## 5. Congruence of Triangles and Inequalities in a Triangle

## Exercise 5A

## 1. Question

In a $\triangle A B C$, if $A B=A C$ and $\angle A=70^{\circ}$, find $\angle B$ and $\angle C$.

## Answer

Given that
$A B=A C$ and $\angle A=70^{\circ}$
To find: $\angle \mathrm{B}$ and $\angle \mathrm{C}$
$A B=A C$ and also $\angle A=70^{\circ}$
As two sides of triangle are equal, we say that $\triangle A B C$ is isosceles triangle.
Hence by the property of isosceles triangle, we know that base angles are also equal.
ie. we state that $\angle B=\angle C$.
Now,
Sum of all angles in any triangle $=180^{\circ}$
$\therefore \angle A+\angle B+\angle C=180^{\circ}$
Hence,
$70^{\circ}+\angle B+\angle C=180^{\circ}$
$2 \angle B=180^{\circ}-70^{\circ} \ldots$ from (1)
$\therefore 2 \angle \mathrm{~B}=110^{\circ}$
$\angle B=55^{\circ}$
Therefore, our base angles, $\angle B$ and $\angle C$, are $55^{\circ}$ each.

## 2. Question

The vertical angle of an isosceles triangle is $100^{\circ}$. Find its base angles.

## Answer

Given: The given triangle is isosceles triangle. Also vertex angle is $100^{\circ}$
To find: Measure of base angles.
It is given that triangle is isosceles.

So let our given triangle be $\triangle A B C$.
And let $\angle A$ be the vertex angle, which is given as $\angle A=100^{\circ}$
By the property of isosceles triangle, we know that base angles are equal.
So,
$\angle B=\angle C$
We know that,
Sum of all angles in any triangle $=180^{\circ}$
$\therefore \angle A+\angle B+\angle C=180^{\circ}$
$100^{\circ}+2 \angle B=180^{\circ}$...from (1)
$\therefore 2 \angle B=180^{\circ}-100^{\circ}$
$2 \angle B=80^{\circ}$
$\therefore \angle B=40^{\circ}$
Therefore, our base angles, $\angle B$ and $\angle C$, are $40^{\circ}$ each.

## 3. Question

In a $\triangle A B C$, if $A B=A C$ and $\angle B=65^{\circ}$, find $\angle C$ and $\angle A$.

## Answer

Given: In $\triangle A B C$,
$A B=A C$ and $\angle B=65^{\circ}$
To find: $\angle \mathrm{A}$ and $\angle \mathrm{C}$
It is given that $A B=A C$ and $\angle B=65^{\circ}$
As two sides of the triangle are equal, we say that triangle is isosceles triangle, with vertex angle $A$.
Hence by the property of isosceles triangle we know that base angles are equal.
$\therefore \angle B=\angle C$
$\therefore \angle C=\angle B=65^{\circ}$
Also, We know that,
Sum of all angles in any triangle $=180^{\circ}$
$\therefore \angle A+\angle B+\angle C=180^{\circ}$
$\angle A+65^{\circ}+65^{\circ}=180^{\circ}$
$\angle \mathrm{A}+130^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{A}=180^{\circ}-130^{\circ}$
$\angle A=50^{\circ}$

Hence, $\angle \mathrm{C}=65^{\circ}$ and $\angle \mathrm{A}=50^{\circ}$

## 4. Question

In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

## Answer

Given: Our given triangle is isosceles triangle. Also, the vertex angle is twice the sum of the base angles

To find: Measures of angles of triangle.
It is given that that given triangle is isosceles triangle.
Let vertex angle be $y$ and base angles be $x$ each.
So by given condition,
$y=2(x+x)$
$\therefore \mathrm{y}=4 \mathrm{x}$
Also, We know that,
Sum of all angles in any triangle $=180^{\circ}$
$\therefore \mathrm{y}+\mathrm{x}+\mathrm{x}=180^{\circ}$
$y+2 x=180^{\circ}$
$4 x+2 x=180^{\circ}$
$\therefore 6 \mathrm{x}=180^{\circ}$
$x=30^{\circ}$
$\therefore \mathrm{y}=4 \times 30^{\circ}$
$y=120^{\circ}$
Hence, vertex angle is $120^{\circ}$ and base angles are $30^{\circ}$ each.

## 5. Question

What is the measure of each of the equal angles of a right-angled isosceles triangle?

## Answer

Here given triangle is isosceles right angled triangle.


So let our triangle be $\triangle A B C$, right angled at $A$.
$\therefore \angle \mathrm{A}=90^{\circ}$
Here, $A B=A C$, as our given triangle is isosceles triangle.
Hence, base angles, $\angle B$ and $\angle C$ are equal.
Also, We know that,
Sum of all angles in any triangle $=180^{\circ}$
$\therefore \angle A+\angle B+\angle C=180^{\circ}$
$90^{\circ}+2 \angle B=180^{\circ}$
$2 \angle B=90^{\circ}$
$\angle B=45^{\circ}$
Hence the measure of each of the equal angles of a right-angled isosceles triangle is $45^{\circ}$

## 6. Question

If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.

## Answer

Given: $\triangle A B C$ is isosceles triangle.
To prove: $\angle C A D=\angle C B E$
Let $\triangle A B C$ be our isosceles triangle as shown in the figure.


We know that base angles of the isosceles triangle are equal.
Here, $\angle C A B=\angle C B A$
Also here, $\angle C A D$ and $\angle C B E$ are exterior angles of the triangle.
So, we know that,
$\angle C A B+\angle C A D=180^{\circ} \ldots$ exterior angle theorem
And $\angle C B A+\angle C B E=180^{\circ} \ldots$ exterior angle theorem
So from (1) and above statement, we conclude that,
$\angle C A B+\angle C A D=180^{\circ}$
And $\angle C A B+\angle C B E=180^{\circ}$
Which implies that,
$\angle C A D=180^{\circ}-\angle C A B$
And $\angle \mathrm{CBE}=180^{\circ}-\angle \mathrm{CAB}$
Hence we say that $\angle C A D=\angle C B E$
$\therefore$ For the isosceles triangle, the exterior angles so formed are equal to each other.

## 7. Question

Find the measure of each exterior angle of an equilateral triangle.

## Answer

Given: $\triangle A B C$ is equilateral triangle.
To prove: $\angle C A D=\angle C B E=\angle B C L$
Proof:
Let our triangle be $\triangle A B C$, which is equilateral triangle as shown in the figure.


Hence all angles are equal and measure $60^{\circ}$ each.
$\therefore \angle C A B=\angle C B A=\angle B C A=60^{\circ}$
Also here, $\angle C A D$ and $\angle C B E$ are exterior angles of the triangle.
So, we know that,
$\angle C A B+\angle C A D=180^{\circ} \ldots$ exterior angle theorem
$\angle C B A+\angle C B E=180^{\circ} \ldots$ exterior angle theorem
$\angle B C A+\angle B C L=180^{\circ} \ldots$ exterior angle theorem
From (1) and above statements, we state that,
$60^{\circ}+\angle C A D=180^{\circ}$
$60^{\circ}+\angle C B E=180^{\circ}$
$60^{\circ}+\angle \mathrm{BCL}=180^{\circ}$
Simplifying above statements,
$\angle C A D=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle C B E=180^{\circ}-60^{\circ}=120^{\circ}$
$\angle B C L=180^{\circ}-60^{\circ}=120^{\circ}$
Hence, the measure of each exterior angle of an equilateral triangle is $120^{\circ}$

## 8. Question

In the given figure, $O$ is the midpoint of each of the line segments $A B$ and $C D$. Prove that $A C=B D$ and $A C \| B D$.


## Answer

Given: $A O=O B, D O=O C$
To prove: $\mathrm{AC}=\mathrm{BD}$ and $\mathrm{AC}|\mid \mathrm{BD}$
Proof:
It is given that, $O$ is the midpoint of each of the line segments $A B$ and $C D$.
This implies that $A O=O B$ and $D O=O C$
Here line segments $A B$ and $C D$ are concurrent.
So,
$\angle A O C=\angle B O D \ldots$... As they are vertically opposite angles.
Now in $\triangle A O C$ and $\triangle B O D$,
$A O=O B$,
$O C=O D$
Also, $\angle A O C=\angle B O D$
Hence, $\triangle A O C \cong \triangle B O D$... by SAS property of congruency
So,
$A C=B D .$. by cpct
$\therefore \angle \mathrm{ACO}=\angle \mathrm{BDO} . .$. by cpct
But $\angle A C O$ and $\angle B D O$ are alternate angles.
$\therefore$ We conclude that $A C$ is parallel to $B D$.
Hence we proved that $A C=B D$ and $A C \| B D$

## 9. Question

In the adjoining figure, $P A \perp A B, Q B \perp A B$ and $P A=Q B$. If $P Q$ intersects $A B$ at $O$, show that $O$ is the midpoint of $A B$ as well as that of $P Q$.


## Answer

Given: $\mathrm{PA} \perp \mathrm{AB}, \mathrm{QB} \perp \mathrm{AB}$ and $\mathrm{PA}=\mathrm{QB}$
To prove: $\mathrm{AO}=\mathrm{OB}$ and $\mathrm{PO}=\mathrm{OQ}$
It is given that $P A \perp A B$ and $Q B \perp A B$.
This means that $\triangle \mathrm{PAO}$ and $\triangle \mathrm{QBO}$ are right angled triangles.
It is also given that $\mathrm{PA}=\mathrm{QB}$
Now in $\triangle \mathrm{PAO}$ and $\triangle \mathrm{QBO}$,
$\angle O A P=\angle O B Q=90^{\circ}$
$P O=O Q$
Hence by hypotenuse-leg congruency,
$\triangle \mathrm{PAO} \cong \triangle \mathrm{QBO}$
$\therefore A O=O B$ and $P O=O Q$
....by cpct
Hence proved that $\mathrm{AO}=\mathrm{OB}$ and $\mathrm{PO}=\mathrm{OQ}$

## 10. Question

Let the line segments $A B$ and $C D$ intersect at $O$ in such a way that $O A=O D$ and $O B=O C$. Prove that $A C=B D$ but $A C$ may not be parallel to $B D$.


Answer

Given: $A O=O D$ and $C O=O B$
To prove: $\mathrm{AC}=\mathrm{BD}$
Proof :
It is given that $A O=O D$ and $C O=O B$
Here line segments $A B$ and $C D$ are concurrent.
So,
$\angle A O C=\angle B O D \ldots$... As they are vertically opposite angles.
Now in $\triangle A O C$ and $\triangle D O B$,
$A O=O D$,
$C O=O D$
Also, $\angle A O C=\angle B O D$
Hence, $\triangle A O C \cong \triangle B O D$... by SAS property of congruency
So,
$A C=B D$... by cpct
Here,
$\angle A C O \neq \angle B D O$ or $\angle O A C \neq \angle O B D$
Hence there are no alternate angles, unless both triangles are isosceles triangle.
Hence proved that $A C=B D$ but $A C$ may not be parallel to $B D$.

## 11. Question

In the given figure, $1 / l m$ and $M$ is the midpoint of $A B$. Prove that $M$ is also the midpoint of any line segment CD having its end points at and $m$ respectively.


