5. Matrices

Exercise 5A

1. Question

If $A=\left[\begin{array}{cccc}5 & -2 & 6 & 1 \\ 7 & 0 & 8 & -3 \\ \sqrt{2} & \frac{3}{5} & 4 & 3\end{array}\right]$ then write
i. the number of rows in A,
ii. the number of columns in A,
iii. the order of the matrix A ,
iv. the number of all entries in A,
v. the elements $a_{23}, a_{31}, a_{14}, a_{33}, a_{22}$ of A.

Answer

(i) Number of rows $=3$
(ii) Number of columns $=4$
(iii) Order of matrix $=$ Number of rows \times Number of columns $=(3 \times 4)$
(iv) Number of entries $=$ (Number of rows) \times (Number of columns)
$=3 \times 4$
$=12$
(V) $a_{i j}=$ element of $i^{\text {th }}$ row and $j^{\text {th }}$ column
$a_{23}=8$
$a_{31}=\sqrt{2}$
$a_{14}=1$
$a_{33}=4$
$a_{22}=0$

2. Question

Write the order of each of the following matrices:
i. $A=\left[\begin{array}{cccr}3 & 5 & 4 & -2 \\ 0 & \sqrt{3} & -1 & \frac{4}{9}\end{array}\right]$
ii. $B=\left[\begin{array}{cc}6 & -5 \\ \frac{1}{2} & \frac{3}{4} \\ -2 & -1\end{array}\right]$
iii. $C=\left[\begin{array}{lll}7-\sqrt{2} & 5 & 0\end{array}\right]$
iv. $\mathrm{D}=[8-3]$
v. $\mathrm{E}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right]$
vi, $F=[6]$

Answer

i. $A=\left[\begin{array}{cccc}3 & 5 & 4 & -2 \\ 0 & \sqrt{3} & -1 & \frac{4}{9}\end{array}\right]$

Order of matrix $=$ Number of rows \times Number of columns
$=(2 \times 4)$
ii. $B=\left[\begin{array}{cc}6 & -5 \\ \frac{1}{2} & \frac{3}{4} \\ -2 & -1\end{array}\right]$

Order of matrix $=$ Number of rows x Number of columns
$=(4 \times 2)$
iii. $C=\left[\begin{array}{lll}7-\sqrt{2} & 5 & 0\end{array}\right]$

Order of matrix $=$ Number of rows x Number of columns
$=(1 \times 4)$
iv. $\mathrm{D}=[8-3]$

Order of matrix $=$ Number of rows x Number of columns
$=(1 \times 2)$
v. $\mathrm{E}=\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right]$

Order of matrix $=$ Number of rows x Number of columns
$=(3 \times 1)$
vi, $F=[6]$
Order of matrix $=$ Number of rows \times Number of columns
$=(1 \times 1)$
3. Question

If a matrix has 18 elements, what are the possible orders it can have?

Answer

Number of entries $=($ Number of rows $) \times($ Number of columns $)=18$
If order is $(a \times b)$ then, Number of entries $=a \times b$
So now $\mathrm{a} \times \mathrm{b}=18$ (in this case)
Possible cases are (1×18), (2×9), (3×6), (6×3), (9×2), (18×1)
Conclusion: If a matrix has 18 elements, then possible orders are $(1 \times 18),(2 \times 9),(3 \times 6),(6 \times 3),(9 \times 2),(18 \times 1)$

4. Question

Find all possible orders of matrices having 7 elements.

Answer

Number of entries $=($ Number of rows $) \times($ Number of columns $)=7$
If order is $(a \times b)$ then, Number of entries $=a \times b$
So now $\mathrm{a} \times \mathrm{b}=7$ (in this case)

Conclusion: If a matrix has 18 elements, then possible orders are (1×7), (7×1)

5. Question

Construct a 3×2 matrix whose elements are given by $a_{i j}=(2 i-j)$.

Answer

Given: $\mathrm{a}_{\mathrm{ij}}=(2 \mathrm{i}-\mathrm{j})$
Now, $\mathrm{a}_{11}=(2 \times 1-1)=2-1=1$
$a_{12}=2 \times 1-2=2-2=0$
$a_{21}=2 \times 2-1=4-1=3$
$a_{22}=2 \times 2-2=4-2=2$
$a_{31}=2 \times 3-1=6-1=5$
$a_{32}=2 \times 3-2=6-2=4$
Therefore,
$A=\left[\begin{array}{ll}1 & 0 \\ 3 & 2 \\ 5 & 4\end{array}\right]$

6. Question

Construct a 4×3 matrix whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\frac{\mathrm{i}}{\mathrm{j}}$.

Answer

It is (4×3) matrix. So it has 4 rows and 3 columns
Given $\mathrm{a}_{\mathrm{ij}}=\frac{\mathrm{i}}{\mathrm{j}}$.
So, $a_{11}=1, a_{12}=\frac{1}{2}, a_{13}=\frac{1}{3}$,
$a_{21}=2, a_{22}=1, a_{23}=\frac{2}{3}$,
$a_{31}=3, a_{32}=\frac{3}{2}, a_{33}=1$,
$a_{41}=4, a_{42}=2, a_{43}=\frac{4}{3}$
So, the matrix $=\left[\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \\ 4 & 2 & \frac{4}{3}\end{array}\right]$
Conclusion: Therefore, Matrix is $\left[\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \\ 4 & 2 & \frac{4}{3}\end{array}\right]$

7. Question

Construct a 2×2 matrix whose elements are $\mathrm{a}_{\mathrm{ij}}=\frac{(\mathrm{i}+2 \mathrm{j})^{2}}{2}$.

Answer

It is a (2×2) matrix. So, it has 2 rows and 2 columns.

Given $a_{i j}=\frac{(i+2 j)^{2}}{2}$
So, $a_{11}=\frac{9}{2}, a_{12}=\frac{25}{2}$,
$a_{21}=8, a_{22}=18$
So, the matrix $=\left[\begin{array}{cc}\frac{9}{2} & \frac{25}{2} \\ 8 & 18\end{array}\right]$
Conclusion: Therefore, Matrix is $=\left[\begin{array}{cc}\frac{9}{2} & \frac{25}{2} \\ 8 & 18\end{array}\right]$
8. Question

Construct a 2×3 matrix whose elements are $\mathrm{a}_{\mathrm{ij}}=\frac{(\mathrm{i}-2 \mathrm{j})^{2}}{2}$.

Answer

It is a (2×3) matrix. So, it has 2 rows and 3 columns.
Given $a_{i j}=\frac{(i-2 j)^{2}}{2}$
So, $a_{11}=\frac{1}{2}, a_{12}=\frac{9}{2}, a_{13}=\frac{25}{3}$,
$a_{21}=0, a_{22}=2, a_{23}=8$
So, the matrix $=\left[\begin{array}{ccc}\frac{1}{2} & \frac{9}{2} & \frac{25}{2} \\ 0 & 2 & 8\end{array}\right]$
Conclusion: Therefore, Matrix is $\left[\begin{array}{ccc}\frac{1}{2} & \frac{9}{2} & \frac{25}{2} \\ 0 & 2 & 8\end{array}\right]$

9. Question

Construct a 3×4 matrix whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}|-3 \mathrm{i}+\mathrm{j}|$

Answer

It is a (3×4) matrix. So, it has 3 rows and 4 columns.
Given $a_{i j}=\frac{|-3 i+j|}{2}$
So, $a_{11}=1, a_{12}=\frac{1}{2}, a_{13}=0, a_{13}=\frac{1}{2}$,
$a_{21}=\frac{5}{2}, a_{22}=2, a_{23}=\frac{3}{2}, a_{13}=1$,
$a_{31}=4, a_{32}=\frac{7}{2}, a_{33}=3, a_{13}=\frac{5}{2}$
So, the matrix $=\left[\begin{array}{cccc}1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2}\end{array}\right]$
Conclusion: Therefore, Matrix is $\left[\begin{array}{cccc}1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2}\end{array}\right]$

Exercise 5B

1. Question

If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ -1 & 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & 2 & -2 \\ 4 & -3 & 1\end{array}\right]$, verify that $(A+B)=(B+A)$.

Answer

$A+B=\left[\begin{array}{ccc}2 & -3 & 5 \\ -1 & 0 & 3\end{array}\right]+\left[\begin{array}{ccc}3 & 2 & -2 \\ 4 & -3 & 1\end{array}\right]$
$=\left[\begin{array}{lll}5 & -1 & 3 \\ 3 & -3 & 4\end{array}\right]$
$B+A=\left[\begin{array}{ccc}3 & 2 & -2 \\ 4 & -3 & 1\end{array}\right]+\left[\begin{array}{ccc}2 & -3 & 5 \\ -1 & 0 & 3\end{array}\right]$
$=\left[\begin{array}{lll}5 & -1 & 3 \\ 3 & -3 & 4\end{array}\right]=\mathrm{B}+\mathrm{A}$
Therefore, $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
This is true for any matrix
Conclusion: $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$

2. Question

If $A=\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 6 & -1\end{array}\right], B=\left[\begin{array}{cc}-1 & -3 \\ 4 & 2 \\ -2 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}0 & 2 \\ 3 & -4 \\ 1 & 6\end{array}\right]$, verify that $(A+B)+C=A+(B+C)$.

Answer

$(A+B)+C=\left(\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 6 & -1\end{array}\right]+\left[\begin{array}{cc}-1 & -3 \\ 4 & 2 \\ -2 & 3\end{array}\right]\right)+\left[\begin{array}{cc}0 & 2 \\ 3 & -4 \\ 1 & 6\end{array}\right]$
$=\left(\left[\begin{array}{ll}2 & 2 \\ 2 & 2 \\ 4 & 2\end{array}\right]\right)+\left[\begin{array}{cc}0 & 2 \\ 3 & -4 \\ 1 & 6\end{array}\right]$
$=\left[\begin{array}{cc}2 & 4 \\ 5 & -2 \\ 5 & 8\end{array}\right]$
$A+(B+C)=\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 6 & -1\end{array}\right]+\left(\left[\begin{array}{cc}-1 & -3 \\ 4 & 2 \\ -2 & 3\end{array}\right]+\left[\begin{array}{cc}0 & 2 \\ 3 & -4 \\ 1 & 6\end{array}\right]\right)$
$=\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 6 & -1\end{array}\right]+\left(\left[\begin{array}{cc}-1 & -1 \\ 7 & -2 \\ -1 & 9\end{array}\right]\right)$
$=\left[\begin{array}{cc}2 & 4 \\ 5 & -2 \\ 5 & 8\end{array}\right]$
Therefore, $(A+B)+C=A+(B+C)$
It is true for any matrix
Conclusion: $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$

3. Question

If $A=\left[\begin{array}{ccc}3 & 1 & 2 \\ 1 & 2 & -3\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 0 & 4 \\ 5 & -3 & 2\end{array}\right]$, find $(2 A-B)$.

Answer

$2 \mathrm{~A}=2\left(\left[\begin{array}{ccc}3 & 1 & 2 \\ 1 & 2 & -3\end{array}\right]\right)$
$=\left[\begin{array}{ccc}6 & 2 & 4 \\ 2 & 4 & -6\end{array}\right]$
$(2 A-B)=\left[\begin{array}{ccc}6 & 2 & 4 \\ 2 & 4 & -6\end{array}\right]-\left[\begin{array}{ccc}-2 & 0 & 4 \\ 5 & -3 & 2\end{array}\right]$
$=\left[\begin{array}{ccc}8 & 2 & 0 \\ -3 & 7 & -8\end{array}\right]$
Conclusion: $(2 A-B)=\left[\begin{array}{ccc}8 & 2 & 0 \\ -3 & 7 & -8\end{array}\right]$

4. Question

Let $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$. Find:
i. $A+2 B$
ii. $B-4 c$
iii. $A-2 B+3 C$

Answer

$A+2 B=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]+2\left(\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]\right)$
$=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]+\left[\begin{array}{cc}2 & 6 \\ -4 & 10\end{array}\right]$
$=\left[\begin{array}{cc}4 & 10 \\ -1 & 12\end{array}\right]$
Conclusion: $(A+2 B)=\left[\begin{array}{cc}4 & 10 \\ -1 & 12\end{array}\right]$
ii. $B-4 c$
$B-4 C=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]-4\left(\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]\right)$
$=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]-\left[\begin{array}{cc}-8 & 20 \\ 12 & 16\end{array}\right]$
$=\left[\begin{array}{cc}9 & -17 \\ -14 & -11\end{array}\right]$
Conclusion: $\mathrm{B}-4 \mathrm{C}=\left[\begin{array}{cc}9 & -17 \\ -14 & -11\end{array}\right]$
iii. $A-2 B+3 C$
$A-2 B+3 C=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]-2\left(\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]\right)+3\left(\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]\right)$
$=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]-\left[\begin{array}{cc}2 & 6 \\ -4 & 10\end{array}\right]+\left[\begin{array}{cc}-6 & 15 \\ 9 & 12\end{array}\right]$
$=\left[\begin{array}{cc}-6 & 13 \\ 16 & 4\end{array}\right]$
Conclusion: $A _2 B+3 C=\left[\begin{array}{cc}-6 & 13 \\ 16 & 4\end{array}\right]$

5. Question

Let $\mathrm{A}=\left[\begin{array}{ccc}0 & 1 & -2 \\ 5 & -1 & -4\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}1 & -3 & -1 \\ 0 & -2 & 5\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{crc}2 & -5 & 1 \\ -4 & 0 & 6\end{array}\right]$. Compute $5 \mathrm{~A}-3 \mathrm{~B}+4 \mathrm{C}$.

Answer

$5 A-3 B+4 C=5\left(\left[\begin{array}{ccc}0 & 1 & -2 \\ 5 & -1 & -4\end{array}\right]\right)-3\left(\left[\begin{array}{ccc}1 & -3 & -1 \\ 0 & -2 & 5\end{array}\right]\right)+4\left(\left[\begin{array}{ccc}2 & -5 & 1 \\ -4 & 0 & 6\end{array}\right]\right)$
$=\left(\left[\begin{array}{ccc}0 & 5 & -10 \\ 25 & -5 & -20\end{array}\right]\right)-\left(\left[\begin{array}{ccc}3 & -9 & -3 \\ 0 & -6 & 15\end{array}\right]\right)+\left(\left[\begin{array}{ccc}8 & -20 & 4 \\ -16 & 0 & 24\end{array}\right]\right)$
$=\left[\begin{array}{ccc}-3 & 14 & -7 \\ 25 & 1 & -35\end{array}\right]+\left[\begin{array}{ccc}8 & -20 & 4 \\ -16 & 0 & 24\end{array}\right]$
$=\left[\begin{array}{ccc}5 & -6 & -3 \\ 9 & 1 & -11\end{array}\right]$
Conclusion: $5 \mathrm{~A}-3 \mathrm{~B}+4 \mathrm{C}=\left[\begin{array}{ccc}5 & -6 & -3 \\ 9 & 1 & -11\end{array}\right]$
6. Question

If $5 A=\left[\begin{array}{ccc}5 & 10 & -15 \\ 2 & 3 & 4 \\ 1 & 0 & -5\end{array}\right]$, find A.

Answer

$5 \mathrm{~A}=\left[\begin{array}{ccc}5 & 10 & -15 \\ 2 & 3 & 4 \\ 1 & 0 & -5\end{array}\right]$
$A=\left[\begin{array}{ccc}\frac{5}{5} & \frac{10}{5} & \frac{-15}{5} \\ \frac{2}{5} & \frac{3}{5} & \frac{4}{5} \\ \frac{1}{5} & \frac{0}{5} & \frac{-5}{5}\end{array}\right]$
$\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -3 \\ \frac{2}{5} & \frac{3}{5} & \frac{4}{5} \\ \frac{1}{5} & 0 & -1\end{array}\right]$
Conclusion: $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ \frac{2}{5} & \frac{3}{5} & \frac{4}{5} \\ \frac{1}{5} & 0 & -1\end{array}\right]$

7. Question

Find matrices A and B, if $A+B=\left[\begin{array}{ccc}1 & 0 & 2 \\ 5 & 4 & -6 \\ 7 & 3 & 8\end{array}\right]$ and $A-B=\left[\begin{array}{ccc}-5 & -4 & 8 \\ 11 & 2 & 0 \\ -1 & 7 & 4\end{array}\right]$.

Answer

Add ($\mathrm{A}+\mathrm{B}$) and ($\mathrm{A}-\mathrm{B}$)
We get $(A+B)+(A-B)=\left[\begin{array}{ccc}1 & 0 & 2 \\ 5 & 4 & -6 \\ 7 & 3 & 8\end{array}\right]+\left[\begin{array}{ccc}-5 & -4 & 8 \\ 11 & 2 & 0 \\ -1 & 7 & 4\end{array}\right]$
$2 A=\left[\begin{array}{ccc}-4 & -4 & 10 \\ 16 & 6 & -6 \\ 6 & 10 & 12\end{array}\right]$
$A=\left[\begin{array}{ccc}-2 & -2 & 5 \\ 8 & 3 & -3 \\ 3 & 5 & 6\end{array}\right]$
Now Subtract (A-B) from (A+B)
$(A+B)-(A-B)=\left[\begin{array}{ccc}1 & 0 & 2 \\ 5 & 4 & -6 \\ 7 & 3 & 8\end{array}\right]-\left[\begin{array}{ccc}-5 & -4 & 8 \\ 11 & 2 & 0 \\ -1 & 7 & 4\end{array}\right]$
$(2 B)=\left[\begin{array}{ccc}6 & 4 & -6 \\ -6 & 2 & -6 \\ 8 & -4 & 4\end{array}\right]$
$B=\left[\begin{array}{ccc}3 & 2 & -3 \\ -3 & 1 & -3 \\ 4 & -2 & 2\end{array}\right]$
Conclusion: $\mathrm{A}=\left[\begin{array}{ccc}-2 & -2 & 5 \\ 8 & 3 & -3 \\ 3 & 5 & 6\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}3 & 2 & -3 \\ -3 & 1 & -3 \\ 4 & -2 & 2\end{array}\right]$

8. Question

Find matrices A and B, if $2 A-B=\left[\begin{array}{rrr}6 & -6 & 0 \\ -4 & 2 & 1\end{array}\right]$ and $2 B+A=\left[\begin{array}{ccc}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right]$

Answer

Add $2(2 A-B)$ and $(2 B+A)$
$2(2 A-B)+(2 B+A)=2\left(\left[\begin{array}{ccc}6 & -6 & 0 \\ -4 & 2 & 1\end{array}\right]\right)+\left[\begin{array}{ccc}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right]$
$5 A=\left(\left[\begin{array}{ccc}12 & -12 & 0 \\ -8 & 4 & 2\end{array}\right]\right)+\left[\begin{array}{ccc}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right]$
$5 \mathrm{~A}=\left[\begin{array}{ccc}15 & -10 & 5 \\ -10 & 5 & -5\end{array}\right]$
$A=\left[\begin{array}{ccc}3 & -2 & 1 \\ -2 & 1 & -1\end{array}\right]$
$B=2\left(\left[\begin{array}{ccc}3 & -2 & 1 \\ -2 & 1 & -1\end{array}\right]\right)-\left[\begin{array}{ccc}6 & -6 & 0 \\ -4 & 2 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}6 & -4 & 2 \\ -4 & 2 & -2\end{array}\right]-\left[\begin{array}{ccc}6 & -6 & 0 \\ -4 & 2 & 1\end{array}\right]$
$B=\left[\begin{array}{ccc}0 & 2 & 2 \\ 0 & 0 & -3\end{array}\right]$
Conclusion: $\mathrm{A}=\left[\begin{array}{ccc}3 & -2 & 1 \\ -2 & 1 & -1\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}0 & 2 & 2 \\ 0 & 0 & -3\end{array}\right]$
(GIVEN ANSWER IS WRONG for question 8)
9. Question

Find matrix X, if $\left[\begin{array}{rrr}3 & 5 & -9 \\ -1 & 4 & -7\end{array}\right]+X=\left[\begin{array}{lll}6 & 2 & 3 \\ 4 & 8 & 6\end{array}\right]$.

Answer

Given $\left[\begin{array}{ccc}3 & 5 & -9 \\ -1 & 4 & -7\end{array}\right]+x=\left[\begin{array}{lll}6 & 2 & 3 \\ 4 & 8 & 6\end{array}\right]$
$x=\left[\begin{array}{lll}6 & 2 & 3 \\ 4 & 8 & 6\end{array}\right]-\left[\begin{array}{ccc}3 & 5 & -9 \\ -1 & 4 & -7\end{array}\right]$
$=\left[\begin{array}{ccc}3 & -3 & 12 \\ 5 & 4 & 13\end{array}\right]$
Conclusion : $x=\left[\begin{array}{ccc}3 & -3 & 12 \\ 5 & 4 & 13\end{array}\right]$

10. Question

If $A=\left[\begin{array}{cc}-2 & 3 \\ 4 & 5 \\ 1 & -6\end{array}\right]$ and $B=\left[\begin{array}{cc}5 & 2 \\ -7 & 3 \\ 6 & 4\end{array}\right]$, find a matrix 0 such that $A+B-C=0$.

Answer

Given $A+B-C=0$
$\left[\begin{array}{cc}-2 & 3 \\ 4 & 5 \\ 1 & -6\end{array}\right]+\left[\begin{array}{cc}5 & 2 \\ -7 & 3 \\ 6 & 4\end{array}\right]-C=0$
$C=\left[\begin{array}{cc}-2 & 3 \\ 4 & 5 \\ 1 & -6\end{array}\right]+\left[\begin{array}{cc}5 & 2 \\ -7 & 3 \\ 6 & 4\end{array}\right]$
$C=\left[\begin{array}{cc}3 & 5 \\ -3 & 8 \\ 7 & -2\end{array}\right]$
Conclusion: $C=\left[\begin{array}{cc}3 & 5 \\ -3 & 8 \\ 7 & -2\end{array}\right]$

11. Question

Find the matrix X such that $2 A-B+X=O$,
where $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 1 \\ 0 & 3\end{array}\right]$.

Answer

Given $2 \mathrm{~A}-\mathrm{B}+\mathrm{X}=0$
$2\left(\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]\right)-\left[\begin{array}{cc}-2 & 1 \\ 0 & 3\end{array}\right]+X=0$
$X=\left[\begin{array}{cc}-2 & 1 \\ 0 & 3\end{array}\right]-2\left(\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]\right)$
$=\left[\begin{array}{cc}-2 & 1 \\ 0 & 3\end{array}\right]-\left[\begin{array}{ll}6 & 2 \\ 0 & 4\end{array}\right]$
$=\left[\begin{array}{cc}-8 & -1 \\ 0 & -1\end{array}\right]$
Conclusion: $X=\left[\begin{array}{cc}-8 & -1 \\ 0 & -1\end{array}\right]$

12. Question

If $A=\left[\begin{array}{rrr}1 & -3 & 2 \\ 2 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1\end{array}\right]$, find a matrix C such that $(A+B+C)$ is a zero matrix.

