4. Inverse Trigonometric Functions

Exercise 4A

1. Question

Find the principal value of :

(i)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

(ii)
$$\sin^{-1}\left(\frac{1}{2}\right)$$

(iii)
$$\cos^{-1}\left(\frac{1}{2}\right)$$

(v)
$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

(vi)
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

(vii)
$$\csc^{-1}(\sqrt{2})$$

Answer

NOTE:

v) tan-1	(1)						
/) tan ⁻¹	$\left(\frac{1}{\sqrt{3}}\right)$						
/i) sec ⁻¹	$\left(\frac{2}{\sqrt{3}}\right)$					COL	
vii) cose	$c^{-1}(\sqrt{2})$					2	
nswer							
OTE:					0,4		
rigonom	o°(0)	30° (±)	45°	60° (±)	90° (=)		
rigonom	o° (0)	30° ($\frac{\pi}{6}$)	45° (π/4)	60° (½)	$90^{\circ}\left(\frac{\pi}{2}\right)$		
		$30^{\circ} \left(\frac{\pi}{6}\right)$ $\frac{1}{2}$	$\left(\frac{\pi}{4}\right)$ $\frac{1}{\sqrt{2}}$		90° $\left(\frac{\pi}{2}\right)$		
sin	0°(0)	$\frac{1}{2}$	$\left(\frac{\pi}{4}\right)$	$\frac{\sqrt{3}}{\frac{2}{2}}$ $\frac{1}{2}$	0.000000		
sin cos	0°(0)	0000480	$\left(\frac{\pi}{4}\right)$ $\frac{1}{\sqrt{2}}$		1		
sin cos tan	0°(0)	$ \begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{3}} \end{array} $	$ \begin{array}{c} \left(\frac{\pi}{4}\right) \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} $	$\frac{\sqrt{3}}{\frac{2}{2}}$ $\frac{1}{2}$	1		
sin cos tan cosec sec	0°(0)	$ \begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{3}} \end{array} $	$\begin{pmatrix} \frac{\pi}{4} \end{pmatrix}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ 1	$ \begin{array}{c} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ \sqrt{3} \end{array} $	1 0 undefined		

(i) Let
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = x$$

 $\Rightarrow \frac{\sqrt{3}}{2} = \sin x$ [We know which value of x when placed in sin gives us this answer]

$$\dot{x} = \frac{\pi}{2}$$

(ii) Let
$$\sin^{-1}\left(\frac{1}{2}\right) = x$$

 $\Rightarrow \frac{1}{2} = \sin x$ [We know which value of x when put in this expression will give us this result]

$$\Rightarrow x = \frac{\pi}{6}$$

(iii) Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$

$$\Rightarrow \frac{1}{2} = \cos x$$
 [We know which value of x when put in this expression will give us this result]

$$\dot{x} = \frac{\pi}{3}$$

(iv) Let
$$tan^{-1}(1) = x$$

$$\Rightarrow$$
 1 = tan x [We know which value of x when put in this expression will give us this result]

$$\cdot x = \frac{\pi}{4}$$

(v) Let
$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = x$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \tan x$$
 [We know which value of x when put in this expression will give us this result]

$$\dot{x} = \frac{\pi}{6}$$

(vi) Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = x$$

$$\Rightarrow \frac{2}{\sqrt{3}} = \sec x$$
 [We know which value of x when put in this expression will give us this result]

$$\dot{x} = \frac{\pi}{6}$$

(vii) Let
$$cosec^{-1}(\sqrt{2}) = x$$

$$\Rightarrow \sqrt{2} = \csc x$$

[We know which value of \boldsymbol{x} when put in this expression will give us this result]

$$\mathrel{\dot{\cdot}} X = \frac{\pi}{4}$$

2. Question

Find the principal value of :

(i)
$$\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$

(ii)
$$\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$$

(iii)
$$\tan^{-1}\left(-\sqrt{3}\right)$$

(iv)
$$\sec^{-1}(-2)$$

(v)
$$\csc^{-1}\left(-\sqrt{2}\right)$$

(vi)
$$\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$$

(i) Let
$$\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = x$$

$$\Rightarrow -\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = x$$
 [Formula: $\sin^{-1}(-x) = -\sin^{-1} x$]

 $\Rightarrow \frac{1}{\sqrt{2}} = -\sin x$ [We know which value of x when put in this expression will give us this result]

$$\cdot x = - \frac{\pi}{4}$$

(ii)
$$\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = \pi - \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 [Formula: $\cos^{-1}(-x) = \pi - \cos^{-1}x$]