## Answer

Here it is given that I\| m ie. AC ||DB.
Also given that $A M=M B$
Now in $\triangle A M C$ and $\triangle B M D$,
$\angle C A M=\angle D B M . .$. Alternate angles
$A M=M B$
$\angle A M C=\angle B M D . .$. vertically opposite angles
Hence, $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD} .$. by ASA property of congruency
$\therefore \mathrm{CM}=\mathrm{MD} . . . \mathrm{cpct}$
Hence proved that $M$ is also the midpoint of any line segment $C D$ having its end points atl and $m$ respectively.

## 12. Question

In the given figure, $A B=A C$ and $O B=O C$. Prove that $\angle A B O=\angle A C O$. Give that $A B=A C$ and $O B=O C$.


## Answer

$\triangle A B C$ and $\triangle O B C$ are isosceles triangle.
$\therefore \angle A B C=\angle A C B$ and $\angle O B C=\angle O C B$
Also,
$\angle A B C=\angle A B O+\angle O B C$
And $\angle A C B=\angle A C O+\angle O C B$
From 1 and above equations, we state that,
$\angle A B C=\angle A B O+\angle O B C$
And $\angle A B C=\angle A C O+\angle O B C$
This implies that,
$\angle A B O=\angle A B C-\angle O B C$
And $\angle A C O=\angle A B C-\angle O B C$
Hence,
$\angle A B O=\angle A C O=\angle A B C-\angle O B C$

## 13. Question

In the given figure, $A B C$ is a triangle in which $A B=A C$ and $D$ is a point on $A B$. Through $D$, a line $D E$ is drawn parallel to $B C$ and meeting $A C$ at $E$. Prove that $A D=A E$.


Answer
Given that $A B=A C$ and also $D E \| B C$.
So by Basic proportionality theorem or Thales theorem,
$\frac{A D}{D B}=\frac{A E}{E C}$
$\therefore \frac{D B}{A D}=\frac{E C}{A E}$
Now adding 1 on both sides,
$\frac{D B}{A D}+1=\frac{E C}{A E}+1$
$\frac{D B+A D}{A D}=\frac{E C+A E}{A E}$
$\frac{A B}{A D}=\frac{A C}{A E} \ldots$ as $\mathrm{AB}=\mathrm{AD}+\mathrm{DE}$ and $\mathrm{AC}=\mathrm{AE}+\mathrm{EC}$
But is given that $A B=A C$,
$\therefore \frac{A B}{A D}=\frac{A B}{A E}$
Hence,
$A D=A E$.

## 14. Question

In the adjoining figure, $X$ and $Y$ are respectively two points on equal sides $A B$ and $A C$ of $\triangle A B C$ such that $A X=A Y$. Prove that $C X=B Y$.


## Answer

Here it is given that $A X=A Y$.
Now in $\triangle C X A$ and $\triangle B Y A$,
$A X=A Y$
$\angle X A C=\angle Y A B \ldots$ Same angle or common angle.
$A C=A B$... given condition Hence by SAS property of congruency,
$\triangle C X A \cong \triangle B Y A$
Hence by cpct, we conclude that,
$C X=B Y$

## 15. Question

In the given figure, $C$ is the midpoint of $A B$. If $\angle D C A=\angle E C B$ and $\angle D B C=\angle E A C$, prove that $D C=E C$.


Answer
It is given that $A C=B C, \angle D C A=\angle E C B$ and $\angle D B C=\angle E A C$.
Adding angle $\angle E C D$ both sides in $\angle D C A=\angle E C B$, we get,
$\angle D C A+\angle E C D=\angle E C B+\angle E C D$
$\therefore \angle E C A=\angle D C B$...addition property
Now in $\triangle D B C$ and $\triangle E A C$,
$\angle E C A=\angle D C B$
$B C=A C$
$\angle D B C=\angle E A C$
Hence by ASA postulate, we conclude,
$\Delta \mathrm{DBC} \cong \triangle \mathrm{EAC}$
Hence, by cpct, we get,
$D C=E C$

## 16. Question

In the given figure, $B A \perp A C$ and $D E \perp E F$ such that $B A=D E$ and $B F=D C$. Prove that $A C=E F$.


## Answer

Given: $B A \perp A C$ and $D E \perp E F$ such that $B A=D E$ and $B F=D C$
To prove: $A C=E F$
Proof:
In $\triangle A B C$, we have,
$B C=B F+F C$
And, in $\triangle D E F$,
$F D=F C+C D$
But, $B F=C D$
So, $B C=B F+F C$
And, $\mathrm{FD}=\mathrm{FC}+\mathrm{BF}$
$\therefore \mathrm{BC}=\mathrm{FD}$
So, in $\triangle A B C$ and $\triangle D E F$, we have,
$\angle B A C=\angle D E F \ldots$ given
$B C=F D$
$A B=D E$...given
Thus by Right angle - Hypotenuse- Side property of congruence, we have,
$\triangle A B C \cong \triangle D E F$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{AC}=\mathrm{EF}$

## 17. Question

In the given figure, if $x=y$ and $A B=C B$, then prove that $A E=C D$.


## Answer

Given: $x=y$ and $A B=C B$
To prove: $\mathrm{AE}=\mathrm{CD}$
Proof:
In $\triangle A B E$, we have,
$\angle A E C=\angle E B A+\angle B A E \ldots$ Exterior angle theorem
$y^{\circ}=\angle E B A+\angle B A E$
Now in $\triangle B C D$, we have,
$x^{\circ}=\angle C B A+\angle B C D$
Since, given that,
$x=y$,
$\angle C B A+\angle B C D=\angle E B A+\angle B A E$
$\therefore \angle B C D=\angle B A E \ldots$ as $\angle C B A$ and $\angle E B A$ and same angles.
Hence in $\triangle B C D$ and $\triangle B A E$,
$\angle B=\angle B$
$B C=A B$...given
$\angle B C D=\angle B A E$
Thus by ASA property of congruence, we have,
$\triangle \mathrm{BCD} \cong \triangle \mathrm{BAE}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{CD}=\mathrm{AE}$

## 18. Question

$A B C$ is a triangle in which $A B=A C$. If the bisectors of $\angle B$ and $\angle C$ meet $A C$ and $A B$ in $D$ and $E$ respectively, prove that $B D=C E$.


## Answer

Given: $A B=A C$ and $B D$ and $A B$ are angle bisectors of $\angle B$ and $\angle C$
To prove: $\mathrm{BD}=\mathrm{CE}$
Proof:
In $\triangle A B D$ and $\triangle A C E$,
$\angle \mathrm{ABD}=\frac{1}{2} \angle \mathrm{~B}$
And $\angle \mathrm{ACE}=\frac{1}{2} \angle \mathrm{C}$
But $\angle B=\angle C$ as $A B=A C \ldots$ As in isosceles triangle, base angles are equal
$\angle A B D=\angle A C E$
$A B=A C$
$\angle A=\angle A$
Thus by ASA property of congruence,
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{BD}=\mathrm{CE}$

## 19. Question

In the adjoining figure, $A D$ is a median of $\triangle A B C$. If $B L$ and $C M$ are drawn perpendiculars on $A D$ and $A D$ produced, prove that $B L=C M$


## Answer

Given: $\mathrm{BC}=\mathrm{DC}$ and $\mathrm{BL} \perp \mathrm{AD}$ and $\mathrm{DM} \perp \mathrm{CM}$

To prove: $\mathrm{BL}=\mathrm{CM}$
Proof:
In $\triangle \mathrm{BLD}$ and $\triangle \mathrm{CMD}$,
$\angle B L D=\angle C M D=90^{\circ} \ldots$ given
$\angle B L D=\angle M D C \ldots$ vertically opposite angles
$B D=D C$... given
Thus by AAS property of congruence,
$\triangle \mathrm{BLD} \cong \triangle \mathrm{CMD}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{BL}=\mathrm{CM}$

## 20. Question

In $\triangle A B C, D$ is the midpoint of $B C$. If $D L \perp A B$ and $D M \perp A C$ such that $D L=D M$, prove that $A B=A C$.


## Answer

Given: $B D=D C$ and $D L \perp A B$ and $D M \perp A C$ such that $D L=D M$
To prove: $A B=A C$
Proof:
In right angled triangles $\triangle B L D$ and $\triangle C M D$,
$\angle B L D=\angle C M D=90^{\circ}$
$B D=C D$... given
$D L=D M . .$. given
Thus by right angled hypotenuse side property of congruence,
$\Delta \mathrm{BLD} \cong \triangle \mathrm{CMD}$
Hence, we know that, corresponding parts of the congruent triangles are equal $\angle A B D=\angle A C D$

In $\triangle A B C$, we have,
$\angle A B D=\angle A C D$
$\therefore A B=A C \ldots$. Sides opposite to equal angles are equal

## 21. Question

In $\triangle A B C, A B=A C$ and the bisectors of $\angle B$ and $\angle C$ meet at a point $O$. prove that $B O=C O$ and the ray $A O$ is the bisector of $\angle A$.


## Answer

Given: In $\triangle A B C, A B=A C$ and the bisectors of $\angle B$ and $\angle C$ meet at a point $O$.
To prove: $\mathrm{BO}=\mathrm{CO}$ and $\angle \mathrm{BAO}=\angle \mathrm{CAO}$
Proof:
In , $\triangle A B C$ we have,
$\angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{~B}$
$\angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{C}$
But $\angle B=\angle C$... given
So, $\angle O B C=\angle O C B$
Since the base angles are equal, sides are equal
$\therefore \mathrm{OC}=\mathrm{OB}$
Since $O B$ and $O C$ are bisectors of angles $\angle B$ and $\angle C$ respectively, we have
$\angle \mathrm{ABO}=\frac{1}{2} \angle \mathrm{~B}$
$\angle \mathrm{ACO}=\frac{1}{2} \angle \mathrm{C}$
$\therefore \angle A B O=\angle A C O$
Now in $\triangle A B O$ and $\triangle A C O$
$A B=A C$... given
$\angle A B O=\angle A C O$... from 2
$B O=O C \ldots$ from 1
Thus by SAS property of congruence,
$\triangle \mathrm{ABO} \cong \triangle \mathrm{ACO}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle B A O=\angle C A O$
ie. $A O$ bisects $\angle A$

## 22. Question

In the given figure, $P Q R$ is an equilateral triangle and QRST is a square. Prove that
(i) $\mathrm{PT}=\mathrm{PS}$, (ii) $\angle \mathrm{PSR}=15^{\circ}$.