Answer

Given $A+B+C$ is zero matrix i.e $A+B+C=0$
$\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 0 & 2\end{array}\right]+\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1\end{array}\right]+C=0$
$C=-\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 0 & 2\end{array}\right]-\left[\begin{array}{ccc}2 & -1 & -1 \\ 1 & 0 & -1\end{array}\right]$
$=\left[\begin{array}{lll}-3 & 4 & -1 \\ -3 & 0 & -1\end{array}\right]$
Conclusion: $C=\left[\begin{array}{lll}-3 & 4 & -1 \\ -3 & 0 & -1\end{array}\right]$

13. Question

If $A=\operatorname{diag}[2,-5,9], B=\operatorname{diag}[-3,7,14]$ and $C=\operatorname{diag}[4,-6,3]$, find:
(i) $A+2 B$
(ii) $B+C-A$

Answer

If $Z=\operatorname{diag}[a, b, c]$, then we can write it as
$Z=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$
So, $A+2 B=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9\end{array}\right]+2\left(\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 14\end{array}\right]\right)$
$=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9\end{array}\right]+\left[\begin{array}{ccc}-6 & 0 & 0 \\ 0 & 14 & 0 \\ 0 & 0 & 28\end{array}\right]$
$=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 37\end{array}\right]$
$=\operatorname{diag}[4,9,37]$
Conclusion: $\mathrm{A}+2 \mathrm{~B}=\operatorname{diag}[4,9,37]$
(Given answer is wrong)
ii. $B+C-A$

If $Z=\operatorname{diag}[a, b, c]$, then we can write it as
$Z=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$
$B+C-A=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 14\end{array}\right]+\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3\end{array}\right]-\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9\end{array}\right]$
$=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 8\end{array}\right]$
$=\operatorname{diag}[-1,6,8]$
Conclusion: $\mathrm{B}+\mathrm{C}-\mathrm{A}=\operatorname{diag}[-1,6,8]$
iii. $2 A+B-5 C$

If $Z=\operatorname{diag}[a, b, c]$, then we can write it as
$Z=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$
$2 A+B-5 C=2\left(\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 9\end{array}\right]\right)+\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 14\end{array}\right]-5\left(\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 3\end{array}\right]\right)$
$=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & 18\end{array}\right]+\left[\begin{array}{ccc}-3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 14\end{array}\right]-\left[\begin{array}{ccc}20 & 0 & 0 \\ 0 & -30 & 0 \\ 0 & 0 & 15\end{array}\right]$
$=\left[\begin{array}{ccc}-19 & 0 & 0 \\ 0 & 27 & 0 \\ 0 & 0 & 17\end{array}\right]$
$=\operatorname{diag}[-19,27,17]$
Conclusion: $2 \mathrm{~A}+\mathrm{B}-5 \mathrm{C}=\operatorname{diag}[-19,27,17]$
(Given answer is wrong)

14. Question

Find the value of x and y, when
i. $\left[\begin{array}{l}x+y \\ x-y\end{array}\right]=\left[\begin{array}{l}8 \\ 4\end{array}\right]$

Answer

If $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$,
Then $a=e, b=f, c=g, d=h$
Given $\left[\begin{array}{l}x+y \\ x-y\end{array}\right]=\left[\begin{array}{l}8 \\ 4\end{array}\right]$
So, $x+y=8$ and $x-y=4$
Adding these two gives $2 \mathrm{x}=12$
$\Rightarrow x=6$
$y=2$
Conclusion : $\mathrm{x}=6$ and $\mathrm{y}=2$
ii. $\left[\begin{array}{cc}2 x+5 & 7 \\ 0 & 3 y-7\end{array}\right]=\left[\begin{array}{cc}x-3 & 7 \\ 0 & -5\end{array}\right]$

Given, $\left[\begin{array}{cc}2 x+5 & 7 \\ 0 & 3 y-7\end{array}\right]=\left[\begin{array}{cc}x-3 & 7 \\ 0 & -5\end{array}\right]$
So, $2 x+5=x-3$ and $3 y-7=-5$
$\Rightarrow 3 y=2 \Rightarrow y=\frac{2}{3}$
$\Rightarrow 2 x+5=x-3 \Rightarrow x=-8$

Conclusion : $\mathrm{x}=-8$ and $\mathrm{y}=\frac{2}{3}$
iii. $2\left[\begin{array}{cc}\mathrm{x} & 5 \\ 7 & \mathrm{y}-3\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
$2\left[\begin{array}{cc}x & 5 \\ 7 & y-3\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
$\left[\begin{array}{cc}2 x+3 & 6 \\ 15 & 2 y-4\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
$2 \mathrm{x}+3=7 \Rightarrow x=2$
$2 \mathrm{y}-4=14 \Rightarrow y=9$
Conclusion: $\mathrm{x}=2$ and $\mathrm{y}=9$
(Given answer is wrong)

15. Question

Find the value of $(x+y)$ from the following equation :
$2\left[\begin{array}{ll}1 & 3 \\ 0 & \mathrm{x}\end{array}\right]+\left[\begin{array}{ll}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

Answer

Given
$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
$\left[\begin{array}{cc}2 & 6 \\ 0 & 2 x\end{array}\right]+\left[\begin{array}{cc}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
$\left[\begin{array}{cc}2+y & 6 \\ 1 & 2 x+2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
So, $2+y=5$ and $2 x+2=8$
i.e $y=3$ and $x=3$

Therefore, $x+y=6$
Conclusion: Therefore $x+y=6$

16. Question

If $\left[\begin{array}{cc}x-y & 2 y \\ 2 y+z & x+y\end{array}\right]=\left[\begin{array}{cc}1 & 4 \\ 9 & 5\end{array}\right]$ then write the value of $(x+y)$.

Answer

If $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$,
Then $a=e, b=f, c=g, d=h$
Given, $\left[\begin{array}{cc}x-y & 2 y \\ 2 y+z & x+y\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 9 & 5\end{array}\right]$,
So, $x-y=1, x+y=5,2 y=4$ and $2 y+z=9$
Therefore, $x+y=5$
Conclusion: $x+y=5$
(Given answer is wrong)

Exercise 5C

1 A. Question

Compute $A B$ and $B A$, which ever exists when
$A=\left[\begin{array}{cc}2 & -1 \\ 3 & 0 \\ -1 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 3 \\ 0 & 4\end{array}\right]$

Answer

Given : $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 0 \\ -1 & 4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}-2 & 3 \\ 0 & 4\end{array}\right]$
Matrix A is of order 3×2, and Matrix B is of order 2×2
To find : matrix $A B$ and $B A$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a
For matrix $A B, a=3, b=c=2, d=2$,thus matrix $A B$ is of order 3×2
Matrix $A B=\left[\begin{array}{cc}2 & -1 \\ 3 & 0 \\ -1 & 4\end{array}\right] \times\left[\begin{array}{cc}-2 & 3 \\ 0 & 4\end{array}\right]=\left[\begin{array}{cc}2(-2)+(-1)(0) & 2(3)+(-1)(4) \\ 3(-2)+0(0) & 3(3)+0(4) \\ -1(-2)+4(0) & -1(3)+4(4)\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}-4+0 & 6-4 \\ -6+0 & 9+0 \\ 2+0 & -3+16\end{array}\right]=\left[\begin{array}{cc}-4 & 2 \\ -6 & 9 \\ 2 & 13\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}-4 & 2 \\ -6 & 9 \\ 2 & 13\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}-4 & 2 \\ -6 & 9 \\ 2 & 13\end{array}\right]$
For matrix $B A, a=3, b=c=2, d=2$,thus matrix $B A$ exists, if and only if $d=a$
But $3 \neq 2$
Thus matrix BA does not exist

1 B. Question

Compute $A B$ and $B A$, which ever exists when
$\mathrm{A}=\left[\begin{array}{ll}-1 & 1 \\ -2 & 2 \\ -3 & 3\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}3 & -2 & 1 \\ 0 & 1 & 2 \\ -3 & 4 & -5\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{ll}-1 & 1 \\ -2 & 2 \\ -3 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -2 & 1 \\ 0 & 1 & 2 \\ -3 & 4 & -5\end{array}\right]$
Matrix A is of order 3×2, and Matrice B is of order 3×3
To find : matrix $A B$ and $B A$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrice of order $c \times d$, then matrice $A B$ exists and is of order $a \times d$, if and only if b = C

If A is a matrix of order $a \times b$ and B is a matrice of order $c \times d$, then matrice BA exists and is of order $c \times b$, if and only if d $=\mathrm{a}$

For matrix $A B, a=3, b=2, c=3, d=3$, thus matrix $A B$ does not exist, as $d \neq a$
But $2 \neq 3$
Thus matrix $A B$ does not exist
For matrix $B A, a=3, b=2, c=3, d=3$,thus matrix $B A$ is of order 3×2
as $d=a=3$
Matrix BA $=\left[\begin{array}{ccc}3 & -2 & 1 \\ 0 & 1 & 2 \\ -3 & 4 & -5\end{array}\right] \times\left[\begin{array}{ll}-1 & 1 \\ -2 & 2 \\ -3 & 3\end{array}\right]=\left[\begin{array}{cc}3(-1)-2(-2)+1(-3) & 3(1)-2(2)+1(3) \\ 0(-1)+1(-2)+2(-3) & 0(1)+1(2)+2(3) \\ -3(-1)+4(-2)-5(-3) & -3(1)+4(2)-5(3)\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{cc}-3+4-3 & 3-4+3 \\ 0-2-6 & 0+2+6 \\ 3-8+15 & -3+8-15\end{array}\right]=\left[\begin{array}{cc}-2 & 2 \\ -8 & 8 \\ 10 & -10\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{cc}-2 & 2 \\ -8 & 8 \\ 10 & -10\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{cc}-2 & 2 \\ -8 & 8 \\ 10 & -10\end{array}\right]$

1 C. Question

Compute $A B$ and $B A$, which ever exists when
$A=\left[\begin{array}{rrr}0 & 1 & -5 \\ 2 & 4 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 3 \\ -1 & 0 \\ 0 & 5\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{rrr}0 & 1 & -5 \\ 2 & 4 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 3 \\ -1 & 0 \\ 0 & 5\end{array}\right]$
Matrix A is of order 2×3 and Matrix B is of order 3×2
To find : matrices $A B$ and $B A$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots . .+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a

For matrix $A B, a=2, b=3, c=3, d=2$,matrix $A B$ exists and is of order $2 \times 2, a s$)
$\mathrm{b}=\mathrm{c}=3$
Matrix $A B=\left[\begin{array}{ccc}0 & 1 & -5 \\ 2 & 4 & 0\end{array}\right] \times\left[\begin{array}{cc}1 & 3 \\ -1 & 0 \\ 0 & 5\end{array}\right]=\left[\begin{array}{ll}0(1)+1(-1)-5(0) & 0(3)+1(0)-5(5) \\ 2(1)+4(-1)+0(0) & 2(3)+4(0)+0(5)\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}0-1-0 & 0+0-25 \\ 2-4+0 & 6+0+0\end{array}\right]=\left[\begin{array}{cc}-1 & -25 \\ -2 & 6\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}-1 & -25 \\ -2 & 6\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}-1 & -25 \\ -2 & 6\end{array}\right]$
For matrix $B A, a=2, b=3, c=3, d=2$, matrix $B A$ exists and is of order 3×3,as
$\mathrm{d}=\mathrm{a}=2$
Matrix $B A=\left[\begin{array}{cc}1 & 3 \\ -1 & 0 \\ 0 & 5\end{array}\right] \times\left[\begin{array}{ccc}0 & 1 & -5 \\ 2 & 4 & 0\end{array}\right]=\left[\begin{array}{ccc}1(0)+3(2) & 1(1)+3(4) & 1(-5)+3(0) \\ -1(0)+0(2) & -1(1)+0(4) & -1(-5)+0(0) \\ 0(0)+5(2) & 0(1)+5(4) & 0(-5)+5(0)\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{ccc}0+6 & 1+12 & -5+0 \\ 0+0 & -1+0 & 5+0 \\ 0+10 & 0+20 & 0+0\end{array}\right]$
Matrix $B A=\left[\begin{array}{ccc}6 & 13 & -5 \\ 0 & -1 & 5 \\ 10 & 20 & 0\end{array}\right]$
Matrix $B A=\left[\begin{array}{ccc}6 & 13 & -5 \\ 0 & -1 & 5 \\ 10 & 20 & 0\end{array}\right]$

1 D. Question

Compute $A B$ and $B A$, which ever exists when
$A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$
Matrix A is of order 1×4 and Matrix B is of order 4×1
To find : matrices $A B$ and $B A$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $C \times d$, then matrix $B A$ exists and is of order $C \times b$, if and only if $d=$ a

For matrix $A B, a=1, b=4, c=4, d=1$, matrix $A B$ exists and is of order 1×1,as
$\mathrm{b}=\mathrm{c}=4$
Matrix $A B=\left[\begin{array}{lll}1 & 23 & 4\end{array}\right] \times\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=[1(1)+2(2)+3(3)+4(4)]$
Matrix $A B=[1+4+9+16]=[30]$
Matrix AB = [30]
Matrix AB $=[30]$
For matrix $B A, a=1, b=4, c=4, d=1$,matrix $B A$ exists and is of order $4 \times 4, a s$
$\mathrm{d}=\mathrm{a}=1$
Matrix $B A=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] \times\left[\begin{array}{lll}1 & 23 & 4\end{array}\right]=\left[\begin{array}{l}1(1) 1(2) 1(3) 1(4) \\ 2(1) 2(2) 2(3) 2(4) \\ 3(1) 3(2) 3(3) 3(4) \\ 4(1) 4(2) 4(3) 4(4)\end{array}\right]$
Matrix $B A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16\end{array}\right]$

Matrix $B A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16\end{array}\right]$

1 E. Question

Compute $A B$ and $B A$, which ever exists when
$A=\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]$
Matrix A is of order 3×2 and Matrix B is of order 2×3
To find : matrices $A B$ and $B A$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $\ldots+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a

For matrix $A B, a=3, b=2, c=2, d=3$, matrix $A B$ exists and is of order $3 \times 3, a s$
$\mathrm{b}=\mathrm{c}=2$
Matrix $A B=\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right] \times\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}2(1)+1(-1) & 2(0)+1(2) & 2(1)+1(1) \\ 3(1)+2(-1) & 3(0)+2(2) & 3(1)+2(1) \\ -1(1)+1(-1) & -1(0)+1(2) & -1(1)+1(1)\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}2-1 & 0+2 & 2+1 \\ 3-2 & 0+4 & 3+2 \\ -1-1 & 0+2 & -1+1\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0\end{array}\right]$
For matrix $B A, a=3, b=2, c=2, d=3$,matrix $B A$ exists and is of order 2×2,as
$d=a=3$
Matrix $B A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1\end{array}\right] \times\left[\begin{array}{cc}2 & 1 \\ 3 & 2 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1(2)+0(3)+1(-1) & 1(1)+0(2)+1(1) \\ -1(2)+2(3)+1(-1) & -1(1)+2(2)+1(1)\end{array}\right]$

Matrix $B A=\left[\begin{array}{cc}2+0-1 & 1+0+1 \\ -2+6-1 & -1+4+1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Matrix $B A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
Matrix $B A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

2 A. Question

Show that $A B \neq B A$ in each of the following cases:
$A=\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$
Matrix A is of order 2×2 and Matrix B is of order 2×2
To show : matrix $A B \neq B A$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $\ldots+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a

For matrix $A B, a=2, b=c=2, d=2$, thus matrix $A B$ is of order 2×2
Matrix $A B=\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right] \times\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}5(2)-1(3) & 5(1)-1(4) \\ 6(2)+7(3) & 6(1)+7(4)\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}10-3 & 5-4 \\ 12+21 & 6+28\end{array}\right]=\left[\begin{array}{cc}7 & 1 \\ 33 & 34\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}7 & 1 \\ 33 & 34\end{array}\right]$
For matrix $B A, a=2, b=c=2, d=2$, thus matrix $B A$ is of order 2×2
Matrix $\mathrm{BA}=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right] \times\left[\begin{array}{cc}5 & -1 \\ 6 & 7\end{array}\right]=\left[\begin{array}{ll}2(5)+1(6) & 2(-1)+1(7) \\ 3(5)+4(6) & 3(-1)+4(7)\end{array}\right]$
Matrix $B A=\left[\begin{array}{cc}10+6 & -2+7 \\ 15+24 & -3+28\end{array}\right]=\left[\begin{array}{cc}16 & 5 \\ 39 & 25\end{array}\right]$
Matrix $B A=\left[\begin{array}{cc}16 & 5 \\ 39 & 25\end{array}\right]$
Matrix $B A=\left[\begin{array}{cc}16 & 5 \\ 39 & 25\end{array}\right]$ and Matrix $A B=\left[\begin{array}{cc}7 & 1 \\ 33 & 34\end{array}\right]$
Matrix $A B \neq B A$

2 B. Question

Show that $A B \neq B A$ in each of the following cases:
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right]$
Matrix A is of order 3×3, and Matrix B is of order 3×3
To show : matrix $A B \neq B A$

The formula used :

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right]
$$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $C \times b$, if and only if $d=$ a

For matrix $A B, a=3, b=c=3, d=3$, thus matrix $A B$ is of order 3×3
Matrix $A B=$
$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right] \times\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right]$
$=\left[\begin{array}{lll}1(-1)+2(0)+3(2) & 1(1)+2(-1)+3(3) & 1(0)+2(1)+3(4) \\ 0(-1)+1(0)+0(2) & 0(1)+1(-1)+0(3) & 0(0)+1(1)+0(4) \\ 1(-1)+1(0)+0(2) & 1(1)+1(-1)+0(3) & 1(0)+1(1)+0(4)\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}-1+0+6 & 1-2+9 & 0+2+12 \\ 0+0+0 & 0-1+0 & 0+1+0 \\ -1+0+0 & 1-1+0 & 0+1+0\end{array}\right]=\left[\begin{array}{ccc}5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1\end{array}\right]$
For matrix $B A, a=3, b=c=3, d=3$,thus matrix $A B$ is of order 3×3
Matrix BA=
$\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{array}\right] \times\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]=\left[\begin{array}{ccc}-1(1)+1(0)+0(1) & -1(2)+1(1)+0(1) & -1(3)+1(0)+0(0) \\ 0(1)-1(0)+1(1) & 0(2)-1(1)+1(1) & 0(3)-1(0)+1(0) \\ 2(1)+3(0)+4(1) & 2(2)+3(1)+4(1) & 2(3)+3(0)+4(0)\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{ccc}-1+0+0 & -2+1+0 & -3+0+0 \\ 0-1+1 & 0-1+1 & 0+0+0 \\ 2+0+4 & 4+3+4 & 6+0+0\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & -3 \\ 0 & 0 & 0 \\ 6 & 11 & 6\end{array}\right]$
Matrix $B A=\left[\begin{array}{ccc}-1 & -1 & -3 \\ 0 & 0 & 0 \\ 6 & 11 & 6\end{array}\right]$
Matrix $B A=\left[\begin{array}{ccc}-1 & -1 & -3 \\ 0 & 0 & 0 \\ 6 & 11 & 6\end{array}\right]$ and Matrix $A B=\left[\begin{array}{ccc}5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1\end{array}\right]$
Matrix $A B \neq B A$

3 A. Question

Show that $A B=B A$ in each of the following cases:
$\mathrm{A}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$

Answer

Given : $\mathrm{A}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$
Matrix A is of order 2×2 and Matrix B is of order 2×2
To show : matrix $\mathrm{AB}=\mathrm{BA}$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$,then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a

For matrix $A B, a=2, b=c=2, d=2$,thus matrix $A B$ is of order 2×2
Matrix $A B=$
$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \times\left[\begin{array}{cc}\cos \emptyset & -\sin \varnothing \\ \sin \emptyset & \cos \emptyset\end{array}\right]$

$$
=\left[\begin{array}{ll}
\cos \theta \cos \emptyset-\sin \theta \sin \varnothing & -\cos \theta \sin \varnothing-\sin \theta \sin \varnothing \\
\sin \theta \cos \varnothing+\cos \theta \sin \varnothing & -\sin \theta \sin \varnothing+\cos \theta \cos \varnothing
\end{array}\right]
$$

Matrix $A B=\left[\begin{array}{ll}\cos \theta \cos \emptyset-\sin \theta \sin \varnothing & -\cos \theta \sin \varnothing-\sin \theta \sin \varnothing \\ \sin \theta \cos \emptyset+\cos \theta \sin \emptyset & -\sin \theta \sin \varnothing+\cos \theta \cos \emptyset\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}\cos \theta \cos \emptyset-\sin \theta \sin \varnothing & -\cos \theta \sin \varnothing-\sin \theta \sin \varnothing \\ \sin \theta \cos \emptyset+\cos \theta \sin \emptyset & -\sin \theta \sin \emptyset+\cos \theta \cos \emptyset\end{array}\right]$
For matrix $B A, a=2, b=c=2, d=2$, thus matrix $B A$ is of order 2×2
Matrix BA=
$\left[\begin{array}{cc}\cos \emptyset & -\sin \varnothing \\ \sin \emptyset & \cos \emptyset\end{array}\right] \times\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

$$
=\left[\begin{array}{ll}
\cos \emptyset \cos \theta-\sin \emptyset \sin \theta & -\cos \emptyset \sin \theta-\sin \emptyset \cos \theta \\
\sin \emptyset \cos \theta+\cos \emptyset \sin \theta & -\sin \emptyset \sin \theta+\cos \emptyset \cos \theta
\end{array}\right]
$$

Matrix BA $=\left[\begin{array}{ll}\cos \theta \cos \emptyset-\sin \theta \sin \emptyset & -\cos \theta \sin \varnothing-\sin \theta \sin \varnothing \\ \sin \theta \cos \emptyset+\cos \theta \sin \emptyset & -\sin \theta \sin \varnothing+\cos \theta \cos \emptyset\end{array}\right]$
Matrix $B A=$ Matrix $A B=\left[\begin{array}{ll}\cos \theta \cos \emptyset-\sin \theta \sin \varnothing & -\cos \theta \sin \varnothing-\sin \theta \sin \varnothing \\ \sin \theta \cos \emptyset+\cos \theta \sin \emptyset & -\sin \theta \sin \varnothing+\cos \theta \cos \emptyset\end{array}\right]$
Thus Matrix $A B=B A$

3 B. Question

Show that $A B=B A$ in each of the following cases:
$A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1\end{array}\right]$
Matrix A is of order 3×3 and Matrix B is of order 3×3
To show : matrix $A B \neq B A$

Formula used :

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right]
$$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a

For matrix $A B, a=3, b=c=3, d=3$, thus matrix $A B$ is of order 3×3
Matrix $A B=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2\end{array}\right] \times\left[\begin{array}{ccc}10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1\end{array}\right]=$
$\left[\begin{array}{lll}1(10)+2(-11)+1(-9) & 1(-4)+2(5)+1(-5) & 1(-1)+2(0)+1(1) \\ 3(10)+4(-11)+2(-9) & 3(-4)+4(5)+2(-5) & 3(-1)+4(0)+2(1) \\ 1(10)+3(-11)+2(-9) & 1(-4)+3(5)+2(-5) & 1(-1)+3(0)+2(1)\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}10-22-9 & -4+10-5 & -1+0+1 \\ 30-44-18 & -12+20-10 & -3+0+2 \\ 10-33-18 & -4+15-10 & -1+0+2\end{array}\right]=\left[\begin{array}{ccc}-3 & 1 & 0 \\ -32 & -2 & -1 \\ -41 & 1 & 1\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}-3 & 1 & 0 \\ -32 & -2 & -1 \\ -41 & 1 & 1\end{array}\right]$
For matrix $B A, a=3, b=c=3, d=3$, thus matrix $A B$ is of order 3×3
Matrix $B A=$
$\left[\begin{array}{ccc}10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1\end{array}\right] \times\left[\begin{array}{ccc}1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2\end{array}\right]=\left[\begin{array}{ccc}10(1)-4(3)-1(1) & 10(2)-4(4)-1(3) & 10(1)-4(2)-1(2) \\ -11(1)+5(3)+0(1) & -11(2)+5(4)+0(3) & -11(1)+5(2)+0(2) \\ 9(1)-5(3)+1(1) & 9(2)-5(4)+1(3) & 9(1)-5(2)+1(2)\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{ccc}10-12-1 & 20-16-3 & 10-8-2 \\ -11+15+0 & -22+20+0 & -11+10+0 \\ 9-15+1 & 18-20+3 & 9-10+2\end{array}\right]=\left[\begin{array}{ccc}-3 & 1 & 0 \\ -4 & -2 & -1 \\ -5 & 1 & 1\end{array}\right]$
Matrix $A B \neq B A$

3 C. Question

Show that $A B=B A$ in each of the following cases:
$A=\left[\begin{array}{lll}1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{lll}1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4\end{array}\right]$
Matrix A is of order 3×3 and Matrix B is of order 3×3
To show : matrix $\mathrm{AB}=\mathrm{BA}$

