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$ sq units
It is given that, each side of equilateral triangle is of 8 cm
Therefore,
Area $=\frac{\sqrt{3}}{4} \times 8^{2}$
$=\frac{\sqrt{3}}{4} \times 64$
$=\sqrt{3} \times 16$
$=1.732 \times 16$
$=27.712$
$=27.71 \mathrm{~cm}^{2}$ (Up to 2 decimal places)
(ii) We also know that,

Height of an equilateral triangle $=\frac{\sqrt{3}}{2} \mathrm{a}$
$=\frac{\sqrt{3}}{2} \times 8$
$=\sqrt{3} \times 4$
$=1.732 \times 4$
$=6.928$
$=6.93 \mathrm{~cm}$ (Up to 2 decimal places)

16. Question

The height of an equilateral triangle measures 9 cm . Find its area, correct to 2 decimal places. Take $\sqrt{3}=1.732$.

Answer

Let us assume a be the side of the equilateral triangle

We know that,
Height of an equilateral triangle $=\frac{\sqrt{3}}{2}$ a units
Height Of the equilateral triangle $=9 \mathrm{~cm}$ (Given)
$\frac{\sqrt{3}}{2} a=9$
$a=\frac{9 \times 2}{\sqrt{3}}$
$=\frac{9 \times 2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$ (Rationalizing the denominator)
$=\frac{9 \times 2 \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
$=6 \sqrt{3}$
Base of the triangle $=6 \sqrt{3}$
We know that,
Area of triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 6 \sqrt{3} \times 9$
$=27 \sqrt{3}$
$=27 \times 1.732$
$=46.76 \mathrm{~cm}^{2}$ (Up to 2 decimal places)

17. Question

An umbrella is made by stitching 12 triangular pieces of cloth, each measuring ($50 \mathrm{~cm} \times 20 \mathrm{~cm} \times 50$ $\mathrm{cm})$. Find the area of the cloth used in it.

Answer

Let the sides of the triangle be,
$a=50 \mathrm{~cm}$
$\mathrm{b}=20 \mathrm{~cm}$

And
$C=50 \mathrm{~cm}$
Now, let us find the value of s :

$$
\begin{aligned}
& s=\frac{1}{2}(a+b+c) \\
& =\frac{1}{2}(50+20+50) \\
& =60 \mathrm{~cm}
\end{aligned}
$$

We know that,
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of one triangular piece of cloth $=\sqrt{60(60-50)(60-20)(60-50)}$
$=\sqrt{60 \times 10 \times 40 \times 10}$
$=\sqrt{6 \times 10 \times 10 \times 4 \times 10 \times 10}$
$=\sqrt{10 \times 10 \times 10 \times 10 \times 2 \times 2 \times 2 \times 3}$
$=10 \times 10 \times 2 \sqrt{6}$
$=200 \sqrt{6}$
$=200 \times 2.45$
$=490 \mathrm{~cm}^{2}$
Therefore,
Area of one piece of cloth $=490 \mathrm{~cm}^{2}$
Hence,
Area of 12 pieces of cloth $=12 \times 490$
$=5880 \mathrm{~cm}^{2}$

18. Question

A floral design on a floor is made up of 16 tiles, each triangular in shape having sides $16 \mathrm{~cm}, 12 \mathrm{~cm}$, and 20 cm . Find the cost of polishing the tiles at Re 1 per sq cm .

Answer

Let the sides of the triangle be:
$a=16 \mathrm{~cm}$
$\mathrm{b}=12 \mathrm{~cm}$
And,
$\mathrm{c}=20 \mathrm{~cm}$
Now we have to find out the value of s :
$\mathrm{s}=\frac{1}{2}(a+b+c)$
$=\frac{1}{2}(16+12+20)$
$=\frac{48}{2}=24 \mathrm{~cm}$
We know that,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Therefore,
Area of triangular tile $=\sqrt{24(24-16)(24-12)(24-20)}$
$=\sqrt{2 \times 2 \times 3 \times 3}$
$=2 \times 2 \times 2 \times 2 \times 2 \times 3$
$=96 \mathrm{~cm}^{2}$
Therefore,
Area of one tile $=96 \mathrm{~cm}^{2}$
Hence,
Area of 16 such tiles $=96 \times 16=1536 \mathrm{~cm}^{2}$
Now,
Cost of polishing the tiles per square $\mathrm{cm}=$ Rs. 1

Therefore,
Total cost of polishing the tiles $=1 \times 1536$
$=$ Rs. 1536

19. Question

Find the perimeter and area of the quadrilateral $A B C D$ in which $A B=17 \mathrm{~cm}, A D=9 \mathrm{~cm}, C D=12 \mathrm{~cm}$, $\angle A C B=90^{\circ}$ and $A C=15 \mathrm{~cm}$.

Answer

By using Pythagoras theorem in right triangle ABC, we get
$\mathrm{BC}=\sqrt{A B^{2}-A C^{2}}$
$=\sqrt{17^{2}-15^{2}}$
$=\sqrt{289-225}$
$=\sqrt{64}$
$=8 \mathrm{~cm}$
Let us first find out the perimeter of the given quadrilateral
Perimeter of quadrilateral $A B C D=17+9+12+8=46 \mathrm{~cm}$
We know that,
Area of triangle $A B C=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times B C \times A C$
$=\frac{1}{2} \times 8 \times 15$
$=60 \mathrm{~cm}^{2}$
Now,
For area of triangle ACD, we have
$a=15 \mathrm{~cm}$
$\mathrm{b}=12 \mathrm{~cm}$

And,
$\mathrm{c}=9 \mathrm{~cm}$
Therefore,
$\mathrm{s}=\frac{a+b+c}{2}$
$=\frac{15+12+9}{2}$
$=18 \mathrm{~cm}$
Now,
Area of triangle ACD $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{18(18-15)(18-12)(18-9)}$
$=\sqrt{18 \times 3 \times 6 \times 9}$
$=\sqrt{18 \times 18 \times 3 \times 3}$
$=18 \times 3$
$=54 \mathrm{~cm}^{2}$
Therefore,
Area of quadrilateral $A B C D=$ Area of triangle $A B C+$ Area of triangle $A C D$
$=60+54$
$=114 \mathrm{~cm}^{2}$

20. Question

Find the perimeter and area of the quadrilateral $A B C D$ in which $A B=42 \mathrm{~cm}, B C=21 \mathrm{~cm}, C D=29$ $\mathrm{cm}, \mathrm{DA}=34 \mathrm{~cm}$ and $\angle C B D=90^{\circ}$.

Answer

Firstly, let us calculate the perimeter of the given quadrilateral
Perimeter of quadrilateral $\mathrm{ABCD}=34+29+21+42=126 \mathrm{~cm}$
We know that,

Area of triangle $=\frac{1}{2} \times$ base \times height
Area of triangle $B C D=\frac{1}{2} \times 20 \times 21$
$=210 \mathrm{~cm}^{2}$
Now, we have to calculate the area of triangle ABD,
For this, we have
$\mathrm{a}=42 \mathrm{~cm}$
$\mathrm{b}=20 \mathrm{~cm}$
$\mathrm{c}=34 \mathrm{~cm}$
Therefore,
$s=\frac{42+20+34}{2}$
$=\frac{96}{2}$
$=48 \mathrm{~cm}$
We know that,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Therefore,
Area of triangle $A B D=\sqrt{48(48-42)(48-20)(48-34)}$
$=\sqrt{48 \times 6 \times 28 \times 14}$
$=\sqrt{16 \times 3 \times 3 \times 2 \times 2 \times 14 \times 14}$
$=4 \times 3 \times 2 \times 14$
$=336 \mathrm{~cm}^{2}$
Hence,
Area of quadrilateral $A B C D=$ Area of triangle $A B D+$ Area of triangle $B C D$
$=336+210$
$=546 \mathrm{~cm}^{2}$

21. Question

Find the area of the quadrilateral $A B C D$ in which $A D=42 \mathrm{~cm}, \angle B A D=90^{\circ}$ and $\triangle B C D$ is an equilateral triangle having each side equal to 26 cm . Also, find the perimeter of the quadrilateral. [Given $\sqrt{3}=1.73$]

Answer

Let us consider a right triangle ABD,
By using Pythagoras theorem in this, we get
$\mathrm{AB}=\sqrt{A B^{2}-A D^{2}}$
$=\sqrt{26^{2}-24^{2}}$
$=\sqrt{676-576}$
$=10 \mathrm{~cm}$
We know that,
Area of triangle $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 10 \times 24$
$=120 \mathrm{~cm}^{2}$
We also know that,
Area of an equilateral triangle $B C D=\frac{\sqrt{3}}{4} a^{2}$ sq units
$=\frac{1.73}{4} \times(26)^{2}$
$=292.37 \mathrm{~cm}^{2}$
Therefore,
Area of quadrilateral $A B C D=$ Area of triangle $A B D+$ Area of triangle $B C D$
$=120+292.37$
$=412.37 \mathrm{~cm}^{2}$

22. Question

Find the area of a parallelogram $A B C D$ in which $A B=28 \mathrm{~cm}, B C=26 \mathrm{~cm}$ and diagonal $A C=30 \mathrm{~cm}$.

Answer

Let the sides of the triangle $A B C$ be:
$a=26 \mathrm{~cm}$
$\mathrm{b}=30 \mathrm{~cm}$
And
$\mathrm{c}=28 \mathrm{~cm}$
Let us find out the value of s
We know that,
$s=\frac{1}{2}(a+b+c)$
$=\frac{1}{2}(26+30+28)$
$=\frac{84}{2}$
$=42 \mathrm{~cm}$
We know that,
Area of triangle $\mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{42(42-26)(42-30)(42-28)}$
$=\sqrt{42 \times 16 \times 12 \times 14}$
$=\sqrt{14 \times 3 \times 16 \times 4 \times 3 \times 14}$
$=\sqrt{14 \times 14 \times 3 \times 3 \times 16 \times 4}$
$=14 \times 3 \times 4 \times 2$
$=336 \mathrm{~cm}^{2}$
We know that,
In a parallelogram, the diagonal divides the parallelogram in two equal area Therefore,

Area of quadrilateral $A B C D=$ Area of triangle $A B C+$ Area of triangle $A C D$
$=$ Area of triangle $A B C \times 2$
$=336 \times 2$
$=672 \mathrm{~cm}^{2}$

23. Question

Find the area of the parallelogram $A B C D$ in which $A B=14 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $A C=16 \mathrm{~cm}$. [Given $\sqrt{3}=1.73]$

Answer

According to the question,
In order to find the area of quadrilateral $A B C D$,
At first,
Let us consider triangle ABC,
Say,
$\mathrm{a}=10 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}$ and $\mathrm{c}=14 \mathrm{~cm}$
Now,
Semi perimeter of $\triangle \mathrm{ABC}, \mathrm{s}=\frac{a+b+c}{2}$
$=\frac{10+16+14}{2}$
$=\frac{40}{2}$
$=20 \mathrm{~cm}$
Now,
Area of $\triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{20(20-10)(20-16)(20-14)}$
$=\sqrt{20 \times 10 \times 6 \times 4}$
$=40 \sqrt{ } 3 \mathrm{~cm}^{2}$
We know that, the diagonal of a parallelogram divides it into two triangles of equal areas.
Hence,
$=$ Area of $\triangle A B C \times 2$
$=40 \sqrt{ } 3 \times 2$
$=80 \sqrt{ } 3 \mathrm{~cm}^{2}$
$=138.4 \mathrm{~cm}^{2}$

24. Question

In the figure $A B C D$ is a quadrilateral in which diagonal $B D=64 \mathrm{~cm}, A L \perp B D$ and $C M \perp B D$ such that $A L=16.8 \mathrm{~cm}$ and $C M=13.2 \mathrm{~cm}$. Calculate the area of the quadrilateral ABCD.

Answer

According to the question,
In order to find the area of quadrilateral $A B C D$,
At first,
We will find the area of triangle $A B D$ and triangle $B C D$ respectively.
And, then we'll add them.
Hence,
Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times B D \times A L$
$=\frac{1}{2} \times 64 \times 16.8$
$=537.6 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{BCD}=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times B D \times C M$
$=\frac{1}{2} \times 64 \times 13.2$
$=422.4 \mathrm{~cm}^{2}$
Now,

Area of quadrilateral $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=537+422.4$
$=960 \mathrm{~cm}^{2}$

CCE Questions

1. Question

In a $\triangle A B C$ it is given that base $=12 \mathrm{~cm}$ and height $=5 \mathrm{~cm}$. Its area is
A. $60 \mathrm{~cm}^{2}$
B. $30 \mathrm{~cm}^{2}$
C. $15 \sqrt{3} \mathrm{~cm}^{2}$
D. $45 \mathrm{~cm}^{2}$

Answer

We have,
Base of triangle $=12 \mathrm{~cm}$
Height of triangle $=5 \mathrm{~cm}$
We know that,
Area of triangle $=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times 12 \times 5$
$=6 \times 5$
$=30 \mathrm{~cm}^{2}$
Hence, option (b) is correct

2. Question

The length of three sides of a triangle are $20 \mathrm{~cm}, 16 \mathrm{~cm}$ and 12 cm . The area of the triangle is -
A. $96 \mathrm{~cm}^{2}$
B. $120 \mathrm{~cm}^{2}$
C. $144 \mathrm{~cm}^{2}$
D. $160 \mathrm{~cm}^{2}$

Answer

Let the threes ides of the triangle be,
$a=20 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}$ and $\mathrm{c}=12 \mathrm{~cm}$
Now, $s=\frac{a+b+c}{2}$
$=\frac{20+16+12}{2}$
$=\frac{48}{2}$
$=24 \mathrm{~cm}$
Now, by using Heron's formula we have:
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{24(24-20)(24-16)(24-12)}$
$=\sqrt{24 \times 4 \times 8 \times 12}$
$=\sqrt{6 \times 4 \times 4 \times 4 \times 4 \times 6}$
$=6 \times 4 \times 4$
$=96 \mathrm{~cm}^{2}$
Hence, option (a) is correct

3. Question

Each side of an equilateral triangle measures 8 cm . The area of the triangle is
A. $8 \sqrt{3} \mathrm{~cm}^{2}$
B. $16 \sqrt{3} \mathrm{~cm}^{2}$
C. $32 \sqrt{3} \mathrm{~cm}^{2}$
D. $48 \mathrm{~cm}^{2}$

Answer

It is given in the question that,
Side of equilateral triangle $=8 \mathrm{~cm}$
We know that,
Area of equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$
$=\frac{\sqrt{3}}{4} \times(8)^{2}$
$=\frac{\sqrt{3}}{4} \times 64$
$=16 \sqrt{3} \mathrm{~cm}^{2}$
Hence, option (b) is correct

4. Question

The base of an isosceles triangle is 8 cm long and each of its equal sides measures 6 cm . The area of the triangle is -
A. $16 \sqrt{5} \mathrm{~cm}^{2}$
B. $8 \sqrt{5} \mathrm{~cm}^{2}$
C. $16 \sqrt{3} \mathrm{~cm}^{2}$
D. $8 \sqrt{3} \mathrm{~cm}^{2}$