## Answer

Given: $P Q R$ is an equilateral triangle and QRST is a square
To prove: $\mathrm{PT}=\mathrm{PS}$ and $\angle \mathrm{PSR}=15^{\circ}$.
Proof:
Since $\triangle P Q R$ is equilateral triangle,
$\angle \mathrm{PQR}=\angle \mathrm{PRQ}=60^{\circ}$
Since QRTS is a square,
$\angle \mathrm{RQT}=\angle \mathrm{QRS}=90^{\circ}$
In $\triangle \mathrm{PQT}$,
$\angle P Q T=\angle P Q R+\angle R Q T$
$=60^{\circ}+90^{\circ}$
$=150^{\circ}$
In $\triangle$ PRS,
$\angle \mathrm{PRS}=\angle \mathrm{PRQ}+\angle \mathrm{QRS}$
$=60^{\circ}+90^{\circ}$
$=150^{\circ}$
$\therefore \angle \mathrm{PQT}=\angle \mathrm{PRS}$
Thus in $\triangle P Q T$ and $\triangle P R S$,
$P Q=P R \ldots$ sides of equilateral triangle
$\angle \mathrm{PQT}=\angle \mathrm{PRS}$
QT = RS ... side of square
Thus by SAS property of congruence,
$\Delta P Q T \cong \triangle P R S$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{PT}=\mathrm{PS}$
Now in $\triangle$ PRS, we have,
$P R=R S$
$\therefore \angle \mathrm{PRS}=\angle \mathrm{PSR}$
But $\angle \mathrm{PRS}=150^{\circ}$
SO, by angle sum property,
$\angle \mathrm{PRS}+\angle \mathrm{PSR}+\angle \mathrm{SPR}=180^{\circ}$
$150^{\circ}+\angle \mathrm{PSR}+\angle \mathrm{SPR}=180^{\circ}$
$2 \angle \mathrm{PSR}=180^{\circ}-150^{\circ}$
$2 \angle \mathrm{PSR}=30^{\circ}$
$\angle \mathrm{PSR}=15^{\circ}$

## 23. Question

In the given figure, $A B C$ is a triangle, right angled at $B$. If $B C D E$ is a square on side $B C$ and $A C F G$ is a square on $A C$, prove that $A D=B F$.


## Answer

Given: $\angle A B C=90^{\circ}, B C D E$ is a square on side $B C$ and $A C F G$ is a square on $A C$

To prove: AD = EF
Proof:
Since BCDE is square,
$\angle B C D=90^{\circ}$
In $\triangle A C D$,
$\angle A C D=\angle A C B+\angle B C D$
$=\angle A C B+90^{\circ}$
In $\triangle B C F$,
$\angle B C F=\angle B C A+\angle A C F$
Since ACFG is square,
$\angle A C F=90^{\circ}$
From 2 and 3, we have,
$\angle A C D=\angle B C F$
Thus in $\triangle A C D$ and $\triangle B C F$, we have,
$A C=C F \ldots$ sides of square
$\angle A C D=\angle B C F$...from 4
$C D=B C \ldots$ sides of square
Thus by SAS property of congruence,
$\triangle A C D \cong \triangle B C F$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{AD}=\mathrm{BF}$

## 24. Question

Prove that median from the vertex of an isosceles triangle is the bisector of the vertical angle.

## Answer

Given: $\triangle A B C$ is isosceles triangle where $A B=A C$ and $B D=D C$
To prove: $\angle B A D=\angle D A C$
Proof:


In $\triangle A B D$ and $\triangle A D C$
$A B=A C$...given
$B D=D C$...given
$A D=A D .$. common side
Thus by SSS property of congruence,
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ADC}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle B A D=\angle D A C$

## 25. Question

In the given figure, $A B C D$ is a quadrilateral in which $A B \| D C$ and $P$ is the midpoint of $B C$. On producing, $A P$ and $D C$ meet at $Q$. prove that (i) $A B=C Q$, (ii) $D Q=D C+A B$.


## Answer

Given: $A B C D$ is a quadrilateral in which $A B \| D C$ and $B P=P C$
To prove: $A B=C Q$ and $D Q=D C+A B$
Proof:
In $\triangle A B P$ and $\triangle P C Q$ we have,
$\angle \mathrm{PAB}=\angle \mathrm{PQC} .$. alternate angles
$\angle A P B=\angle C P Q . .$. vertically opposite angles
$B P=P C \ldots$ given
Thus by AAS property of congruence,
$\triangle \mathrm{ABP} \cong \triangle \mathrm{PCQ}$

Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{AB}=\mathrm{CQ}$
But, $D Q=D C+C Q$
$=D C+A B$...from 1

## 26. Question

In the given figure, $O A=O B$ and $O P=O Q$. Prove that (i) $P X=Q X$, (ii) $A X=B X$.


## Answer

Given: $O A=O B$ and $O P=O Q$
To prove: $\mathrm{PX}=\mathrm{QX}$ and $\mathrm{AX}=\mathrm{BX}$
Proof:
In $\triangle \mathrm{OAQ}$ and $\triangle \mathrm{OPB}$, we have
$O A=O B$...given
$\angle \mathrm{O}=\angle \mathrm{O}$...common angle
$O Q=O P$... given
Thus by SAS property of congruence,
$\triangle \mathrm{OAP} \cong \triangle \mathrm{OPB}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle O B P=\angle O A Q$.
Thus, in $\triangle B X Q$ and $\triangle P X A$, we have,
$B Q=O B-O Q$
And $P A=O A-O P$
But OP = OQ
And $O A=O B$...given
Hence, we have, $B Q=P A . . .(2)$
Now consider $\triangle B X Q$ and $\triangle P X A$,
$\angle B X Q=\angle P X A \ldots$ vertically opposite angles
$\angle O B P=\angle O A Q \ldots$...from 1
$B Q=P A .$. from 2
Thus by AAS property of congruence,
$\triangle B X Q \cong \triangle P X A$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{PX}=\mathrm{QX}$
And $A X=B X$

## 27. Question

In the given figure, $A B C D$ is a square and $P$ is a point inside it such that $P B=P D$. Prove that $C P A$ is a straight line.


## Answer

Given: $A B C D$ is a square and $P B=P D$
To prove: CPA is a straight line
Proof:
$\triangle A P D$ and $\triangle A P B$,
$D A=A B$...as $A B C D$ is square
AP $=A P$... common side
$P B=P D . .$. given
Thus by SSS property of congruence,
$\triangle A P D \cong \triangle A P B$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle A P D=\angle A P B$
Now consider $\triangle C P D$ and $\triangle C P B$,
$C D=C B \ldots A B C D$ is square
$C P=C P$... common side
$P B=P D . .$. given
Thus by SSS property of congruence,
$\triangle C P D \cong \triangle C P B$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle C P D=\angle C P B$
Now,
Adding both sides of 1 and 2,
$\angle C P D+\angle A P D=\angle A P B+\angle C P B$
Angels around the point $P$ add upto $360^{\circ}$
$\therefore \angle \mathrm{CPD}+\angle \mathrm{APD}+\angle \mathrm{APB}+\angle \mathrm{CPB}=360^{\circ}$
From 4,
$2(\angle \mathrm{CPD}+\angle \mathrm{APD})=360^{\circ}$
$\angle C P D+\angle A P D=\frac{360^{\circ}}{2}=180^{\circ}$
This proves that CPA is a straight line.

## 28. Question

In the given figure, $A B C$ is an equilateral triangle, $P Q \| A C$ and $A C$ is produced to $R$ such that $C R=B P$. Prove that QR bisects PC.


## Answer

Given: $A B C$ is an equilateral triangle, $P Q \| A C$ and $C R=B P$
To prove: QR bisects PC or $\mathrm{PM}=\mathrm{MC}$
Proof:
Since, $\triangle A B C$ is equilateral triangle,
$\angle A=\angle A C B=60^{\circ}$
Since, $\mathrm{PQ} \| \mathrm{AC}$ and corresponding angles are equal,
$\angle \mathrm{BPQ}=\angle \mathrm{ACB}=60^{\circ}$

In $\triangle B P Q$,
$\angle B=\angle A C B=60^{\circ}$
$\angle \mathrm{BPQ}=60^{\circ}$
Hence, $\triangle B P Q$ is an equilateral triangle.
$\therefore \mathrm{PQ}=\mathrm{BP}=\mathrm{BQ}$
Since we have $B P=C R$,
We say that $P Q=C R$
Consider the triangles $\triangle P M Q$ and $\triangle C M R$,
$\angle P Q M=\angle C R M$...alternate angles
$\angle P M Q=\angle C M R \ldots$ vertically opposite angles
$P Q=C R \ldots$ from 1
Thus by AAS property of congruence,
$\Delta \mathrm{PMQ} \cong \triangle \mathrm{CMR}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{PM}=\mathrm{MC}$

## 29. Question

In the given figure, $A B C D$ is a quadrilateral in which $A B=A D$ and $B C=D C$. Prove that (i) $A C$ bisects $\angle A$ and $\angle C$, (ii) $A C$ is the perpendicular bisector of $B D$.


## Answer

Given: $A B C D$ is a quadrilateral in which $A B=A D$ and $B C=D C$
To prove: $A C$ bisects $\angle A$ and $\angle C$, and $A C$ is the perpendicular bisector of $B D$
Proof:
In $\triangle A B C$ and $\triangle A D C$, we have
$A B=A D$...given
$B C=D C \ldots$ given
$A C=A C .$. common side
Thus by SSS property of congruence,
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle B A C=\angle D A C$
$\therefore \angle B A O=\angle D A O ~ . . .(1)$
It means that $A C$ bisects $\angle B A D$ ie $\angle A$
Also, $\angle B C A=\angle D C A . . . ~ c p c t$
It means that $A C$ bisects $\angle B C D$, ie $\angle C$
Now in $\triangle A B O$ and $\triangle A D O$
$A B=A D$...given
$\angle B A O=\angle D A O \ldots$ from 1
$A O=A O$... common side
Thus by SAS property of congruence,
$\triangle \mathrm{ABO} \cong \triangle \mathrm{ADO}$
Hence, we know that, corresponding parts of the congruent triangles are equal $\angle B O A=\angle D A O$

But $\angle B O A+\angle D A O=180^{\circ}$
$2 \angle B O A=180^{\circ}$
$\therefore \angle \mathrm{BOA}=\frac{180^{a}}{2}=90^{\circ}$
Also $\triangle \mathrm{ABO} \cong \triangle \mathrm{ADO}$
So, $B O=O D$
Which means that $A C=B D$

## 30. Question

In the given figure, the bisectors of $\angle B$ and $\angle C$ of $\triangle A B C$ meet at I If IP $\perp B C, I Q \perp C A$ and IR $\perp A B$, prove that
(i) $I P=I Q=I R$, (ii) IA bisects $\angle A$.