Formula used :
$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \times\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$
$=\left[\begin{array}{lll}a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\ a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\ a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}\end{array}\right]$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $C \times b$, if and only if $d=$ a

For matrix $A B, a=3, b=c=3, d=3$, thus matrix $A B$ is of order 3×3
Matrix $A B=\left[\begin{array}{lll}1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1\end{array}\right] \times\left[\begin{array}{lll}-2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4\end{array}\right]=$
$\left[\begin{array}{lll}1(-2)+3(-1)-1(-6) & 1(3)+3(2)-1(9) & 1(-1)+3(-1)-1(-4) \\ 2(-2)+2(-1)-1(-6) & 2(3)+2(2)-1(9) & 2(-1)+2(-1)-1(-4) \\ 3(-2)+0(-1)-1(-6) & 3(3)+0(2)-1(9) & 3(-1)+0(-1)-1(-4)\end{array}\right]$
Matrix $A B=\left[\begin{array}{lll}-2-3+6 & 3+6-9 & -1-3+4 \\ -4-2+6 & 6+4-9 & -2-2+4 \\ -6+0+6 & 9+0-9 & -3+0+4\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Matrix $A B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
For matrix $B A, a=3, b=c=3, d=3$, thus matrix $A B$ is of order 3×3
Matrix $B A=\left[\begin{array}{lll}-2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4\end{array}\right] \times\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & 2 & -1 \\ 3 & 0 & -1\end{array}\right]$
Matrix $B A=\left[\begin{array}{lll}-2(1)+3(2)-1(3) & -2(3)+3(2)-1(0) & -2(-1)+3(-1)-1(-1) \\ -1(1)+2(2)-1(3) & -1(3)+2(2)-1(0) & -1(-1)+2(-1)-1(-1) \\ -6(1)+9(2)-4(3) & -6(3)+9(2)-4(0) & -6(-1)+9(-1)-4(-1)\end{array}\right]$
Matrix $B A=\left[\begin{array}{ccc}-2+6-3 & -6+6+0 & 2-3+1 \\ -1+2-3 & -3+4+0 & 1-2+1 \\ -6+18-12 & -18+18+0 & 6-9+4\end{array}\right]$
Matrix $B A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Matrix $A B=$ Matrix $B A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

4. Question

If $A=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$, shown that $A B=A$ and $B A=B$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$,
Matrix A is of order 3×3 and Matrix B is of order 3×3
To show : matrix $A B=A, B A=B$

Formula used :
$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \times\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$
$=\left[\begin{array}{lll}a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\ a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\ a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}\end{array}\right]$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $C \times b$, if and only if $d=$ a

For matrix $A B, a=3, b=c=3, d=3$,thus matrix $A B$ is of order 3×3
Matrix $A B=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right] \times\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]=$
$\left[\begin{array}{ccc}2(2)-3(-1)-5(1) & 2(-2)-3(3)-5(-2) & 2(-4)-3(4)-5(-3) \\ -1(2)+4(-1)+5(1) & -1(-2)+4(3)+5(-2) & -1(-4)+4(4)+5(-3) \\ 1(2)-3(-1)-4(1) & 1(-2)-3(3)-4(-2) & 1(-4)-3(4)-4(-3)\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}4+3-5 & -4-9+10 & -8-12+15 \\ -2-4+5 & +2+12-10 & 4+16-15 \\ 2+3-4 & -2-9+8 & -4-12+12\end{array}\right]=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]=$ Matrix A
Matrix $A B=$ Matrix A
For matrix $B A, a=3, b=c=3, d=3$,thus matrix $A B$ is of order 3×3
Matrix $\mathrm{BA}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right] \times\left[\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right]$
Matrix $B A=\left[\begin{array}{ccc}2(2)-2(-1)-4(1) & 2(-3)-2(4)-4(-3) & 2(-5)-2(5)-4(-4) \\ -1(2)+3(-1)+4(1) & -1(-3)+3(4)+4(-3) & -1(-5)+3(5)+4(-4) \\ 1(2)-2(-1)-3(1) & 1(-3)-2(4)-3(-3) & 1(-5)-2(5)-3(-4)\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{ccc}4+2-4 & -6-8+12 & -10-10+16 \\ -2-3+4 & +3+12-12 & +5+15-16 \\ 2+2-3 & -3-8+9 & -5-10+12\end{array}\right]=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$
Matrix $\mathrm{BA}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]=$ Matrix B
Matrix $B A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]=$ Matrix B
MATRIX AB $=A$ and MATRIX BA $=B$

5. Question

If $A=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$, show that $A B$ is a zero matrix.

Answer

Given : $A=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$
Matrix A is of order 3×3, matrix B is of order 3×3 and matrix C is of order 3×3
To show : $A B$ is a zero matrix

Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots . .+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a
$A B=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]\left[\begin{array}{ccc}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$
$A B$
$=\left[\begin{array}{ccc}0 \times a^{2}+c \times a b-b \times a c & 0 \times a b+c \times b^{2}-b \times b c & 0 \times a c+c \times b c-b \times c^{2} \\ -c \times a^{2}+0 \times a b+a \times a c & -c \times a b+0 \times b^{2}+a \times b c & -c \times a c+0 \times b c+a \times c^{2} \\ b \times a^{2}-a \times a b+\times a c & b \times a b-a \times b^{2}+\times b c & b \times a c-a \times b c+\times c^{2}\end{array}\right]$
$=\left[\begin{array}{ccc}a b c-a b c & b^{2} c-b^{2} c & b c^{2}-b c^{2} \\ -a^{2} c+a^{2} c & -a b c+a b c & -a c^{2}+a c^{2} \\ a^{2} b-a^{2} b & a b^{2}-a b^{2} & a b c-a b c\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$=0$ matrix
Hence, Proved

16 A. Question

For the following matrices, verify that $A(B C)=(A B) C$:
$A=\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 1 & 3\end{array}\right], B=\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 2\end{array}\right]$ and $C=\left[\begin{array}{c}1 \\ 4 \\ 5\end{array}\right]$

Answer

Given : $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 1 & 3\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 2\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right]$
Matrix A is of order 2×3, matrix B is of order 3×3 and matrix C is of order 3×1
To show : matrix $A(B C)=(A B) C$
Formula used :
row $i \leftrightharpoons\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] .\left[\begin{array}{ccc|c|cc}b_{11} & b_{12} & \ldots & b_{1 j} \\ \vdots & \vdots & \ddots & \vdots & b_{1 n} \\ \vdots & \ddots & \vdots \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} & \ldots & b_{i n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{n j}\end{array}\right]=\ldots$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots .+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a

For matrix $B C, a=3, b=c=3, d=1$, thus matrix $B C$ is of order 3×1
Matrix $\mathrm{BC}=\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 2\end{array}\right] \times\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right]=\left[\begin{array}{l}2(1)+3(4)+0(5) \\ 1(1)+0(4)+4(5) \\ 1(1)-1(4)+2(5)\end{array}\right]=\left[\begin{array}{l}2+12+0 \\ 1+0+20 \\ 1-4+10\end{array}\right]$
Matrix $B C=\left[\begin{array}{c}14 \\ 21 \\ 7\end{array}\right]$
For matrix $A(B C), a=2, b=c=3, d=1$,thus matrix $A(B C)$ is of order 2×1
Matrix $A(B C)=\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 1 & 3\end{array}\right] \times\left[\begin{array}{c}14 \\ 21 \\ 7\end{array}\right]=\left[\begin{array}{c}1(14)+2(21)+5(7) \\ 0(14)+1(21)+3(7)\end{array}\right]=\left[\begin{array}{c}14+42+35 \\ 0+21+21\end{array}\right]$
Matrix $A(B C)=\left[\begin{array}{l}91 \\ 42\end{array}\right]$
Matrix $A(B C)=\left[\begin{array}{l}91 \\ 42\end{array}\right]$
For matrix $A B, a=2, b=c=3, d=3$, thus matrix $B C$ is of order 2×3
Matrix $A B=\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 1 & 3\end{array}\right] \times\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 2\end{array}\right]$
Matrix $A B=\left[\begin{array}{lll}1(2)+2(1)+5(1) & 1(3)+2(0)+5(-1) & 1(0)+2(4)+5(2) \\ 0(2)+1(1)+3(1) & 0(3)+1(0)+3(-1) & 0(0)+1(4)+3(2)\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}2+2+5 & 3+0-5 & 0+8+10 \\ 0+1+3 & 0+0-3 & 0+4+6\end{array}\right]=\left[\begin{array}{ccc}9 & -2 & 18 \\ 4 & -3 & 10\end{array}\right]$
Matrix $A B=\left[\begin{array}{lll}9 & -2 & 18 \\ 4 & -3 & 10\end{array}\right]$
For matrix $(A B) C, a=2, b=c=3, d=1$,thus matrix $(A B) C$ is of order 2×1
Matrix $(A B) C=\left[\begin{array}{lll}9 & -2 & 18 \\ 4 & -3 & 10\end{array}\right] \times\left[\begin{array}{l}1 \\ 4 \\ 5\end{array}\right]=\left[\begin{array}{l}9(1)-2(4)+18(5) \\ 4(1)-3(4)+10(5)\end{array}\right]$
Matrix (AB)C $=\left[\begin{array}{c}9-8+90 \\ 4-12+50\end{array}\right]=\left[\begin{array}{c}91 \\ 42\end{array}\right]$
Matrix (AB)C $=\left[\begin{array}{l}91 \\ 42\end{array}\right]$
Matrix $A(B C)=(A B) C=\left[\begin{array}{l}91 \\ 42\end{array}\right]$

6 B. Question

For the following matrices, verify that $A(B C)=(A B) C$:
$A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 3 & 0 & 2\end{array}\right], B=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & -2\end{array}\right]$

Answer

Given : $\mathrm{A}=\left[\begin{array}{rrr}2 & 3 & -1 \\ 3 & 0 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ll}1 & -2\end{array}\right]$
Matrix A is of order 2×3, matrix B is of order 3×1 and matrix C is of order 1×2
To show : matrix $A(B C)=(A B) C$
Formula used :
row $i \leftharpoonup\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] \cdot\left[\begin{array}{ccccc}b_{11} & b_{12} & \ldots & b_{1 j} & \ldots \\ \vdots & \vdots & \ddots & b_{1 n} \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} & \ldots \\ \vdots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{i n} \\ b_{n j} & \ldots & \vdots \\ b_{n n}\end{array}\right]=$

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \cdots & c_{1 j} & \cdots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{21} & c_{22} & \cdots & c_{i j} & \cdots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n j} & \cdots & c_{n n}
\end{array}\right] \quad \text { entry on row } i
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots \ldots+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a

For matrix $B C, a=3, b=c=1, d=2$, thus matrix $B C$ is of order 3×2
Matrix $B C=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right] \times\left[\begin{array}{ll}1 & -2\end{array}\right]=\left[\begin{array}{ll}1(1) & 1(-2) \\ 1(1) & 1(-2) \\ 2(1) & 2(-2)\end{array}\right]=\left[\begin{array}{ll}1 & -2 \\ 1 & -2 \\ 2 & -4\end{array}\right]$
Matrix $B C=\left[\begin{array}{ll}1 & -2 \\ 1 & -2 \\ 2 & -4\end{array}\right]$
For matrix $A(B C), a=2, b=c=3, d=2$,thus matrix $A(B C)$ is of order 2×2
Matrix $A(B C)=\left[\begin{array}{ccc}2 & 3 & -1 \\ 3 & 0 & 2\end{array}\right] \times\left[\begin{array}{ll}1 & -2 \\ 1 & -2 \\ 2 & -4\end{array}\right]=\left[\begin{array}{ll}2(1)+3(1)-1(2) & 2(-2)+3(-2)-1(-4) \\ 3(1)+0(1)+2(2) & 3(-2)+0(-2)+2(-4)\end{array}\right]$
Matrix $A(B C)=\left[\begin{array}{ll}2+3-2 & -4-6+4 \\ 3+0+4 & -6+0-8\end{array}\right]=\left[\begin{array}{cc}3 & -6 \\ 7 & -14\end{array}\right]$
Matrix $A(B C)=\left[\begin{array}{cc}3 & -6 \\ 7 & -14\end{array}\right]$
Matrix $A(B C)=\left[\begin{array}{cc}3 & -6 \\ 7 & -14\end{array}\right]$
For matrix $A B, a=2, b=c=3, d=1$, thus matrix $B C$ is of order 2×1
Matrix $A B=\left[\begin{array}{ccc}2 & 3 & -1 \\ 3 & 0 & 2\end{array}\right] \times\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}2(1)+3(1)-1(2) \\ 3(1)+0(1)+2(2)\end{array}\right]$
Matrix $A B=\left[\begin{array}{l}2+3-2 \\ 3+0+4\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$
Matrix $A B=\left[\begin{array}{l}3 \\ 7\end{array}\right]$

For matrix $(A B) C, a=2, b=c=1, d=2$, thus matrix $(A B) C$ is of order 2×2
Matrix (AB)C $=\left[\begin{array}{l}3 \\ 7\end{array}\right] \times\left[\begin{array}{ll}1 & -2\end{array}\right]=\left[\begin{array}{ll}3(1) & 3(-2) \\ 7(1) & 7(-2)\end{array}\right]=\left[\begin{array}{cc}3 & -6 \\ 7 & -14\end{array}\right]$
Matrix $(A B) C=\left[\begin{array}{cc}3 & -6 \\ 7 & -14\end{array}\right]$
Matrix $A(B C)=(A B) C=\left[\begin{array}{cc}3 & -6 \\ 7 & -14\end{array}\right]$

7 A. Question

Verify that $A(B+C)=(A B+A C)$, when
$\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}2 & 0 \\ 1 & -3\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}2 & 0 \\ 1 & -3\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$.
Matrix A is of order 2×2, matrix B is of order 2×2 and matrix C is of order 2×2
To verify: $A(B+C)=(A B+A C)$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots \ldots+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a
$B+C=\left[\begin{array}{cc}2 & 0 \\ 1 & -3\end{array}\right]+\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}2+1 & 0-1 \\ 1+0 & -3+1\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ 1 & -2\end{array}\right]$
$B+C=\left[\begin{array}{ll}3 & -1 \\ 1 & -2\end{array}\right]$
Matrix $A(B+C)$ is of order 2×2
$A(B+C)=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \times\left[\begin{array}{ll}3 & -1 \\ 1 & -2\end{array}\right]=\left[\begin{array}{ll}1(3)+2(1) & 1(-1)+2(-2) \\ 3(3)+4(1) & 3(-1)+4(-2)\end{array}\right]$
$A(B+C)=\left[\begin{array}{ll}3+2 & -1-4 \\ 9+4 & -3-8\end{array}\right]=\left[\begin{array}{cc}5 & -5 \\ 13 & -11\end{array}\right]$
$A(B+C)=\left[\begin{array}{cc}5 & -5 \\ 13 & -11\end{array}\right]$
For matrix $A B, a=b=c=d=2$, matrix $A B$ is of order 2×2
Matrix $A B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \times\left[\begin{array}{cc}2 & 0 \\ 1 & -3\end{array}\right]=\left[\begin{array}{ll}1(2)+2(1) & 1(0)+2(-3) \\ 3(2)+4(1) & 3(0)+4(-3)\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}2+2 & 0-6 \\ 6+4 & 0-12\end{array}\right]=\left[\begin{array}{cc}4 & -6 \\ 10 & -12\end{array}\right]$

Matrix $A B=\left[\begin{array}{cc}4 & -6 \\ 10 & -12\end{array}\right]$
For matrix $A C, a=b=c=d=2$, matrix $A C$ is of order 2×2
Matrix $A C=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \times\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1(1)+2(0) & 1(-1)+2(1) \\ 3(1)+4(0) & 3(-1)+4(1)\end{array}\right]$
Matrix $A C=\left[\begin{array}{ll}1+0 & -1+2 \\ 3+0 & -3+4\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right]$
Matrix AC $=\left[\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right]$
Matrix $A B+A C=\left[\begin{array}{cc}4 & -6 \\ 10 & -12\end{array}\right]+\left[\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}4+1 & -6+1 \\ 10+3 & -12+1\end{array}\right]=\left[\begin{array}{cc}5 & -5 \\ 13 & -11\end{array}\right]$
Matrix $A B+A C=A(B+C)=\left[\begin{array}{cc}5 & -5 \\ 13 & -11\end{array}\right]$
$A(B+C)=(A B+A C)$

7 B. Question

Verify that $A(B+C)=(A B+A C)$, when
$\mathrm{A}=\left[\begin{array}{cc}2 & 3 \\ -1 & 4 \\ 0 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}5 & -3 \\ 2 & 1\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right]$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{cc}2 & 3 \\ -1 & 4 \\ 0 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}5 & -3 \\ 2 & 1\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right]$.
Matrix A is of order 3×2, matrix B is of order 2×2 and matrix C is of order 2×2
To verify: $A(B+C)=(A B+A C)$
Formula used :
row $i \leftrightharpoons\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] .\left[\begin{array}{cccccc}b_{11} & b_{12} & \ldots & b_{n j} & \ldots & b_{1 n} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} & \ldots & b_{i n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{n j}\end{array}\right]=\ldots$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a
$B+C=\left[\begin{array}{cc}5 & -3 \\ 2 & 1\end{array}\right]+\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}5-1 & -3+2 \\ 2+3 & 1+4\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ 5 & 5\end{array}\right]$
$B+C=\left[\begin{array}{cc}4 & -1 \\ 5 & 5\end{array}\right]$
For Matrix $A(B+C), a=3, b=c=d=2$, thus matrix $A(B+C)$ is of order 3×2
$A(B+C)=\left[\begin{array}{cc}2 & 3 \\ -1 & 4 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{cc}4 & -1 \\ 5 & 5\end{array}\right]=\left[\begin{array}{cc}2(4)+3(5) & 2(-1)+3(5) \\ -1(4)+4(5) & -1(-1)+4(5) \\ 0(4)+1(5) & 0(-1)+1(5)\end{array}\right]$
$A(B+C)=\left[\begin{array}{cc}8+15 & -2+15 \\ -4+20 & 1+20 \\ 0+5 & 0+5\end{array}\right]=\left[\begin{array}{cc}23 & 13 \\ 16 & 21 \\ 5 & 5\end{array}\right]$
$A(B+C)=\left[\begin{array}{cc}23 & 13 \\ 16 & 21 \\ 5 & 5\end{array}\right]$
For matrix $A B, a=3, b=c=d=2$, matrix $A B$ is of order 3×2
Matrix $A B=\left[\begin{array}{cc}2 & 3 \\ -1 & 4 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{cc}5 & -3 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}2(5)+3(2) & 2(-3)+3(1) \\ -1(5)+4(2) & -1(-3)+4(1) \\ 0(5)+1(2) & 0(-3)+1(1)\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}10+6 & -6+3 \\ -5+8 & 3+4 \\ 0+2 & 0+1\end{array}\right]=\left[\begin{array}{cc}16 & -3 \\ 3 & 7 \\ 2 & 1\end{array}\right]$
Matrix $A B=\left[\begin{array}{cc}16 & -3 \\ 3 & 7 \\ 2 & 1\end{array}\right]$
For matrix $A C, a=3, b=c=d=2$, matrix $A C$ is of order 3×2
Matrix $A C=\left[\begin{array}{cc}2 & 3 \\ -1 & 4 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{cc}-1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}2(-1)+3(3) & 2(2)+3(4) \\ -1(-1)+4(3) & -1(2)+4(4) \\ 0(-1)+1(3) & 0(2)+1(4)\end{array}\right]$
Matrix $A C=\left[\begin{array}{cc}-2+9 & 4+12 \\ 1+12 & -2+16 \\ 0+3 & 0+4\end{array}\right]=\left[\begin{array}{cc}7 & 16 \\ 13 & 14 \\ 3 & 4\end{array}\right]$
Matrix AC $=\left[\begin{array}{cc}7 & 16 \\ 13 & 14 \\ 3 & 4\end{array}\right]$
Matrix $A B+A C=\left[\begin{array}{cc}16 & -3 \\ 3 & 7 \\ 2 & 1\end{array}\right]+\left[\begin{array}{cc}7 & 16 \\ 13 & 14 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}16+7 & 16-3 \\ 3+13 & 7+21 \\ 2+3 & 1+4\end{array}\right]=\left[\begin{array}{cc}23 & 13 \\ 16 & 21 \\ 5 & 5\end{array}\right]$
Matrix $A B+A C=A(B+C)=\left[\begin{array}{cc}23 & 13 \\ 16 & 21 \\ 5 & 5\end{array}\right]$
$A(B+C)=(A B+A C)$

8. Question

If $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1\end{array}\right], B=\left[\begin{array}{ccc}0 & 5 & -4 \\ -2 & 1 & 3 \\ 1 & 0 & 2\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$; verify that $A(B-C)=(A B-A C)$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}0 & 5 & -4 \\ -2 & 1 & 3 \\ 1 & 0 & 2\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ccc}1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$;
Matrix A is of order 3×3; matrix B is of order 3×3 and matrix C is of order 3×3
To verify: $A(B-C)=(A B-A C)$.

The formula used :

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right]
$$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $B A$ exists and is of order $c \times b$, if and only if $d=$ a
$B-C=\left[\begin{array}{ccc}0 & 5 & -4 \\ -2 & 1 & 3 \\ 1 & 0 & 2\end{array}\right]-\left[\begin{array}{ccc}1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]=\left[\begin{array}{ccc}0-1 & 5-5 & -4-2 \\ -2+1 & 1-1 & 3-0 \\ 1-0 & 0+1 & 2-1\end{array}\right]$
$B-C=\left[\begin{array}{ccc}-1 & 0 & -6 \\ -1 & 0 & 3 \\ 1 & 1 & 1\end{array}\right]$
For Matrix $A(B-C), a=3, b=c=d=3$,thus matrix $A(B+C)$ is of order 3×3
$A(B-C)=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1\end{array}\right] \times\left[\begin{array}{ccc}-1 & 0 & -6 \\ -1 & 0 & 3 \\ 1 & 1 & 1\end{array}\right]$
$A(B-C)=\left[\begin{array}{ccc}1(-1)+0(-1)-2(1) & 1(0)+0(0)-2(1) & 1(-6)+0(3)-2(1) \\ 3(-1)-1(-1)+0(1) & 3(0)-1(0)+0(1) & 3(-6)-1(3)+0(1) \\ -2(-1)+1(-1)+1(1) & -2(0)+1(0)+1(1) & -2(-6)+1(3)+1(1)\end{array}\right]$
$A(B-C)=\left[\begin{array}{ccc}-1+0-2 & 0+0-2 & -6+0-2 \\ -3+1+0 & 0+0+0 & -18-3+0 \\ 2-1+1 & 0+0+1 & 12+3+1\end{array}\right]=\left[\begin{array}{ccc}-3 & -2 & -8 \\ -2 & 0 & -21 \\ 2 & 1 & 16\end{array}\right]$
$A(B-C)=\left[\begin{array}{ccc}-3 & -2 & -8 \\ -2 & 0 & -21 \\ 2 & 1 & 16\end{array}\right]$
For matrix $A B, a=3, b=c=d=3$, matrix $A B$ is of order 3×3
Matrix $A B=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1\end{array}\right] \times\left[\begin{array}{ccc}0 & 5 & -4 \\ -2 & 1 & 3 \\ 1 & 0 & 2\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}1(0)+0(-2)-2(1) & 1(5)+0(1)-2(0) & 1(-4)+0(3)-2(2) \\ 3(0)-1(-2)+0(1) & 3(5)-1(1)+0(0) & 3(-4)-1(3)+0(2) \\ -2(0)+1(-2)+1(1) & -2(5)+1(1)+1(0) & -2(-4)+1(3)+1(2)\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}0+0-2 & 5+0+0 & -4+0-4 \\ 0+2+0 & 15-1+0 & -12-3+0 \\ 0-2+1 & -10+1+0 & 8+3+2\end{array}\right]=\left[\begin{array}{ccc}-2 & 5 & -8 \\ 2 & 14 & -15 \\ -1 & -9 & 13\end{array}\right]$
Matrix $A B=\left[\begin{array}{ccc}-2 & 5 & -8 \\ 2 & 14 & -15 \\ -1 & -9 & 13\end{array}\right]$
For matrix $A C, a=3, b=c=d=3$, matrix $A C$ is of order 3×3
Matrix $A C=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1\end{array}\right] \times\left[\begin{array}{ccc}1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$
Matrix $A C=\left[\begin{array}{ccc}1(1)+0(-1)-2(0) & 1(5)+0(1)-2(-1) & 1(2)+0(0)-2(1) \\ 3(1)-1(-1)+0(0) & 3(5)-1(1)+0(-1) & 3(2)-1(0)+0(1) \\ -2(1)+1(-1)+1(0) & -2(5)+1(1)+1(-1) & -2(2)+1(0)+1(1)\end{array}\right]$
Matrix $A C=\left[\begin{array}{ccc}1+0+0 & 5+0+2 & 2+0-2 \\ 3+1+0 & 15+1+0 & 6+0+0 \\ -2-1+0 & -10+1-1 & -4+0+1\end{array}\right]=\left[\begin{array}{ccc}1 & 7 & 0 \\ 4 & 16 & 6 \\ -3 & -10 & -3\end{array}\right]$
Matrix AC $=\left[\begin{array}{ccc}1 & 7 & 0 \\ 4 & 16 & 6 \\ -3 & -10 & -3\end{array}\right]$
Matrix $A B-A C=\left[\begin{array}{ccc}-2 & 5 & -8 \\ 2 & 14 & -15 \\ -1 & -9 & 13\end{array}\right]-\left[\begin{array}{ccc}1 & 7 & 0 \\ 4 & 16 & 6 \\ -3 & -10 & -3\end{array}\right]=\left[\begin{array}{ccc}-2-1 & 5-7 & -8-0 \\ 2-4 & 14-16 & -15-6 \\ -1+3 & -9+10 & 13+3\end{array}\right]$
Matrix $A B-A C=\left[\begin{array}{ccc}-3 & -2 & -8 \\ -2 & 0 & -21 \\ 2 & 1 & 16\end{array}\right]$
$A(B-C)=(A B-A C)=\left[\begin{array}{ccc}-3 & -2 & -8 \\ -2 & 0 & -21 \\ 2 & 1 & 16\end{array}\right]$

9. Question

If $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$, show that $A^{2}=0$.