Answer

We know that,
Area of an isosceles triangle $=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$
It is given that,
$\mathrm{a}=6 \mathrm{~cm}$ and $\mathrm{b}=8 \mathrm{~cm}$
\therefore we have:
$\frac{8}{4} \times \sqrt{4(6)^{2}-8^{2}}$
$=\frac{8}{4} \times \sqrt{144-64}$
$=\frac{8}{4} \times \sqrt{80}$
$=\frac{8}{4} \times 4 \sqrt{5}$
$=8 \sqrt{5} \mathrm{~cm}^{2}$
Hence, option (b) is correct

5. Question

The base of an isosceles triangle is 6 cm and each of its equal sides is 5 cm . The height of the triangle is -
A. 8 cm
B. $\sqrt{30} \mathrm{~cm}$
C. 4 cm
D. $\sqrt{11} \mathrm{~cm}$

Answer

It is given in the question that,
Base of the isosceles triangle $=\mathrm{b}=6 \mathrm{~cm}$
Two equal sides $=a=5 \mathrm{~cm}$
We know that,
Height of an isosceles triangle $=\frac{1}{2} \times \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}$
$=\frac{1}{2} \times \sqrt{4(5)^{2}-6^{2}}$
$=\frac{1}{2} \times \sqrt{100-36}$
$=\frac{1}{2} \times \sqrt{64}$
$=\frac{1}{2} \times 8$
$=4 \mathrm{~cm}$
Hence, option (c) is correct

6. Question

Each of the two equal sides of an isosceles right triangle is 10 cm long. Its area is -
A. $5 \sqrt{10} \mathrm{~cm}^{2}$
B. $50 \mathrm{~cm}^{2}$
C. $10 \sqrt{3} \mathrm{~cm}^{2}$
D. $75 \mathrm{~cm}^{2}$

Answer

From the given question, we have
Base of triangle $=10 \mathrm{~cm}$
Height of triangle $=10 \mathrm{~cm}$
\therefore Area of triangle $=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times 10 \times 10$
$=5 \times 10$
$=50 \mathrm{~cm}^{2}$
Hence, option (b) is correct

7. Question

Each side of an equilateral triangle is 10 cm long. The height of the triangle is -
A. $10 \sqrt{3} \mathrm{~cm}$
B. $5 \sqrt{3} \mathrm{~cm}$
C. $10 \sqrt{2} \mathrm{~cm}$
D. 5 cm

Answer

We have,
Each side of the equilateral triangle $=10 \mathrm{~cm}$
We know that,
In an equilateral triangle altitude divides its base into 2 equal parts
$\therefore \frac{1}{2} \times 10=5 \mathrm{~cm}$
Let the height be h
Now, by using Pythagoras theorem
$10^{2}=5^{2}+h^{2}$
$100=25+h^{2}$
$h^{2}=100-25$
$h^{2}=75$
$h=\sqrt{75}$
$h=5 \sqrt{3} \mathrm{~cm}$
Hence, height of the triangle is $5 \sqrt{3} \mathrm{~cm}$
Thus, option (b) is correct

8. Question

The height of an equilateral triangle is 6 cm . Its area is -
A. $12 \sqrt{3} \mathrm{~cm}^{2}$
B. $6 \sqrt{3} \mathrm{~cm}^{2}$
C. $12 \sqrt{2} \mathrm{~cm}^{2}$
D. $18 \mathrm{~cm}^{2}$

Answer

It is given in the question that,
Height of an equilateral triangle $=6 \mathrm{~cm}$
Let the side of triangle be a
Then, the altitude of the equilateral triangle is given as:
\therefore Altitude $=\frac{\sqrt{3}}{2} \mathrm{a}$
Put altitude $=6 \mathrm{~cm}$ we get,
$6=\frac{\sqrt{3}}{2} \times \mathrm{a}$
$a=\frac{12}{\sqrt{3}}$
$a=4 \sqrt{3} \mathrm{~cm}$
\therefore Area of triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$
$=\frac{\sqrt{3}}{4} \times(4 \sqrt{3})^{2}$
$=\frac{\sqrt{3}}{4} \times 16 \times 3$
$=12 \sqrt{3} \mathrm{~cm}^{2}$
Hence, option (a) is correct

9. Question

The length of the three sides of the triangular field are $40 \mathrm{~m}, 24 \mathrm{~m}$ and 32 m respectively. The area of the triangle is -
A. $480 \mathrm{~m}^{2}$
B. $320 \mathrm{~m}^{2}$
C. $384 \mathrm{~m}^{2}$
D. $360 \mathrm{~m}^{2}$

Answer

It is given in the question that,
Sides of the triangle $=40 \mathrm{~m}, 24 \mathrm{~m}$ and 32 m
\therefore Semi-perimeter, $\mathrm{s}=\frac{40+24+32}{2}$
$=\frac{96}{2}$
$=48 \mathrm{~cm}$
Now, by using Heron's formula we get:
Area of triangle $=\sqrt{48(48-40)(48-24)(48-32)}$
$=\sqrt{48 \times 8 \times 24 \times 16}$
$=\sqrt{147456}$
$=384 \mathrm{~m}^{2}$
Hence, option (c) is correct

10. Question

The sides of the triangle are in the ratio 5: 12:13 and its perimeter is 150 cm . The area of the triangle is -
A. $375 \mathrm{~cm}^{2}$
B. $750 \mathrm{~cm}^{2}$
C. $250 \mathrm{~cm}^{2}$
D. $500 \mathrm{~cm}^{2}$

Answer

It is given in the question that,
The sides of given triangle are in the ratio 5: 12: 13
Let the sides be $5 x, 12 x$ and $13 x$
According to the question,
$5 x+12 x+13 x=150$
$30 x=150$
$x=\frac{150}{30}$
$x=5$
So, $5 x=25$
$12 x=60$
$13 x=65$
Semi-perimeter $=\frac{25+60+65}{2}$
$=\frac{150}{2}$
$=75 \mathrm{~cm}$
Now, by using Heron's formula we get:
Area of triangle $=\sqrt{75(75-25)(75-60)(75-65)}$
$=\sqrt{75 \times 50 \times 15 \times 10}$
$=\sqrt{562500}$
$=750 \mathrm{~cm}^{2}$
Hence, option (b) is correct

11. Question

The lengths of the three sides of the triangle are $30 \mathrm{~cm}, 24 \mathrm{~cm}$ and 18 cm respectively. The length of the altitude of the triangle corresponding to the smallest side is-
A. 24 cm
B. 18 cm
C. 30 cm
D. 12 cm

Answer

It is given in the question that,
Sides of the triangle $=30 \mathrm{~cm}, 24 \mathrm{~cm}$ and 18 cm
Let h be the altitude of the triangle
\therefore Semi-perimeter $=\frac{30+24+18}{2}$
$=\frac{72}{2}$
$=36 \mathrm{~cm}$

Now, Area of triangle $=\sqrt{36(36-30)(36-24)(36-18)}$
$=\sqrt{36 \times 6 \times 12 \times 18}$
$=\sqrt{46656}$
$=216 \mathrm{~cm}^{2}$
Also, Area $=\frac{1}{2} \times$ Base \times Height
$216=\frac{1}{2} \times 18 \times \mathrm{h}$
$216=9 \times h$
$h=\frac{216}{9}$
$=24 \mathrm{~cm}$
Hence, option (a) is correct

12. Question

The base of an isosceles triangle is 16 cm and its area is $48 \mathrm{~cm}^{2}$. The perimeter of the triangle is -
A. 41 cm
B. 36 cm
C. 48 cm
D. 324 cm

Answer

It is given in the question that,
Base of the triangle $=16 \mathrm{~cm}$
Area of the triangle $=48 \mathrm{~cm}^{2}$
Let the height of the triangle be h
We know that,
Area of the triangle $=\frac{1}{2} \times$ Base \times Height
$48=\frac{1}{2} \times 16 \times h$
$48=8 \times h$
$h=\frac{48}{8}$
$\mathrm{h}=6 \mathrm{~cm}$

Now, half of the base $=\frac{16}{2}=8 \mathrm{~cm}$
\therefore By using Pythagoras theorem, we have
Side ${ }^{2}=8^{2}+6^{2}$
$=64+36$
$=100$
$=10 \mathrm{~cm}$
Now, perimeter of the triangle $=$ Sum of all sides
$=10+10+16$
$=36 \mathrm{~cm}$
Hence, option (b) is correct

13. Question

The area of an equilateral triangle is $36 \sqrt{3} \mathrm{~cm}^{2}$. Its perimeter is
A. 36 cm
B. $12 \sqrt{3} \mathrm{~cm}$
C. 24 cm
D. 30 cm

Answer

It is given in the question that,
Area of an equilateral triangle $=36 \sqrt{3} \mathrm{~cm}^{2}$
We know that,
Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$
$36 \sqrt{3}=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$
$(\text { Side })^{2}=144$
Side $=12 \mathrm{~cm}$
\therefore Perimeter of equilateral triangle $=3 \times$ Side
$=3 \times 12$
$=36 \mathrm{~cm}$

14. Question

Each of the equal sides of an isosceles triangle is 13 cm and base is 24 cm . The area of the triangle is -
A. $156 \mathrm{~cm}^{2}$
B. $78 \mathrm{~cm}^{2}$
C. $60 \mathrm{~cm}^{2}$
D. $120 \mathrm{~cm}^{2}$

Answer

It is given in the question that,
Equal sides of isosceles triangle $=13 \mathrm{~cm}$
Base $=24 \mathrm{~cm}$ and $\frac{1}{2}($ Base $)=12 \mathrm{~cm}$
Let the height of the triangle be h
$\therefore(13)^{2}=(12)^{2}+\mathrm{h}^{2}$
$169=144+h^{2}$
$h^{2}=169-144$
$h^{2}=25$
$h=5$
Thus, area of triangle $=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times 24 \times 5$
$=12 \times 5$
$=60 \mathrm{~cm}^{2}$
Hence, option (c) is correct

15. Question

The base of a right triangle is 48 cm and its hypotenuse is 50 cm long. The area of the triangle is -
A. $168 \mathrm{~cm}^{2}$
B. $252 \mathrm{~cm}^{2}$
C. $336 \mathrm{~cm}^{2}$
D. $504 \mathrm{~cm}^{2}$

Answer

Base of right angled triangle $=48 \mathrm{~cm}$
Hypotenuse of triangle $=50 \mathrm{~cm}$
Now, by using pythagoras theorem we get:
Hypotenuse ${ }^{2}=$ Base $^{2}+$ Height 2
$(50)^{2}=(48)^{2}-h^{2}$
$2500=2304-h^{2}$
$h^{2}=2500-2304$
$h^{2}=196$
$h=14 \mathrm{~cm}$
Now, Area of triangle $=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times 14 \times 48$
$=7 \times 48$
$=336 \mathrm{~cm}^{2}$
Hence, option (c) Is correct

16. Question

The area of an equilateral triangle is $81 \sqrt{3} \mathrm{~cm}^{2}$. Its height is-
A. $9 \sqrt{3} \mathrm{~cm}$
B. $6 \sqrt{3}$
C. $18 \sqrt{3} \mathrm{~cm}$
D. 9 cm

Answer

It is given in the question that,
Area of an equilateral triangle $=81 \sqrt{3} \mathrm{~cm}^{2}$
Let a be the side of the triangle and h be the height
We know that,
Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$
$81 \sqrt{3}=\frac{\sqrt{3}}{4} \times \mathrm{a}^{2}$
$a^{2}=81 \times 4$
$a=18$
Also, Area of triangle $=\frac{1}{2} \times$ Base \times Height
$81 \sqrt{3}=\frac{1}{2} \times 18 \times \mathrm{h}$
$h=\frac{81 \sqrt{3}}{9}$
$h=9 \sqrt{3} \mathrm{~cm}$
Hence, option (a) is correct

17. Question

The difference between the semi- perimeter and the sides of a $\triangle A B C$ are $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 5 cm respectively. The area of the triangle is -
A. $20 \sqrt{7} \mathrm{~cm}^{2}$
B. $10 \sqrt{14} \mathrm{~cm}^{2}$
C. $20 \sqrt{14} \mathrm{~cm}^{2}$
D. $140 \mathrm{~cm}^{2}$

Answer

Let the semi-perimeter be s
Let the sides of the triangle be a, b and c
It is given in the question that,
$s-a=8 \ldots$ (i)
$s-b=7 \ldots$ (ii)
$\mathrm{s}-\mathrm{c}=5 \ldots$ (iii)
Now, by adding (i), (ii) and (iii) we get:
$(s-a)+(s-b)+(s-c)=8+7+5$
$3 s-a-b-c=20$
$3 s-(a+b+c)=20$
We know that,
$s=\frac{a+b+c}{2}$
$\therefore 3 s-2 s=20$
$\mathrm{s}=20 \mathrm{~cm}$
Now, area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{20(8)(7)(5)}$
$=20 \sqrt{14} \mathrm{~cm}^{2}$
Hence, option (c) is correct

18. Question

For an isosceles right angles triangle having each of equal sides 'a', we have
I. Area $=\frac{1}{2} \mathrm{a}^{2}$
II. Perimeter $=(2+\sqrt{2}) a$
III. Hypotenuse $=2 \mathrm{a}$

Which of the following is true?
A. I only
B. II only
C. I and II
D. I and III

Answer

We know that,
Area of triangle $=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times a \times a$
$=\frac{1}{2} \times \mathrm{a}^{2}$
Now, Hypotenuse $=\sqrt{a^{2}+a^{2}}$
$=\sqrt{2 \mathrm{a}^{2}}$
$=\sqrt{2} \mathrm{a}$

Perimeter $=a+a+\sqrt{2} a$
$=2 \mathrm{a}+\sqrt{2} \mathrm{a}$
$=a(2+\sqrt{2})$
$\therefore \mathrm{I}$ and II are true
Hence, option (c) is correct

19. Question

For an isosceles triangle having base b and each of the equal sides $a s a$, we have:
I. Area $=\frac{b \sqrt{4 a^{2}-\mathrm{b}^{2}}}{4}$
II. Perimeter $=(2 a+b)$
III. Height $=\frac{1}{2} \sqrt{4 a^{2}-b^{2}}$

Which of the following is true?
A. I only
B. I and II only
C. II and III only
D. I, II and III

Answer

According to question, we have:
Base of triangle $=\mathrm{b}$
Equal sides of triangle $=a$
\therefore Area $=\frac{\mathrm{b} \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}}{4}$
Perimeter $=(2 a+b)$
And, Height $=\frac{1}{2} \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}$
\therefore I, II and III are true
Hence, option (d) is correct

20. Question

The question consists of two statements namely, Assertion (a) and Reason (R). Please select the correct answer.

Assertion (A)	Reason (R)
Area of an equilateral triangle having each side equal to 4 cm is $4 \sqrt{3}$ sq cm.	Area of an equilateral triangle having each side a is $\frac{\sqrt{3}}{4} \mathrm{a}^{2}$ sq units.

A. Both Assertion (A) and Reason (B) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (B) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (a) is false and Reason (R) is true.