## Answer

Given: IP $\perp B C, I Q \perp C A$ and IR $\perp A B$ and the bisectors of $\angle B$ and $\angle C$ of $\triangle A B C$ meet at I To prove: $I P=I Q=I R$ and $I A$ bisects $\angle A$

Proof:
In $\triangle$ BIP and $\triangle$ BIR we have,
$\angle \mathrm{PBI}=\angle \mathrm{RBI} .$. given
$\angle \mathrm{IRB}=\angle \mathrm{IPB}=90^{\circ} \ldots$ Given
$I B=I B$...common side
Thus by AAS property of congruence,
$\Delta \mathrm{BIP} \cong \triangle \mathrm{BIR}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{IP}=\mathrm{IR}$
Similarly,
$I P=I Q$
Hence, $I P=I Q=I R$
Now in $\triangle$ AIR and $\triangle$ AIQ
IR = IQ ...proved above
IA $=I A$... Common side
$\angle \mathrm{IRA}=\angle \mathrm{IQA}=90^{\circ}$
Thus by SAS property of congruence,
$\Delta A I R \cong \triangle A I Q$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \angle \mathrm{IAR}=\angle \mathrm{IAQ}$
This means that IA bisects $\angle A$

## 31. Question

In the adjoining figure, P is a point in the interior of $\angle \mathrm{AOB}$. If $\mathrm{PL} \perp \mathrm{OA}$ and $\mathrm{PM} \perp \mathrm{OB}$ such that $\mathrm{PL}=\mathrm{PM}$, show that $O P$ is the bisector of $\angle A O B$


## Answer

Given: P is a point in the interior of $\angle \mathrm{AOB}$ and $\mathrm{PL} \perp \mathrm{OA}$ and $\mathrm{PM} \perp \mathrm{OB}$ such that $\mathrm{PL}=\mathrm{PM}$
To prove: $\angle \mathrm{POL}=\angle \mathrm{POM}$
Proof:
In $\triangle O P L$ and $\triangle O P M$, we have
$\angle O P M=\angle O P L=90^{\circ} \ldots$ given
$\mathrm{OP}=\mathrm{OP}$...common side
$P L=P M . .$. given
Thus by Right angle hypotenuse side property of congruence,
$\triangle \mathrm{OPL} \cong \triangle \mathrm{OPM}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \angle \mathrm{POL}=\angle \mathrm{POM}$
Ie. $O P$ is the bisector of $\angle A O B$

## 32. Question

In the given figure, $A B C D$ is a square, $M$ is the midpoint of $A B$ and $P Q \perp C M$ meets $A D$ at $P$ and $C B$ produced at $Q$. prove that (i) $P A=B Q$, (ii) $C P=A B+P A$.


## Answer

Given: $A B C D$ is a square, $A M=M B$ and $P Q \perp C M$

To prove: $\mathrm{PA}=\mathrm{BQ}$ and $\mathrm{CP}=\mathrm{AB}+\mathrm{PA}$
Proof:
In $\triangle A M P$ and $\triangle B M Q$, we have
$\angle A M P=B M Q$...vertically opposite angle
$\angle \mathrm{PAM}=\angle \mathrm{MBQ}=90^{\circ} \ldots$ as ABCD is square
$A M=M B$...given
Thus by AAS property of congruence,
$\triangle \mathrm{AMP} \cong \triangle \mathrm{BMQ}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{PA}=\mathrm{BQ}$ and $\mathrm{MP}=\mathrm{MQ}$.
Now in $\triangle \mathrm{PCM}$ and $\triangle \mathrm{QCM}$
$P M=Q M . .$. from 1
$\angle P M C=\angle Q M C$... given
$C M=C M .$. common side
Thus by AAS property of congruence,
$\triangle \mathrm{PCM} \cong \triangle \mathrm{QCM}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{PC}=\mathrm{QC}$
$P C=Q B+C B$
$P C=A B+P A$... as $A B=C B$ and $P A=Q B$

## 33. Question

In the adjoining figure, explain how one can find the breadth of the river without crossing it.


## Answer

Given: $A B \perp B O$ and $N M \perp O M$
In $\triangle A B O$ and $\triangle N M O$,
$\angle O B A=\angle O M N$
$O B=O M . . O$ is mid point of $B M$
$\angle B O A=\angle M O N$...vertically opposite angles
Thus by AAS property of congruence,
$\triangle \mathrm{ABO} \cong \triangle \mathrm{NMO}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\therefore \mathrm{AB}=\mathrm{MN}$
Hence, we can calculate the width of the river by calculating MN

## 34. Question

In $\triangle A B C$, if $\angle A=36^{\circ}$ and $\angle B=64^{\circ}$, name the longest and shortest sides of the triangle.

## Answer

Given: $\angle A=36^{\circ}$ and $\angle B=64^{\circ}$


To find: The longest and shortest sides of the triangle
Given that $\angle A=36^{\circ}$ and $\angle B=64^{\circ}$
Hence, by the angle sum property in $\triangle A B C$, we have
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$36^{\circ}+64^{\circ}+\angle \mathrm{C}=180^{\circ}$
$100^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle C=80^{\circ}$
So, we have $\angle A=36^{\circ}, \angle B=64^{\circ}$ and $\angle C=80^{\circ}$
$\therefore \angle \mathrm{C}$ is largest and $\angle \mathrm{A}$ is shortest
Hence,
Side opposite to $\angle \mathrm{C}$ is longest.
$\therefore A B$ is longest
Side opposite to $\angle A$ is shortest.
$\therefore \mathrm{BC}$ is shortest

## 35. Question

In $\triangle A B C$, if $\angle A=90^{\circ}$, which is the longest side?

## Answer

It is given that $\angle \mathrm{A}=90^{\circ}$.
In right angled triangle at $90^{\circ}$
Sum of all angles in triangle is $180^{\circ}$, so other two angles must be less that $90^{\circ}$
So, other angles are smaller than $\angle A$.
Hence $\angle A$ is largest angle.
We know that side opposite to largest angle is largest.
$\therefore B C$ is longest side, which is opposite to $\angle A$.

## 36. Question

In $\triangle A B C$, if $\angle A=\angle B=45^{\circ}$, name the longest side.

## Answer

In $\triangle A B C$ given that $\angle A=\angle B=45^{\circ}$
So, by the angle sum property in $\triangle A B C$, we have
$\angle A+\angle B+\angle C=180^{\circ}$
$45^{\circ}+45^{\circ}+\angle \mathrm{C}=180^{\circ}$
$90^{\circ}+\angle C=180^{\circ}$
$\therefore \angle C=180^{\circ}-90^{\circ}$
$\angle C=90^{\circ}$
Hence, largest angle is $\angle \mathrm{C}$
We know that side opposite to largest angle is longest, which is $A B$
Hence our longest side is $A B$

## 37. Question

In $\triangle A B C$, side $A B$ is produced to $D$ such that $B D=B C$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$, prove that (i) $A D>C D$ and (ii) $A D>A C$.


## Answer

Given: In $\triangle A B C, B D=B C$ and $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$
To prove: $A D>C D$ and $A D>A C$
Proof:
In $\triangle A B C$, by the angle sum property, we have
$\angle A+\angle B+\angle C=180^{\circ}$
$70^{\circ}+60^{\circ}+\angle C=180^{\circ}$
$130^{\circ}+\angle C=180^{\circ}$
$\angle C=50^{\circ}$
Now in $\triangle B C D$ we have,
$\angle C B D=\angle D A C+\angle A C B \ldots$ as $\angle C B D$ is the exterior angle of $\angle A B C$
$=70^{\circ}+50^{\circ}$
Since BC = BD ...given
So, $\angle B C D=\angle B D C$
$\therefore \angle B C D+\angle B D C=180^{\circ}-\angle C B D$
$=180^{\circ}-120^{\circ}=60^{\circ}$
$2 \angle B C D=60^{\circ}$
$\angle B C D=\angle B D C=30^{\circ}$
Now in $\triangle A C D$ we have
$\angle A=70^{\circ}, \angle D=30^{\circ}$
And $\angle A C D=\angle A C B+\angle B C D$
$=50^{\circ}+30^{\circ}=80^{\circ}$
$\therefore \angle A C D$ is greatest angle
So, the side opposite to largest angle is longest, ie AD is longest side.
$\therefore A D>C D$
Since, $\angle B D C$ is smallest angle,
The side opposite to $\angle B D C$, ie $A C$, is the shortest side in $\triangle A C D$.
$\therefore A D>A C$

## 38. Question

In $\triangle A B C, \angle B=35^{\circ}, \angle C=65^{\circ}$ and the bisector of $\angle B A C$ meets $B C$ in $X$. Arrange $A X, B X$ and $C X$ in descending order.


## Answer

Given: In $\triangle A B C, \angle B=35^{\circ}, \angle C=65^{\circ}$ and $\angle B A X=\angle X A C$
To find: Relation between $A X, B X$ and $C X$ in descending order.
In $\triangle A B C$, by the angle sum property, we have
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}+35^{\circ}+65^{\circ}=180^{\circ}$
$\angle A+100^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{A}=80^{\circ}$
But $\angle B A X=\frac{1}{2} \angle A$
$=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
Now in $\triangle A B X$,
$\angle B=35^{\circ}$
$\angle B A X=40$
And $\angle \mathrm{BXA}=180^{\circ}-35^{\circ}-40^{\circ}$
$=105^{\circ}$
So, in $\triangle A B X$,
$\angle B$ is smallest, so the side opposite is smallest, ie $A X$ is smallest side.
$\therefore \mathrm{AX}<\mathrm{BX}$
Now consider $\triangle A X C$,
$\angle C A X=\frac{1}{2} \times \angle A$
$=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
$\angle A X C=180^{\circ}-40^{\circ}-65^{\circ}$
$=180^{\circ}-105^{\circ}=75^{\circ}$
Hence, in $\triangle A X C$ we have,
$\angle C A X=40^{\circ}, \angle C=65^{\circ}, \angle A X C=75^{\circ}$
$\therefore \angle C A X$ is smallest in $\triangle A X C$
So the side opposite to $\angle C A X$ is shortest
Ie CX is shortest
$\therefore C X<A X$
From 1 and 2 ,
$B X>A X>C X$
This is required descending order

## 39. Question

In $\triangle A B C$, if $A D$ is the bisector of $\angle A$, show that $A B>B D$ and $A C>D C$


## Answer

Given: $\angle B A D=\angle D A C$
To prove: $A B>B D$ and $A C>D C$
Proof:
In $\triangle A C D$,
$\angle A D B=\angle D A C+\angle A C D \ldots$ exterior angle theorem
$=\angle B A D+\angle A C D \ldots$ given that $\angle B A D=\angle D A C$
$\angle A D B>\angle B A D$
The side opposite to angle $\angle A D B$ is the longest side in $\triangle A D B$
So, $A B>B D$
Similarly in $\triangle A B D$
$\angle A D C=\angle A B D+\angle B A D \ldots$ exterior angle theorem
$=\angle A B D+\angle C A D \ldots$ given that $\angle B A D=\angle D A C$
$\angle A D C>\angle C A D$
The side opposite to angle $\angle A D C$ is the longest side in $\triangle A C D$
So, AC > DC

## 40. Question

In the given figure, $A B C$ is a triangle in which $A B=A C$. If $D$ be a point on $B C$ produced, prove that AD>AC.


## Answer

Given: $A B=A C$
To prove: AD>AC
Proof:
In $\triangle A B C$,
$\angle A C D=\angle B+\angle B A C$
$=\angle A C B+\angle B A C \ldots$...as $\angle C=\angle B$ as $A B=A C$
$=\angle C A D+\angle C D A+\angle B A C \ldots$ as $\angle A C B=\angle C A D+\angle C D A$
$\therefore \angle A C D>\angle C D A$
So the side opposite to $\angle A C D$ is the longest
$\therefore A D>A C$

## 41. Question

In the adjoining figure, $A C>A B$ and $A D$ is the bisector of $\angle A$. show that $\angle A D C>\angle A D B$.