Answer

Given : $A=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$,
Matrix A is of order 2×2
To show : $\mathrm{A}^{2}=0$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots \ldots+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c
$A^{2}=\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right] \times\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]=\left[\begin{array}{cc}a b(a b)+b^{2}\left(-a^{2}\right) & a b\left(b^{2}\right)+b^{2}(-a b) \\ -a^{2}(a b)-a b\left(-a^{2}\right) & -a^{2}\left(b^{2}\right)-a b(-a b)\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}a^{2} b^{2}-a^{2} b^{2} & a b^{3}-a b^{3} \\ -a^{3} b+a^{3} b & -a^{2} b^{2}+a^{2} b^{2}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$A^{2}=0$

10. Question

If $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$, show that $A^{2}=A$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$,
Matrix A is of order 3×3
To show : $\mathrm{A}^{2}=\mathrm{A}$

Formula used :

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right]
$$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$
$A^{2}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right] \times\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$
$A^{2}=\left[\begin{array}{ccc}2(2)-2(-1)-4(1) & 2(-2)-2(3)-4(-2) & 2(-4)-2(4)-4(-3) \\ -1(2)+3(-1)+4(1) & -1(-2)+3(3)+4(-2) & -1(-4)+3(4)+4(-3) \\ 1(2)-2(-1)-3(1) & 1(-2)-2(3)-3(-2) & 1(-4)-2(4)-3(-3)\end{array}\right]$
$A^{2}=\left[\begin{array}{ccc}4+2-4 & -4-6+8 & -8-8+12 \\ -2-3+4 & 2+9-8 & 4+12-12 \\ 2+2-3 & -2-6+6 & -4-8+9\end{array}\right]=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$
$A^{2}=A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$

11. Question

If $A=\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right]$, show that $A^{2}=1$.

Answer

Given: $\mathrm{A}=\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right]$,
Matrix A is of order 3×3
To show: $\mathrm{A}^{2}=1$

Formula used :

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\
a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}
\end{array}\right]
$$

If A is a matrix of order $a \times b$ and B is a matrix of order $C \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$A^{2}=\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right] \times\left[\begin{array}{ccc}4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3\end{array}\right]$
$A^{2}=\left[\begin{array}{lll}4(4)-1(3)-4(3) & 4(-1)-1(0)-4(-1) & 4(-4)-1(-4)-4(-3) \\ 3(4)+0(3)-4(3) & 3(-1)+0(0)-4(-1) & 3(-4)+0(-4)-4(-3) \\ 3(4)-1(3)-3(3) & 3(-1)-1(0)-3(-1) & 3(-4)-1(-4)-3(-3)\end{array}\right]$
$A^{2}=\left[\begin{array}{ccc}16-3-12 & -4+0+4 & -16+4+12 \\ 12+0-12 & -3+0+4 & -12+0+12 \\ 12-3-9 & -3+0+3 & -12+4+9\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$A^{2}=I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

12. Question

If $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$, find $\left(3 \mathrm{~A}^{2}-2 \mathrm{~B}+\mathrm{I}\right)$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$,
Matrix A is of order 2×2, Matrix B is of order 2×2
To find: $3 A^{2}-2 B+1$

Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$A^{2}=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right] \times\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}2(2)-1(3) & 2(-1)-1(2) \\ 3(2)+2(3) & 3(-1)+2(2)\end{array}\right]=\left[\begin{array}{ll}4-3 & -2-2 \\ 6+6 & -3+4\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}1 & -4 \\ 12 & 1\end{array}\right]$
$3 A^{2}=3 \times\left[\begin{array}{cc}1 & -4 \\ 12 & 1\end{array}\right]=\left[\begin{array}{cc}3 & -12 \\ 36 & 3\end{array}\right]$
$3 A^{2}=\left[\begin{array}{cc}3 & -12 \\ 36 & 3\end{array}\right]$
$2 B=2 \times\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]=\left[\begin{array}{cc}0 & 8 \\ -2 & 14\end{array}\right]$
$2 B=\left[\begin{array}{cc}0 & 8 \\ -2 & 14\end{array}\right]$
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$3 A^{2}-2 B+I=\left[\begin{array}{cc}3 & -12 \\ 36 & 3\end{array}\right]-\left[\begin{array}{cc}0 & 8 \\ -2 & 14\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}3-0+1 & -12-8+0 \\ 36+2+0 & 3-14+1\end{array}\right]$
$3 A^{2}-2 B+I=\left[\begin{array}{cc}4 & -20 \\ 38 & -10\end{array}\right]$
$3 A^{2}-2 B+I=\left[\begin{array}{cc}4 & -20 \\ 38 & -10\end{array}\right]$

13. Question

If $A=\left[\begin{array}{cc}2 & -2 \\ -3 & 4\end{array}\right]$ then find $\left(-A^{2}+6 A\right)$.

Answer

Given : $A=\left[\begin{array}{cc}2 & -2 \\ -3 & 4\end{array}\right]$
Matrix A is of order 2×2.
To find : $-A^{2}+6 A$
Formula used :
row $i \hookrightarrow\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \left.\begin{array}{ccccc}a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] \cdot\left[\begin{array}{ccc|ccc}b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} \\ \vdots & \vdots & \ddots & \vdots & \vdots & b_{i n} \\ b_{n 1} & b_{n 2} & \ldots & b_{n j}\end{array}\right]=\ldots & b_{n n}\end{array}\right]=$

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{i 1} & c_{i 2} & \ldots & c_{i j} & \ldots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n j} & \ldots & c_{n n}
\end{array}\right] \quad \text { entry on row } i
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$A^{2}=\left[\begin{array}{cc}2 & -2 \\ -3 & 4\end{array}\right] \times\left[\begin{array}{cc}2 & -2 \\ -3 & 4\end{array}\right]=\left[\begin{array}{cc}2(2)-2(-3) & 2(-2)-2(4) \\ -3(2)+4(-3) & -3(-2)+4(4)\end{array}\right]=\left[\begin{array}{cc}4+6 & -4-8 \\ -6-12 & 6+16\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}10 & -12 \\ -18 & 22\end{array}\right]$
$-A^{2}=-\left[\begin{array}{cc}10 & -12 \\ -18 & 22\end{array}\right]=\left[\begin{array}{cc}-10 & 12 \\ 18 & -22\end{array}\right]$
$6 A=6 \times\left[\begin{array}{cc}2 & -2 \\ -3 & 4\end{array}\right]=\left[\begin{array}{cc}12 & -12 \\ -18 & 24\end{array}\right]$
$6 A=\left[\begin{array}{cc}12 & -12 \\ -18 & 24\end{array}\right]$
$-A^{2}+6 A=\left[\begin{array}{cc}-10 & 12 \\ 18 & -22\end{array}\right]+\left[\begin{array}{cc}12 & -12 \\ -18 & 24\end{array}\right]=\left[\begin{array}{cc}-10+12 & 12-12 \\ 18-18 & -22+24\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
$-A^{2}+6 A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$

14. Question

If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, show that $(A 2-5 A+71)=0$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$,
Matrix A is of order 2×2.
To show : $A^{2}-5 A+7 I=0$
Formula used :

$$
\begin{gathered}
\text { row i c column } j \\
{\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{cccccc}
b_{11} & b_{12} & \ldots & b_{1 j} \\
\vdots & \vdots & \ddots & \ldots & b_{1 n} \\
\vdots \\
b_{i 1} & b_{i 2} & \ldots & \ddots & \vdots \\
\vdots & \vdots & \ddots & b_{i j} \\
b_{n 1} & b_{n 2} & \ldots & b_{n j} \\
b_{n n} \\
\ddots & \ldots & b_{n n}
\end{array}\right]=} \\
\\
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{i 1} & c_{i 2} & \ldots & c_{i j} & \ldots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n j} & \ldots & c_{n n}
\end{array}\right]
\end{gathered}
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots . .+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$

C
$A^{2}=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right] \times\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}3(3)+1(-1) & 3(1)+1(2) \\ -1(3)+2(-1) & -1(1)+2(2)\end{array}\right]=\left[\begin{array}{cc}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]$
$5 \mathrm{~A}=5 \times\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]$
$5 \mathrm{~A}=\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]$
$\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$71=7 \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$71=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$A^{2}-5 A+7 I=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-\left[\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right]+\left[\begin{array}{cc}7 & 0 \\ 0 & 7\end{array}\right]=\left[\begin{array}{cc}8-15+7 & 5-5+0 \\ -5+5+0 & 3-10+7\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$A^{2}-5 A+7 I=0$

15. Question

Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{3}-4 A^{2}+A=0$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
Matrix A is of order 2×2.
To show : $A^{3}-4 A^{2}+A=0$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$. \qquad $+a_{i n} b_{n j}$
A^{2} and A^{3} are matrices of order 2×2.
$A^{2}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] \times\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}2(2)+3(1) & 2(3)+3(2) \\ 1(2)+2(1) & 1(3)+2(2)\end{array}\right]=\left[\begin{array}{ll}4+3 & 6+6 \\ 2+2 & 3+4\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]$
$A^{3}=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right] \times\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7(2)+12(1) & 7(3)+12(2) \\ 4(2)+7(1) & 4(3)+7(2)\end{array}\right]=\left[\begin{array}{cc}14+12 & 21+24 \\ 8+7 & 12+14\end{array}\right]$
$A^{3}=\left[\begin{array}{ll}26 & 45 \\ 15 & 26\end{array}\right]$
$4 A^{2}=4 \times\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]=\left[\begin{array}{cc}28 & 48 \\ 16 & 28\end{array}\right]$
$4 A^{2}=\left[\begin{array}{ll}28 & 48 \\ 16 & 28\end{array}\right]$
$A^{3}-4 A^{2}+A=\left[\begin{array}{ll}26 & 45 \\ 15 & 26\end{array}\right]-\left[\begin{array}{ll}28 & 48 \\ 16 & 28\end{array}\right]+\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}26-28+2 & 45-48+3 \\ 15-16+1 & 26-28+2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$A^{3}-4 A^{2}+A=0$

16. Question

If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$, find k so that $A^{2}=k A-21$.

Answer

Given : $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right], A^{2}=k A-2 I$.
Matrix A is of order 2×2.
To find: k
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$
A^{2} is a matrix of order 2×2.
$A^{2}=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right] \times\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]=\left[\begin{array}{ll}3(3)-2(4) & 3(-2)-2(-2) \\ 4(3)-2(4) & 4(-2)-2(-2)\end{array}\right]=\left[\begin{array}{cc}9-8 & -6+4 \\ 12-8 & -8+4\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}1 & -2 \\ 4 & -4\end{array}\right]$
$k A=k \times\left[\begin{array}{cc}3 & -2 \\ 4 & -2\end{array}\right]=\left[\begin{array}{cc}3 k & -2 k \\ 4 k & -2 k\end{array}\right]$
$\mathrm{kA}-2 \mathrm{I}=\left[\begin{array}{cc}3 \mathrm{k} & -2 \mathrm{k} \\ 4 \mathrm{k} & -2 \mathrm{k}\end{array}\right]-2 \times\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}3 \mathrm{k}-2 & -2 \mathrm{k} \\ 4 \mathrm{k} & -2 \mathrm{k}-2\end{array}\right]$
It is the given that $A^{2}=k A-2 I$
$\left[\begin{array}{cc}1 & -2 \\ 4 & -4\end{array}\right]=\left[\begin{array}{cc}3 \mathrm{k}-2 & -2 \mathrm{k} \\ 4 \mathrm{k} & -2 \mathrm{k}-2\end{array}\right]$
Equating like terms,
$3 \mathrm{k}-2=1$
$3 \mathrm{k}=1+2=3$
$3 k=3$
$k=\frac{3}{3}=1$
$k=1$
17. Question

If $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]$, find $f(A)$, where $f(x)=x^{2}-2 x+3$.

Answer

Given : $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]$, and $f(x)=x^{2}-2 x+3$.
Matrix A is of order 2×2.
To find : $f(A)$
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$
A^{2} is a matrix of order 2×2.
$f(x)=x^{2}-2 x+3$
$f(A)=A^{2}-2 A+31$
$A^{2}=\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right] \times\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-1(-1)+2(3) & -1(2)+2(1) \\ 3(-1)+1(3) & 3(2)+1(1)\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}1+6 & -2+2 \\ -3+3 & 6+1\end{array}\right]=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$2 \mathrm{~A}=2 \times\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & 4 \\ 6 & 2\end{array}\right]$
$2 A=\left[\begin{array}{cc}-2 & 4 \\ 6 & 2\end{array}\right]$
$3 \mathrm{I}=3 \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
$31=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
$f(A)=A^{2}-2 A+3 I=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]-\left[\begin{array}{cc}-2 & 4 \\ 6 & 2\end{array}\right]+\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}7+2+3 & -4+0 \\ 0-6+0 & 7-2+3\end{array}\right]$
$f(A)=A^{2}-2 A+3 I=\left[\begin{array}{cc}12 & -4 \\ -6 & 8\end{array}\right]$
$f(A)=A^{2}-2 A+3 I=\left[\begin{array}{cc}12 & -4 \\ -6 & 8\end{array}\right]$

18. Question

If $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$ and $f(x)=2 x^{3}+4 x+5$, find $f(A)$.

Answer

Given : $A=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]$ and $f(x)=2 x^{3}+4 x+5$
Matrix A is of order 2×2.
To find : $f(A)$

Formula used :
row i ↔ $\left[\begin{array}{ccccc}c \\ a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] .\left[\begin{array}{ccc|c|cc}b_{11} & b_{12} & \ldots & b_{1 j} \\ \vdots & \vdots & \ddots & \ldots & b_{1 n} \\ \vdots & \ddots & \vdots \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} & \ldots & b_{i n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{n j} & \ldots & b_{n n}\end{array}\right]=$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$
A^{3} is a matrix of order 2×2.
$f(x)=2 x^{3}+4 x+5$
$f(A)=2 A^{3}+4 A+5 I$
$A^{2}=\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right] \times\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]=\left[\begin{array}{cc}1(1)+2(4) & 1(2)+2(-3) \\ 4(1)-3(4) & 4(2)-3(-3)\end{array}\right]=\left[\begin{array}{cc}1+8 & 2-6 \\ 4-12 & 8+9\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}9 & -4 \\ -8 & 17\end{array}\right]$
$A^{3}=\left[\begin{array}{cc}9 & -4 \\ -8 & 17\end{array}\right] \times\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]=\left[\begin{array}{cc}9(1)-4(4) & 9(2)-4(-3) \\ -8(1)+17(4) & -8(2)+17(-3)\end{array}\right]$
$A^{3}=\left[\begin{array}{cc}9-16 & 18+12 \\ -8+68 & -16-51\end{array}\right]=\left[\begin{array}{cc}-7 & 30 \\ 60 & -67\end{array}\right]$
$A^{3}=\left[\begin{array}{cc}-7 & 30 \\ 60 & -67\end{array}\right]$
$2 A^{3}=2 \times\left[\begin{array}{cc}-7 & 30 \\ 60 & -67\end{array}\right]=\left[\begin{array}{cc}-14 & 60 \\ 120 & -134\end{array}\right]$
$2 A^{3}=\left[\begin{array}{cc}-14 & 60 \\ 120 & -134\end{array}\right]$
$4 A=4 \times\left[\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right]=\left[\begin{array}{cc}4 & 8 \\ 16 & -12\end{array}\right]$
$4 A=\left[\begin{array}{cc}4 & 8 \\ 16 & -12\end{array}\right]$
$5 \mathrm{I}=5 \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
$5 I=\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
$2 A^{3}+4 A+5 I=\left[\begin{array}{cc}-14 & 60 \\ 120 & -134\end{array}\right]+\left[\begin{array}{cc}4 & 8 \\ 16 & -12\end{array}\right]+\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]=\left[\begin{array}{cc}-14+4+5 & 60+8+0 \\ 120+16+0 & -134-12+5\end{array}\right]$
$f(A)=2 A^{3}+4 A+5 I=\left[\begin{array}{cc}-5 & 68 \\ 136 & -141\end{array}\right]$
$f(A)=2 A^{3}+4 A+5 I=\left[\begin{array}{cc}-5 & 68 \\ 136 & -141\end{array}\right]$
19. Question

Find the values of x and y, when
$\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$

Answer

Given : $\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$

To find: x and y
Formula used :

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i} 1} \mathrm{~b}_{1 \mathrm{j}}+\mathrm{a}_{\mathrm{i} 2} b_{2 j}+\mathrm{a}_{\mathrm{i} 3} \mathrm{~b}_{3 \mathrm{j}}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C

The resulting matrix obtained on multiplying $\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{l}x \\ y\end{array}\right]$ is of order 2×1
$\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 x-3 y \\ x+y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$
$\left[\begin{array}{c}2 x-3 y \\ x+y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$
Equating similar terms,
$2 x-3 y=1$ equation 1
$x+y=3$ equation 2
equation $1+3$ (equation 2) and solving the above equations,
$2 x-3 y=1$
$+$
$3 x+3 y=9$
$5 \mathrm{x}=10$
$x=\frac{10}{5}=2$
$x=2$, substituting $x=2$ in equation 2 ,
$2+y=3$
$y=3-2=1$
$x=2$ and $y=1$

20. Question

Solve for x and y, when
$\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 11\end{array}\right]$.

Answer

Given : $\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{l}3 \\ 11\end{array}\right]$.
To find : x and y
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c

The resulting matrix obtained on multiplying $\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]$ and $\left[\begin{array}{l}x \\ y\end{array}\right]$ is of order 2×1
$\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right] \times\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}3 x-4 y \\ x+2 y\end{array}\right]=\left[\begin{array}{c}3 \\ 11\end{array}\right]$
$\left[\begin{array}{c}3 x-4 y \\ x+2 y\end{array}\right]=\left[\begin{array}{c}3 \\ 11\end{array}\right]$
Equating similar terms,
$3 x-4 y=3$ equation 1
$x+2 y=11$ equation 2
equation $1+2$ (equation 2) and solving the above equations,
$3 x-4 y=3$
$2 x+4 y=22$
$5 x=3+22=25$
$5 x=25$
$x=\frac{25}{5}=5$
$x=5$, substituting $x=2$ in equation 2 ,
$5+2 y=11$
$2 y=11-5=6$
$2 y=6$
$y=\frac{6}{2}=3$
$x=5$ and $y=3$
21. Question

If $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]$, find x and y such that $A^{2}+x I=y A$.

Answer

Given : $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right], A^{2}+x I=y A$.
A is a matrix of order 2×2
To find : x and y
Formula used :
row $i \hookrightarrow\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] \cdot\left[\begin{array}{ccc|c|cc}b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} & \ldots & b_{i n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{n j} & \ldots & b_{n n}\end{array}\right]=$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
A^{2} is a matrix of order 2×2
$A^{2}=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right] \times\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]=\left[\begin{array}{ll}3(3)+1(7) & 3(1)+1(5) \\ 7(3)+5(7) & 7(1)+5(5)\end{array}\right]=\left[\begin{array}{cc}9+7 & 3+5 \\ 21+35 & 7+25\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}9+7 & 3+5 \\ 21+35 & 7+25\end{array}\right]=\left[\begin{array}{cc}16 & 8 \\ 56 & 32\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}16 & 8 \\ 56 & 32\end{array}\right]$
$x I=x\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]$
$\mathrm{xI}=\left[\begin{array}{ll}\mathrm{X} & 0 \\ 0 & \mathrm{X}\end{array}\right]$
$A^{2}+x I=\left[\begin{array}{cc}16 & 8 \\ 56 & 32\end{array}\right]+\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]=\left[\begin{array}{cc}16+x & 8+0 \\ 56+0 & 32+x\end{array}\right]=\left[\begin{array}{cc}16+x & 8 \\ 56 & 32+x\end{array}\right]$
$A^{2}+x I=\left[\begin{array}{cc}16+x & 8 \\ 56 & 32+x\end{array}\right]$
$y A=y \times\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]=\left[\begin{array}{cc}3 y & y \\ 7 y & 5 y\end{array}\right]$
$y A=\left[\begin{array}{cc}3 y & y \\ 7 y & 5 y\end{array}\right]$
It is given that $A^{2}+x I=y A$,
$\left[\begin{array}{cc}16+x & 8 \\ 56 & 32+x\end{array}\right]=\left[\begin{array}{cc}3 y & y \\ 7 y & 5 y\end{array}\right]$
Equating similar terms in the given matrices,
$16+x=3 y$ and $8=y$,
hence $\mathrm{y}=8$
Substituting $y=8$ in equation $16+x=3 y$
$16+x=3 \times 8=24$
$16+x=24$
$x=24-16=8$
$x=8$
$x=8, y=8$

22. Question

If $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the value of a and b such that $A^{2}+a A+b l=0$.