Answer

In the given question, we have:
Area of equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$
$=\frac{\sqrt{3}}{4} \times(4)^{2}$
$=\frac{\sqrt{3}}{4} \times 16$
$=4 \sqrt{3} \mathrm{~cm}^{2}$
Also, Area of an equilateral triangle having each side $a=\frac{\sqrt{3}}{4} a^{2}$ sq units
\therefore Both Assertion and Reason are true
Hence, option (a) is correct

21. Question

The question consists of two statements namely, Assertion (a) and Reason (R). Please select the correct answer.

Assertion(A)	Reason (R)
The area of an isosceles triangle having base $=$ 8 cm and each of the equal sides $=5 \mathrm{~cm}$ is $12 \mathrm{~cm}^{2}$.	The area of an isosceles triangle having each of the equal sides as a and
base $=\mathrm{b}$ is $\frac{1}{4} b \sqrt{4 a^{2}-b^{2}}$	

A. Both Assertion (A) and Reason (B) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (B) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (a) is false and Reason (R) is true.

Answer

In the given question, we have
Area of isosceles triangle $=\frac{b}{4} \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}$
Here, we have:
$\mathrm{a}=5 \mathrm{~cm}$ and $\mathrm{b}=8 \mathrm{~cm}$
$\therefore \frac{8}{4} \times \sqrt{4(5)^{2}-8^{2}}$
$=2 \times \sqrt{100-64}$
$=2 \times \sqrt{36}$
$=2 \times 6$
$=12 \mathrm{~cm}^{2}$
Also, Area of an isosceles triangle having each of the equal sides as a and base $b=\frac{1}{4} b \sqrt{4 a^{2}-b^{2}}$
\therefore Both Assertion and Reason are true
Hence, option (a) is correct

22. Question

The question consists of two statements namely, Assertion (a) and Reason (R). Please select the correct answer.

Assertion(A)	Reason (R)
The area of an equilateral triangle having side 4 cm is $3 \mathrm{~cm}^{2}$	The area of an equilateral triangle having each side a is $\left(\frac{\sqrt{3}}{4} \mathrm{a}^{2}\right)$ sq units.

A. Both Assertion (A) and Reason (B) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (B) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (a) is false and Reason (R) is true.

Answer

In this question, we have
Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$
$=\frac{\sqrt{3}}{4} \times(4)^{2}$
$=\frac{\sqrt{3}}{4} \times 16$
$=4 \sqrt{3} \mathrm{~cm}^{2}$
Also, Area of an equilateral triangle having each side $a=\frac{\sqrt{3}}{4} a^{2}$ sq units
Thus, assertion is false whereas reason is true
Hence, option (d) is correct

23. Question

The question consists of two statements namely, Assertion (a) and Reason (R). Please select the correct answer.
$\left.\begin{array}{|l|l|}\hline \text { Assertion (A) } & \text { Reason (R) } \\ \hline & \\ \begin{array}{l}\text { The sides of the triangle ABC are in } \\ \text { the ratio } 2: 3: 4 \text { and its perimeter is } \\ 36 \mathrm{~cm} . \text { Then } \operatorname{ar}(\triangle \mathrm{ABC})=12 \sqrt{15}\end{array} & \begin{array}{l}\text { If } 2 \mathrm{~s}=(\mathrm{a}+\mathrm{b}+\mathrm{c}) \text { where } \mathrm{a}, \mathrm{b}, \mathrm{c} \text { are the } \\ \text { sides of the triangle, then its area is }= \\ \mathrm{cm}^{2} .\end{array} \\ \hline(s-a)(s-b)(s-c)\end{array}\right]$.
A. Both Assertion (A) and Reason (B) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (B) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (a) is false and Reason (R) is true.

Answer

In the given question,
Let us assume the sides of the triangle be $2 x, 3 x$ and $4 x$
We know that,
Perimeter of triangle $=$ Sum of all sides
$36=2 x+3 x+4 x$
$36=9 x$
$x=\frac{36}{9}$
$x=4$
\therefore Sides of the triangle are:
$2 \mathrm{x}=2 \times 4=8 \mathrm{~cm}$
$3 \mathrm{x}=3 \times 4=12 \mathrm{~cm}$
$4 \mathrm{x}=4 \times 4=16 \mathrm{~cm}$
Let, $\mathrm{a}=8 \mathrm{~cm}, \mathrm{~b}=12 \mathrm{~cm}$ and $\mathrm{c}=16 \mathrm{~cm}$
So, $\mathrm{s}=\frac{a+b+c}{2}$
$=\frac{8+12+16}{2}$
$=\frac{36}{2}$
$=18 \mathrm{~cm}$
Now, by using Heron's formula we have:
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{18(18-8)(18-12)(18-16)}$
$=\sqrt{18 \times 10 \times 6 \times 2}$
$=\sqrt{6 \times 3 \times 5 \times 2 \times 6 \times 2}$
$=6 \times 2 \sqrt{15}$
$=12 \sqrt{15} \mathrm{~cm}^{2}$
Also, if $2 s=(a+b+c)$
Where a, b and c are the sides of the triangle then:
Area $=\sqrt{(s-a)(s-b((s-c)}$ which is false as it should be:
Area $=\sqrt{s(s-a)(s-b((s-c)}$
\therefore Assertion is true whereas reason is false
Hence, option (c) is correct

24. Question

The question consists of two statements namely, Assertion (a) and Reason (R). Please select the correct answer.

Assertion (A)	Reason (R)
The area of an isosceles triangle having base $=24 \mathrm{~cm}$ and each of the equal sides equal to 13 cm is $60 \mathrm{~cm}^{2}$.	If 2s $=(\mathrm{a}+\mathrm{b}+\mathrm{c})$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of a triangle, then area $=$ $\sqrt{s(s-a)(s-b)(s-c)}$.

A. Both Assertion (A) and Reason (B) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (B) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (a) is false and Reason (R) is true.

Answer

From the given question, we have
$\mathrm{a}=24 \mathrm{~cm}, \mathrm{~b}=13 \mathrm{~cm}$ and $\mathrm{c}=13 \mathrm{~cm}$
$\therefore \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
$=\frac{24+13+13}{2}$
$=\frac{50}{2}$
$=25 \mathrm{~cm}$
Now, by using heron's formula we have:
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{25(25-24)(25-13)(25-13)}$
$=\sqrt{25 \times 1 \times 12 \times 12}$
$=5 \times 12$
$=60 \mathrm{~cm}^{2}$
Also, if $2 s=(a+b+c)$ where a, b and c are the sides of the triangle then:
Area $=\sqrt{s(s-a)(s-b((s-c)}$
\therefore Assertion and reason both are correct
Hence, option (a) is correct

25. Question

If the base of an isosceles triangle is 6 cm and its perimeter is 16 cm , then its area is $12 \mathrm{~cm}^{2}$.

Answer

It is given in the question that,
Base of the triangle, $b=6 \mathrm{~cm}$

Equal sides of the isosceles triangle $=\mathrm{acm}$
Perimeter $=16 \mathrm{~cm}$
We know that,
Perimeter $=$ Sum of all sides
$16=a+a+6$
$16=2 a+6$
$2 \mathrm{a}=10$
$a=\frac{10}{2}$
$a=5 \mathrm{~cm}$
\therefore Area of an isosceles triangle $=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$
$=\frac{6}{4} \sqrt{4(5)^{2}-6^{2}}$
$=1.5 \times \sqrt{100-36}$
$=1.5 \times \sqrt{64}$
$=1.5 \times 8$
$=12 \mathrm{~cm}^{2}$
Hence, the given statement is true

26. Question

If each side of an equilateral triangle is 8 cm long, then its area is $20 \sqrt{3} \mathrm{~cm}^{2}$.

Answer

It is given in the question that,
Each side of an equi8lateral triangle $=8 \mathrm{~cm}$
Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \times(\text { Side })^{2}$
$=\frac{\sqrt{3}}{4} \times(8)^{2}$
$=\frac{\sqrt{3}}{4} \times 64$
$=16 \sqrt{3} \mathrm{~cm}^{2}$
Hence, the given statement is false

27. Question

If the sides of a triangular field measures $52 \mathrm{~m}, 37 \mathrm{~m}$ and 20 m , then the cost of leveling at Rs 5 per m^{2} is Rs 1530.

Answer

Let the sides of the triangular field be:
$\mathrm{a}=52 \mathrm{~m}, \mathrm{~b}=37 \mathrm{~m}$ and $\mathrm{c}=20 \mathrm{~m}$
$\therefore \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
$=\frac{51+37+20}{2}$
$=\frac{109}{2}$
$=54 \mathrm{~m}$
Now, by using Heron's formula we get:
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{54(54-51)(54-37)(54-20)}$
$=\sqrt{54 \times 3 \times 17 \times 34}$
$=\sqrt{3 \times 3 \times 3 \times 2 \times 3 \times 17 \times 17 \times 2}$
$=17 \times 2 \times 3 \times 3$
$=306 \mathrm{~m}^{2}$
It is given that,
Cost of leveling $1 \mathrm{~m}^{2}$ area $=\operatorname{Rs} 5$
\therefore Cost of leveling $306 \mathrm{~m}^{2}$ area $=5 \times 306$
= Rs 1530
Hence, the given statement is true

28. Question

Match the following columns.

Column I	Column II
(a) The lengths of three sides of a triangle are 26 cm, 28 cm and 30 cm. The height corresponding to base 28 cm is......cm	

The correct answer is :
(a)- \qquad (b)-.......
(c)- \qquad (d)-.........

Answer

The correct match for the table is as follows:

Column I	Column II
(a) The lengths of three	
sides of a triangle are 26	
cm, 28 cm and 30 cm . The 24	
height corresponding to	
base 28 cm is......cm	

29. Question

A park in the shape of a quadrilateral $A B C D$ has $A B=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}, \mathrm{CD}=5 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~m}$ and $\mathrm{c}=$ 90°. Find the area of the park. [Given: $\sqrt{35}=5.9$]

Answer
rom the given figure, it is clear that:
$B C D$ is a right triangle
$\therefore \mathrm{BD}=\sqrt{\mathrm{BC}^{2}+\mathrm{CD}^{2}}$
$=\sqrt{12^{2}+5^{2}}$
$=\sqrt{144+25}$
$=\sqrt{169}$
$=13 \mathrm{~m}$
Now, area of $\triangle B C D=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times \mathrm{BC} \times \mathrm{CD}$
$=\frac{1}{2} \times 12 \times 5$
$=6 \times 5=30 \mathrm{~m}^{2}$
Let the sides of the triangle be: $a=9 m, b=8 \mathrm{~m}$ and $\mathrm{c}=13 \mathrm{~m}$
$\therefore \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
$=\frac{9+8+13}{2}$
$=\frac{30}{2}=15 \mathrm{~m}$
Thus, by using Heron's formula we get:
Area of $\triangle \mathrm{ABD}=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}$
$=\sqrt{15(15-9)(15-8)(15-13)}$
$=\sqrt{15 \times 6 \times 7 \times 2}$
$=\sqrt{5 \times 3 \times 3 \times 2 \times 7 \times 2}$
$=3 \times 2 \sqrt{35}$
$=6 \sqrt{35}$
$=6 \times 5.9=35.4 \mathrm{~m}^{2}$
\therefore Area of quadrilateral $\mathrm{ABCD}=$ Area of $\triangle \mathrm{BCD}+$ Area of $\triangle \mathrm{ABD}$
$=30+35.4$
$=65.4 \mathrm{~m}^{2}$

30. Question

Find the area of a parallelogram $A B C D$ in which $A B=60 \mathrm{~cm}, B C=40 \mathrm{~cm}$ and $A C=80 \mathrm{~cm}$. [Given: $\sqrt{5}=3.87]$

Answer
Let the sides of the triangle $A B C$ be:
$\mathrm{a}=40 \mathrm{~cm}, \mathrm{~b}=80 \mathrm{~cm}$ and $\mathrm{c}=60 \mathrm{~cm}$
$\therefore \mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$
$=\frac{40+80+60}{2}$
$=\frac{180}{2}$
$=90 \mathrm{~cm}$
Now, by using Heron's formula we get:
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{90(90-40)(90-80)(90-60)}$
$=\sqrt{90 \times 50 \times 10 \times 30}$
$=\sqrt{30 \times 3 \times 10 \times 5 \times 10 \times 30}$
$=30 \times 10 \sqrt{15}$
$=300 \times 3.87$
$=1161 \mathrm{~cm}^{2}$
As we know that, the diagonal of a parallelogram divides it into two triangles of equal areas
\therefore Area of parallelogram $(A B C D)=2 \times$ Area of $(\triangle A B C)$
$=2 \times 1161$
$=2322 \mathrm{~cm}^{2}$

31. Question

A piece of land is in the shape of a rhombus ABCD in which each side measures 100 m and diagonal $A C$ is 160 m long. Find the area of the rhombus.

Answer

Let the sides of triangle be $100 \mathrm{~m}, 160 \mathrm{~m}$, and 100 m
Semi perimeter, $s=\frac{100+160+100}{2}=\frac{360}{2}=180 \mathrm{~m}$
Now, using Heron's formula,
Area of $\triangle \mathrm{ABC}=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{180(180-100)(180-160)(180-100)}$
$=\sqrt{180(80)(20)(80)}$
$=\sqrt{4800 \times 4800}$
$=4800 \mathrm{~m}^{2}$
Now, we know that, diagonal divides a parallelogram into two triangles of equal areas.
Area of parallelogram $A B C D=2($ area of $\triangle A B C)$
$=2 \times 4800$
$=9600 \mathrm{~m}^{2}$

32. Question

A floral design on a floor is made up of 16 triangular tiles, each having sides $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm . Find the cost of polishing the tiles at the rate of Rs. 2.50 per cm ${ }^{2}$
[Take $\sqrt{6}=2.454$]

Answer

Let the sides of triangle be $9 \mathrm{~cm}, 28 \mathrm{~cm}$, and 35 cm
Semi perimeter, $s=\frac{9+28+35}{2}=\frac{72}{2}=36 \mathrm{~cm}$
Now, using Heron's formula,
Area of $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$ (Area of 1 tile)
$=\sqrt{36(36-9)(36-28)(36-35)}$
$=\sqrt{36(8)(27)(1)}$
$=\sqrt{4 \times 9 \times 3 \times 9 \times 2 \times 4}$
$=9 \times 4 \sqrt{3}=88.2 \mathrm{~cm}^{2}$
\therefore Area of 16 tiles $=16 \times$ area of one tile
$=16 \times 88.2 \mathrm{~cm}^{2}$
$=1411.2 \mathrm{~cm}^{2}$
Now, cost of polishing $1 \mathrm{~cm}^{2}$ area $=$ Rs 2.5
\therefore Cost of polishing $1411.2 \mathrm{~cm}^{2}=2.5 \times 1411.2=$ Rs 3528

33. Question

A kite in the shape of a square with each diagonal 32 cm and having a tail in the shape of an isosceles triangle of base 8 cm and each side 6 cm , is made of three different shades as shown in the figure.
How much paper of each shade has been used in it?
[Given : $\sqrt{5}=2.24$]