## Answer

Given: $A C>A B$ and $\angle B A D=\angle D A C$
To prove: $\angle A D C>\angle A D B$
Proof:
Since $A C>A B$
$\angle A B C>\angle A C B$
Adding $\frac{1}{2} \angle \mathrm{~A}$ on both sides
$\angle A B C+\frac{1}{2} \angle A>\angle A C B+\frac{1}{2} \angle A$
$\angle A B C+\angle B A D>\angle A C B+\angle D A C \ldots$ As $A D$ is a bisector of $\angle A$
$\therefore \angle A D C>\angle A D B$

## 42. Question

In $\triangle P Q R$, if $S$ is any point on the side $Q R$, show that $P Q+Q R+R P>2 P S$.


## Answer

Given: S is any point on the side QR
To prove: $\mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS}$.
Proof:
Since in a triangle, sum of any two sides is always greater than the third side.
So in $\triangle \mathrm{PQS}$, we have,
$P Q+Q S>P S$.
Similarly, $\triangle P S R$, we have,
$P R+S R>P S$.
Adding 1 and 2
$P Q+Q S+P R+S R>2 P S$
$P Q+P R+Q R>2 P S ~ . .$. as $P R=Q S+S R$

## 43. Question

In the given figure, $O$ is the center of the circle and $X O Y$ is a diameter. If $X Z$ is any other chord of the circle, show that $X Y>X Z$.


## Answer

Given: XOY is a diameter and XZ is any chord of the circle.
To prove: $\mathrm{XY}>\mathrm{XZ}$
Proof:
In $\triangle X O Z$,
$O X+O Z>X Z$... sum of any sides in a triangle is a greater than its third side
$\therefore \mathrm{OX}+\mathrm{OY}>\mathrm{XZ} \ldots$ As $\mathrm{OZ}=\mathrm{OY}$, radius of circle
Hence, XY > XZ ...As OX + OY = XY

## 44. Question

If $O$ is a point within $\triangle A B C$, show that:
(i) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
(ii) $A B+B C+C A>O A+O B+O C$
(iii) $O A+O B+O C>\frac{1}{2}(A B+B C+C A)$

## Answer

Given: $O$ is a point within $\triangle A B C$
To prove:
(i) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
(ii) $A B+B C+C A>O A+O B+O C$
(iii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

Proof:


In $\triangle A B C$,
$A B+A C>B C$
And in $\triangle O B C$, $O B+O C>B C$

Subtracting 1 from 2 we get,
$(A B+A C)-(O B+O C)>(B C-B C)$
Ie $A B+A C>O B+O C$
From $\mathrm{I}, \mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
Similarly, $A B+B C>O A+O C$
And $A C+B C>O A+O B$
Adding both sides of these three inequalities, we get,
$(A B+A C)+(A B+B C)+(A C+B C)>(O B+O C)+(O A+O C)+(O A+O B)$
Ie. $2(A B+B C+A C)>2(O A+O B+O C)$
$\therefore A B+B C+O A>O A+O B+O C$
In $\triangle O A B$,
$O A+O B>A B$
In $\triangle O B C$,
$O B+O C>B C$
In $\triangle O C A$
$O C+O A>C A$
Adding 1,2 and 3,
$(O A+O B)+(O B+O C)+(O C+O A)>A B+B C+C A$
Ie. $2(O A+O B+O C)>A B+B C+C A \div O A+O B+O C>\frac{1}{2}(A B+B C+C A)$

## 45. Question

Can we draw a triangle $A B C$ with $A B=3 \mathrm{~cm}, B C=3.5 \mathrm{~cm}$ and $C A=6.5 \mathrm{~cm}$ ? Why?

## Answer

Our given lengths are $A B=3 \mathrm{~cm}, B C=3.5 \mathrm{~cm}$ and $C A=6.5 \mathrm{~cm}$.
$\therefore A B+B C=3+3.5=6.5 \mathrm{~cm}$
But CA $=6.5 \mathrm{~cm}$
So, $A B+B C=C A$
A triangle can be drawn only when the sum of two sides is greater than the third side So, a triangle cannot be drawn with such lengths

## CCE Questions

## 1. Question

Which of the following is not a criterion for congruence of triangles?
A. SSA
B. SAS
C. ASA
D. SSS

## Answer

From the above given four options, SSA is not a criterion for the congruence of triangles
$\therefore$ Option (A) is correct

## 2. Question

If $A B=Q R, B C=R P$ and $C A=P Q$, then which of the following holds?
A. $\triangle A B C \cong \triangle P Q R$
B. $\triangle C B A \cong \triangle P Q R$
B. $\triangle C A B \cong \triangle P Q R$
D. $\triangle B C A \cong \triangle P Q R$

## Answer

It is given in the question that,
$A B=Q R$
$B C=R P$
And, $\mathrm{CA}=\mathrm{PQ}$
$\therefore$ By SSS congruence criterion
$\triangle C B A \cong \triangle P Q R$
Hence, option (B) is correct

## 3. Question

If $\triangle A B C \cong \triangle P Q R$ AND $\triangle A B C$ is not congruent to $\triangle R P Q$, then which of the following is not true?
A. $B C=P Q$
B. $A C=P R$
C. $\mathrm{BC}=\mathrm{QR}$
D. $A B=P Q$

## Answer

According to the condition given in the question,

If $\triangle A B C \cong \triangle P Q R$ and $\triangle A B C$ is not congruent to $\triangle R P Q$
Then, clearly $B C \neq P Q$
$\therefore$ It is false
Hence, option (A) is correct

## 4. Question

It is given that $\triangle A B C \cong \triangle F D E$ in which $A B=5 \mathrm{~cm}, \angle B=40^{\circ}, \angle A=80^{\circ}$ and $F D=5 \mathrm{~cm}$. Then, which of the following is true?
A. $\angle D=60^{\circ}$
B. $\angle E=60^{\circ}$
C. $\angle \mathrm{F}=60^{\circ}$
D. $\angle D=80^{\circ}$

## Answer

It is given in the question that,
$\triangle A B C \cong \triangle F D E$ where,
$A B=5 \mathrm{~cm}$
$\mathrm{FD}=5 \mathrm{~cm}$
$\angle B=40^{\circ}$
$\angle \mathrm{A}=80^{\circ}$
We know that sum of all angles of a triangle is equal to $180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$80^{\circ}+40^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle C=180^{\circ}-120^{\circ}$
$=60^{\circ}$
As, Angle C $=$ Angle E
$\therefore$ Angle $\mathrm{E}=60^{\circ}$
Hence, option (B) is correct

## 5. Question

In $\triangle A B C, A B=2.5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. Then, the length of $A C$ cannot be
A. 3.4
B. 4 cm
C. 3.8 cm
D. 3.6 cm

## Answer

It is given in the question that,
In $\triangle A B C$
$A B=2.5 \mathrm{~cm}$
$B C=6 \mathrm{~cm}$
We know that, the length of a side must be less than the sum of the other two sides
Let us assume the side of $A C$ be $\times \mathrm{cm}$
$\therefore \mathrm{x}<2.5+6$
$x<8.5$
Also, we know that the length of a side must be greater then the difference between the other two sides
$\therefore \mathrm{x}>6-2.5$
$x>3.5$
Hence, the limits of the value of $x$ is
$3.5<x<8.5$
$\therefore$ It is clear the length of AC cannot be 3.4 cm
Hence, option (A) is correct

## 6. Question

In $\triangle A B C, \angle A=40^{\circ}$ and $\angle B=60^{\circ}$, Then, the longest side of $\triangle A B C$ is
A. BC
B. $A C$
C. $A B$
D. cannot be determined

## Answer

It is given in the question that,
In $\triangle A B C, \angle A=40^{\circ}$
$\angle B=60^{\circ}$
We know that, sum of all angles of a triangle is equal to $180^{\circ}$
$\therefore \angle A+\angle B+\angle C=180^{\circ}$
$60^{\circ}+40^{\circ}+\angle C=180^{\circ}$
$\angle C=180^{\circ}-100^{\circ}$
$\angle C=80^{\circ}$
Hence, the side which is opposite to $\angle \mathrm{C}$ is the longest side of the triangle
$\therefore$ Option (C) is correct

## 7. Question

In $\triangle A B C, \angle B=35^{\circ}, \angle C=65^{\circ}$ and the bisector $A D$ of $\angle B A C$ meets $B C$ at $D$. Then, which of the following is true?

A. $A D>B D>C D$
B. $B D>A D>C D$
C. $A D>C D>B D$
D. None of these

## Answer

It is given in the question that,
In $\triangle A B C$, we have
$\angle B=35^{\circ}$
$\angle C=65^{\circ}$
Also the bisector $A D$ of $\angle B A C$ meets at $D$
$\therefore \angle A+\angle B+\angle C=180^{\circ}$
$\angle A+35^{\circ}+65^{\circ}=180^{\circ}$
$\angle A=180^{\circ}-100^{\circ}$
$\angle A=80^{\circ}$
$A s, A D$ is the bisector of $\angle B A C$
$\therefore \angle B A D=\angle C A D=40^{\circ}$

In $\triangle A B D$, we have
$\angle B A D>\angle A B D$
$B D>A D$
Also, in $\triangle A C D$
$\angle A C D>\angle C A D$
$A D>C D$
Hence, $B D>A D>C D$
$\therefore$ Option (B) is correct

## 8. Question

In the given figure, $A B>A C$. Then, which of the following is true?

A. $A B<A D$
B. $A B=A D$
C. $A B>A D$
D. cannot be determined

## Answer

From the given figure, we have
$A B>A C$
$\therefore \angle A C B>\angle A B C$
Also, $\angle A D B>A C D$
$\angle A D B>A C B>\angle A B C$
$\angle A D B>\angle A B D$
$\therefore A B>A D$
Hence, option (C) is correct

## 9. Question

In the given figure, $A B>A C$. If $B O$ and $C O$ are the bisectors of $\angle B$ and $\angle C$ respectively, then

A. $\mathrm{OB}=\mathrm{OC}$
B. $\mathrm{OB}>\mathrm{OC}$
C. $\mathrm{OB}<\mathrm{OC}$

Answer
From the given figure, we have
$A B>A C$
Also, $\angle C>\angle B$
$\frac{1}{2} \angle \mathrm{C}>\frac{1}{2} \angle \mathrm{~B}$
$\angle O C B>\angle O B C$ (Given)
$\therefore \mathrm{OB}>\mathrm{OC}$
Hence, option (C) is correct

## 10. Question

In the given figure, $A B=A C$ and $O B=O C$. Then, $\angle A B O ; \angle A C O=$ ?