Answer

Given : $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right], A^{2}+a A+b l=0$
A is a matrix of order 2×2
To find : a and b
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ c
A^{2} is a matrix of order 2×2
$A^{2}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}3(3)+2(1) & 3(2)+2(1) \\ 1(3)+1(1) & 1(2)+1(1)\end{array}\right]=\left[\begin{array}{ll}9+2 & 6+2 \\ 3+1 & 2+1\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}11 & 8 \\ 4 & 3\end{array}\right]$
$\mathrm{aA}=\mathrm{a} \times\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}3 \mathrm{a} & 2 \mathrm{a} \\ 1 \mathrm{a} & 1 \mathrm{a}\end{array}\right]$
$\mathrm{bl}=\mathrm{b} \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}\mathrm{b} & 0 \\ 0 & \mathrm{~b}\end{array}\right]$
$\mathrm{bl}=\left[\begin{array}{ll}\mathrm{b} & 0 \\ 0 & \mathrm{~b}\end{array}\right]$
$A^{2}+a A+b l=\left[\begin{array}{cc}11 & 8 \\ 4 & 3\end{array}\right]+\left[\begin{array}{ll}3 \mathrm{a} & 2 \mathrm{a} \\ 1 \mathrm{a} & 1 \mathrm{a}\end{array}\right]+\left[\begin{array}{cc}\mathrm{b} & 0 \\ 0 & \mathrm{~b}\end{array}\right]=\left[\begin{array}{cc}11+3 \mathrm{a}+\mathrm{b} & 8+2 \mathrm{a}+0 \\ 4+\mathrm{a}+0 & 3+\mathrm{a}+\mathrm{b}\end{array}\right]$
$A^{2}+a A+b l=\left[\begin{array}{cc}11+3 a+b & 8+2 a \\ 4+a & 3+a+b\end{array}\right]$
It is given that $A^{2}+a A+b l=0$
$\left[\begin{array}{cc}11+3 a+b & 8+2 a \\ 4+a & 3+a+b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Equating similar terms in the matrices, we get
$4+\mathrm{a}=0$ and $3+\mathrm{a}+\mathrm{b}=0$
$a=0-4=-4$
$a=-4$
substituting $a=-4$ in $3+a+b=0$
$3-4+b=0$
$-1+b=0$
$\mathrm{b}=0+1=1$
$\mathrm{b}=1$
$\mathrm{a}=-4$ and $\mathrm{b}=1$

23. Question

Find the matrix A such that $\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right] \cdot \mathrm{A}=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$.

Answer

Given : $\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right] . A=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$.
To find : matrix A
Formula used :

row $i \hookrightarrow\left[\right.$\begin{tabular}{ccccc}
\multicolumn{7}{c}{ column j}

a_{11} \& a_{12} \& a_{13} \& \ldots \& $a_{1 n}$

\vdots \& \vdots \& \vdots \& \ddots \& \vdots

$a_{i 1}$ \& $a_{i 2}$ \& $a_{i 3}$ \& \ldots \& $a_{i n}$

\vdots \& \vdots \& \vdots \& \ddots \& \vdots

$a_{n 1}$ \& $a_{n 2}$ \& $a_{n 3}$ \& \ldots \& $a_{n n}$

$] .\left[\right.$

b_{11} \& b_{12} \& \ldots \& \multicolumn{1}{c}{}

\vdots \& \vdots \& \ddots \& $b_{1 j}$ \& \ldots \& $b_{1 n}$

\vdots \& \ddots \& \vdots

$b_{i 1}$ \& $b_{i 2}$ \& \ldots \& $b_{i j}$ \& \ldots \& $b_{i n}$

\vdots \& \vdots \& \ddots \& \vdots \& \ddots \& \vdots

$b_{n 1}$ \& $b_{n 2}$ \& \ldots \& $b_{n j}$
\end{tabular}$]=$

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{i 1} & c_{i 2} & \cdots & c_{i j} & \ldots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n j} & \ldots & c_{n n}
\end{array}\right] \quad \text { entry on row } i
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+\mathrm{a}_{\mathrm{in}} \mathrm{b}_{\mathrm{nj}}$
IF XA $=B$, then $A=X^{-1} B$
$\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right] \cdot A=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$
$\mathrm{A}=\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]^{-1} \times\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$
To find $\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]^{-1}$
Determinant of given matrix $=\left|\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right|=5(3)-(-7)(-2)=15-14=1$
Adjoint of matrix $\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$
$\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]^{-1}=\frac{1}{1} \times\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$
$\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]^{-1}=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$
$\mathrm{A}=\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]^{-1} \times\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]=\left[\begin{array}{cc}3 & 7 \\ 2 & 5\end{array}\right] \times\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$
$A=\left[\begin{array}{ll}3(-16)+7(7) & 3(-6)+7(2) \\ 2(-16)+5(7) & 2(-6)+5(2)\end{array}\right]=\left[\begin{array}{ll}-48+49 & -18+14 \\ -32+35 & -12+10\end{array}\right]=\left[\begin{array}{ll}1 & -4 \\ 3 & -6\end{array}\right]$
$A=\left[\begin{array}{ll}1 & -4 \\ 3 & -6\end{array}\right]$
$A=\left[\begin{array}{ll}1 & -4 \\ 3 & -6\end{array}\right]$

24. Question

Find the matrix A such that A. $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]=\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right]$.

Answer

Given : A. $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]=\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right]$.
To find : matrix A

Formula used :

row $i \backsim\left[\right.$| column j | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{11} | a_{12} | a_{13} | \ldots | $a_{1 n}$ | | |
| \vdots | \vdots | \vdots | \ddots | \vdots | | |
| $a_{i 1}$ | $a_{i 2}$ | $a_{i 3}$ | \ldots | $a_{i n}$ | | |
| \vdots | \vdots | \vdots | \ddots | \vdots | | |
| $a_{n 1}$ | $a_{n 2}$ | $a_{n 3}$ | \ldots | $a_{n n}$ | | |\(] \cdot\left[\begin{array}{ccc|cc|}b_{11} \& b_{12} \& ··· \& 1 \& b_{12}

\vdots \& \vdots \& \ddots \& b_{1 n}

\vdots \& \ddots \& \vdots

b_{i 1} \& b_{i 2} \& ··· \& b_{i j} \& ···

\vdots \& \vdots \& \ddots \& b_{i n}

\vdots \& \ddots \& \vdots

b_{n 1} \& b_{n 2} \& ··· \& b_{n j} \& ···

b_{n n}\end{array}\right]=\)

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{i 1} & c_{i 2} & \cdots & c_{i j} & \ldots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n j} & \ldots & c_{n n}
\end{array}\right] \quad \text { entry on row } i
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

IF $A X=B$, then $A=B X^{-1}$
A. $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]=\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right]$
$A=\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right] \times\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]^{-1}$
To find $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]^{-1}$
Determinant of given matrix $=\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=5(2)-(4)(3)=10-12=-2$
Adjoint of matrix $\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]=\left[\begin{array}{cc}5 & -3 \\ -4 & 2\end{array}\right]$
$\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]^{-1}=\frac{1}{-2} \times\left[\begin{array}{cc}5 & -3 \\ -4 & 2\end{array}\right]=\frac{1}{-2} \cdot\left[\begin{array}{cc}5 & -3 \\ -4 & 2\end{array}\right]$
$\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]^{-1}=\frac{1}{-2} \cdot\left[\begin{array}{cc}5 & -3 \\ -4 & 2\end{array}\right]$
$A=\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right] \times\left[\begin{array}{cc}2 & 3 \\ 4 & 5\end{array}\right]^{-1}=\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right] \times \frac{1}{-2} \cdot\left[\begin{array}{cc}5 & -3 \\ -4 & 2\end{array}\right]$
$A=\frac{1}{-2}\left[\begin{array}{cc}0 & -4 \\ 10 & 3\end{array}\right] \times\left[\begin{array}{cc}5 & -3 \\ -4 & 2\end{array}\right]=\frac{1}{-2} \cdot\left[\begin{array}{cc}0(5)-4(-4) & 0(-3)-4(2) \\ 10(5)+3(-4) & 10(-3)+3(2)\end{array}\right]$
$A=\frac{1}{-2} \cdot\left[\begin{array}{cc}0+16 & 0-8 \\ 50-12 & -30+6\end{array}\right]=\frac{1}{-2} \cdot\left[\begin{array}{cc}16 & -8 \\ 38 & -24\end{array}\right]=\left[\begin{array}{cc}-8 & 4 \\ -19 & 12\end{array}\right]$
$\mathrm{A}=\left[\begin{array}{cc}-8 & 4 \\ -19 & 12\end{array}\right]$
$\mathrm{A}=\left[\begin{array}{cc}-8 & 4 \\ -19 & 12\end{array}\right]$

25. Question

If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{ll}a & -1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=\left(A^{2}+B^{2}\right)$ then find the values of a and b.

Answer

Given : $\mathrm{A}=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}\mathrm{a} & -1 \\ \mathrm{~b} & -1\end{array}\right]$
$(A+B)^{2}=\left(A^{2}+B^{2}\right)$
To find : a and b
Formula used :

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i1}} \mathrm{~b}_{1 \mathrm{j}}+\mathrm{a}_{\mathrm{i} 2} b_{2 j}+\mathrm{a}_{\mathrm{i} 3} \mathrm{~b}_{3 \mathrm{j}}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$A+B=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]+\left[\begin{array}{ll}a & -1 \\ b & -1\end{array}\right]=\left[\begin{array}{ll}1+a & -1-1 \\ 2+b & -1-1\end{array}\right]=\left[\begin{array}{ll}1+a & -2 \\ 2+b & -2\end{array}\right]$
$A+B=\left[\begin{array}{ll}1+a & -2 \\ 2+b & -2\end{array}\right]$
$(A+B)^{2}=\left[\begin{array}{ll}1+a & -2 \\ 2+b & -2\end{array}\right] \times\left[\begin{array}{ll}1+a & -2 \\ 2+b & -2\end{array}\right]=\left[\begin{array}{ll}(1+a)(1+a)-2(2+b) & (1+a)(-2)-2(-2) \\ (2+b)(1+a)-2(2+b) & (2+b)(-2)-2(-2)\end{array}\right]$
$(A+B)^{2}=\left[\begin{array}{cc}1+a^{2}+2 a-4-2 b & -2-2 a+4 \\ 2+2 a+b+a b-4-2 b & -4-2 b+4\end{array}\right]=\left[\begin{array}{cc}a^{2}+2 a-2 b-3 & 2-2 a \\ 2 a-b+a b-2 & -2 b\end{array}\right]$
$(A+B)^{2}=\left[\begin{array}{cc}a^{2}+2 a-2 b-3 & 2-2 a \\ 2 a-b+a b-2 & -2 b\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right] \times\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]=\left[\begin{array}{ll}1(1)-1(2) & 1(-1)-1(-1) \\ 2(1)-1(2) & 2(-1)-1(-1)\end{array}\right]=\left[\begin{array}{ll}1-2 & -1+1 \\ 2-2 & -2+2\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]$
$B^{2}=\left[\begin{array}{ll}a & -1 \\ b & -1\end{array}\right] \times\left[\begin{array}{ll}a & -1 \\ b & -1\end{array}\right]=\left[\begin{array}{ll}a(a)-1(b) & a(-1)-1(-1) \\ b(a)-1(b) & b(-1)-1(-1)\end{array}\right]=\left[\begin{array}{ll}a^{2}-b & -a+1 \\ a b-b & -b+1\end{array}\right]$
$B^{2}=\left[\begin{array}{ll}a^{2}-b & -a+1 \\ a b-b & -b+1\end{array}\right]$
$\left(A^{2}+B^{2}\right)=\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}a^{2}-b & -a+1 \\ a b-b & -b+1\end{array}\right]=\left[\begin{array}{cc}-1+a^{2}-b & -a+1 \\ a b-b & -b+1\end{array}\right]$
$\left(A^{2}+B^{2}\right)=\left[\begin{array}{cc}-1+a^{2}-b & -a+1 \\ a b-b & -b+1\end{array}\right]$
It is given that $(A+B)^{2}=\left(A^{2}+B^{2}\right)$
$\left[\begin{array}{cc}a^{2}+2 a-2 b-3 & 2-2 a \\ 2 a-b+a b-2 & -2 b\end{array}\right]=\left[\begin{array}{cc}-1+a^{2}-b & -a+1 \\ a b-b & -b+1\end{array}\right]$
Equating similar terms in the given matrices we get,
$2-2 a=-a+1$ and $-2 b=-b+1$
$2-1=-a+2 a$ and $-2 b+b=1$
$1=a$ and $-b=1$
$\mathrm{a}=1$ and $\mathrm{b}=-1$

26. Question

If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, show that $F(x) . F(y)=F(x+y)$.

Answer

Given : $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$,
To show: $F(x) . F(y)=F(x+y)$.

Formula used :

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$=\left[\begin{array}{lll}a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} & a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33} \\ a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32} & a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33} \\ a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31} & a_{31} b_{12}+a_{32} b_{22}+a_{33} b_{32} & a_{31} b_{13}+a_{32} b_{23}+a_{33} b_{33}\end{array}\right]$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$
$F(y)=\left[\begin{array}{ccc}\text { cosy } & - \text { siny } & 0 \\ \sin y & \text { cosy } & 0 \\ 0 & 0 & 1\end{array}\right]$
$F(x+y)=\left[\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1\end{array}\right]$
$F(x) . F(y)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{ccc}\cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos x(\cos y)-\sin x(\sin y)+0(0) & \cos x(-\sin y)-\sin x(\cos y)+0(0) & \cos x(0)-\sin x(0)+0(1) \\ \sin x(\cos y)+\cos x(\sin y)+0(0) & \sin x(-\sin y)+\cos x(\cos y)+0(0) & \sin x(0)+\cos x(0)+0(1) \\ 0(\cos y)+0(\sin y)+1(0) & 0(-\sin y)+0(\cos y)+1(0) & 0(0)+0(0)+1(1)\end{array}\right]$
$F(x) . F(y)=\left[\begin{array}{ccc}\cos x \cos y-\sin x \sin y & -\cos x \sin y-\sin x \cos y & 0 \\ \sin x \cos y+\cos x \sin y & -\sin x \sin y+\cos x \cos y & 0 \\ 0 & 0 & 1\end{array}\right]$
We know that,
$\cos x(\cos y)-\sin x(\sin y)=\cos (x+y)$ and $-\cos x(\sin y)-\sin x(\cos y)=-\sin (x+y)$
$F(x) \cdot F(y)=\left[\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1\end{array}\right]$
$F(x+y)=F(x) . F(y)=\left[\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1\end{array}\right]$
$F(x+y)=F(x) . F(y)$

27. Question

If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, show that $A^{2}=\left[\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]$

Answer

Given : $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$,
To show : $\mathrm{A}^{2}=\left[\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]$
Formula used :
row i $\hookrightarrow\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] \cdot\left[\begin{array}{ccc|c|cc}b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} & \ldots & b_{i n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \ldots & b_{n j}\end{array}\right]=$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right] \times\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}\cos \alpha(\cos \alpha)+\sin \alpha(-\sin \alpha) & \cos \alpha(\sin \alpha)+\sin \alpha(\cos \alpha) \\ -\sin \alpha(\cos \alpha)+\cos \alpha(-\sin \alpha) & -\sin \alpha(\cos \alpha)+\cos \alpha(\cos \alpha)\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}\cos ^{2} \alpha-\sin ^{2} \alpha & -2 \sin \alpha \cos \alpha \\ -2 \sin \alpha \cos \alpha & -\sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]$
We know that $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$ and $\sin 2 \alpha=2 \sin \alpha \cos \alpha$
$A^{2}=\left[\begin{array}{cc}\cos 2 \alpha & -\sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}\cos 2 \alpha & -\sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right]$

28. Question

If $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]=O$, find x.

Answer

Given : $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]=0$
To find : x
Formula used :
row \(i \leftharpoonup\left[\begin{array}{ccccc}a_{11} \& a_{12} \& a_{13} \& ··· \& a_{1 n}

\vdots \& \vdots \& \vdots \& \ddots \& \vdots

a_{i 1} \& a_{i 2} \& a_{i 3} \& ··· \& a_{i n}

\vdots \& \vdots \& \vdots \& \ddots \& \vdots

a_{n 1} \& a_{n 2} \& a_{n 3} \& ··· \& a_{n n}\end{array}\right] \cdot\left[\right.\)| b_{11} | b_{12} | \ldots | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \vdots | \vdots | \ddots | $b_{1 j}$ | \ldots | $b_{1 n}$ |
| \vdots | \ddots | \vdots | | | |
| $b_{i 1}$ | $b_{i 2}$ | \ldots | $b_{i j}$ | \ldots | $b_{i n}$ |
| \vdots | \vdots | \ddots | \vdots | \ddots | \vdots |
| $b_{n 1}$ | $b_{n 2}$ | \ldots | $b_{n j}$ | \ldots | $b_{n n}$ |$]=$

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{11} & c_{i 2} & \cdots & c_{i 0} & \cdots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n j} & \cdots & c_{n n}
\end{array}\right] \quad \text { entry on row } i
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$\left[\begin{array}{lll}1 & \mathrm{x} & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]=0$
$\left[\begin{array}{lll}1 & \mathrm{x} & 1\end{array}\right] \times\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]=[1(1)+x(4)+1(3) \quad 1(2)+x(5)+1(2) \quad 1(3)+x(6)+1(5)]$
$\left[\begin{array}{lll}1 & \mathrm{x} & 1\end{array}\right] \times\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]=\left[\begin{array}{lll}1+4 x+3 & 2+5 x+2 & 6 x+8\end{array}\right]$
$\left[\begin{array}{lll}1 & \mathrm{x} & 1\end{array}\right] \times\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]=\left[\begin{array}{lll}4 \mathrm{x}+4 & 5 \mathrm{x}+4 & 6 \mathrm{x}+8\end{array}\right]$
$\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]=\left[\begin{array}{lll}4 x+4 & 5 x+4 & 6 x+8\end{array}\right] \times\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$
$\left[\begin{array}{lll}4 \mathrm{x}+4 & 5 \mathrm{x}+4 & 6 \mathrm{x}+8\end{array}\right] \times\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]=[(4 \mathrm{x}+4)(1)+(5 \mathrm{x}+4)(-2)+(6 \mathrm{x}+8)(3)]$
$\left[\begin{array}{lll}4 \mathrm{x}+4 & 5 \mathrm{x}+4 & 6 \mathrm{x}+8\end{array}\right] \times\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]=[4 \mathrm{x}+4-10 \mathrm{x}-8+18 \mathrm{x}+24]=[12 \mathrm{x}+20]$
$\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]=[12 x+20]=0$
$12 x+20=0$
$12 x=-20$
$x=\frac{-20}{12}=\frac{-5}{3}$
$x=\frac{-5}{3}$

29. Question

If $\left[\begin{array}{lll}x & 4 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4\end{array}\right]\left[\begin{array}{c}x \\ 4 \\ -1\end{array}\right]=O$, find x.

Answer

Given : $\left[\begin{array}{lll}\mathrm{x} & 4 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4\end{array}\right]\left[\begin{array}{c}x \\ 4 \\ -1\end{array}\right]=0$
To find: x
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$. \qquad $+a_{i n} b_{n j}$

If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$\left[\begin{array}{lll}\mathrm{x} & 4 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4\end{array}\right]\left[\begin{array}{c}\mathrm{x} \\ 4 \\ -1\end{array}\right]=0$
$\left[\begin{array}{lll}\mathrm{x} & 4 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4\end{array}\right]=[\mathrm{x}(2)+4(1)+1(0) \quad \mathrm{x}(1)+4(0)+1(2) \quad \mathrm{x}(2)+4(2)+1(-4)]$
$\left[\begin{array}{lll}\mathrm{x} & 4 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4\end{array}\right]=\left[\begin{array}{lll}2 x+4 & x+2 & 2 x+4\end{array}\right]$
$\left[\begin{array}{lll}2 x+4 & x+2 & 2 x+4\end{array}\right]\left[\begin{array}{c}x \\ 4 \\ -1\end{array}\right]=[(2 x+4)(x)+4(x+2)+(2 x+4)(-1)]$
$\left[\begin{array}{lll}x & 4 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4\end{array}\right]\left[\begin{array}{c}x \\ 4 \\ -1\end{array}\right]=\left[2 x^{2}+4 x+4 x+8-2 x-4\right]=\left[2 x^{2}+6 x+4\right]=0$
$2 x^{2}+6 x+4=0$
$x^{2}+3 x+2=0$
$(x+1)(x+2)=0$
$x+1=0$ or $x+2=0$
$x=-1$ or $x=-2$
$x=-1$ or $x=-2$

30. Question

Find the values of a and b for which
$\left[\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 2 \mathrm{~b}\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$.

Answer

Given : $\left[\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 2 \mathrm{~b}\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$.
To find : a and b
Formula used :

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\ldots \ldots \ldots \ldots \ldots . .+a_{i n} b_{n j}$
If A is a matrix of order $a \times b$ and B is a matrix of order $c \times d$, then matrix $A B$ exists and is of order $a \times d$, if and only if $b=$ C
$\left[\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 2 \mathrm{~b}\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$
$\left[\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 2 \mathrm{~b}\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{c}\mathrm{a}(2)+\mathrm{b}(-1) \\ -\mathrm{a}(2)+2 \mathrm{~b}(-1)\end{array}\right]=\left[\begin{array}{c}2 \mathrm{a}-\mathrm{b} \\ -2 \mathrm{a}-2 \mathrm{~b}\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$
$\left[\begin{array}{c}2 a-b \\ -2 a-2 b\end{array}\right]=\left[\begin{array}{l}5 \\ 4\end{array}\right]$
Equating similar terms,
$2 \mathrm{a}-\mathrm{b}=5$
$-2 a-2 b=4$
Adding the above two equations, we get
$-3 b=9$
$b=\frac{9}{-3}=-3$
$b=-3$
substituting $b=-3$ in $2 a-b=5$, we get
$2 a+3=5$
$2 \mathrm{a}=5-3=2$
$a=1$
$\mathrm{a}=1$ and $\mathrm{b}=-3$

31. Question

If $A=\left[\begin{array}{cc}3 & 4 \\ -4 & -3\end{array}\right]$, find $f(A)$, where $f(x)=x 2-5 x+7$.

Answer

Given : $A=\left[\begin{array}{cc}3 & 4 \\ -4 & -3\end{array}\right]$, and $f(x)=x^{2}-5 x+7$.
Matrix A is of order 2×2.
To find: f(A)
Formula used :
row i \hookrightarrow

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i} 1} \mathrm{~b}_{1 \mathrm{j}}+\mathrm{a}_{\mathrm{i} 2} b_{2 j}+\mathrm{a}_{\mathrm{i} 3} \mathrm{~b}_{3 \mathrm{j}}+$ \qquad $+a_{i n} b_{n j}$
A^{2} is a matrix of order 2×2.
$f(x)=x^{2}-5 x+7$
$f(A)=A^{2}-5 A+71$
$A^{2}=\left[\begin{array}{cc}3 & 4 \\ -4 & -3\end{array}\right] \times\left[\begin{array}{cc}3 & 4 \\ -4 & -3\end{array}\right]=\left[\begin{array}{cc}3(3)+4(-4) & 3(4)+4(-3) \\ -4(3)-3(-4) & -4(4)-3(-3)\end{array}\right]=\left[\begin{array}{cc}9-16 & 12-12 \\ -12+12 & -16+9\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}-7 & 0 \\ 0 & -7\end{array}\right]$
$5 \mathrm{~A}=5 \times\left[\begin{array}{cc}3 & 4 \\ -4 & -3\end{array}\right]=\left[\begin{array}{cc}15 & 20 \\ -20 & -15\end{array}\right]$
$5 A=\left[\begin{array}{cc}15 & 20 \\ -20 & -15\end{array}\right]$
$7 \mathrm{I}=7 \times\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$7 I=\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]$
$f(A)=A^{2}-5 A+7 I=\left[\begin{array}{cc}-7 & 0 \\ 0 & -7\end{array}\right]-\left[\begin{array}{cc}15 & 20 \\ -20 & -15\end{array}\right]+\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]=\left[\begin{array}{cc}-7-15+7 & 0-20+0 \\ 0+20+0 & -7+15+7\end{array}\right]$
$f(A)=A^{2}-5 A+7 I=\left[\begin{array}{cc}-15 & -20 \\ 20 & 15\end{array}\right]$
$f(A)=A^{2}-5 A+7 I=\left[\begin{array}{cc}-15 & -20 \\ 20 & 15\end{array}\right]$

32. Question

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, prove that $A^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ for all $n \in N$.