Answer

We know that every square is a rhombus.
And, area of rhombus $=\frac{1}{2}$ (product of diagonals)
Each of the equal diagonals $=32 \mathrm{~cm}$
\therefore Area of square $\mathrm{ABCD}=\frac{1}{2}(\text { diagonal })^{2}$
$=\frac{1}{2} \times 32 \times 32=512 \mathrm{~cm}^{2}$
Note: Diagonal of a parallelogram divides it into two triangles of equal areas and square is a parallelogram.
\therefore Area of $\triangle A B D=$ Area of $\triangle B D C=1 / 2$ area of $A B C D$
$=\frac{1}{2} \times 512=256 \mathrm{~cm}^{2}$
Area of isosceles triangle CEF $=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$
Whereas, $\mathrm{a}=6 \mathrm{~cm}$ and $\mathrm{b}=8 \mathrm{~cm}$
$=\frac{8}{4} \sqrt{4(6)^{2}-8^{2}}$
$=\frac{8}{4} \sqrt{144-64}$
$=2 \sqrt{80}$
$=8 \sqrt{5}$
$=17.92 \mathrm{~cm}^{2}$

Formative Assessment (Unit Test)

1. Question

Each side of an equilateral triangle is 8 cm . Its altitude is
A. $2 \sqrt{2} \mathrm{~cm}$
B. $2 \sqrt{3} \mathrm{~cm}$
C. $4 \sqrt{3} \mathrm{~cm}$
D. $2 \sqrt{6} \mathrm{~cm}$

Answer

It is given that,
Each side of an equilateral triangle, $a=8 \mathrm{~cm}$
We know that,
Area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
$=\frac{\sqrt{3}}{4} \times(8)^{2}$
$=\frac{\sqrt{3}}{4} \times 64$
$=\sqrt{3} \times 16$
$=16 \sqrt{3} \mathrm{~cm}^{2}$
Also,
Area of triangle $=\frac{1}{2} \times$ Base \times Altitude
$16 \sqrt{3}=\frac{1}{2} \times \mathrm{a} \times$ Altitude
$16 \sqrt{3}=\frac{1}{2} \times 8 \times$ Altitude
\therefore Altitude $=\frac{16 \sqrt{3}}{4}$
$=4 \sqrt{3} \mathrm{~cm}$
Hence, altitude of the triangle is $4 \sqrt{3} \mathrm{~cm}$
Thus, option (c) is correct

2. Question

The perimeter of an isosceles right- angled triangle having a as each of the equal sides is
A. $(1+\sqrt{2}) a$
B. $(2+\sqrt{2}) a$
C. 3 a
D. $(3+\sqrt{2}) a$

Answer

It is given in the question that, equal sides of isosceles triangle is a
It is also given that, the given triangle is isosceles right-angled triangle
$\therefore \mathrm{AC}=\sqrt{A B^{2}+B C^{2}}$
$\mathrm{AC}=\sqrt{a^{2}+a^{2}}$
$\mathrm{AC}=\sqrt{2 a^{2}}$
$A C=a \sqrt{2}$
We know that,
Perimeter of triangle $=$ Sum of all sides
\therefore Perimeter $=(A B+B C+A C)$
$=(a+a+a \sqrt{2})$
$=2 a+a \sqrt{2}$
$=\mathrm{a}(2+\sqrt{2})$
Hence, option (b) is correct

3. Question

For an isosceles triangle having base $=12 \mathrm{~cm}$ and each of the equal sides equal to 10 cm , the height is
A. 12 cm
B. 16 cm
C. 6 cm
D. 8 cm

Answer

Let us assume $A B C$ be an isosceles triangle having,
Base, $\mathrm{AC}=12 \mathrm{~cm}$
$A B=A C=10 \mathrm{~cm}$
$\mathrm{BD}=\frac{1}{2} \times B C$
$=\frac{1}{2} \times 12$
$=6 \mathrm{~cm}$
We know that,
In right angled triangle, $A B C$
$A D=\sqrt{A B^{2}-B D^{2}}$
$=\sqrt{(10)^{2}-(6)^{2}}$
$=\sqrt{100-36}$
$=\sqrt{64}$
$=8 \mathrm{~cm}$
Thus, height of the triangle is 8 cm
Hence, option (d) is correct

4. Question

Find the area of an equilateral triangle having each side 6 cm .

Answer

Let us assume each side of the equilateral triangle be a
It is given that,
Side of equilateral triangle $=6 \mathrm{~cm}$
We know that,
Area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
$=\frac{\sqrt{3}}{4} \times(6)^{2}$
$=\frac{\sqrt{3}}{4} \times 36$
$=\sqrt{3} \times 9$
$=9 \sqrt{3} \mathrm{~cm}^{2}$

5. Question

Using Heron's formula find the area of $\triangle A B C$ in which $B C=13 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $A B=15 \mathrm{~cm}$.

Answer

It is given in the question that,

Sides or triangle ABC are:
$B C=13 \mathrm{~cm}$
$A C=14 \mathrm{~cm}$
$A B=15 \mathrm{~cm}$
We know that,
Perimeter of triangle $=$ Sum of all sides
$=A B+B C+A C$
$=15+13+14$
$=42 \mathrm{~cm}$
$\therefore \mathrm{s}=\frac{1}{2} \times$ Perimeter of triangle ABC
$=\frac{1}{2} \times 42$
$=21 \mathrm{~cm}$
Hence,
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-13)(21-14)(21-15)}$
$=\sqrt{21 \times 8 \times 7 \times 6}$
$=84 \mathrm{~cm}^{2}$

6. Question

The sides of a triangle are in the ratio 13: 14: 15 and its perimeter is 84 cm . Find the area of the triangle.

Answer

It is given in the question that,
Perimeter of triangle $=84 \mathrm{~cm}$
Also, sides or triangle are: in ratio 13: $14: 15$
Let, $\mathrm{a}=13 \mathrm{x}$
$b=14 x$
$c=15 x$
We know that,
$84=a+b+c$
$84=13 x+14 x+15 x$
$84=42 x$
$x=\frac{84}{42}$
$x=2 \mathrm{~cm}$
Thus, $\mathrm{a}=13 \times 2=26 \mathrm{~cm}$
$\mathrm{b}=14 \times 2=28 \mathrm{~cm}$
$c=15 \times 2=30 \mathrm{~cm}$
$\therefore \mathrm{s}=\frac{1}{2} \times$ Perimeter of triangle ABC
$=\frac{1}{2} \times 84$
$=42 \mathrm{~cm}$
Hence,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{42(42-26)(42-28)(42-30)}$
$=\sqrt{42 \times 16 \times 14 \times 12}$
$=336 \mathrm{~cm}^{2}$

7. Question

Find the area of $A B C$ in which $B C=8 \mathrm{~cm}, A C=15 \mathrm{~cm}$ and $A B=17 \mathrm{~cm}$. Find the length of altitude drawn on $A B$.

Answer

It is given in the question that,
Sides or triangle $A B C$ is:
$B C=a=8 \mathrm{~cm}$
$A C=b=15 \mathrm{~cm}$
$A B=c=17 \mathrm{~cm}$
We know that,
Perimeter of triangle $=$ Sum of all sides
$=a+b+c$
$=8+15+17$
$=40 \mathrm{~cm}$
$\therefore \mathrm{s}=\frac{1}{2} \times$ Perimeter of triangle ABC
$=\frac{1}{2} \times 40$
$=20 \mathrm{~cm}$
Hence,
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{20(20-8)(20-15)(20-17)}$
$=\sqrt{20 \times 12 \times 5 \times 3}$
$=60 \mathrm{~cm}^{2}$
Also, Area of triangle $A B C=\frac{1}{2} \times$ Base \times Height
$60=\frac{1}{2} \times \mathrm{AB} \times$ Height
$120=17 \times$ Height
Height $=\frac{120}{17}$
$=7.06 \mathrm{~cm}$
Hence, area of triangle is $60 \mathrm{~cm}^{2}$ and length of altitude is 7.06 cm

8. Question

An isosceles triangle has perimeter 30 cm and each of its equal sides is 12 cm . Find the area of the triangle.

Answer

It is given in the question that,
Equal sides of isosceles triangle $=a=b=12 \mathrm{~cm}$
Also, perimeter $=30 \mathrm{~cm}$
We know that perimeter of triangle $=$ Sum of all sides
$(a+b+c)=30 c m$
$12+12+c=30$
$24+\mathrm{c}=30$
$c=30-24$
$=6 \mathrm{~cm}$

Hence, $s=\frac{1}{2} \times$ Perimeter
$s=\frac{1}{2} \times 30$
$\mathrm{s}=15 \mathrm{~cm}$
\therefore Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{15(15-12)(15-12)(15-6)}$
$=\sqrt{15 \times 3 \times 3 \times 9}$
$=9 \sqrt{15} \mathrm{~cm}^{2}$

9. Question

The perimeter of an isosceles triangle is 32 cm . The ratio of one of the equal side to its base is $3: 2$. Find the area of the triangle.

Answer

It is given in the question that,
Perimeter of an isosceles triangle $=32 \mathrm{~cm}$
Let us assume the sides of the triangle be a, b, c and $a=b$
We know that,
Perimeter $=\mathrm{a}+\mathrm{b}+\mathrm{c}$
$32=a+b+c$
$32=a+a+c$
$32=2 a+c(i)$
According to the condition given in the question, we have:
a: $c=3: 2$
So, $a=3 x$ and $c=2 x$
Now putting values of a and c in (i), we get
$2 \times 3 x+2 x=32$
$6 x+2 x=32$
$8 x=32$
$x=\frac{32}{8}$
$x=4$

Thus, $a=3 \times 4=12 \mathrm{~cm}$
$\mathrm{b}=12 \mathrm{~cm}$
$c=2 \times 4=8 \mathrm{~cm}$
Now, $s=\frac{1}{2} \times$ Perimeter
$=\frac{1}{2} \times 32$
$=16 \mathrm{~cm}$
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{16(16-12)(16-12)(16-8)}$
$=\sqrt{16 \times 4 \times 4 \times 8}$
$=4 \times 4 \times 2 \sqrt{5}$
$=32 \sqrt{2} \mathrm{~cm}^{2}$

10. Question

Given a $A B C$ in which
I. A, B and C are in the ratio $3: 2: 1$.
II. $A B, A C$ and $B C$ are in the ratio $3: 3: 23$ and $A B=33 \mathrm{~cm}$.

Is $A B C$ a right triangle?
The question give above has two Statements I and II. Answer the questions by using instructions given below:
(a) If the question can be answered by one of the given statements only and not by the other.
(b) If the question can be answered by using either statement alone.
(c) If the question can be answered by using both the statements but cannot be answered by using either statement.
(d) If the question cannot be answered even by using both the statements together.

Answer

I. It is given in the question that,
$\angle A, \angle B$ and $\angle C$ are in the ratio $3: 2: 1$
Let $\angle A=3 x$
$\angle B=2 x$
$\angle C=x$
We know that, sum of angles of a triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$3 x+2 x+x=180^{\circ}$
$6 x=180^{\circ}$
$x=\frac{180^{\circ}}{6}$
$x=30^{\circ}$
Hence, $\angle A=3 \times 30^{\circ}=90^{\circ}$
$\therefore \triangle \mathrm{ABC}$ is a right-angled triangle
II. It is also given that:
$A B, A C$ and $B C$ are in the ratio $3: \sqrt{ } 3: 2 \sqrt{ } 3$
Now, $\mathrm{AB}=3 \mathrm{x}, \mathrm{AC}=\sqrt{3} x$ and $\mathrm{BC}=2 \sqrt{ } 3 \mathrm{x}$
As it is given that,
$A B=3 \sqrt{ } 3$
$\therefore \mathrm{x}=\sqrt{ } 3$
$A C=3$
$B C=6$
Now, by using Pythagoras theorem in $\triangle A B C$ we get:
$A C=\sqrt{A B^{2}+\mathrm{BC}^{2}}$
$3=\sqrt{(3 \sqrt{3})^{2}+(6)^{2}}$
$3=\sqrt{27+36}$
$3 \neq \sqrt{ } 63$
\therefore The question can be answered by using either statement alone
Hence, option (b) is correct

11. Question

In the given figure $A B C$ and $D B C$ have the same base $B C$ such that $A B=120 \mathrm{~m}, A C=122 \mathrm{~m}, B C=$ $22 \mathrm{~m}, \mathrm{BD}=24 \mathrm{~m}$ and $\mathrm{CD}=26 \mathrm{~m}$. Find the area of the shaded region. $($ Take $\sqrt{105}=10.25)$

Answer

It is given in the question that,
$A B=120 \mathrm{~m}$
$A C=122 \mathrm{~m}$
$B C=22 m$
$B D=24 m$
And, $C D=26 \mathrm{~m}$
We know that,
Perimeter of triangle $=$ Sum of all sides
\therefore Perimeter of $\triangle A B C=A B+B C+A C$
$=120+22+122$
$=264 \mathrm{~m}$
$s=\frac{1}{2} \times$ Perimeter $(\triangle \mathrm{ABC})$
$=\frac{1}{2} \times 264$
$=132 \mathrm{~m}$
Now, Area $(\triangle A B C)=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{132(132-22)(132-122)(132-120)}$
$=\sqrt{132 \times 110 \times 10 \times 12}$
$=11 \times 12 \times 10$
$=1320 \mathrm{~m}^{2}$
Now, in $\triangle B C D$
$B C=a, B D=b$ and $C D=c$
\therefore Perimeter of $\triangle \mathrm{BCD}=22+24+26$
$=72 \mathrm{~m}$
$s=\frac{1}{2} \times$ Perimeter of $\triangle B C D$
$=\frac{1}{2} \times 72$
$=36 \mathrm{~m}$
Hence, area $(\triangle B C D)=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{36(36-22)(36-24)(36-26)}$
$=\sqrt{36 \times 14 \times 12 \times 10}$
$=6 \times 2 \sqrt{420}$
$=6 \times 2 \times 2 \sqrt{105}$
$=24 \sqrt{105}$
$=24 \times 10.25$
$=246 \mathrm{~m}^{2}$
\therefore Area of shaded region $=$ Area $(\triangle \mathrm{ABC})-$ Area $(\triangle \mathrm{BCD})$
$=1320-246$
$=1074 \mathrm{~m}^{2}$

12. Question

A point O is taken inside an equilateral $\triangle \mathrm{ABC}$. If $\mathrm{OL} \perp \mathrm{BC}, \mathrm{OM} \perp \mathrm{AC}$ and $\mathrm{ON} \perp \mathrm{AB}$ such that $\mathrm{OL}=14$ $\mathrm{cm}, \mathrm{OM}=10 \mathrm{~cm}$ and $O N=6 \mathrm{~cm}$, find the area of $\triangle A B C$.