A. $1: 1$
B. $2: 1$
C. $1: 2$
D. None of these

## Answer

It is given in the question that,
In $\triangle \mathrm{OAB}$ and $\triangle \mathrm{OAC}$, we have
$A B=A C$
$O B=O C$
$O A=O A(C o m m o n)$
$\therefore$ By SSS congruence criterion
$\triangle O A B \cong \triangle O A C$
$\therefore \angle A B O=\angle A C O$
So, $\angle A B O: \angle A C O=1: 1$
Hence, option (A) is correct

## 11. Question

In $\triangle A B C$, IF $\angle C>\angle B$, then

A. $B C>A C$
B. $A B>A C$
C. $A B<A C$
D. $B C<A$

## Answer

It is given in the question that,
In $\triangle A B C$, we have
$\angle C>\angle B$
We know that, side opposite to the greater angle is larger
$\therefore A B>A C$
Hence, option (B) is correct

## 12. Question

O is any point in the interior of $\triangle A B C$. Then, which of the following is true?
A. $(O A+O B+O C)>(A B+B C+C A)$
B. $(O A+O B+O C)>\frac{1}{2}(A B+B C+C A)$
C. $(O A+O B+O C)<\frac{1}{2}(A B+B C+C A)$
D. None of these

## Answer

From the given question, we have
In $\triangle O A B, \triangle O B C$ and $\triangle O C A$ we have:
$O A+O B>A B$
$O B+O C>B C$
And, $O C+O A>A C$
Adding all these, we get:
$2(O A+O B+O C)>(A B+B C+C A)$
$\left(\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>\frac{1}{2}(A B+B C+C A)\right.$
$\therefore$ Option (C) is correct

## 13. Question

If the altitudes from two vertices of a triangle to the opposite sides are equal, then the triangle is
A. Equilateral
B. isosceles
C. Scalene
D. right-angled

## Answer

It is given in the question that,
In $\triangle A B C, B L$ is parallel to $A C$
Also, $C M$ is parallel $A B$ such that $B L=C M$
We have to prove that: $A B=A C$
Now, in $\triangle A B L$ and $\triangle A C M$ we have:
$B L=C M$ (Given)
$\angle B A L=\angle C A M$ (Common)
$\angle A L B=\angle A M C$ (Each angle equal to $90^{\circ}$ )
$\therefore$ By AAS congruence criterion
$\triangle \mathrm{ABL} \cong \triangle \mathrm{ACM}$
$A B=A C$ (By Congruent parts of congruent triangles)
As opposite sides of the triangle are equal, so it is an isosceles triangle
Hence, option (B) is correct

## 14. Question

In the given figure, $A E=D B, C B=E F$ And $\angle A B C=\angle F E D$. Then, which of the following is true?

A. $\triangle A B C \cong \triangle D E F$
B. $\triangle A B C \cong \triangle E F D$
C. $\triangle A B C \cong \triangle F E D$
D. $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDF}$

## Answer

From the given figure, we have
$A E=D B$
And, $C B=E F$
Now, $A B=(A D-D B)$
$=(A D-A E)$
$D E=(A D-A E)$
Now, in $\triangle A B C$ and $\triangle D E F$ we have:
$A B=D E$
$C B=E F$
$\angle A B C=\angle F E D$
$\therefore$ By SAS congruence criterion
$\triangle A B C \cong \triangle D E F$
Hence, option (A) is correct

## 15. Question

In the given figure, $B E \perp C A$ and $C F \perp B A$ such that $B E=C F$. Then, which of the following is true?

A. $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
B. $\triangle \mathrm{ABE} \cong \triangle \mathrm{AFC}$
C. $\triangle \mathrm{ABE} \cong \triangle C A F$
D. $\triangle \mathrm{ABE} \cong \triangle F A C$

## Answer

From the given figure, we have
$B E$ is perpendicular to $C A$
Also, CF is perpendicular to $B A$
And, $\mathrm{BE}=\mathrm{CF}$
Now, in $\triangle A B E$ and $\triangle A C F$ we have:
$B E=C F$ (Given)
$\angle B E A=\angle C F A=90^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{A}$ (Common)
$\therefore$ By AAS congruence criterion
$\triangle A B E \cong \triangle A C F$
Hence, option (A) is correct

## 16. Question

In the given figure, $D$ is the midpoint of $B C, D E \perp A B$ and $D F \perp A C$ such that $D E=D F$. Then, which of the following is true?

A. $A B=A C$
B. $A C=B C$
C. $A B=B C$
D. None of these

## Answer

From the given figure, we have
$D$ is the mid-point of $B C$
Also, $D E$ is perpendicular to $A B$
DF is perpendicular to $A C$
And, DE = DF
Now, in $\triangle B E D$ and $\triangle C F D$ we have:
$D E=D F$
$B D=C D$
$\angle \mathrm{E}=\angle \mathrm{F}=90^{\circ}$
$\therefore$ By RHS congruence rule
$\triangle B E D \cong \triangle C F D$
Thus, $\angle B=\angle C$
$A C=A B$
Hence, option (A) is correct

## 17. Question

In $\triangle A B C$ and $\triangle D E F$, it is given that $A B=D E$ and $B C=E F$. In order that $\triangle A B C \cong \triangle D E F$, we must have

A. $\angle A=\angle D$
B. $\angle B=\angle E$
C. $\angle C=\angle F$
D. none of these

## Answer

From the question, we have:

In $\triangle A B C$ and $\triangle D E F$
$A B=D E$ (Given)
$B C=E F$ (Given)
So, in order to have $\triangle A B C \cong \triangle D E F$
$\angle B$ must be equal to $\angle E$
$\therefore$ Option (B) is correct

## 18. Question

In $\triangle A B C$ and $\triangle D E F$, it is given that $\angle B=\angle E$ and $\angle C=\angle F$. In order that $\triangle A B C \cong D E F$, we must have

A. $A B=D F$
B. $A C=D E$
C. $B C=E F$
D. $\angle A=\angle D$

## Answer

From the question, we have:
In $\triangle A B C$ and $\triangle D E F$
$\angle B=\angle E$ (Given)
$\angle \mathrm{C}=\angle \mathrm{F}$ (Given)
So, in order to have $\triangle A B C \cong \triangle D E F$
$B E$ must be equal to $E F$
$\therefore$ Option (C) is correct

## 19. Question

In $\triangle A B C$ and $\triangle P Q R$, it is given that $A B=A C, \angle C=\angle P$ and $\angle P=\angle Q$. Then, the two triangles are

A. Isosceles but not congruent
B. Isosceles and congruent
C. Congruent but not isosceles
D. Neither congruent not isosceles

## Answer

It is given in the question that,
In $\triangle A B C$ and $\triangle P Q R$, we have
$A B=A C$
Also, $\angle C=\angle B$
As, $\angle \mathrm{C}=\angle \mathrm{P}$ and, $\angle \mathrm{B}=\angle \mathrm{Q}$
$\therefore \angle \mathrm{P}=\angle \mathrm{Q}$
So, both triangles are isosceles but not congruent
Hence, option (A) is correct

## 20. Question

Which is true?
A. A triangle can have two right angles.

B. A triangle can have two obtuse angles.
C. A triangle can have two acute angles.
D. An exterior angle of a triangle is less than either of the interior opposite angles.

## Answer

We know that,

Sum of all angles of a triangle is equal to $180^{\circ}$
$\therefore$ A triangle can have two acute angles because sum of two acute angles of a triangle is always less than $180^{\circ}$

Thus, it satisfies the angle sum property of a triangle
Hence, option (C) is correct

## 21. Question

Three statements are given below:
(I) In a $\triangle A B C$ in which $A B=A C$, the altitude $A D$ bisects $B C$.
(II) If the altitudes $A D, B E$ and $C F$ of $\triangle A B C$ are equal, then $\triangle A B C$ is equilateral.
(III) If $D$ is the midpoint of the hypotenuse $A C$ of a right $\triangle A B C$, then $B D=A C$.

Which is true?
A. I only
B. II only
C. I and II
D. II and III

## Answer

Here we can clearly see that the true statements are as follows:
(I) In a $\triangle A B C$ in which $A B=A C$, the altitude $A D$ bisects $B C$.
(II) If the altitudes $A D, B E$ and $C F$ of $\triangle A B C$ are equal, then $\triangle A B C$ is equilateral.
$\therefore$ Option C is correct

## 22. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Please select the correct answer.

| Assertion (A) | Reason (R) |
| :--- | :--- |
|  | If $A D$ is a median of $\triangle A B C$, <br> then $A B+A C>2 A D$. |
| The angles opposite to <br> equal sides of a triangle are <br> equal. |  |

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

## Answer

According to the question,
In $\triangle A B D$ and $\triangle A C D$,
Since, sum of any two sides of a triangle is greater than the third side.
$A B+D B>A D(i)$
$A C+D C>A D$ (ii)
Adding (i) and (ii)
$A B+A C+D B+D C>2 A D$
$A B+A C+B C>2 A D$
Hence, the assertion and the reason are both true, but Reason does not explain the assertion.
$\therefore$ Option B is correct

## 23. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Please select the correct answer.

| Assertion (A) | Reason (R) |
| :--- | :--- |
| In a quadrilateral ABCD, we have <br> (AB+BC+CD+DA)>2AC. | The sum of any <br> two sides of a <br> triangle is greater <br> than the third side. |

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

## Answer

Since, sum of two sides is greater than the third side
$\therefore A B+B C>A C(i)$
$C D+D A>A C$ (ii)
Adding (i) and (ii),
$A B+B C+C D+D A>2 A C$
Hence, the assertion is true and also the reason gives the right explanation of the assertion.
$\therefore$ Option A is correct

## 24. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Please select the correct answer.

| Assertion (A) | Reason (R) |
| :--- | :--- |
| $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two <br> isosceles triangles on the same <br> base BC . Then, $\angle \mathrm{ABD}=\angle \mathrm{ACD}$. | The angles opposite to equal <br> sides of a triangle are equal. |

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

## Answer

Since, angles opposite to equal sides are equal
$A B=A C$
$\angle A B C=\angle A C B(i)$
$D B=D C$
$\angle D B C=\angle D C B$ (ii)
Subtracting (ii) from (i),
$\angle A B C-\angle D B C=\angle A C B-\angle D C B$
Hence, the assertion is true and also the reason gives the right explanation of the assertion.
$\therefore$ Option A is correct

## 25. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Please select the correct answer.

| Assertion (A) | Reason (R) |
| :--- | :--- |
| It is always possible to draw a <br> triangle whose sides measure 4 <br> cm, 5cmand 10 cm respectively. | In an isosceles $\triangle \mathrm{ABC}$ with $\mathrm{AB}=\mathrm{AC}$, if <br> BD and CE are bisectors of $\angle \mathrm{B}$ and <br> $\angle \mathrm{C}$ respectively, then $\mathrm{BD}=\mathrm{CE}$. |

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

## Answer

In $\triangle \mathrm{BDC}$ and $\triangle \mathrm{CEB}$,
$\angle D C B=\angle E B C$ (Given)
$B C=C B$ (Common)
$\angle B=\angle C(A C=A B)$
$\frac{1}{2} \angle B=\frac{1}{2} \angle C$
$\angle C E B=\angle B C E$
$\therefore \triangle \mathrm{BDC} \cong \triangle \mathrm{CEB}$
$B D=C E$ (By c.p.c.t.)
And, we know that the sum of two sides is always greater than the third side in any triangle.
But, $(5+4)<10$

Hence, the reason is true, but the assertion is false.
$\therefore$ Option D is true