Answer

Given : $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$,
Matrix A is of order 2×2.
To prove : $\mathrm{A}^{\mathrm{n}}=\left[\begin{array}{ll}1 & \mathrm{n} \\ 0 & 1\end{array}\right]$
Proof :
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
Let us assume that the result holds for $\mathrm{A}^{\mathrm{n}-1}$
$A^{n-1}=\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]$
We need to prove that the result holds for A^{n} by mathematical induction
$A^{n}=A^{n-1} \times A=\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1(1)+(n-1)(0) & 1(1)+(n-1)(1) \\ 0(1)+1(0) & 0(1)+1(1)\end{array}\right]$
$A^{n}=\left[\begin{array}{cc}1+0 & 1+n-1 \\ 0+0 & 0+1\end{array}\right]=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$
$A^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$
33. Question

Given an example of two matrices A and B such that
$\mathrm{A} \neq \mathrm{O}, \mathrm{B} \neq \mathrm{O}, \mathrm{AB}=\mathrm{O}$ and $\mathrm{BA} \neq 0$.

Answer

Given : $A \neq 0, B \neq 0, A B=0, B A \neq 0$
To Find : matrix A and B
Formula used :

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i} 1} \mathrm{~b}_{1 \mathrm{j}}+\mathrm{a}_{\mathrm{i} 2} \mathrm{~b}_{2 \mathrm{j}}+\mathrm{a}_{\mathrm{i} 3} \mathrm{~b}_{3 \mathrm{j}}+$ \qquad $+a_{i n} b_{n j}$
Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
$A \neq 0, B \neq 0$
$A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \times\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1(0)+0(1) & 1(0)+0(0) \\ 0(0)+0(1) & 0(0)+0(0)\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
$B A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \times\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0(1)+0(0) & 0(0)+0(0) \\ 1(1)+0(0) & 1(0)+0(0)\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
$B A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$

34. Question

Give an example of three matrices A, B, C such that
$A B=A C$ but $B \neq C$.

Answer

Given : $A B=A C$ and $B \neq C$.
To Find : matrix A and B
Formula used :
row $i \leftharpoonup \sim\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}\end{array}\right] .\left[\begin{array}{ccc|ccc}b_{11} & b_{12} & \ldots & \mid & b_{1 j} & \ldots \\ \vdots & b_{1 n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{i 1} & b_{i 2} & \ldots & b_{i j} & \ldots & b_{i n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \cdots & b_{n j} & \ldots & b_{n n}\end{array}\right]=$

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{i 1} & c_{22} & \cdots & c_{03} & \cdots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n j} & \cdots & c_{n n}
\end{array}\right] \text { centry on row }
$$

Where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad
Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
$B \neq C$
$A B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \times\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1(0)+0(1) & 1(0)+0(0) \\ 0(0)+0(1) & 0(0)+0(0)\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
$A C=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \times\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1(0)+0(0) & 1(0)+0(1) \\ 0(0)+0(0) & 0(0)+0(1)\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$A C=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
$A B=A C=0$
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

35. Question

If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$, find $\left(3 A^{2}-2 B+I\right)$.

Answer

Given : $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]$,

Matrices A and B are of order 2×2.
To find: $\left(3 A^{2}-2 B+1\right)$.
Formula used :

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \ldots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{i 1} & c_{i 2} & \cdots & c_{i j} & \ldots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n j} & \ldots & c_{n n}
\end{array}\right] \quad \text { entry on row } i
$$

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i1}} b_{1 j}+\mathrm{a}_{\mathrm{i} 2} b_{2 j}+a_{i 3} b_{3 j}+$ \qquad $+a_{i n} b_{n j}$
A^{2} is a matrix of order 2×2.
$A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right] \times\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]=\left[\begin{array}{cc}1(1)+0(-1) & 1(0)+0(7) \\ -1(1)+7(-1) & -1(0)+7(7)\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}1+0 & 0+0 \\ -1-7 & 0+49\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -8 & 49\end{array}\right]$
$3 A^{2}=3 \times\left[\begin{array}{cc}1 & 0 \\ -8 & 49\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ -24 & 147\end{array}\right]$
$3 A^{2}=\left[\begin{array}{cc}3 & 0 \\ -24 & 147\end{array}\right]$
$2 \mathrm{~B}=2 \times\left[\begin{array}{cc}0 & 4 \\ -1 & 7\end{array}\right]=\left[\begin{array}{cc}0 & 8 \\ -2 & 14\end{array}\right]$
$2 B=\left[\begin{array}{cc}0 & 8 \\ -2 & 14\end{array}\right]$
$\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$3 A^{2}-2 B+I=\left[\begin{array}{cc}3 & 0 \\ -24 & 147\end{array}\right]-\left[\begin{array}{cc}0 & 8 \\ -2 & 14\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}3-0+1 & 0-8+0 \\ -24+2+0 & 147-14+1\end{array}\right]$
$3 A^{2}-2 B+I=\left[\begin{array}{cc}4 & -8 \\ -22 & 134\end{array}\right]$

36. Question

If $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right]$, find the value of x.

Answer

Given : $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right]$,
To find: x
Formula used :

$$
=\left[\begin{array}{cccccc}
c_{11} & c_{12} & \cdots & c_{1 j} & \ldots & c_{1 n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{i 1} & c_{i 2} & \cdots & c_{i j} & \cdots & c_{i n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n j} & \cdots & c_{n n}
\end{array}\right] \quad \text { entry on row } i
$$

Where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i1}} \mathrm{~b}_{1 \mathrm{j}}+\mathrm{a}_{\mathrm{i} 2} b_{2 j}+\mathrm{a}_{\mathrm{i} 3} \mathrm{~b}_{3 \mathrm{j}}+$ \qquad $+a_{i n} b_{n j}$
$\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right] \times\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & \mathrm{x}\end{array}\right]$
$\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right] \times\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{ll}2(1)+3(-2) & 2(-3)+3(4) \\ 5(1)+7(-2) & 5(-3)+7(4)\end{array}\right]=\left[\begin{array}{cc}2-6 & -6+12 \\ 5-14 & -15+28\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & 13\end{array}\right]$
$\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right] \times\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & 13\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right]$
$\left[\begin{array}{cc}-4 & 6 \\ -9 & 13\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right]$
Equating similar terms in the two matrices, we get
$x=13$
$x=13$

Exercise 5D

1. Question

If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 7 & -4\end{array}\right]$, verify that $\left(A^{\prime}\right)^{\prime}=A$.

Answer

Transpose of a matrix is obtained by interchanging the rows and the columns of matrix A . It is denoted by A^{\prime}.
e.g. $A_{12}=A_{21}$
$A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 7 & -4\end{array}\right]$
Hence transpose of matrix A is,
$\mathrm{A}^{\prime}=\left[\begin{array}{cc}2 & 0 \\ -3 & 7 \\ 5 & -4\end{array}\right]$
$\left(A^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 7 & -4\end{array}\right] \quad\left(\mathrm{A}^{\prime}\right)^{\prime}=$ AHence, Proved.

2. Question

If $A=\left[\begin{array}{rc}3 & 5 \\ -2 & 0 \\ 4 & -6\end{array}\right]$, verify that $(2 A)^{\prime}=2 A^{\prime}$.

Answer

Given $A=\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 4 & -6\end{array}\right]$

To Prove: $(2 A)^{\prime}=2 A^{\prime}$
Proof: Let us consider, $\mathrm{B}=2 \mathrm{~A}$
Now, $\mathrm{B}=2\left[\begin{array}{cc}3 & 5 \\ -2 & 0 \\ 4 & -6\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}6 & 10 \\ -4 & 0 \\ 8 & -12\end{array}\right]$
$\mathrm{LHS} \Rightarrow \mathrm{B}^{\prime}=\left[\begin{array}{ccc}6 & -4 & 8 \\ 10 & 0 & -12\end{array}\right]$
Again to find RHS, we will find the transpose of matrix A
$A^{\prime}=\left[\begin{array}{ccc}3 & -2 & 4 \\ 5 & 0 & -6\end{array}\right]$
RHS $=2 A^{\prime}$
$\Rightarrow 2\left[\begin{array}{ccc}3 & -2 & 4 \\ 5 & 0 & -6\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}6 & -4 & 8 \\ 10 & 0 & -12\end{array}\right]$
LHS = RHS
Hence proved.

3. Question

If $A=\left[\begin{array}{rrr}3 & 2 & -1 \\ -5 & 0 & -6\end{array}\right]$ and $B=\left[\begin{array}{ccc}-4 & -5 & -2 \\ 3 & 1 & 8\end{array}\right]$, verify that $(A+B)^{\prime}=\left(A^{\prime}+B^{\prime}\right)$.

Answer

Given $\mathrm{A}=\left[\begin{array}{ccc}3 & 2 & -1 \\ -5 & 0 & -6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}-4 & -5 & -2 \\ 3 & 1 & 8\end{array}\right]$
To Prove: $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
Proof: Let us consider C = A + B
$C=\left[\begin{array}{ccc}3 & 2 & -1 \\ -5 & 0 & -6\end{array}\right]+\left[\begin{array}{ccc}-4 & -5 & -2 \\ 3 & 1 & 8\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}-1 & -3 & -3 \\ -2 & 1 & 2\end{array}\right]$
Now LHS = C'
$\Rightarrow\left[\begin{array}{cc}-1 & -2 \\ -3 & 1 \\ -3 & 2\end{array}\right]$
To find RHS, we will find transpose of matrix A and B
$A^{\prime}=\left[\begin{array}{cc}3 & -5 \\ 2 & 0 \\ -1 & -6\end{array}\right]$ And $\mathrm{B}^{\prime}=\left[\begin{array}{cc}-4 & 3 \\ -5 & 1 \\ -2 & 8\end{array}\right]$
RHS $=A^{\prime}+B^{\prime}$
$\Rightarrow\left[\begin{array}{cc}3 & -5 \\ 2 & 0 \\ -1 & -6\end{array}\right]+\left[\begin{array}{cc}-4 & 3 \\ -5 & 1 \\ -2 & 8\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}-1 & -2 \\ -3 & 1 \\ -3 & 2\end{array}\right]$
LHS = RHS
Hence proved.

4. Question

If $P=\left[\begin{array}{cc}3 & 4 \\ 2 & -1 \\ 0 & 5\end{array}\right]$ and $P=\left[\begin{array}{cc}7 & -5 \\ -4 & 0 \\ 2 & 6\end{array}\right]$, verify that $(P+Q)^{\prime}=\left(P^{\prime}+Q^{\prime}\right)$.

Answer

Given $\mathrm{P}=\left[\begin{array}{cc}3 & 4 \\ 2 & -1 \\ 0 & 5\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{cc}7 & -5 \\ -4 & 0 \\ 2 & 6\end{array}\right]$
To Prove: $(P+Q)^{\prime}=P^{\prime}+Q^{\prime}$
Proof: Let us consider $\mathrm{R}=\mathrm{P}+\mathrm{Q}$,
$R=\left[\begin{array}{cc}3 & 4 \\ 2 & -1 \\ 0 & 5\end{array}\right]+\left[\begin{array}{cc}7 & -5 \\ -4 & 0 \\ 2 & 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}10 & -1 \\ -2 & -1 \\ 2 & 11\end{array}\right]$
LHS $=\mathrm{R} \Rightarrow(\mathrm{P}+\mathrm{Q})^{\prime}$
$\mathrm{LHS}=\left[\begin{array}{ccc}10 & -2 & 2 \\ -1 & -1 & 11\end{array}\right]$
To find RHS, we will first find the transpose of matrix P and Q
$\mathrm{P}^{\prime}=\left[\begin{array}{ccc}3 & 2 & 0 \\ 4 & -1 & 5\end{array}\right]$ And $\mathrm{Q}^{\prime}=\left[\begin{array}{ccc}7 & -4 & 2 \\ -5 & 0 & 6\end{array}\right]$
$R H S=P^{\prime}+Q^{\prime}$
$\Rightarrow\left[\begin{array}{ccc}3 & 2 & 0 \\ 4 & -1 & 5\end{array}\right]+\left[\begin{array}{ccc}7 & -4 & 2 \\ -5 & 0 & 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}10 & -2 & 2 \\ -1 & -1 & 11\end{array}\right]$

LHS $=$ RHS
Hence proved.
5. Question

If $A=\left[\begin{array}{ll}4 & 1 \\ 5 & 8\end{array}\right]$, show that $\left(A+A^{\prime}\right)$ is symmetric.

Answer

Given $A=\left[\begin{array}{ll}4 & 1 \\ 5 & 8\end{array}\right]$
To Prove: $A+A^{\prime}$ is symmetric.(Note:A matrix P is symmetric if $P^{\prime}=P$)
Proof: We will find A^{\prime},
$A^{\prime}=\left[\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right]$
Now let us take $P=A+A^{\prime}$
$P=\left[\begin{array}{ll}4 & 1 \\ 5 & 8\end{array}\right]+\left[\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
Now $P^{\prime}=\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
$\Rightarrow \mathrm{P}^{\prime}=\mathrm{P}$
Hence $A+A^{\prime}$ is a symmetric matrix.

6. Question

If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, show that $\left(A+A^{\prime}\right)$ is skew-symmetric.

Answer

Given $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$
To prove: $A-A^{\prime}$ is a skew-symmetric matrix.(Note: A matrix P is skew-symmetric if $P^{\prime}=-P$)
Proof: First we will find the transpose of matrix A
$A^{\prime}=\left[\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right]$
Let us take $\mathrm{P}=\mathrm{A}-\mathrm{A}^{\prime}$
$P=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]-\left[\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}0 & -5 \\ 5 & 0\end{array}\right]$
$P=\cdot\left[\begin{array}{cc}0 & 5 \\ -5 & 0\end{array}\right]$
$\Rightarrow \mathrm{P}^{\prime}=\mathrm{P}$
Hence $A-A^{\prime}$ is a skew symmetric matrix.

7. Question

Show that the matrix $A=\left[\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 0 & \mathrm{c} \\ -\mathrm{b} & -\mathrm{c} & 0\end{array}\right]$ is skew-symmetric.
HINT: Show that $A^{\prime}=-A$.

Answer

Given $\mathrm{A}=\left[\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 0 & \mathrm{c} \\ -b & -c & 0\end{array}\right]$
To Prove: A is a skew symmetric matrix.
Proof: As for a matrix to be skew symmetric $A^{\prime}=-A$
We will find A^{\prime}.
$A^{\prime}=\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right]$
$=-\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$
$\Rightarrow A^{\prime}=-A$
So A is A skew symmetric matrix.

8. Question

Express the matrix $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]$ as the sum of a symmetric matrix and a skew-symmetric matrix.

Answer

Given $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]$, As for a symmetric matrix $A^{\prime}=A$ hence
$A+A^{\prime}=2 A$
$A=\frac{1}{2}\left(A+A^{\prime}\right) \Rightarrow P$ (Symmetric Matrix)
Similarly for a skew symmetric matrix since $A^{\prime}=-A$ hence
$A-A^{\prime}=2 A$
$\mathrm{A}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right) \Rightarrow \mathrm{Q}$ (Skew Symmetric Matrix)
So a matrix can be represented as a sum of a symmetric matrix P and skew symmetric matrix Q.
First, we will find the transpose of matrix A,
$A^{\prime}=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$
Now using the above formulas,
$\mathrm{P}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]+\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{ll}4 & 2 \\ 2 & 8\end{array}\right]$
$P=\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]$
$\mathrm{Q}=\frac{1}{2}\left(\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]-\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$
Hence $A=P+Q$
$\Rightarrow\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]+\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ [Matrix A as the sum of P and Q]
$\Rightarrow\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]$

9. Question

Express the matrix $\mathrm{A}=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right]$ as the sum of a symmetric matrix and a skew-symmetric matrix.

Answer

Given $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, to express as sthe um of symmetric matrix P and skew symmetric matrix Q.
$A=P+Q$
Where $\mathrm{P}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)$ and $\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$, we will find transpose of matrix A
$A^{\prime}=\left[\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right]$
Now using the above formulas
$\mathrm{P}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]+\left[\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{cc}6 & -3 \\ -3 & -2\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}3 & \frac{-3}{2} \\ \frac{-3}{2} & -1\end{array}\right]$
$\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]-\left[\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{cc}0 & -5 \\ 5 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}0 & \frac{-5}{2} \\ \frac{5}{2} & 0\end{array}\right]$
Hence $\mathrm{A}=\mathrm{P}+\mathrm{Q}$
$\Rightarrow\left[\begin{array}{cc}3 & \frac{-3}{2} \\ \frac{-3}{2} & -1\end{array}\right]+\left[\begin{array}{cc}0 & \frac{-5}{2} \\ \frac{5}{2} & 0\end{array}\right]$ [Matrix A as the sum of P and Q]
$\Rightarrow\left[\begin{array}{cc}3 & \frac{-8}{2} \\ \frac{2}{2} & -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$

10. Question

Express the matrix $\mathrm{A}=\left[\begin{array}{ccc}-1 & 5 & 1 \\ 2 & 3 & 4 \\ 7 & 0 & 9\end{array}\right]$ as the sum of a symmetric and a skew-symmetric matrix.

Answer

Given $A=\left[\begin{array}{ccc}-1 & 5 & 1 \\ 2 & 3 & 4 \\ 7 & 0 & 9\end{array}\right]$, to express as sum of symmetric matrix P and skew symmetric matrix Q.
$A=P+Q$
Where $\mathrm{P}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)$ and $\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$,
First, we find A^{\prime}
$\mathrm{A}^{\prime}=\left[\begin{array}{ccc}-1 & 2 & 7 \\ 5 & 3 & 0 \\ 1 & 4 & 9\end{array}\right]$
Now using the above mentioned formulas
$P=\frac{1}{2}\left(A+A^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{ccc}-1 & 5 & 1 \\ 2 & 3 & 4 \\ 7 & 0 & 9\end{array}\right]+\left[\begin{array}{ccc}-1 & 2 & 7 \\ 5 & 3 & 0 \\ 1 & 4 & 9\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{ccc}-2 & 7 & 8 \\ 7 & 6 & 4 \\ 8 & 4 & 18\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}-1 & \frac{7}{2} & 4 \\ \frac{7}{2} & 3 & 2 \\ 4 & 2 & 9\end{array}\right]$
$\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{ccc}-1 & 5 & 1 \\ 2 & 3 & 4 \\ 7 & 0 & 9\end{array}\right]-\left[\begin{array}{ccc}-1 & 2 & 7 \\ 5 & 3 & 0 \\ 1 & 4 & 9\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{ccc}0 & 3 & -6 \\ -3 & 0 & 4 \\ 6 & -4 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}0 & \frac{3}{2} & -3 \\ \frac{-3}{2} & 0 & 2 \\ 3 & -2 & 0\end{array}\right]$
Now $A=P+Q$
$\Rightarrow\left[\begin{array}{ccc}-1 & \frac{7}{2} & 4 \\ \frac{7}{2} & 3 & 2 \\ 4 & 2 & 9\end{array}\right]+\left[\begin{array}{ccc}0 & \frac{3}{2} & -3 \\ \frac{-3}{2} & 0 & 2 \\ 3 & -2 & 0\end{array}\right]$ [Matrix A as sum of P and Q]
$\Rightarrow\left[\begin{array}{ccc}-1 & \frac{10}{2} & 1 \\ \frac{4}{2} & 3 & 4 \\ 7 & 0 & 9\end{array}\right]$
$A=\left[\begin{array}{ccc}-1 & 5 & 1 \\ 2 & 3 & 4 \\ 7 & 0 & 9\end{array}\right]$

11. Question

Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where $A=\left[\begin{array}{ccc}3 & -1 & 0 \\ 2 & 0 & 3 \\ 1 & -1 & 2\end{array}\right]$.

Answer

Given $A=\left[\begin{array}{ccc}3 & -1 & 0 \\ 2 & 0 & 3 \\ 1 & -1 & 2\end{array}\right]$, to express as sum of symmetric matrix P and skew symmetric matrix Q
$A=P+Q$
Where $\mathrm{P}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)$ and $\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$,
First we will find A^{\prime},
$A^{\prime}=\left[\begin{array}{ccc}3 & 2 & 1 \\ -1 & 0 & -1 \\ 0 & 3 & 2\end{array}\right]$
Now using above mentioned formulas,
$\mathrm{P}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{ccc}3 & -1 & 0 \\ 2 & 0 & 3 \\ 1 & -1 & 2\end{array}\right]+\left[\begin{array}{ccc}3 & 2 & 1 \\ -1 & 0 & -1 \\ 0 & 3 & 2\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{lll}6 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 4\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}3 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 1 & 2\end{array}\right]$
$\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{ccc}3 & -1 & 0 \\ 2 & 0 & 3 \\ 1 & -1 & 2\end{array}\right]-\left[\begin{array}{ccc}3 & 2 & 1 \\ -1 & 0 & -1 \\ 0 & 3 & 2\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{ccc}0 & -3 & -1 \\ 3 & 0 & 4 \\ 1 & -4 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}0 & \frac{-3}{2} & \frac{-1}{2} \\ \frac{3}{2} & 0 & 2 \\ \frac{1}{2} & -2 & 0\end{array}\right]$
Now $\mathrm{A}=\mathrm{P}+\mathrm{Q}$
$\Rightarrow\left[\begin{array}{ccc}3 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 1 & 2\end{array}\right]+\left[\begin{array}{ccc}0 & \frac{-3}{2} & \frac{-1}{2} \\ \frac{3}{2} & 0 & 2 \\ \frac{1}{2} & -2 & 0\end{array}\right]$ [Matrix A as sum of P and Q]
$\Rightarrow\left[\begin{array}{ccc}3 & \frac{-2}{2} & 0 \\ \frac{4}{2} & 0 & 3 \\ 1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 0 \\ 2 & 0 & 3 \\ 1 & -1 & 2\end{array}\right]$

12. Question

Express the matrix $\mathrm{A}=\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$ as sum of two matrices such that one is symmetric and the other is skew-symmetric.

Answer

Given $\mathrm{A}=\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$, to express as sum of symmetric matrix P and skew symmetric matrix Q.
$A=P+Q$
Where $\mathrm{P}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)$ and $\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$,
First we will find A^{\prime}
$A^{\prime}=\left[\begin{array}{lll}3 & 4 & 0 \\ 2 & 1 & 6 \\ 5 & 3 & 7\end{array}\right]$
Now using above mentioned formulas
$P=\frac{1}{2}\left(A+A^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]+\left[\begin{array}{lll}3 & 4 & 0 \\ 2 & 1 & 6 \\ 5 & 3 & 7\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{ccc}6 & 6 & 5 \\ 6 & 2 & 9 \\ 5 & 9 & 14\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}3 & 3 & \frac{5}{2} \\ 3 & 1 & \frac{9}{2} \\ \frac{5}{2} & \frac{9}{2} & 7\end{array}\right]$
$\mathrm{Q}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right)$
$\Rightarrow \frac{1}{2}\left(\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]-\left[\begin{array}{lll}3 & 4 & 0 \\ 2 & 1 & 6 \\ 5 & 3 & 7\end{array}\right]\right)$
$\Rightarrow \frac{1}{2}\left[\begin{array}{ccc}0 & -2 & 5 \\ 2 & 0 & -3 \\ -5 & 3 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}0 & -1 & \frac{5}{2} \\ 1 & 0 & \frac{-3}{2} \\ \frac{-5}{2} & \frac{3}{2} & 0\end{array}\right]$
Now $A=P+Q$
$\Rightarrow\left[\begin{array}{ccc}3 & 3 & \frac{5}{2} \\ 3 & 1 & \frac{9}{2} \\ \frac{5}{2} & \frac{9}{2} & 7\end{array}\right]+\left[\begin{array}{ccc}0 & -1 & \frac{5}{2} \\ 1 & 0 & \frac{-3}{2} \\ \frac{-5}{2} & \frac{3}{2} & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{lll}3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7\end{array}\right]$

13 A. Question

For each of the following pairs of matrices A and B, verify that $(A B)^{\prime}=\left(B^{\prime} A^{\prime}\right)$:
$A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$

Answer

Let us take $\mathrm{C}=\mathrm{AB}$
$C=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}1+6 & 4+15 \\ 2+8 & 8+20\end{array}\right]$
$C=\left[\begin{array}{cc}7 & 19 \\ 10 & 28\end{array}\right]$

LHS $\Rightarrow \mathrm{C}^{\prime}=\left[\begin{array}{cc}7 & 10 \\ 19 & 28\end{array}\right]$
To find RHS we will find transpose of matrix A and B,
$A^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ And $\mathrm{B}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$
RHS $=B^{\prime} A^{\prime}$
$\Rightarrow\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1+6 & 2+8 \\ 3+16 & 8+20\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}7 & 10 \\ 19 & 28\end{array}\right]$
LHS = RHS
Hence proved.