Answer

Let each side of $\triangle A B C$ be a cm
So, area $(\triangle A B C)=\operatorname{Area}(\triangle A O B)+\operatorname{Area}(\triangle A O C)+\operatorname{Area}(\triangle B O C)$
$=\frac{1}{2} \times \mathrm{a} \times \mathrm{ON}+\frac{1}{2} \times \mathrm{a} \times \mathrm{OM}+\frac{1}{2} \times \mathrm{a} \times \mathrm{OL}$

On taking "a" as common, we get,
$=\frac{1}{2} \mathrm{a}(\mathrm{ON}+\mathrm{OM}+\mathrm{OL})$
$=\frac{1}{2} \times \mathrm{a}(6+10+14)$
$=\frac{1}{2} \times \mathrm{a} \times 30$
$=15 \mathrm{a} \mathrm{cm}{ }^{2}(\mathrm{i})$
As, triangle $A B C$ is an equilateral triangle and we know that:
Area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2} \mathrm{~cm}^{2}$ (ii)
Now, from (i) and (ii) we get:
$15 a=\frac{\sqrt{3}}{4} a^{2}$
$15 \times 4=\sqrt{3} a$
$60=\sqrt{3} a$
$a=\frac{60}{\sqrt{3}}$
$a=20 \sqrt{ } 3 \mathrm{~cm}$
Now, putting the value of a in (i), we get
Area $(\triangle A B C)=15 \times 20 \sqrt{ } 3$
$=300 \sqrt{ } 3 \mathrm{~cm}^{2}$

7. Summative Assessment I

Sample Paper 1

1. Question

Which of the following is a rational number?
A. $2 /(\sqrt{ } 3)$
B. $\sqrt{ } 2 / 3$
C. $3 \sqrt{ } 5$
D. $-3 / 5$

Answer

A rational number is any number that can be expressed as the quotient or fraction p / q of two integers, a numerator p and a non-zero denominator q.

Since for option D numerator, $\mathrm{p}=-3$ and denominator $\mathrm{q}=5$ both are integers.
$-3 / 5$ is a rational number.

2. Question

The value of k for which the polynomial $x^{3}-4 x^{2}+2 x+k$ has 3 as its zero, is
A. 3
B. -3
C. 6
D. -6

Answer

If 3 is the solution for the equation. It must satisfy the expression.
So, putting $x=3$ it must be zero.
$33-4 \times 32+2 \times 3+k=0$
$27-4 \times 9+6+k=0$
$\mathrm{k}-3=0$
$\mathrm{k}=3$

3. Question

Which of the following is a zero of the polynomial $x^{3}+2 x^{2}-5 x-6$?
A. -2
B. 2
C. -4
D. 3

Answer

We need to do hit and trial to find root of a cubic equation.
If it is a root of equation, it must satisfy the equation.
So, let's start with option A.
$(-2)^{3}+2(-2)^{2}-5(-2)-6=-8+8+10-6=4$
Let's try option B
$(2)^{3}+2(2)^{2}-5(2)-6=8+8-10-6=0$
Let's try option C
$(-3)^{3}+2(-3)^{2}-5(-3)-6=-27+18+15-6=0$
For option D
$(3)^{3}+2(3)^{2}-5(3)-6=27+18-15-6=24$
Hence Option B and C are correct
Verifying -
Factors of the given equation is $(x-2)(x+3)(x+1)=x^{3}+2 x^{2}-5 x-6$.

4. Question

The factorization of $-x^{2}+7 x-12$ yields
A. $(x-3)(x-4)$
B. $(3+x)(4-x)$
C. $(x-4)(3-x)$
D. $(4-x)(3-x)$

Answer

$-x^{2}+7 x-12$ can be factorized as-
$-x^{2}+4 x+3 x-12$
$-x(x-4)+3(x-4)$
$(x-4)(3-x)$
Also recheck by-

Sum of roots $=7$ \{-coefficient of $x /$ coefficient of $\left.x^{2}\right\}$
Product of roots $=12$ \{constant/ coefficient of $\left.x^{2}\right\}$

5. Question

In the given figure, $\angle B O C=$?

A. 45°
B. 60°
C. 75°
D. 56°

Answer

Sum of angles in a straight line is 180°
So, $\angle A O D+\angle D O C+\angle B O C=180^{\circ}$
$3 x+5 x+4 x=180$
$12 \mathrm{x}=180$
$x=15$
$\angle B O C=4 x=4 \times 15=60^{\circ}$.

6. Question

In the given figure, $\triangle A B C$ is an equilateral triangle and $\triangle B D C$ is an isosceles right triangle, rightangled at D . Then $\angle \mathrm{ACD}=$?

A. 60°
B. 90°
C. 120°
D. 105°

Answer

Since we know all the angles in an equilateral triangle is of 60°.
So, $\angle A B C=\angle A C B=\angle C A B=60^{\circ}$
Also for an isosceles triangle, the angles opposite to equal sides are equal.
So, $\angle \mathrm{DBC}=\angle \mathrm{DCB}=\mathrm{x}$ (let's say)
Also sum of all angles in a triangle $=180^{\circ}$.
So, in $\triangle B D C$,
$\angle \mathrm{DBC}+\angle \mathrm{DCB}+\angle \mathrm{BDC}=180^{\circ}$
$x+x+90=180\left\{\right.$ since $\left.\angle B D C=90^{\circ}\right\}$
$2 x=90$
$x=45^{\circ}$
so $\angle D C B=45 \ldots$ (ii)
And $\angle \mathrm{ACD}=\angle \mathrm{ACB}+\angle \mathrm{DCB}=60^{\circ}+45^{\circ}=105^{\circ}$ \{from (i) and (ii) $\}$

7. Question

Each of the equal sides of an isosceles triangle is 13 cm and its base is 24 cm . The area of the triangle is
A. $30 \mathrm{~cm}^{2}$
B. $45 \mathrm{~cm}^{2}$
C. $60 \mathrm{~cm}^{2}$
D. $78 \mathrm{~cm}^{2}$

Answer

Applying heron's formula-
We know,
$\mathrm{S}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2}$ here a, b and c are sides of a triangle
So, $\mathrm{s}=\frac{13+13+24}{2}=25$
$A=\sqrt{s(s-a)(s-b)(s-c)}$
So, Area $==\sqrt{25(25-13)(25-13)(25-24)}$
Hence Area $=\sqrt{25(12)(12)(1)}$
$=\sqrt{ } 3600$
= 60 square units

8. Question

In an isosceles right triangle, the length of the hypotenuse is $4 \sqrt{ } 2 \mathrm{~cm}$. The length of each of the equal sides is

A. $4 \sqrt{ } 3 \mathrm{~cm}$
B. 6 cm
C. 5 cm
D. 4 cm

Answer

For a right-angled triangle,
Applying Pythagoras theorem,
$(\text { hypotenuse })^{2}=(\text { base })^{2}+(\text { perpendicular })^{2}$
Since triangle is isosceles.
So, base $=$ perpendicular $=x$ (let's say)
Hence (hypotenuse) ${ }^{2}=(x)^{2}+(x)^{2}$
$(4 \sqrt{ } 2)^{2}=2 x^{2}$
$32=2 x^{2}$
$x^{2}=16$
so, $x=4 \mathrm{~cm}$.
9. Question

If, $x=7+4 \sqrt{ } 3$ find the value of $\sqrt{x}+\frac{1}{\sqrt{x}}$

Answer

Let $\sqrt{x}+\frac{1}{\sqrt{x}}$ to be y.
So $y=\sqrt{x}+\frac{1}{\sqrt{x}}$
Squaring both sides,
$y^{2}=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}$
$=(\sqrt{\mathrm{x}})^{2}+\left(\frac{1}{\sqrt{\mathrm{x}}}\right)^{2}+2(\sqrt{\mathrm{x}})\left(\frac{1}{\sqrt{\mathrm{x}}}\right)=\mathrm{x}+\frac{1}{\mathrm{x}}+2$
Also, $x=7+4 \sqrt{ } 3$
So $y^{2}=7+4 \sqrt{3}+\frac{1}{7+4 \sqrt{3}}+2$
$=9+4 \sqrt{3}+\frac{1}{7+4 \sqrt{3}} \times \frac{7-4 \sqrt{3}}{7-4 \sqrt{3}}$ (on rationalizing)
$=9+4 \sqrt{3}+\frac{7-4 \sqrt{3}}{(7)^{2}-(4 \sqrt{3})^{2}}$
$=9+4 \sqrt{3}+\frac{7-4 \sqrt{3}}{49-48}$
$=9+4 \sqrt{3}+7-4 \sqrt{ } 3$
$=16$
So, $y=\sqrt{ } 16=4$

Hence $y=\sqrt{x}+\frac{1}{\sqrt{x}}=4$

10. Question

Factorize: $\left(7 a^{3}+56 b^{3}\right)$

Answer

$\left(7 a^{3}+56 b^{3}\right)$
$=7\left(a^{3}+8 b^{3}\right)$
$=7\left(a^{3}+(2 b)^{3}\right)$
$=7(a+(2 b))\left(a^{2}+(2 b)^{2}-a(2 b)\right)$
$\left[\right.$ since $\left.a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)\right]$
$=7(a+2 b)\left(a^{2}+4 b^{2}-2 a b\right)$

11. Question

Find the value of a for which $(x-1)$ is a factor of the polynomial $\left(a^{2} x^{3}-4 a x+4 a-1\right)$.

Answer

If $(x-1)$ is a factor of the polynomial $\left(a^{2} x^{3}-4 a x+4 a-1\right)$.
then it must satisfy it.
So, putting $x=1$ the polynomial must be zero.
Putting $\mathrm{x}=1$ and equating to zero.
$=\left(a^{2}(1)^{3}-4 a(1)+4 a-1\right)$
$=a^{2}-4 a+4 a-1=0$
$=a^{2}=1$
So, $a=1$.

12. Question

In the given figure, if $A C=B D$ show that $A B=C D$. State the Euclid's axiom used for it.

Answer

Given- $A C=B D$
Subtracting BC on both sides-
$(A C-B C)=(B D-B C)$
$A B=C D$

13. Question

In a $\triangle A B C$ if $2 \angle A=3 \angle B=6 \angle C$, calculate the measure of $\angle B$.

Answer

In a triangle sum of all angles $=180^{\circ}$
So, $\angle A+\angle B+\angle C=180^{\circ}$
It is given that-
$\angle A=3 / 2 \angle B$
$\angle C=\angle B$
So, $\angle A+\angle B+\angle C=(3 / 2) \angle B+\angle B+(1 / 2) \angle B=180^{\circ}$
$3 \angle B=180^{\circ}$
$\angle B=60^{\circ}$

14. Question

In the given figure $\angle B A C=30^{\circ}, \angle A B C=50^{\circ}$ and $\angle C D E=40^{\circ}$ Find $\angle A E D$?

Answer

In $\triangle A B C$ sum of all angles $=180^{\circ}$.
So, $\angle B A C+\angle A B C+\angle A C B=180^{\circ}$
$30+50+\angle A C B=180$
$\angle A C B=100^{\circ}$
Since BCD represents a straight line $\angle A C B+\angle E C D=180^{\circ}$
So, $\angle E C D=80^{\circ}$
In $\triangle \mathrm{ECD}$ sum of all angles $=180^{\circ}$

So, $\angle E C D+\angle E D C+\angle C E D=180^{\circ}$
$60+40+\angle C E D=180$
$\angle C E D=80^{\circ}$
Since AEC represents a straight line, $\angle C E D+\angle A E D=180^{\circ}$
So, $\angle A E D=120^{\circ}$

15. Question

If $x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$ and $y=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$ find the value of $\left(x^{2}+y^{2}\right)$
Or
Simplify: $\frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}}$

Answer

$\mathrm{x}=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$ (on rationalizing we get)
$=\frac{(\sqrt{5}-\sqrt{3})^{2}}{\sqrt{5}^{2}-\sqrt{3}^{2}}\left\{\operatorname{since}(a+b)(a-b)=a^{2}-b^{2}\right\}$
$=\frac{\sqrt{5}^{2}+\sqrt{3}^{2}+2 \times \sqrt{5} \times \sqrt{3}}{5-3}$
$=\frac{5+3+2(\sqrt{5})(\sqrt{3})}{2}$
$=4+(\sqrt{ } 5)(\sqrt{ } 3)$
$=4+\sqrt{ } 15$
Similarly y $=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}$ (rationalising)
$=\frac{(\sqrt{5}-\sqrt{3})^{2}}{\sqrt{5}^{2}-\sqrt{3}^{2}} \quad\left\{\right.$ since $\left.(a+b)(a-b)=a^{2}-b^{2}\right\}$
$=\frac{\sqrt{5}^{2}+\sqrt{3}^{2}-2 \times \sqrt{5} \times \sqrt{3}}{5-3}=\frac{5+3-2(\sqrt{5})(\sqrt{3})}{2}$
$=(5+3-2(\sqrt{ } 5)(\sqrt{ } 3)) / 2$
$=4-(\sqrt{ } 5)(\sqrt{ } 3)$
$=4-\sqrt{ } 15$
So, $x^{2}+y^{2}=(4+\sqrt{15})^{2}+(4-\sqrt{15})^{2}$
$=\left(4^{2}+\sqrt{15}^{2}+2 \times 4 \times \sqrt{15}\right)+\left(4^{2}+\sqrt{15}^{2}-2 \times 4 \times \sqrt{15}\right)$
$=(16+15+8 \sqrt{15})+(16+15-8 \sqrt{15})$
$=32+30$
$=62$
(II) $\frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}}$

Taking LCM as $(3+\sqrt{ } 5)(3-\sqrt{ } 5)$
$=\frac{(7+3 \sqrt{5})(3-\sqrt{5})-(7-3 \sqrt{5})(3+\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$
$=\frac{(21-7 \sqrt{5}+9 \sqrt{5}-3 \sqrt{5} \times \sqrt{5})-(21-9 \sqrt{5}+7 \sqrt{5}-3 \sqrt{5} \times \sqrt{5})}{3^{2}-\sqrt{5}^{2}}$
$\left(\right.$ since $\left.(a+b)(a-b)=a^{2}-b^{2}\right)$
$=\frac{4 \sqrt{5}}{(9-5)}$
$=\frac{4 \sqrt{5}}{4}=\sqrt{ } 5$
16. Question

If 2 and $-1 / 3$ are the zeros of the polynomial $3 x^{3}-2 x^{2}-7 x-2$ find the third zero of the polynomial.

Answer

We know for a cubic polynomial, sum of roots $=-\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}$
Let the third root be x .
So, $\mathrm{x}+2+\left(-\frac{1}{3}\right)=-\left(-\frac{2}{3}\right)$
$x+\frac{5}{3}=\frac{2}{3}$
$\mathrm{x}=\frac{2}{3}-\frac{5}{3}$
$\mathrm{x}=-1$

17. Question

Find the remainder when the polynomial $f(x)=4 x^{2}-12 x^{2}+14 x+3$ is divided by $(2 x-1)$.