## 26. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Please select the correct answer.

| Assertion (A) |
| :--- | :--- |
| In the given figure, $\triangle \mathrm{ABC}$ is |
| given with $\mathrm{AB}=\mathrm{AC}$ and BA is |
| produced to D, such that |
| $\mathrm{AB}=\mathrm{AD}$. |
| In the given figure $\mathrm{AB}=\mathrm{AC}$ |
| and D is a point on BC |
| produced. Then, $\mathrm{AB}>\mathrm{AD}$. |

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

## Answer

According to the question,
$A B=A C$
$\angle A C B=\angle A B C$ (i)

Now, $\angle A C D>\angle A C B=\angle A B C$ (Side $B C$ is produced to $D$ )
And, In $\triangle A D C$, side $D C$ is produced to $B$
$\angle A C B>\angle A D C$ (ii)
$\angle A B C>\angle A D C$
Now, using (i) and (ii),
$A D>A B$
Hence, the reason is wrong but the assertion is true.
$\therefore$ Option C is correct

## 27. Question

Match the following columns.

| Column I | Column II |
| :---: | :---: |
| (a)In $\triangle A B C$, if $A B=A C$ and $\angle A=50^{\circ}$, then $\angle \mathrm{C}=$ $\qquad$ | (p) its perimeter |
| (b) The vertical angle of an isosceles triangle is $130^{\circ}$. Then, each base angle is....... | (q) $15^{\circ}$ |
| (c) The sum of three altitudes of a $\triangle \mathrm{ABC}$ is less than............ | (r) $65^{\circ}$ |
| (d) In the given figure, ABCD is a square and $\triangle E D C$ is an equilateral triangle. Then, $\angle \mathrm{EBC}$ is............. | (s) $25^{\circ}$ |

The correct answer is:
(A)- $\qquad$ (B)-
(C)
(D)-........,

The parts of the question are solved below:
a. Given: In $\triangle A B C, A B=A C$ and $\angle A=50^{\circ}$

Thus, $\angle B=\angle C$
Now, $\angle A+\angle B+\angle C=180^{\circ}$ (The angle sum property of triangle)
$50+2 \angle B=180^{\circ}$
$2 \angle B=130^{\circ}$
$\angle C=\angle B=65^{\circ}$
b. As per the question,

Let the vertical angle be $A$ and $\angle B=\angle C$
Now, $\angle A+\angle B+\angle C=180^{\circ}$ (The angle sum property of triangle)
$130+2 \angle B=180^{\circ}$
$2 \angle B=50^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{B}=25^{\circ}$
c. We know that, the sum of three altitudes of a triangle $A B C$ is less than its perimeter.
d. Here, $A B C D$ is a square and EDC is a equilateral triangle.
$\therefore E D=C D=A B=B C=A D=E C$
In $\triangle \mathrm{ECB}$,
$E C=B C$
$\angle C=\angle B=x$
$\angle E C D=60^{\circ}$ and $\angle D C B=90^{\circ}$
$\angle E C B=60^{\circ}+90^{\circ}$
$=150^{\circ}$
Now, $x+x+150^{\circ}=180^{\circ}$
$2 x=30^{\circ}$
$x=15^{\circ}$
$\therefore \angle E B C=15^{\circ}$
$\therefore \mathrm{a}=\mathrm{r}, \mathrm{b}=\mathrm{s}, \mathrm{c}=\mathrm{p}, \mathrm{d}=\mathrm{q}$

## 28. Question

Fill in the blanks with $<$ or $>$.
(A) (Sum of any two sides of a triangle) $\qquad$ (the third side)
(B) (Difference of any two sides of a triangle) $\qquad$ (the third side)
(C) (Sum of three altitudes of a triangle) $\qquad$ (sum of its three sides)
(D) (Sum of any two sides of a triangle)....... (twice the median to the $3^{\text {rd }}$ side)
(E) (Perimeter of a triangle). $\qquad$ (Sum of its three medians)

## Answer

a) Sum of any two sides of a triangle > the third side
b) Difference of any two sides of a triangle < the third side
c) Sum of three altitudes of a triangle < sum of its three side
d) Sum of any two sides of a triangle > twice the median to the 3rd side
e) Perimeter of a triangle > sum of its three medians

## 29. Question

Fill in the blanks:
(A)Each angle of an equilateral triangle measures. $\qquad$
(B) Medians of an equilateral triangle are. $\qquad$
(C) In a right triangle the hypotenuse is the $\qquad$ side.
(D) Drawing a $\triangle A B C$ with $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$ is. $\qquad$
Answer
a) Each angle of an equilateral triangle measures $\mathbf{6 0}$
b) Medians of an equilateral triangle are equal
c) In a right triangle, the hypotenuse is the longest side
d) Drawing a $\triangle A B C$ with $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$ is not possible.

## Formative Assessment (Unit Test)

## 1. Question

In an equilateral $\triangle A B C$, find $\angle A$.

## Answer

We know that,
In any equilateral triangle all the angles are equal
Let the three angles of the triangle $\angle A, \angle B$ and $\angle C$ be $x$
$\therefore \mathrm{x}+\mathrm{x}+\mathrm{x}=180^{\circ}$
$3 x=180^{\circ}$
$x=\frac{180}{3}$
$x=60$
Hence, $\angle A=60^{\circ}$

## 2. Question

In a $\triangle A B C$, if $A B=A C$ and $\angle B=65^{\circ}$, find $\angle A$.

## Answer

It is given in the question that,
In triangle $A B C, A B=A C$
$\angle B=65^{\circ}$
As $A B C$ is an isosceles triangle
$\therefore \angle C=\angle B$
$\angle C=65^{\circ}$
Now, we now that sum of all angles of a triangle is $180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle A+65^{\circ}+65^{\circ}=180^{\circ}$
$\angle A+130^{\circ}=180^{\circ}$
$\angle A=180^{\circ}-130^{\circ}$
$\angle A=50^{\circ}$

## 3. Question

In a right $\triangle A B C, \angle B=90^{\circ}$. Find the longest side.

## Answer

It is given in the question that,
In right triangle $A B C$,
$\angle B=90^{\circ}$
So, $\angle A+\angle C=90^{\circ}$
$\therefore \angle A, \angle C<\angle B$
Hence, the side opposite to $\angle B$ is longest
Thus, $A C$ is the longest side

## 4. Question

In a $\triangle A B C, \angle B>\angle C$. Which of $A C$ and $A B$ is longer?

## Answer

It is given in the question that,
In triangle $A B C, \angle B>\angle C$
We know that, in a triangle side opposite to greater angle is longer
$\therefore A C$ is longer than $A B$

## 5. Question

Can we construct a $\triangle A B C$ in which $A B=5 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $A C=9 \mathrm{~cm}$ ? Why?

## Answer

We know that,
The sum of two sides must be greater than the third side
In this case, we have
$A B+B C=5+4=9 \mathrm{~cm}$
$A C=9 \mathrm{~cm}$
$\therefore A C$ must be greater than the sum of $A B$ and $B C$
Hence, the sum of two sides is not greater than the third side. So, $\triangle A B C$ cannot be constructed

## 6. Question

Find the measure of each exterior angle of an equilateral triangle.

## Answer

From the figure, we have

$\angle A O D$ is the exterior angle
$\therefore \angle A O D+\angle A O B=180^{\circ}$
$60^{\circ}+\angle A O B=180^{\circ}$
$\angle A O B=180^{\circ}-60^{\circ}$
$\angle A O B=120^{\circ}$
Hence, the measure of each of the exterior angle of an equilateral triangle is $120^{\circ}$

## 7. Question

Show that the difference of any two sides of a triangle is less than the third side

## Answer

In a triangle let $A C>A B$
Then, along $A C$ draw $A D=A B$ and join $B D$
Proof: In $\triangle A B D$,

$\angle A B D=\angle A D B(A B=A D)$
$\angle A B D=\angle 2$ (angles opposite to equal sides) ....(ii)
Now, we know that the exterior angle of a triangle is greater than either of its opposite interior angles.
$\therefore \angle 1>\angle A B D$
$\angle 1>\angle 2$....(iii)
Now, from (ii)
$\angle 2>\angle 3 \ldots$..iv) ( $\angle 2$ is an exterior angle)
Using (iii) and (iv),
$\angle 1>\angle 3$
BC > DC (side opposite to greater angle is longer)
$B C>A C-A D$
$B C>A C-A B($ since, $A B=A D)$
Hence, the difference of two sides is less than the third side of a triangle

## 8. Question

In a right $\triangle A B C, \angle B=90^{\circ}$ and $D$ is the mid-point of $A C$. Prove that $B D=\frac{1}{2} A C$.


## Answer

It is given in the question that,
In right triangle $A B C, \angle B=90^{\circ}$
Also $D$ is the mid-point of $A C$
$\therefore \mathrm{AD}=\mathrm{DC}$
$\angle A D B=\angle B D C$ ( $B D$ is the altitude)
$B D=B D$ (Common)
So, by SAS congruence criterion
$\therefore \triangle \mathrm{ADB} \cong \triangle \mathrm{CDB}$
$\angle A=\angle C(C P C T)$
As, $\angle B=90^{\circ}$
So, by using angle sum property
$\angle A=\angle A B D=45^{\circ}$
Similarly, $\angle \mathrm{BDC}=90^{\circ}$ ( BD is the altitude)
$\angle C=45^{\circ}$
$\angle D B C=45^{\circ}$
$\angle A B D=45^{\circ}$
Now, by isosceles triangle property we have:
$B D=C D$ and
$B D=A D$
$A S, A D+D C=A C$
$B D+B D=A C$
$2 B D=A C$
$\mathrm{BD}=\frac{1}{2} A C$
Hence, proved

## 9. Question

Prove that the perimeter of a triangle is greater than the sum of its three medians

## Answer

Let $A B C$ be the triangle where $D, E$ and $F$ are the mid-points of $B C, C A$ and $A B$ respectively


As, we know that the sum of two sides of the triangle is greater than twice the median bisecting the third side
$\therefore A B+A C>2 A D$
Similarly, $B C+A C>2 C F$
Also, $B C+A B>2 B E$
Now, by adding all these we get:
$(A B+B C)+(B C+A C)+(B C+A B)>2 A D+2 C D+2 B E$
$2(A B+B C+A C)>2(A D+B E+C F)$
$\therefore A B+B C+A C>A D+B E+C F$
Hence, the perimeter of the triangle is greater than the sum of its medians

## 10. Question

Which is true?
(A) A triangle can have two acute angles.
(B) A triangle can have two right angles.
(C) A triangle can have two obtuse angles.
(D) An exterior angles of a triangle is always less than either of the interior opposite angles.

## Answer

We know that,
A triangle can have two acute angles because the sum of two acute angles is always less than $180^{\circ}$ which satisfies the angle sum property of a triangle

Hence, option (A) is correct

## 11. Question

In $\triangle A B C, B D \perp A C$ and $C E \perp A B$ such that $B E=C D$. Prove that $B D=C E$.


## Answer

It is given that,
$B D$ is perpendicular to $A C$ and $C E$ is perpendicular to $A B$
Now, in $\triangle B D C$ and $\triangle C E B$ we have:
$B E=C D$ (Given)
$\angle \mathrm{BEC}=\angle \mathrm{CDB}=90^{\circ}$
And, $B C=B C$ (Common)
$\therefore$ By RHS congruence rule
$\triangle B D C \cong \triangle C E B$
$B D=C E(B y C P C T)$
Hence, proved

## 12. Question

In $\triangle A B C, A B=A C$. Side $B A$ is produced to $D$ such that $A D=A B$.
Prove that $\angle \mathrm{BCD}=90^{\circ}$.