13 B. Question

For each of the following pairs of matrices A and B, verify that $(A B)^{\prime}=\left(B^{\prime} A^{\prime}\right)$:
$A=\left[\begin{array}{ll}3 & -1 \\ 2 & -2\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right]$

Answer

Let us take $\mathrm{C}=\mathrm{AB}$
$C=\left[\begin{array}{ll}3 & -1 \\ 2 & -2\end{array}\right]\left[\begin{array}{ll}1 & -3 \\ 2 & -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}3+(-2) & -9+1 \\ 2+(-4) & -6+2\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -8 \\ -2 & -4\end{array}\right]$
LHS $\Rightarrow \mathrm{C}^{\prime}=\left[\begin{array}{cc}1 & -2 \\ -8 & -4\end{array}\right]$
To find RHS we will find transpose of matrix A and B,
$\mathrm{B}^{\prime}=\left[\begin{array}{cc}1 & 2 \\ -3 & -1\end{array}\right]$ And $\mathrm{A}^{\prime}=\left[\begin{array}{cc}3 & 2 \\ -1 & -2\end{array}\right]$
$R H S=B^{\prime} A^{\prime}$
$\Rightarrow\left[\begin{array}{cc}1 & 2 \\ -3 & -1\end{array}\right]\left[\begin{array}{cc}3 & 2 \\ -1 & -2\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}3+(-2) & 2+(-4) \\ -9+1 & -6+2\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -2 \\ -8 & -4\end{array}\right]$

LHS $=$ RHS
Hence proved.

13 C. Question

For each of the following pairs of matrices A and B, verify that $(A B)^{\prime}=\left(B^{\prime} A^{\prime}\right)$:
$A=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{lll}-2 & -1 & -4\end{array}\right]$

Answer

Let us take $C=A B$
$C=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}-2 & -1 & -4\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12\end{array}\right]$
LHS $=C^{\prime}$
$\Rightarrow\left[\begin{array}{ccc}2 & -4 & -6 \\ 1 & -2 & -3 \\ 4 & -8 & -12\end{array}\right]$
To find RHS we will find transpose of matrix A and B,
$A^{\prime}=\left[\begin{array}{lll}-1 & 2 & 3\end{array}\right]$ And $B^{\prime}=\left[\begin{array}{l}-2 \\ -1 \\ -4\end{array}\right]$
$R H S=B^{\prime} A^{\prime}$
$\Rightarrow\left[\begin{array}{l}-2 \\ -1 \\ -4\end{array}\right]\left[\begin{array}{lll}-1 & 2 & 3\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}2 & -4 & -6 \\ 1 & -2 & -3 \\ 4 & -8 & -12\end{array}\right]$
$L H S=R H S$
Hence proved.

13 D. Question

For each of the following pairs of matrices A and B, verify that $(A B)^{\prime}=\left(B^{\prime} A^{\prime}\right)$:
$A=\left[\begin{array}{ccc}-1 & 2 & -3 \\ 4 & -5 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & -4 \\ 2 & 1 \\ -1 & 0\end{array}\right]$

Answer

Let us take $C=A B$
$C=\left[\begin{array}{ccc}-1 & 2 & -3 \\ 4 & -5 & 6\end{array}\right]\left[\begin{array}{cc}3 & -4 \\ 2 & 1 \\ -1 & 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}-3+4+3 & 4+2+0 \\ 12+(-10)+(-6) & -16+(-5)\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}4 & 6 \\ -4 & -21\end{array}\right]$
LHS $=C^{\prime}$
$\Rightarrow\left[\begin{array}{cc}4 & -4 \\ 6 & -21\end{array}\right]$
To find RHS we will find transpose of matrix A and B,
$\mathrm{A}^{\prime}=\left[\begin{array}{cc}-1 & 4 \\ 2 & -5 \\ -3 & 6\end{array}\right]$ And $\mathrm{B}^{\prime}=\left[\begin{array}{ccc}3 & 2 & -1 \\ -4 & 1 & 0\end{array}\right]$
$R H S=B^{\prime} A^{\prime}$
$\Rightarrow\left[\begin{array}{ccc}3 & 2 & -1 \\ -4 & 1 & 0\end{array}\right]\left[\begin{array}{cc}-1 & 4 \\ 2 & -5 \\ -3 & 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}-3+4+3 & 12+(-10)+(-6) \\ 4+2 & -16+(-5)\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}4 & -4 \\ 6 & -21\end{array}\right]$
LHS = RHS
Hence proved.

14. Question

If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, show that $A^{\prime} A=1$.

Answer

Given $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, We will find A^{\prime}
$\mathrm{A}^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
LHS $=A^{\prime} A$
$\Rightarrow\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & \cos \alpha \cdot \sin \alpha+(-\sin \alpha \cdot \cos \alpha) \\ \sin \alpha \cdot \cos \alpha+(-\cos \alpha \cdot \sin \alpha) & \sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ [Using $\cos ^{2} \alpha+\sin ^{2} \alpha=1$ and commutative law a.b $=$ b.a i.e. $\left.\sin \alpha \cdot \cos \alpha=\cos \alpha \cdot \sin \alpha\right)$]
RHS $=\mathrm{I} \Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
LHS = RHS
Hence proved.

15. Question

If matrix $A=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, write $A A^{\prime}$.

Answer

Given $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
We will find A^{\prime} to calculate $A A^{\prime}$,
$\mathrm{A}^{\prime}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
Now
$\mathrm{AA}^{\prime}=[123]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
$\Rightarrow[1+4+9]$
$\Rightarrow[14]$

Exercise 5E

1. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 3 & 7 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 3 & 7 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2}-3 \mathrm{R}_{1}}\left[\begin{array}{cc|cc}1 & 2 & 1 & 0 \\ 0 & 1 & -3 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{1}-2 \mathrm{R}_{2}}\left[\begin{array}{cc|cc}1 & 0 & 7 & -2 \\ 0 & 1 & -3 & 1\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

2. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{cc|cc}1 & 2 & 1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{cc|cc}1 & 2 & 1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2}-2 \mathrm{R}_{1}}\left[\begin{array}{cc|cc}1 & 2 & 1 & 0 \\ 0 & -5 & -2 & 1\end{array}\right] \xrightarrow{-\frac{1}{5} \mathrm{R}_{2}}\left[\begin{array}{cc|cc}1 & 2 & 1 & 0 \\ 0 & 1 & \frac{2}{5} & -\frac{1}{5}\end{array}\right] \xrightarrow{\mathrm{R}_{1}-2 \mathrm{R}_{2}}\left[\begin{array}{cc|cc}1 & 0 & \frac{1}{5} & \frac{2}{5} \\ 0 & 1 & \frac{2}{5} & -\frac{1}{5}\end{array}\right]$
Here, the matrix A is converted into the Identity matrix. Therefore, we get the A^{-1} as,
$\mathrm{A}^{-1}=\left[\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5}\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

3. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{cc}2 & 5 \\ -3 & 1\end{array}\right]$
Answer
Let, $A=\left[\begin{array}{cc}2 & 5 \\ -3 & 1\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[A \mid I]=\left[\begin{array}{cc|cc}2 & 5 & 1 & 0 \\ -3 & 1 & 0 & 1\end{array}\right]$, where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{cc|cc}2 & 5 & 1 & 0 \\ -3 & 1 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2}+\mathrm{R}_{1}}\left[\begin{array}{cc|cc}2 & 5 & 1 & 0 \\ -1 & 6 & 1 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{1}+\mathrm{R}_{2}}\left[\begin{array}{cc|cc}1 & 11 & 2 & 1 \\ -1 & 6 & 1 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2}+\mathrm{R}_{1}}\left[\begin{array}{ll|ll}1 & 11 & 2 & 1 \\ 0 & 17 & 3 & 2\end{array}\right]$
$\xrightarrow{\frac{1}{17} \mathrm{R}_{2}}\left[\begin{array}{cc|cc}1 & 11 & 2 & 1 \\ 0 & 1 & \frac{3}{17} & \frac{2}{17}\end{array}\right] \xrightarrow{\mathrm{R}_{1}-11 \mathrm{R}_{2}}\left[\begin{array}{cc|cc}1 & 0 & \frac{1}{17} & -\frac{5}{17} \\ 0 & 1 & \frac{3}{17} & \frac{2}{17}\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{cc}\frac{1}{17} & -\frac{5}{17} \\ \frac{3}{17} & \frac{2}{17}\end{array}\right]=\frac{1}{17}\left[\begin{array}{cc}1 & -5 \\ 3 & 2\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $\mathrm{AA}^{-1}=1$

4. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{cc|cc}2 & -3 & 1 & 0 \\ 4 & 5 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{cc|cc}2 & -3 & 1 & 0 \\ 4 & 5 & 0 & 1\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{cc|cc}2 & -3 & 1 & 0 \\ 0 & 11 & -2 & 1\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{cc|cc}1 & -\frac{3}{2} & \frac{1}{2} & 0 \\ 0 & 11 & -2 & 1\end{array}\right] \xrightarrow{\frac{1}{11} R_{2}}\left[\begin{array}{cc|cc}1 & -\frac{3}{2} & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{2}{11} & \frac{1}{11}\end{array}\right]$
$\xrightarrow{\mathrm{R}_{1}+\frac{3}{2} \mathrm{R}_{2}}\left[\begin{array}{ll|lc}1 & 0 & \frac{5}{22} & \frac{3}{22} \\ 0 & 1 & -\frac{2}{11} & \frac{1}{11}\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{cc}\frac{5}{22} & \frac{3}{22} \\ -\frac{2}{11} & \frac{1}{11}\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

5. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]$
Answer
Let, $A=\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ll|l}4 & 0 & 1 \\ 2 & 0 \\ 2 & 5 & 0\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
4 & 0 & 1 \\
2 & 5 & 0 \\
0 & 1
\end{array}\right] \xrightarrow{\mathrm{R}_{1}-2 \mathrm{R}_{2}}\left[\begin{array}{cc|cc}
0 & -10 & 1 & -2 \\
2 & 5 & 0 & 1
\end{array}\right] \xrightarrow{\mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{cc|cc}
2 & 5 & 0 & 1 \\
0 & -10 & 1 & -2
\end{array}\right] \xrightarrow{\frac{1}{2} \mathrm{R}_{1}}\left[\begin{array}{cc|cc}
1 & \frac{5}{2} & 0 & \frac{1}{2} \\
0 & -10 & 1 & -2
\end{array}\right]} \\
& \xrightarrow{-\frac{1}{10} \mathrm{R}_{2}}\left[\begin{array}{cc|cc}
1 & \frac{5}{2} & 0 & \frac{1}{2} \\
0 & 1 & -\frac{1}{10} & \frac{1}{5}
\end{array}\right] \xrightarrow{\mathrm{R}_{1}-\frac{5}{2} \mathrm{R}_{2}}\left[\begin{array}{cc|cc}
1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & -\frac{1}{10} & \frac{1}{5}
\end{array}\right]
\end{aligned}
$$

Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{cc}\frac{1}{4} & 0 \\ -\frac{1}{10} & \frac{1}{5}\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

6. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ll|l}6 & 7 & 1 \\ 8 & 0 \\ 8 & 9 & 0\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ll|l}6 & 7 & 1 \\ 8 & 9 & 0 \\ \hline\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{cc|cc}6 & 7 & 1 & 0 \\ 2 & 2 & -1 & 1\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ll|ll}2 & 2 & -1 & 1 \\ 6 & 7 & 1 & 0\end{array}\right] \xrightarrow{R_{2}-3 R_{1}}\left[\begin{array}{cc|cc}2 & 2 & -1 & 1 \\ 0 & 1 & 4 & -3\end{array}\right]$
$\xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{cc|cc}1 & 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 4 & -3\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{cc|cc}1 & 0 & -\frac{9}{2} & \frac{7}{2} \\ 0 & 1 & 2 & 4 \\ & & -3\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{cc}-\frac{9}{2} & \frac{7}{2} \\ 4 & -3\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

7. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$

Answer

Let, $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[A \mid I]=\left[\begin{array}{lll|lll}0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1\end{array}\right]$, where $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{lll|lll}0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{lll|lll}1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{3}-3 R_{1}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -5 & -8 & 0 & -3 & 1\end{array}\right]$
$\xrightarrow{R_{3}+4 R_{2}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -1 & 0 & 4 & -3 & 1\end{array}\right] \xrightarrow{R_{3}+R_{2}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 5 & -3 & 1\end{array}\right] \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & -1 & -2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 5 & -3 & 1\end{array}\right]$
$\xrightarrow{\mathrm{R}_{2}-\mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & -1 & -2 & 1 & 0 \\ 0 & 1 & 0 & -4 & 3 & -1 \\ 0 & 0 & 2 & 5 & -3 & 1\end{array}\right] \xrightarrow{\frac{1}{2} \mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & -1 & -2 & 1 & 0 \\ 0 & 1 & 0 & -4 & 3 & -1 \\ 0 & 0 & 1 & \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right] \xrightarrow{\mathrm{R}_{1}+\mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -4 & 3 & -1 \\ 0 & 0 & 1 & \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$\mathrm{A}^{-1}=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

8. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$

Answer

Let, $\mathrm{A}=\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ccc|ccc}2 & -3 & 3 & 1 & 0 & 0 \\ 2 & 2 & 3 & 0 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ccc|ccc}2 & -3 & 3 & 1 & 0 & 0 \\ 2 & 2 & 3 & 0 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{ccc|ccc}2 & -3 & 3 & 1 & 0 & 0 \\ 0 & 5 & 0 & -1 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{3}-R_{1}}\left[\begin{array}{ccc|ccc}2 & -3 & 3 & 1 & 0 & 0 \\ 0 & 5 & 0 & -1 & 1 & 0 \\ 1 & 1 & -1 & -1 & 0 & 1\end{array}\right]$
$\xrightarrow{\mathrm{R}_{1}-\mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & -4 & 4 & 2 & 0 & -1 \\ 0 & 5 & 0 & -1 & 1 & 0 \\ 1 & 1 & -1 & -1 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{3}-\mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}1 & -4 & 4 & 2 & 0 & -1 \\ 0 & 5 & 0 & -1 & 1 & 0 \\ 0 & 5 & -5 & -3 & 0 & 2\end{array}\right] \xrightarrow{\mathrm{R}_{3}-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & -4 & 4 & 2 & 0 & -1 \\ 0 & 5 & 0 & -1 & 1 & 0 \\ 0 & 0 & -5 & -2 & -1 & 2\end{array}\right]$
$\xrightarrow{\mathrm{R}_{1}+\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 1 & 4 & 1 & 1 & -1 \\ 0 & 5 & 0 & -1 & 1 & 0 \\ 0 & 0 & -5 & -2 & -1 & 2\end{array}\right] \xrightarrow{\frac{1}{5} \mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 1 & 4 & 1 & 1 & -1 \\ 0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 0 & -5 & \\ -2 & -1 & 2\end{array}\right] \xrightarrow{-\frac{1}{5} R_{3}}\left[\begin{array}{ccc|ccc}1 & 1 & 4 & 1 & 1 & -1 \\ 0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 0 & 1 & \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right]$
$\xrightarrow{\mathrm{R}_{1}-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 4 & \frac{6}{5} & \frac{4}{5} & -1 \\ 0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right] \xrightarrow{\mathrm{R}_{1}-4 \mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -\frac{2}{5} & 0 & \frac{3}{5} \\ 0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}-\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}\end{array}\right]=-\frac{1}{5}\left[\begin{array}{ccc}2 & 0 & -3 \\ 1 & -1 & 0 \\ -2 & -1 & 2\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

9. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{lll}3 & 0 & 2 \\ 1 & 5 & 9 \\ 6 & 4 & 7\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{lll}3 & 0 & 2 \\ 1 & 5 & 9 \\ 6 & 4 & 7\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{lll|ll}3 & 0 & 2 & 1 & 0 \\ \hline\end{array} \mathrm{0}, \mathrm{5}\right.$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{lll|lll}3 & 0 & 2 & 1 & 0 & 0 \\ 1 & 5 & 9 & 0 & 1 & 0 \\ 6 & 4 & 7 & 0 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2} \leftrightarrow \mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}1 & 5 & 9 & 0 & 1 & 0 \\ 3 & 0 & 2 & 1 & 0 & 0 \\ 6 & 4 & 7 & 0 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{3}-2 \mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 5 & 9 & 0 & 1 & 0 \\ 3 & 0 & 2 & 1 & 0 & 0 \\ 0 & 4 & 3 & -2 & 0 & 1\end{array}\right]$
$\xrightarrow{R_{2}-3 R_{1}}\left[\begin{array}{ccc|ccc}1 & 5 & 9 & 0 & 1 & 0 \\ 0 & -15 & -25 & 1 & -3 & 0 \\ 0 & 4 & 3 & -2 & 0 & 1\end{array}\right] \xrightarrow{R_{2}+4 R_{3}}\left[\begin{array}{ccc|ccc}1 & 5 & 9 & 0 & 1 & 0 \\ 0 & 1 & -13 & -7 & -3 & 4 \\ 0 & 4 & 3 & -2 & 0 & 1\end{array}\right] \xrightarrow{R_{1}-R_{3}}\left[\begin{array}{ccc|ccc}1 & 1 & 6 & 2 & 1 & -1 \\ 0 & 1 & -13 & -7 & -3 & 4 \\ 0 & 4 & 3 & -2 & 0 & 1\end{array}\right]$
$\xrightarrow{R_{3}-4 R_{2}}\left[\begin{array}{ccc|ccc}1 & 1 & 6 & 2 & 1 & -1 \\ 0 & 1 & -13 & -7 & -3 & 4 \\ 0 & 0 & 55 & 26 & 12 & -15\end{array}\right] \xrightarrow{\frac{1}{55} R_{3}}\left[\begin{array}{ccc|ccc}1 & 1 & 6 & 2 & 1 & -1 \\ 0 & 1 & -13 & -7 & -3 & 4 \\ 0 & 0 & 1 & \frac{26}{55} & \frac{12}{55} & -\frac{15}{55}\end{array}\right]$
$\xrightarrow{\mathrm{R}_{2}+13 \mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 1 & 6 & 2 & 1 & -1 \\ 0 & 1 & 0 & -\frac{47}{55} & -\frac{9}{55} & \frac{25}{55} \\ 0 & 0 & 1 & \frac{26}{55} & \frac{12}{55} & -\frac{15}{55}\end{array}\right] \xrightarrow{\mathrm{R}_{1}-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 6 & \frac{157}{55} & \frac{64}{55} & -\frac{80}{55} \\ 0 & 1 & 0 & -\frac{47}{55} & -\frac{9}{55} & \frac{25}{55} \\ 0 & 0 & 1 & 26 & \frac{12}{55} & -\frac{15}{55}\end{array}\right]$
$\xrightarrow{R_{1}-6 R_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & \frac{1}{55} & -\frac{8}{55} & \frac{10}{55} \\ 0 & 1 & 0 & -\frac{47}{55} & -\frac{9}{55} & \frac{25}{55} \\ 0 & 0 & 1 & \frac{26}{55} & \frac{12}{55} & -\frac{15}{55}\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}\frac{1}{55} & -\frac{8}{55} & \frac{10}{55} \\ -\frac{47}{55} & -\frac{9}{55} & \frac{25}{55} \\ \frac{26}{55} & \frac{12}{55} & -\frac{15}{55}\end{array}\right]=-\frac{1}{55}\left[\begin{array}{ccc}-1 & 8 & -10 \\ 47 & 9 & -25 \\ -26 & -12 & 15\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

10. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]$

Answer

Let, $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 3 & -3 & -4 & 0 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 3 & -3 & -4 & 0 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{3}-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 1 & -6 & -6 & 0 & -1 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2}-\mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 1 & 1 & 5 & -1 & 1 & 0 \\ 1 & -6 & -6 & 0 & -1 & 1\end{array}\right]$
$\xrightarrow{\mathrm{R}_{3}-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 1 & 1 & 5 & -1 & 1 & 0 \\ 0 & -7 & -11 & 1 & -2 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2}-\mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 0 & -1 & 8 & -2 & 1 & 0 \\ 0 & -7 & -11 & 1 & -2 & 1\end{array}\right] \xrightarrow{-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 0 & 1 & -8 & 2 & -1 & 0 \\ 0 & -7 & -11 & 1 & -2 & 1\end{array}\right]$
$\xrightarrow{R_{3}+7 R_{2}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 0 & 1 & -8 & 2 & -1 & 0 \\ 0 & 0 & -67 & 15 & -9 & 1\end{array}\right] \xrightarrow{-\frac{1}{67} R_{3}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 0 & 1 & -8 & 2 & -1 & 0 \\ 0 & 0 & 1 & -\frac{15}{67} & \frac{9}{67} & -\frac{1}{67}\end{array}\right]$
$\xrightarrow{\mathrm{R}_{2}+8 \mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 2 & -3 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{14}{67} & \frac{5}{67} & -\frac{8}{67} \\ 0 & 0 & 1 & \frac{15}{6} & \frac{9}{67} & -\frac{1}{67}\end{array}\right] \xrightarrow{\mathrm{R}_{1}-2 \mathrm{R}_{2}} \xrightarrow{-\frac{1}{67}}\left[\begin{array}{cc|ccc} \\ & 0 & 1 & 0 & \frac{39}{67} \\ \hline & -\frac{10}{67} & \frac{16}{67} \\ 0 & 0 & 1 & \frac{5}{67} & -\frac{8}{67} \\ & -\frac{15}{67} & \frac{9}{67} & -\frac{1}{67}\end{array}\right]$
$\xrightarrow{R_{1}+3 R_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -\frac{6}{67} & \frac{17}{67} & \frac{13}{67} \\ 0 & 1 & 0 & \frac{14}{67} & \frac{5}{67} & -\frac{8}{67} \\ 0 & 0 & 1 & -\frac{15}{67} & \frac{9}{67} & -\frac{1}{67}\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}-\frac{6}{67} & \frac{17}{67} & \frac{13}{67} \\ \frac{14}{67} & \frac{5}{67} & -\frac{8}{67} \\ -\frac{15}{67} & \frac{9}{67} & -\frac{1}{67}\end{array}\right]=\frac{1}{67}\left[\begin{array}{ccc}-6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

11. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & -1 \\ 3 & -5 & 0\end{array}\right]$

Answer

Let, $\mathrm{A}=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & -1 \\ 3 & -5 & 0\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ccc|ccc}3 & -1 & -2 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 & 1 & 0 \\ 3 & -5 & 0 & 0 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ccc|ccc}3 & -1 & -2 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 & 1 & 0 \\ 3 & -5 & 0 & 0 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{3}-\mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}3 & -1 & -2 & 1 & 0 & 0 \\ 2 & 0 & -1 & 0 & 1 & 0 \\ 0 & -4 & 2 & -1 & 0 & 1\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & -1 & 0 \\ 2 & 0 & -1 & 0 & 1 & 0 \\ 0 & -4 & 2 & -1 & 0 & 1\end{array}\right]$
$\xrightarrow{\mathrm{R}_{2}-2 \mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & -1 & 0 \\ 0 & 2 & 1 & -2 & 3 & 0 \\ 0 & -4 & 2 & -1 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{3}+2 \mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & -1 & 0 \\ 0 & 2 & 1 & -2 & 3 & 0 \\ 0 & 0 & 4 & -5 & 6 & 1\end{array}\right] \stackrel{1}{4} \mathrm{R}_{3}\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & -1 & 0 \\ 0 & 2 & 1 & -2 & 3 & 0 \\ 0 & 0 & 1 & 5 & \frac{6}{4} & \frac{1}{4}\end{array}\right]$