Answer

If we divide $f(x)=4 x^{2}-12 x^{2}+14 x-3$ by $(2 x-1)$ remainder can be find at value of $(2 x-1)=0$

Or $x=1 / 2$
So, we will put $x=1 / 2$ in $f(x)=4 x^{2}-12 x^{2}+14 x-3$

$$
\begin{aligned}
& \mathrm{f}\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+\frac{14}{2}-3 \\
& =4 \times \frac{1}{8}-12 \times \frac{1}{4}+7-3 \\
& =\frac{1}{2}-3+7-3 \\
& =1+\frac{1}{2} \\
& =\frac{3}{2}
\end{aligned}
$$

18. Question

Factorize: $(p-q)^{3}+(q-r)^{3}+(r-p)^{3}$

Answer

We know that -
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$.
here if $a+b+c=0$
$a^{3}+b^{3}+c^{3}=3 a b c$.
So, $(p-q)^{3}+(q-r)^{3}+(r-p)^{3}=3(p-q)(q-r)(r-p)\{$ since $(p-q)+(q-r)+(r-p)=0\}$

19. Question

In the given figure, in $\triangle A B C$ it is given that $\angle B=40^{\circ}$ and $\angle C=50^{\circ}$, $D E \| B C$, and $E F \| A B$ Find: (i) $\angle A D E+\angle M E N$ (ii) $\angle B D E$ and (iii) $\angle B F E$

Answer

Since DE || $B C$ and $A B$ acts as transversal.
So, $\angle A D E=\angle A B C$ \{corresponding angles $\}$
since $\angle A B C=40^{\circ}$
So, $\angle A D E=40^{\circ}$
Since EF || AB and DN acts as transversal.
So, $\angle A D E=\angle$ MEN $\{$ corresponding angles $\}$
$\angle \mathrm{MEN}=40^{\circ}$
Hence, $\angle \mathrm{ADE}+\angle \mathrm{MEN}=80^{\circ}$
(ii) 140°

Since $A B$ represents a straight line. Sum of angles in line $A B=180^{\circ}$
So, $\angle \mathrm{BDE}+\angle \mathrm{ADE}=180^{\circ}$
since, $\angle A D E=40^{\circ}$
So, $\angle B D E=140^{\circ}$
(iii) 140°

Since DE \|| BC and FM acts as transversal.
So, $\angle \mathrm{EFC}=\angle \mathrm{MEN}=40^{\circ}$
And $B C$ represents a straight line. Sum of angles in line $B C=180^{\circ}$
$=\angle E F C+\angle B F E=180^{\circ}$
$=\angle B F E=140^{\circ}$

20. Question

In the given figure, $\triangle A B C$ and $\triangle A B D$ are such that $A D=B C, \angle 1=\angle 2$ and $\angle 3=\angle 4$. Prove that $B D=$ AC.

Answer

Taking $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$ in consideration-
$A D=B C$
Since, it is given that
$\angle 1=\angle 2$ and $\angle 3=\angle 4$
Adding them -
$\angle 1+\angle 3=\angle 2+\angle 4$.
$=\angle \mathrm{DAB}=\angle \mathrm{ABC}$
And $A B$ is the common side on both triangle.
So, by side angle side(SAS) criteria-
Triangle $\triangle A B C$ and $\triangle A B D$ are congruent.
So, $B D=A C$ (by congruency criteria),

21. Question

In the given figure, C is the mid-point of $A B$. If $\angle D C A=\angle E C B$ and $\angle D B C=\angle E A C$ prove that $D C=E C$.

Answer

Since C is the mid-point of $A B$.
So, $A C=B C$.
Taking $\triangle \mathrm{ACE}$ and $\triangle \mathrm{BCD}$ in consideration-
$\angle D B C=\angle E A C$
$A C=B C$

Also $\angle D C A=\angle E C B$
Adding $\angle D C E$ on both sides-
$\angle D C B=\angle E C A$
So, by Angle side Angle(ASA) criteria $\triangle A C E$ and $\triangle B C D$ are congruent.
And hence DC = EC (by congruency criteria).

22. Question

In $\triangle \mathrm{ABC}$ if $\mathrm{AL} \perp \mathrm{BC}$ and AM is the bisector of $\angle \mathrm{A}$. Show that $\angle \mathrm{LAM}=\frac{\angle \mathrm{B}}{2}-\frac{\angle \mathrm{C}}{2}$

Answer
Sum of all angles in a triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A=2 \angle C A M=2 \angle M A B\{$ since $A M$ is bisector of $\angle A\}$
$=2 \angle C A M+\angle B+\angle C=180^{\circ}$
$=2 \angle C A M=180-(\angle B+\angle C)$
$=\angle \mathrm{CAM}=90-\frac{\angle \mathrm{B}+\angle \mathrm{C}}{2}$
$\angle A M L=\angle C A M+\angle C\{$ Exterior Angle theorem $\}$
$=90-\frac{\angle \mathrm{B}+\angle \mathrm{C}}{2}+\angle \mathrm{C}$
$=90+\frac{\angle C}{2}-\frac{\angle B}{2}$
In Triangle \triangle ALM, Sum of all angles must be 180°
So, $\angle \mathrm{LAM}+\angle \mathrm{AML}+90=180$
$\angle L A M+\angle A M L=90$
$\angle L A M=90-\angle A M L$
$=90-\left(90+\frac{\angle \mathrm{C}}{2}-\frac{\angle \mathrm{B}}{2}\right)$
$=\frac{\angle \mathrm{B}}{2}-\frac{\angle \mathrm{C}}{2}$

23. Question

In the given figure, $A B \| C D, \angle B A E=100^{\circ}$ and $\angle A E C=30^{\circ}$. Find $\angle D C E$.

Answer

Since AH || EC
So, $\angle \mathrm{GAE}=\angle \mathrm{AEC}=30^{\circ}$ \{alternate angle $\}$
Also $\angle \mathrm{BAG}=100^{\circ}-\angle \mathrm{GAE}$
$\angle B A G=70^{\circ}$
Here also, AB || DC and GH acts as transversal.
So, $\angle \mathrm{BAG}=\angle \mathrm{DHA}=70^{\circ}$ \{corresponding angles $\}$
Similarly,
AH || EC and DC acts as transversal.
So, $\angle \mathrm{DCE}=\angle \mathrm{DHA}=70^{\circ}$ \{corresponding angles $\}$

24. Question

Factorize: $\mathrm{a}^{3}-\mathrm{b}^{3}+1+3 \mathrm{ab}$.

Answer

$a^{3}-b^{3}+1+3 a b$
$=a^{3}+(-b)^{3}+13-3\{1 \times a \times(-b)\}$
$=\{a+(-b)+1\}\left\{a^{2}+(-b)^{2}+12-a(-b)-(-b) 1-1 a\right\}$
using identity $\left\{a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{\wedge} 2+b^{\wedge} 2+c^{\wedge} 2-a b-b c-c a\right)\right\}+(a-b+1)\left(a^{2}\right.$ $\left.+b^{2}+1+a b+b-a\right)$

25. Question

If $x=\frac{1}{2-\sqrt{3}}$ show that the value of $x^{3}-2 x^{2}-7 x+5$ is 3 .
Or
Simplify:
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \ldots+\frac{1}{\sqrt{8}+\sqrt{9}}$

Answer

$x=\frac{1}{2-\sqrt{3}}=\frac{1}{2-\sqrt{3}} \times \frac{(2+\sqrt{3})}{2+\sqrt{3}}\{$ rationalizing $\}$
$\mathrm{x}=\frac{2+\sqrt{3}}{2^{2}-(\sqrt{3})^{2}}$
$\mathrm{x}=\frac{2+\sqrt{3}}{4-3}$
$\mathrm{x}=2+\sqrt{ } 3$
Now, $x^{2}=(2+\sqrt{ } 3)^{2}=4+3+4 \sqrt{ } 3=7+4 \sqrt{ } 3$
Also, $x^{3}=x \times x^{2}=(2+\sqrt{ } 3)(7+4 \sqrt{ } 3)$
$=2(7)+7(\sqrt{ } 3)+2(4 \sqrt{ } 3)+(\sqrt{ } 3)(4 \sqrt{ } 3)$
$=14+15 \sqrt{ } 3+12$
$=26+15 \sqrt{ } 3$
Put all the values in the expression: $x^{3}-2 x^{2}-7 x+5$
$=(26+15 \sqrt{ } 3)-2(7+4 \sqrt{ } 3)-7(2+\sqrt{ } 3)+5$
$=3$
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \ldots+\frac{1}{\sqrt{8}+\sqrt{9}}$
rationalize-
$\frac{1}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}} \times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\ldots . .+\frac{1}{\sqrt{8}+\sqrt{9}} \times \frac{\sqrt{8}-\sqrt{9}}{\sqrt{8}-\sqrt{9}}$

$$
\begin{aligned}
& =\frac{1-\sqrt{2}}{1^{2}-\sqrt{2}^{2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}^{2}-\sqrt{3}^{2}}+\ldots \\
& =\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\ldots \\
& =\sqrt{ } 2-1+\sqrt{ } 3-\sqrt{ } 2+\ldots \sqrt{ } 8-\sqrt{ } 7+\sqrt{ } 9-\sqrt{ } 8 \\
& =\sqrt{ } 9-1 \\
& =3-1 \\
& =2
\end{aligned}
$$

26. Question

If $x=\frac{\sqrt{a+2 b}+\sqrt{a-2 b}}{\sqrt{a+2 b}-\sqrt{a-2 b}}$ then show that $b x^{2}-a x+b=0$.

Answer

$x=\frac{\sqrt{a+2 b}+\sqrt{a-2 b}}{\sqrt{a+2 b}-\sqrt{a-2 b}}$
$x=\frac{\sqrt{a+2 b}+\sqrt{a-2 b}}{\sqrt{a+2 b}-\sqrt{a-2 b}} \times \frac{\sqrt{a+2 b}+\sqrt{a-2 b}}{\sqrt{a+2 b}+\sqrt{a-2 b}}$ \{rationalizing\}
$x=\frac{(\sqrt{a+2 b}+\sqrt{a-2 b})^{2}}{\sqrt{a+2 b}^{2}-\sqrt{a-2 b}^{2}}$
$x=\frac{{\sqrt{a+2 b^{2}}}^{2}+{\sqrt{a-2 b^{2}}}^{2}+2(\sqrt{a+2 b})(\sqrt{a-2 b})}{(a+2 b)-(a-2 b)}$
$\underline{a+2 b+a-2 b+2 \sqrt{(a+2 b)(a-2 b)}}$
4b
$2 a+2 \sqrt{(a+2 b)(a-2 b)}$
4b
$x=\frac{a+\sqrt{a^{2}-(2 b)^{2}}}{2 b}\left\{\right.$ since $\left.(a+b)(a-b)=a^{2}-b^{2}\right\}$

So, $2 b x-a=\sqrt{a^{2}-(2 b)^{2}}$
$=(2 b x-a)^{2}={\sqrt{a^{2}-(2 b)^{2}}}^{2}$ \{squaring both sides \}
$=4 b^{2} x^{2}+a^{2}-4 a b x=a^{2}-4 b^{2}$
$=4 b^{2} x^{2}-4 a b x+4 b^{2}=0\left\{\right.$ rearranging terms and cancelling $\left.a^{2}\right\}$
Dividing the expression by $4 b-b x^{2}-a x+b=0$

27. Question

If $\left(x^{3}+m x^{2}-x+6\right)$ has $(x-2)$ as a factor and leaves a remainder r, when divided by $(x-3)$, find the values of m and r.

Answer

If $(x-2)$ is a factor of the polynomial $\left(x^{3}+m x^{2}-x+6\right)$ then it must satisfy it.
So, putting $x=2$ the polynomial must be zero.
Putting $x=2$ and equating to zero.
$=\left(23+m 2^{2}-2+6\right)$
$=4 m+12=0$
$=\mathrm{m}=-3$
If we divide $f(x)=\left(x^{3}+m x^{2}-x+6\right)$ by $(x-3)$ remainder can be find at value of -
$(x-3)=0$
Or $x=3$
So we will put $x=3$ in $f(x)=\left(x^{3}+m x^{2}-x+6\right)$
$f(3)=\left(3^{3}+m 3^{2}-3+6\right)$
$=30+9 m$
So remainder $=30+9 \mathrm{~m}$
$=30+9(-3)=30-27=3$
So, $r=3$.

28. Question

If r and s be the remainders when the polynomials $\left(x^{3}+2 x^{2}-5 a x-7\right)$ and $\left(x^{3}+a x^{2}-12 x+6\right)$ are divided by $(x+1)$ and $(x-2)$ respectively and $2 r+s=6$ find the value of a.

Answer

If we divide $f(x)=\left(x^{3}+2 x^{2}-5 a x-7\right)$ by $(x+1)$ remainder can be find at value of -
$(x+1)=0$
Or $x=-1$
So, we will put $x=-1$ in $f(x)=\left(x^{3}+2 x^{2}-5 a x-7\right)$
$f(-1)=\left((-1)^{3}+2(-1)^{2}-5 a(-1)-7\right)$
$=-6+5 a$
So, remainder $=r=-6+5 a$
Also if we divide $f(x)=\left(x^{3}+a x^{2}-12 x+6\right)$ by $(x-2)$ remainder can be find at value of -$(x-2)=0$

Or $x=2$
So we will put $x=2$ in $f(x)=\left(x^{3}+a x^{2}-12 x+6\right)$
$f(2)=\left(2^{3}+a 2^{2}-12(2)+6\right)$
$=4 a-10$
So, remainder $=s=4 a-10$
Also it is given that $2 r+s=6$
So putting r and s from above expressions-
$2(-6+5 a)+(4 a-10)=6$
$=14 \mathrm{a}=28$
$=\mathrm{a}=2$

29. Question

Prove that: $(a+b)^{3}+(b+c)^{3}+(c+a)^{3}-3(a+b)(b+c)(c+a)=2\left(a^{3}+b^{3}+c^{3}-3 a b c\right)$

Answer

We know that -
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$.
So applying the theorem here,
$(a+b)^{3}+(b+c)^{3}+(c+a)^{3}-3(a+b)(b+c)(c+a)=((a+b)+(b+c)+(c+a))\left((a+b)^{2}+(b\right.$ $\left.+c)^{2}+(c+a)^{2}-(a+b)(b+c)-(b+c)(c+a)-(c+a)(a+b)\right)$
$=(2(a+b+c))\left((a+b)^{2}+(b+c)^{2}+(c+a)^{2}-(a+b)(b+c)-(b+c)(c+a)-(c+a)(a+b)\right)$
$\left\{\right.$ since $\left((a+b)^{2}+(b+c)^{2}+(c+a)^{2}-(a+b)(b+c)-(b+c)(c+a)-(c+a)(a+b)\right)$
$\left.=\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\right\}$
$=2\left(a^{3}+b^{3}+c^{3}-3(a)(b)(c)\right)$
\{using this theorem again: $\left.a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)\right\}$
30. Question

On a graph paper plot the following points:
$A(3,3), B(2,4), C(5,5), D(0,2), E(3,-3)$ and $F(-5,-5)$.
Which of these points are the mirror images in (i) x-axis (ii) y-axis?

Answer

It is clear from the graph A and E are mirror image wrt. x-axis and there is no mirror image points wit. y-axis.

31. Question

In the given figure, in a $\triangle A B C, B E \perp A C, \angle E B C=40^{\circ}$ and $\angle D A C=30 . \angle D A C=30^{\circ}$. Find the values of x, y and z.

Answer

We know that,
Sum of all angles in a triangle $=180^{\circ}$
So, in $\triangle B E C$
$=40+x+90=180$

So, $x=50^{\circ}$
Now, in $\triangle A D C$ -
$=50+30+\angle A D C=180$
$=\angle A D C=100^{\circ}$
Since BC represents a straight line, sum of angles $=180^{\circ}$.
So, $\angle A D C+y=180$
hence $y=80^{\circ}$ since $\angle A D C=100^{\circ}$
By exterior angle sum theorem of the smaller triangle formed-
$z=\angle D A E+\angle B E A=90^{\circ}+30^{\circ}=120^{\circ}$

32. Question

In the given figure, $A B C$ is a triangle in which $A B=A C$. D is a point in the interior of $\triangle A B C$ such that $\angle D B C=\angle D C B$. Prove that AD bisects $\angle B A C$.