## Answer

It is given in the question that,
In $\triangle A B C$,
$A B=A C$
We know that, angles opposite to equal sides are equal
$\therefore \angle A C B=\angle A B C$

Now, in $\triangle A C D$ we have:
$A C=A D$
$\angle A D C=\angle A C D$ (The Angles opposite to equal sides are equal)
By using angle sum property in triangle BCD, we get:
$\angle A B C+\angle B C D+\angle A D C=180^{\circ}$
$\angle A C B+\angle A C B+\angle A C D+\angle A C D=180^{\circ}$
$2(\angle A C B+\angle A C D)=180^{\circ}$
$2(\angle B C D)=180^{\circ}$
$\angle B C D=\frac{180}{2}$
$\angle B C D=90^{\circ}$
Hence, proved

## 13. Question

In the given figure, it is given that $A D=B C$ and $A C=B D$.
Prove that $\angle C A D=\angle C B D$ and $\angle A D C=\angle B C D$.


## Answer

From the given figure,
In triangles DAC and CBD, we have:
$A D=B C$
$A C=B D$
$D C=D C$
So, by SSS congruence rule
$\triangle A D C \cong \triangle B C D$
$\therefore$ By Congruent parts of congruent triangles we have:
$\angle C A D=\angle C B D$
$\angle A D C=\angle B C D$
$\angle A C D=\angle B D C$
Hence, proved

## 14. Question

Prove that the angles opposite to equal sides of a triangle are equal

## Answer

We have a triangle PQR where PS is the bisector of $\angle \mathrm{P}$


Now in $\triangle P Q S$ and $\triangle P S R$, we have:
$P Q=P R($ Given $)$
PS = PS (Common)
$\angle \mathrm{QPS}=\angle \mathrm{PRS}$ (As PS is the bisector of $\angle \mathrm{P}$ )
$\therefore$ By SAS congruence rule
$\triangle \mathrm{PQS} \cong \triangle \mathrm{PSR}$
$\angle \mathrm{Q}=\angle \mathrm{R}$ (By Congruent parts of congruent triangles)
Hence, it is proved that the angles opposite to equal sides of a triangle are equal

## 15. Question

In an isosceles $\triangle A B C, A B=A C$ and the bisectors of $\angle B$ and $\angle C$ intersect each other at $O$. Also, $O$ and $A$ are joined.

Prove that: (i) $O B=O C$ (ii) $\angle O A B=\angle O A C$


## Answer

From the given figure, we have:
(i) In $\triangle A B O$ and $\triangle A C O$
$A B=A C$ (Given)
$A O=A O$ (Common)
$\angle \mathrm{ABO}=\angle \mathrm{ACO}$
$\therefore$ By SAS congruence rule
$\triangle A B O \cong \triangle A C O$
$O B=O B(B y C P C T)$
(ii) As, By SAS congruence rule
$\triangle \mathrm{ABO} \cong \triangle \mathrm{ACO}$
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OAC}$ (By Congruent parts of congruent triangles)
Hence, proved

## 16. Question

Prove that, of all line segments that can be drawn to a given line, from a point, not lying on it, the perpendicular line segment is the shortest

## Answer

It is given in the question that,
I is the straight line and $A$ is a point that is not lying on $I$
$A B$ is perpendicular to line $I$ and $C$ is the point on $I$
As, $\angle B=90^{\circ}$
So in $\triangle A B C$, we have:

$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+\angle B=90^{\circ}$
$\therefore \angle \mathrm{C}<90^{\circ}$
$\angle C<\angle B$
$A B<A C$

As $C$ is that point which can lie anywhere on I
$\therefore A B$ is the shortest line segment drawn from $A$ to $I$
Hence, proved

## 1. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Please select the correct answer.

| Assertion (A) | Reason (R) |
| :--- | :--- |
| Each angle of an <br> equilateral triangle is <br> $60^{\circ}$. | Angles opposite to equal <br> sides of a triangle are <br> equal. |

A. Both Assertion (A) and Reason (R) are true but Reason (R) is a correct explanation of Assertion (A)
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A)
C. Assertion (A) is true and Reason (R) is false
D. Assertion (A) is false and Reason (R) is true

## Answer

We know that,
Each angle of an equilateral triangle is equal to $60^{\circ}$ also angles opposite to equal sides of a triangle are equal to each other
$\therefore$ Both assertion and reason are true and reason is the correct explanation of the assertion
Hence, option (A) is correct

## 18. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Please select the correct answer.

| Assertion (A) | Reason (R) |
| :--- | :--- |
| If AD is a median of $\triangle \mathrm{ABC}$, <br> then $\mathrm{AB}+\mathrm{AC}>2 \mathrm{AD}$. | In a triangle the sum of <br> two sides is greater than <br> the third side. |

A. Both Assertion (A) and Reason (R) are true but Reason (R) is a correct explanation of Assertion (A)
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A)
C. Assertion (A) is true and Reason (R) is false
D. Assertion (A) is false and Reason (R) is true

## Answer

From the given figure in the question, we have
In $\triangle A B D$, we have:
$A B+B D>A D$
Similarly, in $\triangle A D C$
$A C+C D>A D$
Adding both expressions, we get:
$A B+A C+B D+C D>A D+A D$
$A B+A C+B D+D C>2 A D$
$A B+A C+B C>2 A D$
$\therefore$ Assertion and reason both are true and reason is the correct explanation of the assertion
Hence, option (A) is correct

## 19. Question

Math the following columns:

| Column I | Column II |
| :--- | :--- |
|  | (p) less |
| (a)In $\triangle \mathrm{ABC}$, if $\mathrm{AB}=\mathrm{AC}$ and <br> $\angle \mathrm{A}=70^{\circ}$, then $\angle \mathrm{C}=\ldots \ldots \ldots . .$. |  |
| (b) The vertical angle of an <br> isosceles triangle is $120^{\circ}$. Each <br> base angle is......... | (q) greater |
| (c) The sum of three medians of <br> a triangle is .......... than the <br> perimeter. | (r) $30^{\circ}$ |

The correct answer is:
(a) $\qquad$ (b)-......,
(c)-
(d)

## Answer

a) In $\triangle A B C, \angle A=70^{\circ}$

As $A B=A C$ and we know that angles opposite to equal sides are equal
$\therefore$ In triangle $A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$
$70^{\circ}+2 \angle C=180^{\circ}$
$2 \angle C=180^{\circ}-70^{\circ}$
$\angle C=\frac{110}{2}$
$\therefore \angle \mathrm{C}=55^{\circ}$
(b) We know that,

Angles opposite to equal sides are equal
It is given that, vertical angle of the isosceles triangle $=120^{\circ}$
Let the base angle be $x$
$\therefore 120^{\circ}+\mathrm{x}+\mathrm{x}=180^{\circ}$
$120^{\circ}+2 \mathrm{x}=180^{\circ}$
$2 \mathrm{x}=180^{\circ}-120^{\circ}$
$2 x=60^{\circ}$
$x=\frac{60}{2}$
$x=30^{\circ}$
Hence, each base angle of the isosceles triangle is equal to $30^{\circ}$
(c) We know that,

The sum of the three medians of the triangle is always less than the perimeter
(d) We know that,

In a triangle the sum of any two sides is always greater than the third side
Hence, the correct match is as follows:
(a) - (s)
(b) $-(r)$
(c) $-(p)$
(d) $-(q)$

## 20. Question

In the given figure, $P Q>P R$ and $Q S$ and $R S$ are the bisectors of $\angle Q$ and $\angle R$ respectively. Show that SQ>SR


## Answer

It is given in the question that,
PQ > PR

And, QS and RS are the bisectors of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$
We have, angle opposite to the longer side is greater
$\therefore \mathrm{PQ}>\mathrm{PR}$
$\angle \mathrm{R}>\angle \mathrm{Q}$
$\frac{1}{2} \angle R>\frac{1}{2} \angle Q$
$\angle \mathrm{SRQ}>\angle \mathrm{RQS}$
SQ > SR
Hence, proved

## 21. Question

In the given figure, $A B C$ is a triangle right-angled at $B$ such that $\angle B C A=2 \angle B A C$.
Show that $A C=2 B C$.


## Answer

We will have to make the following construction in the given figure:


Produce $C B$ to $D$ in such a way that $B D=B C$ and join $A D$.
Now, in $\triangle A B C$ and $\triangle A B D$,
$B C=B D$ (constructed)
$A B=A B$ (common)
$\angle A B C=\angle A B D\left(\right.$ each $\left.90^{\circ}\right)$
$\therefore$ by S.A.S.
$\triangle A B C \cong \triangle A B D$
$\angle C A B=\angle D A B$ and $A C=A D$ (by c.p.c.t.)
$\therefore \angle C A D=\angle C A B+\angle B A D$
$=x^{\circ}+x^{\circ}$
$=2 \mathrm{x}^{\circ}$
But, $A C=A D$
$\angle A C D=\angle A D B=2 x^{\circ}$
$\therefore \triangle \mathrm{ACD}$ is equilateral triangle.
$A C=C D$
$A C=2 B C$
Hence, proved

## 22. Question

$S$ is any point in the interior of $\triangle P Q R$.
Show that (SQ+SR)<(PQ+PR).


## Answer

Following construction is to be made in the given figure.


Extend QS to meet PR at T.
Now, in $\triangle P Q T$,
$\mathrm{PQ}+\mathrm{PT}>\mathrm{QT}$ (sum of two sides is greater than the third side in a triangle)
PQ+PT>SQ+ST (i)
Now, In $\Delta$ STR,
ST+TR>SR (ii)(sum of two sides is greater than the third side in a triangle)
Now, adding (i) and (ii),
$\mathrm{PQ}+\mathrm{PT}+\mathrm{ST}+\mathrm{TR}>\mathrm{SQ}+\mathrm{ST}+\mathrm{SR}$
$P Q+P T+T R>S Q+S R$
$P Q+P R>S Q+S R$
$S Q+S R<P Q+P R$
Hence, proved

## 23. Question

Show that in a quadrilateral $A B C D$
$A B+B C+C D+D A>A C+B D$.

## Answer

Here, $A B C D$ is a quadrilateral and $A C$ and $B D$ are its diagonals.
Now, As we that, sum of two sides of a triangle is greater than the third side.
$\therefore$ In $\triangle \mathrm{ACB}$,
$A B+B C>A C(i)$
In $\triangle \mathrm{BDC}$,
$C D+B C>B D$ (ii)
In $\triangle B A D$,
$A B+A D>B D$ (iii)
In $\triangle \mathrm{ACD}$,
$A D+D C>A C$ (iv)
Now, adding (i), (ii), (iii) and (iv):
$A B+B C+C D+B C+A B+A D+A D+D C>A C+B D+B D+A C$
$2 A B+2 B C+2 C D+2 A D>2 A C+2 B D$
Thus, $A B+B C+C D+A D>A C+B D$
Hence, proved