$\xrightarrow{\mathrm{R}_{1}+\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & -1 & \frac{5}{8} & -\frac{2}{8} & -\frac{1}{8} \\ 0 & 1 & 0 & -\frac{3}{8} & \frac{6}{8} & -\frac{1}{8} \\ 0 & 0 & 1 & \frac{5}{8} & \frac{6}{4} & \frac{1}{4}\end{array}\right] \xrightarrow{\mathrm{R}_{1}+\mathrm{R}_{3}}\left[\begin{array}{ccc|ccc} & & \\ 1 & 0 & 0 & -\frac{5}{8} & \frac{10}{8} & \frac{1}{8} \\ 0 & 1 & 0 & -\frac{3}{8} & \frac{6}{8} & -\frac{1}{8} \\ 0 & 0 & 1 & 5 & \frac{5}{4} & \frac{1}{4}\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}-\frac{5}{8} & \frac{10}{8} & \frac{1}{8} \\ -\frac{3}{8} & \frac{6}{8} & -\frac{1}{8} \\ -\frac{5}{4} & \frac{6}{4} & \frac{1}{4}\end{array}\right]=-\frac{1}{8}\left[\begin{array}{ccc}5 & -10 & -1 \\ 3 & -6 & 1 \\ 10 & -12 & -2\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

12. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ccc}1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ccc|ccc}1 & 3 & -2 & 1 & 0 & 0 \\ -3 & 0 & -1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 3 & -2 & 1 & 0 & 0 \\
-3 & 0 & -1 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}-2 R_{1}}\left[\begin{array}{ccc|ccc}
1 & 3 & -2 & 1 & 0 & 0 \\
-3 & 0 & -1 & 0 & 1 & 0 \\
0 & -5 & 4 & -2 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}+3 R_{1}}\left[\begin{array}{cccc}
1 & 3 & -2 & 1
\end{array} 0\right.} \\
& 0 \\
& 0
\end{aligned} \begin{gathered}
-7 \\
3
\end{gathered} 1
$$

$$
\xrightarrow{R_{2}-4 R_{3}}\left[\begin{array}{ccc|ccc}
1 & 3 & -2 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 & 5 & 9 \\
0 & 1 & -1 & 1 & -1 & -2
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|cccc}
1 & 3 & -2 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & -2 \\
0 & 0 & 1 & -3 & 5 & 9
\end{array}\right]
$$

$$
\xrightarrow{\mathrm{R}_{2}+\mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}
1 & 3 & -2 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 4 & 7 \\
0 & 0 & 1 & -3 & 5 & 9
\end{array}\right] \xrightarrow{\mathrm{R}_{1}+2 \mathrm{R}_{3}}\left[\begin{array}{lll|lll}
1 & 3 & 0 & -5 & 10 & 18 \\
0 & 1 & 0 & -2 & 4 & 7 \\
0 & 0 & 1 & -3 & 5 & 9
\end{array}\right] \xrightarrow{\mathrm{R}_{1}-3 \mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -2 & -3 \\
0 & 1 & 0 & -2 & 4 & 7 \\
0 & 0 & 1 & -3 & 5 & 9
\end{array}\right]
$$

Here, the matrix A is converted intoldentity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}1 & -2 & -3 \\ -2 & 4 & 7 \\ -3 & 5 & 9\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$
13. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5\end{array}\right]$

Answer

Let, $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 7 & 0 & 1 & 0 \\ -2 & -4 & -5 & 0 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 7 & 0 & 1 & 0 \\ -2 & -4 & -5 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ -2 & -4 & -5 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{3}+2 R_{1}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 1\end{array}\right]$
$\xrightarrow{\mathrm{R}_{2}-\mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & -4 & 1 & -1 \\ 0 & 0 & 1 & 2 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{1}-2 \mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 3 & 9 & -2 & 2 \\ 0 & 1 & 0 & -4 & 1 & -1 \\ 0 & 0 & 1 & 2 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{1}-3 \mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 3 & -2 & -1 \\ 0 & 1 & 0 & -4 & 1 & -1 \\ 0 & 0 & 1 & 2 & 0 & 1\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

14. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ccc}3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{ccc}3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[A \mid I]=\left[\begin{array}{ccc|ccc}3 & 0 & -1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 & 1 & 0 \\ 0 & 4 & 1 & 0 & 0 & 1\end{array}\right]$, where $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ccc|ccc}3 & 0 & -1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 & 1 & 0 \\ 0 & 4 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{1}-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & -3 & -1 & 1 & -1 & 0 \\ 2 & 3 & 0 & 0 & 1 & 0 \\ 0 & 4 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{2}-2 \mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}1 & -3 & -1 & 1 & -1 & 0 \\ 0 & 9 & 2 & -2 & 3 & 0 \\ 0 & 4 & 1 & 0 & 0 & 1\end{array}\right]$
$\xrightarrow{\mathrm{R}_{2}-2 \mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & -3 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & -2 & 3 & -2 \\ 0 & 4 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{3}-4 \mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}1 & -3 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & -2 & 3 & -2 \\ 0 & 0 & 1 & 8 & -12 & 9\end{array}\right] \xrightarrow{\mathrm{R}_{1}+\mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}1 & -3 & 0 & 9 & -13 & 9 \\ 0 & 1 & 0 & -2 & 3 & -2 \\ 0 & 0 & 1 & 8 & -12 & 9\end{array}\right]$
$\xrightarrow{R_{1}+3 R_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 3 & -4 & 3 \\ 0 & 1 & 0 & -2 & 3 & -2 \\ 0 & 0 & 1 & 8 & -12 & 9\end{array}\right]$

Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}3 & -4 & 3 \\ -2 & 3 & -2 \\ 8 & -12 & 9\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

15. Question

Using elementary row transformations, find the inverse of each of the following matrices:
$\left[\begin{array}{ccc}-1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$

Answer

Let, $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
Now we are going to write the Augmented Matrix followed by matrix A and the Identity matrix I, i.e.,
$\operatorname{Aug}[\mathrm{A} \mid \mathrm{I}]=\left[\begin{array}{ccc|ccc}-1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1\end{array}\right]$, where $\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Now our job is to convert the matrix A into Identity Matrix. Therefore, the matrix we will get converting the matrix I will be our A^{-1}.
$\left[\begin{array}{ccc|ccc}-1 & 1 & 2 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{1}+R_{2}}\left[\begin{array}{ccc|ccc}0 & 3 & 5 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 1 & 0 & 0 & 1\end{array}\right] \xrightarrow{R_{3}-3 R_{2}}\left[\begin{array}{ccc|ccc}0 & 3 & 5 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & -5 & -8 & 0 & -3 & 1\end{array}\right]$
$\xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 3 & 5 & 1 & 1 & 0 \\ 0 & -5 & -8 & 0 & -3 & 1\end{array}\right] \xrightarrow{R_{2}+R_{3}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -2 & 1 \\ 0 & -5 & -8 & 0 & -3 & 1\end{array}\right] \xrightarrow{R_{2}+R_{1}}\left[\begin{array}{ccc|ccc}1 & 2 & 3 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & -5 & -8 & 0 & -3 & 1\end{array}\right]$
$\xrightarrow{\mathrm{R}_{1}-\mathrm{R}_{2}}\left[\begin{array}{ccc|ccc}0 & 2 & 3 & -1 & 2 & -1 \\ 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & -5 & -8 & 0 & -3 & 1\end{array}\right] \xrightarrow{\mathrm{R}_{3}+3 \mathrm{R}_{1}}\left[\begin{array}{ccc|ccc}0 & 2 & 3 & -1 & 2 & -1 \\ 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 1 & -3 & 3 & -2\end{array}\right] \xrightarrow{\mathrm{R}_{1}-2 \mathrm{R}_{3}}\left[\begin{array}{ccc|ccc}0 & 0 & 1 & 5 & -4 & 3 \\ 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 1 & -3 & 3 & -2\end{array}\right]$
$\xrightarrow{R_{3}-R_{1}}\left[\begin{array}{ccc|ccc}0 & 0 & 1 & 5 & -4 & 3 \\ 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & -8 & 7 & -5\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 5 & -4 & 3 \\ 0 & 1 & 0 & -8 & 7 & -5\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & -8 & 7 & -5 \\ 0 & 0 & 1 & 5 & -4 & 3\end{array}\right]$
Here, the matrix A is converted into Identity matrix. Therefore, we get the A^{-1} as,
$A^{-1}=\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 7 & -5 \\ 5 & -4 & 3\end{array}\right]$ [Answer]
The value of A^{-1} is correct or not can be verified by the formula: $A A^{-1}=1$

Exercise 5F

1. Question

Construct a 3×2 matrix whose elements are given by
$\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}(\mathrm{i}-2 \mathrm{j})^{2}$

Answer

Here, i is the subscript for a row, and j is the subscript for column
And the given matrix is 3×2, so $1 \leq i \leq 3$ and $1 \leq j \leq 2$
Hence for $\mathrm{i}=1, \mathrm{j}=1, a_{11}=\frac{1}{2}(1-(2 \times 1))^{2}=\frac{1}{2}$
For $\mathrm{i}=1, \mathrm{j}=2, \quad a_{12}=\frac{1}{2}(1-(2 \times 2))^{2}=\frac{9}{2}$
For $\mathrm{i}=2, \mathrm{j}=1 a_{21}=\frac{1}{2}(2-(2 \times 1))^{2}=0$
For $\mathrm{i}=2, \mathrm{j}=2 \quad a_{22}=\frac{1}{2}(2-(2 \times 2))^{2}=2$
For $\mathrm{i}=3, \mathrm{j}=1 a_{31}=\frac{1}{2}(3-(2 \times 1))^{2}=\frac{1}{2}$
For $\mathrm{i}=3, \mathrm{j}=2 a_{32}=\frac{1}{2}(3-(2 \times 2))^{2}=\frac{1}{2}$
Hence the required matrix is :- $-\left[\begin{array}{cc}\frac{1}{2} & \frac{9}{2} \\ 0 & 2 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$

2. Question

Construct a 2×3 matrix whose elements are given by
$\mathrm{a}_{\mathrm{ij}}=\frac{1}{2}|-3 \mathrm{i}+\mathrm{j}|$.

Answer

The elements of the matrix are given by, $a_{i j}=\frac{1}{2}|-3 j+j|$
Matrix is 2×3 hence, $1 \leq i \leq 2,1 \leq j \leq 3$
Here, i is the subscript for a row, and j is the subscript for column
For $\mathrm{i}=1, \mathrm{j}=1, a_{11}=\frac{1}{2}|-3(1)+1|=1$
For $\mathrm{i}=1, \mathrm{j}=2, a_{12}=\frac{1}{2}|-3(1)+2|=\frac{1}{2}$
For $\mathrm{i}=1, \mathrm{j}=3, a_{13}=\frac{1}{2}|-3(1)+3|=0$
For $\mathrm{i}=2, \mathrm{j}=1, a_{21}=\frac{1}{2}|-3(2)+1|=\frac{5}{2}$
For $\mathrm{i}=2, \mathrm{j}=2, a_{22}=\frac{1}{2}|-3(2)+2|=2$
For $\mathrm{i}=2, \mathrm{j}=3, a_{23}=\frac{1}{2}|-3(2)+3|=\frac{3}{2}$
Hence the required matrix is :-
$\left[\begin{array}{ccc}1 & \frac{1}{2} & 0 \\ \frac{5}{2} & 2 & \frac{3}{2}\end{array}\right]$

3. Question

If $\left[\begin{array}{cc}x+2 y & -y \\ 3 x & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 3 \\ 6 & 4\end{array}\right]$, find the values of x and y.

Answer

On comparing L.H.S. and R. H.S we get,
$\left[\begin{array}{cc}x+2 y & -y \\ 3 x & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 3 \\ 6 & 4\end{array}\right]$
On comparing each term we get,
$x+2 y=-4 \ldots$ (i)
$-y=3 \ldots$ (ii)
$3 x=6$
From (i), (ii) and (iii), we get,
$y=-3$ and $x=2$

4. Question

Find the values of x and y, if
$2\left[\begin{array}{ll}1 & 3 \\ 0 & \mathrm{x}\end{array}\right]+\left[\begin{array}{ll}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

Answer

Given,
$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}2 & 6 \\ 0 & 2 x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
Using the property of matrix multiplication such that h is scalar, $h\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a h & b h \\ c h & d h\end{array}\right]$
Using the matrix property of matrix addition, when two matrices are of the same order then, each element gets added to the corresponding element,
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$
$\left[\begin{array}{cc}2 & 6 \\ 0 & 2 x\end{array}\right]+\left[\begin{array}{cc}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}2+y & 6 \\ 1 & 2 x+2\end{array}\right]$
$\left[\begin{array}{cc}2+y & 6 \\ 1 & 2 x+2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
Comparing each element we get,
$2+y=5, \Rightarrow y=3$
$2 x+2=8, \Rightarrow x=3$

5. Question

If $x \cdot\left[\begin{array}{l}2 \\ 3\end{array}\right]+y \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$, find the values of x and y.

Answer

Given, $x .\left[\begin{array}{l}2 \\ 3\end{array}\right]+y \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
$\left[\begin{array}{c}2 x \\ 3 x\end{array}\right]+\left[\begin{array}{c}-y \\ y\end{array}\right]=\left[\begin{array}{l}2 x-y \\ 3 x+y\end{array}\right]$
And we have,
$\left[\begin{array}{l}2 x-y \\ 3 x+y\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$
Solving the linear equations, we get,
$x=3, y=-4$

6. Question

If $\left[\begin{array}{cc}x & 3 x-y \\ 2 x+z & 3 y-w\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 4 & 7\end{array}\right]$, find the values of x, y, z, ω.

Answer

Given,
$\left[\begin{array}{cc}x & 3 x-y \\ 2 x+z & 3 y-w\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 4 & 7\end{array}\right]$
On comparing each element of the two matrices we get,
$x=3$,
$3 x-y=2$
$y=7$
$2 x+z=4$,
$z=-2$,
$3 y-w=7$,
$\mathrm{w}=14$
7. Question

If $\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]=3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$, find the values of x, y, z, ω.
Answer
Given,
$\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]=3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$
First applying matrix addition then, comparing each element of the matrix with the corresponding element we get,
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$
$\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]=\left[\begin{array}{cc}3 x & 3 y \\ 3 z & 3 w\end{array}\right]$
$\left[\begin{array}{cc}x+4 & 6+x+y \\ -1+z+w & 2 w+3\end{array}\right]=\left[\begin{array}{c}3 x \\ 3 z\end{array}\right.$
We now have, $x+4=3 x$,
$x=2$
$2 w+3=3 w$,
$w=3$
$6+x+y=3 y$, substituting x from (i) we get,
$y=4$,
And $-1+z+w=3 z$, substituting w from (ii), we get,
$z=1$

8. Question

If $A=\operatorname{diag}(3-2,5)$ and $B=\operatorname{diag}(13-4)$, find $(A+B)$.

Answer

We are given two diagonal matrices A and B,
On adding the two diagonal matrices of order (3×3) we get an diagonal matrix of order (3×3)
Each of the elements get added to the corresponding element hence, we get after adding,
$\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5\end{array}\right]+\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4\end{array}\right]=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Hence, we get $A+B=\operatorname{diag}\left(\begin{array}{lll}4 & 1 & 1\end{array}\right)$

9. Question

Show that
$\cos \theta \cdot\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta$.
$\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]=I$

Answer

We have to show that
$\cos \theta \cdot\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta \cdot\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Multiplying the scalars with we get,
$\left[\begin{array}{cc}\cos \theta \times \cos \theta & \cos \theta \times \sin \theta \\ \cos \theta \times(-\sin \theta) & \cos \theta \times \cos \theta\end{array}\right]+\left[\begin{array}{cc}\sin \theta \times \sin \theta & \sin \theta \times(-\cos \theta) \\ \sin \theta \times \cos \theta & \sin \theta \times \sin \theta\end{array}\right]$
$\left[\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta+\sin ^{2} \theta\end{array}\right]$
And we know that $\cos ^{2} \theta+\sin ^{2} \theta=1$
$\left[\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta+\sin ^{2} \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Hence, proved.
10. Question

If $A=\left[\begin{array}{rr}1 & -5 \\ -3 & 2 \\ 4 & -2\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 1 \\ 2 & -1 \\ -2 & 3\end{array}\right]$, find the matrix C such that $A+B+C$ is a zero matrix

Answer

Given, $A+B+C=$ zero matrix
We know that zero matrix is a matrix whose all elements are zero, so we have,
$A=\left[\begin{array}{cc}1 & -5 \\ -3 & 2 \\ 4 & -2\end{array}\right], B=\left[\begin{array}{cc}3 & 1 \\ 2 & -1 \\ -2 & 3\end{array}\right]$
WE have $A+B+C=0$,
So $C=-A+B$,
$-C=\left[\begin{array}{rr}1 & -5 \\ -3 & 2 \\ 4 & -2\end{array}\right]+\left[\begin{array}{rr}3 & 1 \\ 2 & -1 \\ -2 & 3\end{array}\right]$
$C=\left[\begin{array}{rr}-4 & 4 \\ 1 & -1 \\ -2 & -1\end{array}\right]$

11. Question

If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ then find the least value of α for which $A+A^{\prime}=$ I.

Answer

Given, $A=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

Here, A^{\prime} i.e. A transpose is $\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
We are given that $A+A^{\prime}=1$
So, $\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]+\left[\begin{array}{rr}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
After doing addition of matrices, we get,
$\left[\begin{array}{cc}\cos \alpha+\cos \alpha & \sin \alpha-\sin \alpha \\ \sin \alpha-\sin \alpha & \cos \alpha+\cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{cc}2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
On comparing the elements we get,
$2 \cos \alpha=1$
This implies, $\cos \alpha=\frac{1}{2}$
For α belongs 0 to $\pi, \alpha=\frac{\pi}{3}$

12. Question

Find the value of x and y for which
$\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$

Answer

Given,
$\left[\begin{array}{cc}2 & -3 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$
Applying matrix multiplication we get,
$\left[\begin{array}{c}2 x-3 y \\ x+y\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$
On comparing the elements we get, $2 x-3 y=1$,
$x+y=3$,
On solving the equations we get, $x=2, y=1$

13. Question

Find the value of x and y for which
$\left[\begin{array}{cc}\mathrm{x} & \mathrm{y} \\ 3 \mathrm{y} & \mathrm{x}\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.

Answer

Given,
$\left[\begin{array}{cc}x & y \\ 3 y & x\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
Applying matrix multiplication we have, $\left[\begin{array}{c}x+2 y \\ 3 y+2 x\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
On comparing the elements with each other we get,
The linear equations, $x+2 y=3,3 y+2 x=5$
On solving these equations we get $x=1, y=1$
14. Question

If $A=\left[\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right]$, show that $\left(A+A^{\prime}\right)$ is symmetric

Answer

Given, $A=\left[\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right]$ and $A^{r}=\left[\begin{array}{ll}4 & 1 \\ 5 & 8\end{array}\right]$
Then, $\left(A+A^{\prime}\right)$ will be, $\left[\begin{array}{ll}4 & 5 \\ 1 & 8\end{array}\right]+\left[\begin{array}{ll}4 & 1 \\ 5 & 8\end{array}\right]=\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
The matrix $\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$ is a symmetrical matrix.

15. Question

If $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, and show that $\left(\mathrm{A}-\mathrm{A}^{\prime}\right)$ is skew-symmetric

Answer

Given,
$A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, and
$A^{\prime}=\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]$
$\left(A-A^{\prime}\right)=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]-\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
The matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is skew-symmetric.

16. Question

If $A=\left[\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right]$, find a matrix X such that $A+2 B+X=0$.

Answer

Given, $A=\left[\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right], B=\left[\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right]$
We need to a matrix X such that, $A+2 B+X=0$
We have, $X=-(A+2 B)$,
$X=-\left[\begin{array}{cc}2 & -3 \\ 4 & 5\end{array}\right]+2\left[\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right]$
$X=-\left[\begin{array}{cc}2+(-2) & -3+(2 \times 2) \\ 4+0 & 5+(2 \times 3)\end{array}\right]$
$X=\left[\begin{array}{cc}0 & -1 \\ -4 & -11\end{array}\right]$

17. Question

If $A=\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 1 \\ 3 & 2\end{array}\right]$, find a matrix X such that
$3 A-2 B+X=0$.

Answer

Given, $A=\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 1 \\ 3 & 2\end{array}\right]$
We have $3 A-2 B+X=0$
So $X=-(3 A-2 B)$
Thus,
$X=-3\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]-2\left[\begin{array}{cc}-2 & 1 \\ 3 & 2\end{array}\right]$
$X=-\left[\begin{array}{ll}3 \times 4+2 \times 2 & 3 \times 2-2 \times 1 \\ 3 \times 1-2 \times 3 & 3 \times 3-2 \times 2\end{array}\right]$
$X=\left[\begin{array}{cc}-16 & -4 \\ 3 & -5\end{array}\right]$

18. Question

If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, show that $A^{\prime} A=1$.

Answer

Given, $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$A^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
Then , $A A^{\prime}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
Applying matrix multiplication we get,
$A A^{\prime}=$
$\left[\begin{array}{cc}\cos \alpha \times \cos \alpha+\sin \alpha \times \sin \alpha & \cos \alpha \times(-\sin \alpha)+\sin \alpha \times \cos \alpha \\ (-\sin \alpha) \times \cos \alpha+\cos \alpha \times \sin \alpha & (-\sin \alpha) \times(-\sin \alpha)+\cos \alpha \times \cos \alpha\end{array}\right]$
$A A^{\prime}=\left[\begin{array}{cc}\cos ^{2} \alpha+\sin ^{2} \alpha & 0 \\ 0 & \cos ^{2} \alpha+\sin ^{2} \alpha\end{array}\right]$
Hence, $A A^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
As we know that $\cos ^{2} \alpha+\sin ^{2} \alpha=1$

19. Question

If A and B are symmetric matrices of the same order, show that $(A B-B A)$ is a skew symmetric matrix.

Answer

We are given that A and B are symmetric matrices of the same order then, we need to show that ($A B-B A$) is a skew symmetric matrix.

Let us consider P is a matrix of the same order as A and B
And let $P=(A B-B A)$,
we have $A=A^{\prime}$ and $B=B^{\prime}$
then, $\mathrm{P}^{\prime}=(\mathrm{AB}-\mathrm{BA})^{\prime}$
$P^{\prime}=\left((A B)^{\prime}-(B A)^{\prime}\right)$.......using reversal law we have $(C D)^{\prime}=D^{\prime} C^{\prime}$
$P^{\prime}=\left(B^{\prime} A^{\prime}-A^{\prime} B^{\prime}\right)$
$P^{\prime}=(B A-A B)$
$P^{\prime}=-P$
Hence, P is a skew symmetric matrix.

20. Question

If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ and $f(x)=x^{2}-4 x+1$, find $f(A)$.

Answer

Given, $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$f(x)=x^{2}-4 x+1$,
$f(A)=A^{2}-4 A+1$,
$f(A)=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] \times\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]-4\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$f(A)=\left[\begin{array}{lc}4+3-8+1 & 6+6-12+0 \\ 2+2-4+0 & 3+4-8+1\end{array}\right]$
$\mathrm{f}(\mathrm{A})=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

21. Question

If the matrix A is both symmetric and skew-symmetric, show that A is a zero matrix.

Answer

Given that matrix A is both symmetric and skew symmetric, then,
We have $A=A^{\prime}$
And $A=-A^{\prime}$
From (i) and (ii) we get,
$A^{\prime}=-A^{\prime}$,
$2 A^{\prime}=0$
$A^{\prime}=0$
Then, $\mathrm{A}=0$
Hence proved.