Answer

In $\triangle B D C \angle D B C=\angle D C B$ so
$B D=D C \ldots(i)$
\{sides opposite to equal angles in a triangle are equal\}
Now let's consider that $\triangle A B D$ and $\triangle A D C$ -
$A B=A C\{$ given $\}$
AD is a common side.
And $B D=D C$ from equation (i)\}
Hence $\triangle A B D$ and $\triangle A D C$ are congruent.
So $\angle B A D=\angle D A C$ (congruency criteria)
Hence AD bisects $\angle B A C$.

33. Question

In the given figure, $A B C D$ is a square and $E F$ is parallel to diagonal $D B$ and $E M=F M$. Prove that: (i) $B F=D E$ (ii) $A M$ bisects $\angle B A D$.

Answer

Since diagonal of square bisects the angles.
So, $\angle \mathrm{CBD}=\angle \mathrm{CDB}=45^{\circ}$ [Also all angles of square are right angles i.e. half of all is 45°]
Also similarly $\angle A B D=\angle A D B=45^{\circ}$
Since lines EF || BD
By corresponding angles-
$\angle C E F=\angle C D B=45^{\circ}$
Also $\angle C F E=\angle C B D=45^{\circ}$
So, $C E=C F$ \{since sides opposite to equal angles are equal\} ...(i)
And $C D=B C$ \{sides of a square are equal\} ...(ii)
Subtracting I from II
$C D-C E=B C-C F$
So, $B F=D E$
Also let's consider $\triangle A D X$ and $\triangle A B X$ \{where X is intersection point of $A M$ and $B D$ \}
$\angle A B D=\angle A D B=45^{\circ}$
$A X$ is a common side.
$A D=A B$ \{sides of a square are equal $\}$
The triangles are congruent by SAS (side angle side) criteria.
So, $\angle D A M=\angle M A B$ (congruency criteria)
Hence AM bisects $\angle B A D$.

34. Question

In the given figure, $A B\left|\mid C D\right.$ If $\angle B A E=100^{\circ}$ and $\angle E C D=120^{\circ}$ then $x=$?

Answer

Draw one line EF \|CD and $A B$.

Since EF || CD and CE is transversal.
$\angle F E C+\angle E C D=180^{\circ}$
$\angle \mathrm{FEC}=60^{\circ}$ \{since $\left.\angle \mathrm{ECD}=120^{\circ}\right\}$
Also, $E F \| A B$ and $A E$ is transversal.
$\angle \mathrm{FEA}+\angle \mathrm{BAE}=180^{\circ}$
$\angle F E A=80^{\circ}$ \{since $\left.\angle B A E=100^{\circ}\right\}$
And $x=\angle F E C+\angle F E A$
$=60^{\circ}+80^{\circ}$
$=140^{\circ}$

Sample Paper 2

1. Question

An irrational number between 2 and 2.5 is
A. $\sqrt{ } 3$
B. 2.3
C. $\sqrt{ } 5$
D. $2 . \overline{34}$

Answer

Irrational numbers are numbers which cannot be expressed as simple fraction or simple ratios of two integers. That leaves us with just two options A and C. So, only $\sqrt{ } 5$ comes in between 2 and 2.5.

2. Question

Which of the following is a polynomial in one variable?
A. $x^{2}+x^{-2}$
B. $\sqrt{ } 3 x+9$
C. $x^{2}+2 x-\sqrt{ } x+3$
D. $\sqrt{ } 3+2 x-x^{2}$

Answer

A polynomial in one variable is an algebraic expression that consists of terms in the form of axn, where n is either zero or positive only. Given the options all expressions except D has the value of n as negative.

3. Question

Solve the equation and choose the correct answer $\frac{1}{\sqrt{18}-\sqrt{32}}=$?
A. $\sqrt{ } 2$ B. $1 / \sqrt{ } 2$
C. $-\sqrt{ } 2$ D. $-1 / \sqrt{ } 2$

Answer

Given, $\frac{1}{\sqrt{18}-\sqrt{32}}$
Rationalising the above term,

$$
\therefore \frac{1}{\sqrt{18}-\sqrt{32}} \times \frac{\sqrt{18}+\sqrt{32}}{\sqrt{18}+\sqrt{32}}=\frac{\sqrt{18}+\sqrt{32}}{(\sqrt{18}-\sqrt{32})(\sqrt{18}+\sqrt{32})}
$$

Using the formula $(a+b)(a-b)=a^{2}-b^{2}$ for the denominator,
$\Rightarrow \frac{3 \sqrt{2}+4 \sqrt{2}}{18-32}=\frac{\sqrt{2}(3+4)}{-14}$
$\Rightarrow \frac{7 \sqrt{2}}{-14}=-\frac{\sqrt{2}}{2}=-\frac{1}{\sqrt{2}}$
4. Question

If $p(x)=\left(x^{4}-x^{2}+x\right)$, then $p\left(\frac{1}{2}\right)=$?
A. $1 / 16$
B. $3 / 16$
C. 5/16
D. $7 / 16$

Answer

Given, $p(x)=\left(x^{4}-x^{2}+x\right)$
Substituting the value of $1 / 2$ in place of will give,
$\Rightarrow \mathrm{p}\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{4}-\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)$
$\Rightarrow \mathrm{p}\left(\frac{1}{2}\right)=\frac{1}{16}-\frac{1}{4}+\frac{1}{2}$
$\Rightarrow \mathrm{p}\left(\frac{1}{2}\right)=\frac{1-4+8}{16}$
$\therefore \mathrm{p}\left(\frac{1}{2}\right)=\frac{5}{16}$

5. Question

If $p(x)=x^{3}+x^{2}+a x+115$ is exactly divisible by $(x+5)$ then $a=$?
A. 8
B. 6
C. 5
D. 3

Answer

Given, $p(x)=x^{3}+x^{2}+a x+115$
$\left(x^{3}+x^{2}+a x+115\right)$ is exactly divisible by $(x+5)$
Hence, substituting $x=-5$ will give us the value of a
$\Rightarrow(-5)^{3}+(-5)^{2}+\mathrm{a}(-5)+115=0$
$\Rightarrow-125+25-5 a+115=0$
$\Rightarrow 5 \mathrm{a}=15$
$\therefore \mathrm{a}=3$

6. Question

The equation of y-axis is
A. $y=0$
B. $x=0$
C. $y=x$
D. $\mathrm{y}=\mathrm{constant}$

Answer

We know that, the value of x is always zero on the y-axis.

7. Question

In the given figure, the value of x is

A. 10
B. 12
C. 15
D. 20

Answer

According to the figure,
$\Rightarrow 4 x+5 x=180^{\circ}$ [Angle on a straight line]
$\Rightarrow 9 \mathrm{x}=180^{\circ}$
$\therefore \mathrm{x}=20^{\circ}$

8. Question

In the given figure, $C E \| B A$ and $E F \| C D$. If $\angle B A C=40^{\circ}, \angle A C B=65^{\circ}$ and $\angle C E F=x^{\circ}$ then the value of x is

A. 40°
B. 65°
C. 75°
D. 105°

Answer

Given,
$\angle B A C=40^{\circ}$
$\angle A C B=65^{\circ}$

According to figure,
$\therefore \angle \mathrm{ACE}=40^{\circ}$ [Alternate angles]
$\therefore \angle \mathrm{ACB}+\angle \mathrm{ACE}=\mathrm{x}^{\circ}$ [Alternate angles]
$\Rightarrow x^{\circ}=65^{\circ}+40^{\circ}$
$\therefore \mathrm{x}=105^{\circ}$

9. Question

Factorize: $\sqrt{ } 2 x^{2}+3 x+\sqrt{ } 2$

Answer

Given, $\sqrt{ } 2 x^{2}+3 x+\sqrt{ } 2$
By splitting the middle term,
$\Rightarrow \sqrt{ } 2 x^{2}+2 x+x+\sqrt{ } 2$
$\Rightarrow \sqrt{ } 2 x(x+\sqrt{ } 2)+1(x+\sqrt{ } 2)$
$\therefore(\mathrm{x}+\sqrt{ } 2)(\sqrt{ } 2 \mathrm{x}+1)$

10. Question

Prove that $\sqrt{ } 5$ is an irrational number.

Answer

Let's assume that $\sqrt{ } 5$ is a rational number.
Hence, $\sqrt{ } 5$ can be written in the form a / b where a and $b(b \neq 0)$ are co-prime (i.e. no common factor other than 1)]
$\therefore \sqrt{ } 5=a / b$
$\Rightarrow \sqrt{ } 5 \mathrm{~b}=\mathrm{a}$
Squaring both sides,
$\Rightarrow(\sqrt{ } 5 \mathrm{~b})^{2}=\mathrm{a}^{2}$
$\Rightarrow 5 b^{2}=a^{2}$
$\Rightarrow \mathrm{a}^{2} / 5=\mathrm{b}^{2}$
Hence, 5 divides a^{2}
By theorem, if p is a prime number and p divides a^{2}, then p divides a, where a is a positive number
So, 5 divides a too
Hence, we can say $\mathrm{a} / 5=\mathrm{c}$ where, c is some integer
So, $a=5 c$

Now we know that,
$5 b^{2}=a^{2}$
Putting a = 5c,
$\Rightarrow 5 b^{2}=(5 \mathrm{c})^{2}$
$\Rightarrow 5 b^{2}=25 c^{2}$
$\Rightarrow b^{2}=5 c^{2}$
$\therefore \mathrm{b}^{2} / 5=\mathrm{c}^{2}$
Hence, 5 divides b^{2}
By theorem, if p is a prime number and p divides a^{2}, then p divides a, where a is a positive number
So, 5 divides b too
By earlier deductions, 5 divides both a and b
Hence, 5 is a factor of a and b
$\therefore \mathrm{a}$ and b are not co-prime.
Hence, the assumption is wrong.
\therefore By contradiction,
$\therefore \sqrt{ } 5$ is irrational

11. Question

Draw the graph of the equation $y=2 x+3$

\mathbf{x}	-2	-1	0	1	2
\mathbf{y}	-1	1	3	5	7

Answer

12. Question

If $x=(3+\sqrt{ } 8)$, find the value of $\left(x^{2}+\frac{1}{x^{2}}\right)$.

Answer

Given, $x=(3+\sqrt{ } 8)$
Let us calculate $1 / x$,
$\Rightarrow \frac{1}{x}=\frac{1}{3+\sqrt{8}}$
Rationalising the above term,
$\Rightarrow \frac{1}{\mathrm{x}}=\frac{1}{3+\sqrt{8}} \times \frac{3-\sqrt{8}}{3-\sqrt{8}}$
Using the formula $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$,
$\Rightarrow \frac{1}{x}=\frac{3-\sqrt{8}}{9-8}$
$\therefore \frac{1}{x}=3-\sqrt{8}$

Now,

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)=3+\sqrt{8}+3-\sqrt{8} \\
& \therefore\left(x+\frac{1}{x}\right)=6
\end{aligned}
$$

On squaring both sides, we get
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}=6^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2=36$
$\therefore\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}\right)=34$

13. Question

Find the area of the triangle whose sides measure $52 \mathrm{~cm}, 56 \mathrm{~cm}$ and 60 cm respectively.

Answer

Given, three sides of a triangle $52 \mathrm{~cm}, 56 \mathrm{~cm}, 60 \mathrm{~cm}$
Area of a triangle is given by,
$\sqrt{s(s-a)(s-b)(s-c)}$
where,
$S=\frac{a+b+c}{2}$ and a, b, c are the sides of the triangle
$\Rightarrow \mathrm{s}=\frac{52+56+60}{2}$
$\therefore s=\frac{168}{2}=84$
\therefore Area of triangle $=\sqrt{84(84-52)(84-56)(84-60)}$
$=\sqrt{84 * 32 * 28 * 24}$
$=\sqrt{1806336}=1344 \mathrm{~cm}^{2}$

14. Question

In the given figure, $A B \| C D$. Find the value of x.

Answer

Lets draw another line $X Y \| A B$ and $C D$.

According to the figure,
$\Rightarrow \angle \mathrm{a}=40^{\circ}$ [Alternate angles]
$\Rightarrow \angle \mathrm{b}=35^{\circ}$ [Alternate angles]
$\therefore \angle \mathrm{x}+\angle \mathrm{a}+\angle \mathrm{b}=360^{\circ}$ [Angle at a point $=360^{\circ}$]
$\therefore \angle \mathrm{x}=360^{\circ}-40^{\circ}-35^{\circ}=285^{\circ}$

15. Question

Find the values of a and b so that the polynomial $\left(x^{4}+a x^{3}-7 x^{2}-8 x+b\right)$ is exactly divisible by $(x+$ $2)$ as well as $(x+3)$.

Answer

Given, $x^{4}+a x^{3}-7 x^{2}-8 x+b=0$
$\therefore \mathrm{x}=-2,-3$ are a root of the above equation (\because they are exactly divisible)
Substituting the value -2 and -3 in place of x will give,
$\Rightarrow(-2)^{4}+a(-2)^{3}-7(-2)^{2}-8(-2)+b=0$
$\Rightarrow 16-8 \mathrm{a}-28+16+\mathrm{b}=0$
$\therefore 8 \mathrm{a}-\mathrm{b}=4$
$\Rightarrow(-3)^{4}+\mathrm{a}(-3)^{3}-7(-3)^{2}-8(-3)+\mathrm{b}=0$
$\Rightarrow 81-27 \mathrm{a}-63+24+\mathrm{b}=0$
$\therefore 27 a-b=42$.... (ii)
Simultaneously solving eq(i) and eq(ii) we get,
$\therefore \mathrm{a}=2$
$\therefore \mathrm{b}=12$

16. Question

Using remainder theorem, find the remainder when $p(x)=x^{3}-3 x^{2}+4 x+50$ is divided by $(x+3)$.

Answer

Given, $p(x)=x^{3}-3 x^{2}+4 x+50$
Divisor, $(x+3)$
$\therefore \mathrm{x}=-3$
Substituting -3 in place of x gives us,
$\Rightarrow(-3)^{3}-3(-3)^{2}+4(-3)+50$
$=-27-27-12+50=-16$

17. Question

Factorize: $\left(2 x^{3}+54\right)$

Answer

Given, $\left(2 x^{3}+54\right)$
Taking common terms out,
$\Rightarrow 2\left(x^{3}+27\right)$
Using the formula, $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)$
$\Rightarrow 2(x+3)\left(x^{2}-3 x+3^{2}\right)$
$\therefore 2(x+3)\left(x^{2}-3 x+9\right)$

18. Question

Find the product $(a-b-c)\left(a^{2}+b^{2}+c^{2}+a b+a c-b c\right)$

Answer

Given, $(a-b-c)\left(a 2+b^{2}+c^{2}+a b+a c-b c\right)$
$=a^{3}+a b^{2}+a c^{2}+a^{2} b+a^{2} c-a b c-a^{2} b-b^{3}-b c^{2}-a b^{2}-a b c+b^{2} c-a^{2} c-b^{2} c-c^{3}-a b c-a c^{2}-$
$b c^{2}$
Cancelling the terms with opposite signs,
$=a^{3}-b^{3}-c^{3}-3 a b c$

19. Question

In a $\triangle A B C$, if $\angle A-\angle B=33^{\circ}$ and $\angle B-\angle C=18^{\circ}$, find the measure of each angle of the triangle.

Answer

Let the three angles of a triangle be $\angle A, \angle B, \angle C$
Given, $\angle \mathrm{A}-\angle \mathrm{B}=33^{\circ}$
$\Rightarrow \angle A=\angle B+33^{\circ}$
$\angle B-\angle C=18^{\circ}$
$\Rightarrow \angle C=\angle B-18^{\circ}$
Now,
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\Rightarrow \angle B+33^{\circ}+\angle B+\angle B-18^{\circ}=180^{\circ}$
$\Rightarrow 3 \angle B=180^{\circ}-15^{\circ}$
$\therefore \angle B=55^{\circ}$
$\therefore \angle A=\angle B+33^{\circ}=88^{\circ}$
$\therefore \angle C=\angle B-18^{\circ}=37^{\circ}$

20. Question

In the given figure, in $\triangle A B C$, the angle bisectors of $\angle B$ and $\angle C$ meet at a point O. Find the measure of $\angle B O C$.

Answer

Given, $\angle \mathrm{A}=70^{\circ}$
Let the two angles $\angle B=2 x$ and $\angle C=2 y$.
Then, angle bisector of $B, \angle O B C=x$ and angle bisector of $C, \angle O C B=y$
$\therefore \angle A+\angle B+\angle C=180^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\Rightarrow 70^{\circ}+2 \mathrm{x}+2 \mathrm{y}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}=110^{\circ}$
$\therefore \mathrm{x}+\mathrm{y}=55^{\circ}$

Now,
$\angle B O C+x+y=180^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\Rightarrow \angle B O C=180^{\circ}-(x+y)$
$\Rightarrow \angle B O C=180^{\circ}-55^{\circ}$ [from eq. (i)]
$\therefore \angle B O C=125^{\circ}$

21. Question

In the given figure, $A B \| C D$. If $\angle B A O=110^{\circ}, \angle A O C=20^{\circ}$ and $\angle O C D=x^{\circ}$, find the value of x.

Answer

Given, $\angle B A O=110^{\circ}, \angle A O C=20^{\circ}$
$\angle C E O=110^{\circ}$ [Corresponding angles]
$\therefore \mathrm{x}^{\circ}=110^{\circ}+20^{\circ}$ [Exterior angle = Sum of two opposite interior angles]
$\therefore \mathrm{x}^{\circ}=130^{\circ}$

22. Question

In a right-angled triangle, prove that the hypotenuse is the longest side.

Answer

Given, $\triangle A B C$ is a right- angled triangle at B i.e. $\angle B=90^{\circ}$

To prove $A C$ is the longest side of $\triangle A B C$
Proof:
In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\angle A+90^{\circ}+\angle C=180^{\circ}$ [Given $\angle B=90^{\circ}$]
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}-90^{\circ}$
$\therefore \angle A+\angle C=90^{\circ}$
Hence, $\angle \mathrm{A}<90^{\circ}$
$\angle A<\angle B$
$B C<A C$ [Side opposite to a larger angle is longer] $]$
Similarly,
$\angle C<90^{\circ}$
$\angle C<\angle B$
$A B<A C$ [Side opposite to al larger angle is longer]
Hence,
$\therefore A C$ is the longest side of $\triangle A B C$ i.e. the hypotenuse.

23. Question

In the given figure, prove that:
$x=a+\beta+y$

Answer

In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
According to the figure,
$\Rightarrow \angle B+(a+\angle D A C)+(y+\angle D C A)=180^{\circ}$
$\Rightarrow \angle D A C+\angle D C A+a+\beta+\gamma=180^{\circ}$
$\Rightarrow \angle D A C+\angle D C A=180^{\circ}-(a+\beta+\gamma) \ldots$ (i)
In $\triangle A D C$,
$\Rightarrow x+\angle D A C+\angle D C A=180^{\circ}\left[\right.$ Sum of all angles of a triangle $\left.=180^{\circ}\right]$
$\Rightarrow x=180^{\circ}-\angle D A C-\angle D C A$
$\Rightarrow x=180^{\circ}-180^{\circ}+(a+\beta+\gamma)$
$\therefore x=(a+\beta+y)$
Hence proved.

24. Question

Find six rational numbers between 3 and 4 .

Answer

Since, we want six numbers, we write 1 and 2 as rational numbers with denominator $6+1=7$
So, multiply in numerator and denominator by 7, we get
$3=\frac{3 \times 7}{1 \times 7}=\frac{21}{7}$ and $4=\frac{4 \times 7}{1 \times 7}=\frac{28}{7}$
We know that, $21<22<23<24<25<26<27<28$
$\frac{21}{7}<\frac{22}{7}<\frac{23}{7}<\frac{24}{7}<\frac{25}{7}<\frac{26}{7}<\frac{27}{7}<\frac{28}{7}$
Hence, six rational numbers between $3=\frac{21}{7}$ and $4=\frac{28}{7}$ are $\frac{22}{7}, \frac{23}{7}, \frac{24}{7}, \frac{25}{7}, \frac{26}{7}, \frac{27}{7}$

25. Question

If $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+\sqrt{15} b$, find the values of a and b.
OR
Factorize: $(5 a-7 b)^{3}+(9 c-5 a)^{3}+(7 b-9 c)^{3}$

Answer

Given, $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
Rationalising the above term,
$\Rightarrow \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} * \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$
Using the formula $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$\Rightarrow \frac{5+3+2 \sqrt{15}}{5-3}=\frac{8+2 \sqrt{15}}{2}$
$\therefore 4+\sqrt{ } 15$
Comparing with $a+\sqrt{ } 15 b$,
$\therefore a=4, b=1$
OR
Solution: Given, $(5 a-7 b)^{3}+(9 c-5 a)^{3}+(7 b-9 c)^{3}$
Using the formula, $(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)$
$\Rightarrow a^{3}+b^{3}+c^{3}=(a+b+c)^{3}-3(a+b)(b+c)(c+a)$
$\Rightarrow(5 a-7 b)^{3}+(9 c-5 a)^{3}+(7 b-9 c)^{3}=(5 a-7 b+9 c-5 a+7 b-9 c)^{3}-3(5 a-7 b+9 c-5 a)(9 c$
$-5 a+7 b-9 c)(7 b-9 c+5 a-7 b)$
$\Rightarrow(5 \mathrm{a}-7 \mathrm{~b})^{3}+(9 \mathrm{c}-5 \mathrm{a})^{3}+(7 \mathrm{~b}-9 \mathrm{c})^{3}=0^{3}-3(-7 \mathrm{~b}+9 \mathrm{c})(-5 \mathrm{a}+7 \mathrm{~b})(-9 \mathrm{c}+5 \mathrm{a})$
$\therefore(5 a-7 b)^{3}+(9 c-5 a)^{3}+(7 b-9 c)^{3}=3(5 a-7 b)(7 b-9 c)(9 c-5 a)$

26. Question

Factorize:
$12\left(x^{2}+7 x\right)^{2}-8\left(x^{2}+7 x\right)(2 x-1)-15(2 x-1)^{2}$

Given, $12\left(x^{2}+7 x\right)^{2}-8\left(x^{2}+7 x\right)(2 x-1)-15(2 x-1)^{2}$
By splitting the middle term i.e. $8\left(x^{2}+7 x\right)(2 x-1)$, we get
$=12\left(x^{2}+7 x\right)^{2}-18\left(x^{2}+7 x\right)(2 x-1)+10\left(x^{2}+7 x\right)(2 x-1)-15(2 x-1)^{2}$
$=6\left(x^{2}+7 x\right)\left[2\left(x^{2}+7 x\right)-3(2 x-1)\right]+5(2 x-1)\left[2\left(x^{2}+7 x\right)-3(2 x-1)\right]$
$=\left[2\left(x^{2}+7 x\right)-3(2 x-1)\right]\left[6\left(x^{2}+7 x\right)+5(2 x-1)\right]$
$=\left(2 x^{2}+14 x-6 x+3\right)\left(6 x^{2}+42 x+10 x-5\right)$
$=\left(2 x^{2}+8 x+3\right)\left(6 x^{2}+52 x-5\right)$

27. Question

If $\left(x^{3}+a x^{2}+b x+6\right)$ has $(x-2)$ as a factor and leaves a remainder 3 when divided by $(x-3)$, find the values of a and b.

Answer

Given, $\left(x^{3}+a x^{2}+b x+6\right)$ exactly divisible by $(x-2)$
$\therefore \mathrm{x}=2$ is a root of the above equation.
$\Rightarrow 2^{3}+\mathrm{a}(2)^{2}+\mathrm{b}(2)+6=0$
$\Rightarrow 8+4 \mathrm{a}+2 \mathrm{~b}+6=0$
$\therefore 4 a+2 b=-14 b=\frac{-14-4 a}{2}$
Given, $\left(x^{3}+a x^{2}+b x+6\right)$ divided by $(x-3)$ leaves a remainder 3
$\therefore 3^{3}+\mathrm{a}(3)^{2}+\mathrm{b}(3)+6=3$
$\Rightarrow 27+9 a+3 b+6=3$
$\therefore 9 a+3 b=-30$.
Put value of b from (i) in this equation to get, $9 a+3\left(\frac{-14-4 a}{2}\right)=-30 \quad 18 \mathrm{a}-42-12$
$a=-606 a-42=-606 a=-60+426 a=-18 a=-3$ Put the value of a in (i) to get:
$b=\frac{-14-4(-3)}{2} \quad b=\frac{-14+12}{2} \quad b=\frac{-2}{2}$
Solving simultaneously eq (i) and eq (ii), we get
$a=-3, b=-1$

28. Question

Without actual division, show that $\left(x^{3}-3 x^{2}-13 x+15\right)$ is exactly divisible by $\left(x^{2}+2 x-3\right)$.

Answer

Let's find the roots of the equation $\left(x^{2}+2 x-3\right)$
$\Rightarrow \mathrm{x}^{2}+3 \mathrm{x}-\mathrm{x}-3=0$
$\Rightarrow x(x+3)-1(x+3)=0$
$\therefore(\mathrm{x}+3)(\mathrm{x}-1)$
Hence, if $(x+3)$ and $(x-1)$ satisfies the equation $x^{3}-3 x^{2}-13 x+15=0$, then $\left(x^{3}-3 x^{2}-13 x+\right.$ $15)$ will be exactly divisible by $\left(x^{2}+2 x-3\right)$.

For $x=-3$,
$\Rightarrow(-3)^{3}-3(-3)^{2}-13(-3)+15$
$\Rightarrow-27-27+39+15=0$
For $x=1$,
$\Rightarrow 13-3(1)^{2}-13(1)+15$
$\Rightarrow 1-3-13+15=0$
Hence proved.

29. Question

Factorize: $a^{3}-b^{3}+1+3 a b$

Answer

Given, $a^{3}-b^{3}+1+3 a b$
$\Rightarrow a^{3}+(-b)^{3}+1^{3}-3(1 * a *(-b))$
$\Rightarrow[a+(-b)+1]\left[a^{2}+(-b)^{2}+1^{2}-a(-b)-(-b) 1-1 a\right]$
$\therefore(a-b+1)\left(a^{2}+b^{2}+1+a b+b-a\right)$

30. Question

In the given figure, $A B \| C D, \angle E C D=100^{\circ}, \angle E A B=50^{\circ}$ and $\angle A E C=x^{\circ}$. Find the value of x.

Answer

Given, $\angle E C D=100^{\circ}, \angle E A B=50^{\circ}$
$\angle C O B=100^{\circ}$
$\therefore \mathrm{x}=100^{\circ}-50^{\circ}$ [Exterior angle $=$ Sum of two opposite interior angles of a triangle]
$\therefore \mathrm{x}=50^{\circ}$

31. Question

Prove that the bisectors of the angles of a linear pair are at right angles.

Given, $\angle A C D$ and $\angle B C D$ are linear pairs
$C E$ and CF bisect $\angle A C D$ and $\angle B C D$ respectively
To prove:
$\angle E C F=90^{\circ}$
$\therefore \angle A C D+\angle B C D=180^{\circ}$ [Angle on a straight line]
$\Rightarrow \angle A C D / 2+\angle B C D / 2=180^{\circ} / 2=90^{\circ}$
$\Rightarrow \angle E C D+\angle D C F=90^{\circ}[\because$ CE and CF bisect $\angle A C D$ and $\angle B C D$ respectively $]$
$\therefore \angle \mathrm{ECD}+\angle \mathrm{DCF}=\angle \mathrm{ECF}=90^{\circ}$
Hence Proved.

32. Question

In the given figure, $A D$ bisects $\angle B A C$ in the ratio 1:3 and $A D=D B$. Determine the value of x.

Answer

Let the ratio be y
$\therefore \angle \mathrm{DAB}=\mathrm{y}$
$\therefore \angle D A C=3 y$
$\therefore y+3 y+108^{\circ}=180^{\circ}$ [Angle on a straight line]
$\Rightarrow 4 y=72^{\circ}$
$\therefore \mathrm{y}=18^{\circ}$
$\therefore \angle D A C=3 y=54^{\circ}$
$\angle A B D=18^{\circ}[\because A D=D B, \triangle A B D$ is an isosceles triangle $]$
In $\triangle A B C$,
$\Rightarrow x+\angle A+\angle B=180^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\Rightarrow \mathrm{x}=180^{\circ}-72^{\circ}-18^{\circ}$
$\therefore \mathrm{x}=90^{\circ}$

33. Question

In the given figure, $A M \perp B C$ and $A N$ is the bisector of $\angle A$. If $\angle A B C=70^{\circ}$ and $\angle A C B=20^{\circ}$, find $\angle M A N$.

Answer

In $\triangle A B C$,
$\angle \mathrm{A}=180^{\circ}-70^{\circ}-20^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\therefore \angle \mathrm{A}=90^{\circ}$
$\therefore \angle \mathrm{BAN}=45^{\circ}[\because \mathrm{AN}$ is the bisector of $\angle \mathrm{A}]$
In $\triangle A B N$,
$\angle \mathrm{N}=180^{\circ}-70^{\circ}-45^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\therefore \angle \mathrm{N}=65^{\circ}$
In $\triangle A M N$,
$\angle M A N=180^{\circ}-90^{\circ}-65^{\circ}$ [Sum of all angles of a triangle $=180^{\circ}$]
$\therefore \angle M A N=25^{\circ}$

34. Question

If the bisector of the vertical angle of a triangle bisects the base, prove that the triangle is isosceles.

Answer

Given,
In $\triangle P Q R$,
PS bisects $\angle \mathrm{QPR}$ and $\mathrm{QS}=\mathrm{SR}$
To prove:
$P Q=P R$

In $\triangle P Q S$ and $\triangle P R S$
$\mathrm{QS}=\mathrm{SR}$ [Given]
$\angle \mathrm{QPS}=\angle \mathrm{RPS}$ [Given]
PS = PS [Common]
$\triangle \mathrm{PQS}$ is congruent to $\triangle \mathrm{PRS}$ [S.A.S]
$\therefore \mathrm{PQ}=\mathrm{PR}$ [C.P.C.T.C]
Hence Proved.