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = x$$

 $\Rightarrow \left(\frac{\sqrt{3}}{2}\right) = \cos x$ [We know which value of x when put in this expression will give us this result]

$$\dot{x} = \frac{\pi}{6}$$

Putting this value back in the equation

$$\pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

(iii) Let
$$\tan^{-1}(-\sqrt{3}) = x$$

$$\Rightarrow -\tan^{-1}(\sqrt{3}) = x [Formula: \tan^{-1}(-x) = -\tan^{-1}(x)]$$

 $\Rightarrow \sqrt{3} = -\tan x$ [We know which value of x when put in this expression will give us this result]

$$\dot{x} = \frac{-\pi}{3}$$

(iv)
$$\sec^{-1}(-2) = \pi - \sec^{-1}(2)$$
 ...(i) [Formula: $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$]

Let
$$\sec^{-1}(2) = x$$

 \Rightarrow 2 = secx [We know which value of x when put in this expression will give us this result]

$$\dot{\cdot} x = \frac{\pi}{3}$$

Putting the value in (i)

$$\pi-\frac{\pi}{3}=\frac{2\pi}{3}$$

(v) Let
$$\csc^{-1}(-\sqrt{2}) = x$$

$$\Rightarrow$$
 - cosec⁻¹($\sqrt{2}$) = x [Formula: cosec⁻¹(-x) = -cosec⁻¹(x)]

$$\Rightarrow \sqrt{2} = -\cos \alpha$$

$$\therefore x = -\frac{\pi}{4}$$

(vi)
$$\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right) = \pi - \cot^{-1}\left(\frac{1}{\sqrt{3}}\right)...$$
 (i)

Let
$$\cot^{-1}\left(\frac{1}{\sqrt{3}}\right) = x$$

 $\Rightarrow \frac{1}{\sqrt{3}} = \cot^{-1} x$ [We know which value of x when put in this expression will give us this result]

$$\Rightarrow x = \frac{\pi}{3}$$

Putting in (i)

$$\pi - \frac{\pi}{3}$$

$$=\frac{2\pi}{3}$$

Evaluate
$$\cos \left\{ \cos^{-1} \left(\frac{-\sqrt{3}}{2} \right) + \frac{\pi}{6} \right\}$$
.

Answer

$$\cos\{\pi - \frac{\pi}{6} + \frac{\pi}{6}\}$$
 [Refer to question 2(ii)]

$$= \cos \{ \pi \}$$

$$=\cos\left(\frac{\pi}{2}+\frac{\pi}{2}\right)$$

4. Question

Evaluate
$$\sin \left\{ \frac{\pi}{2} - \left(\frac{-\pi}{3} \right) \right\}$$

Answer

$$\sin\left(\frac{\pi}{2} + \frac{\pi}{3}\right)$$

$$=\sin\left(\frac{5\pi}{6}\right)$$

$$=\sin\left(\pi-\frac{\pi}{6}\right)$$

$$=\sin\frac{\pi}{\epsilon}$$

$$=\frac{1}{2}$$

Exercise 4B

1. Question

ir Find the principal value of each of the following:

$$\sin^{-1}\left(\frac{-1}{2}\right)$$

Answer

$$\sin^{-1}\left(\frac{-1}{2}\right) = -\sin^{-1}\left(\frac{1}{2}\right) [\text{Formula: } \sin^{-1}(-x) = \sin^{-1}(x)]$$
$$= -\frac{\pi}{6}$$

2. Question

Find the principal value of each of the following:

$$\cos^{-1}\left(\frac{-1}{2}\right)$$

$$\cos^{-1}\left(\frac{-1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right)$$
 [Formula: $\cos^{-1}(-x) = -\cos^{-1}(x)$]

$$=\pi-\frac{\pi}{3}$$

$$=\frac{2\pi}{3}$$

Find the principal value of each of the following:

$$\tan^{-1}(-1)$$

Answer

$$tan(-1) = -tan(1)$$
 [Formula: $tan^{-1}(-x) = -tan^{-1}(x)$]

[We know that
$$\tan\frac{\pi}{4}=1$$
, thus $\tan^{-1}\frac{\pi}{4}=1$]

$$=-\frac{\pi}{4}$$

4. Question

Find the principal value of each of the following:

$$sec^{-1}(-2)$$

Answer

$$\sec^{-1}(-2) = \pi - \sec^{-1}(2)$$
 [Formula: $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$]

$$=\pi-\frac{\pi}{3}$$

$$=\frac{2\pi}{3}$$

5. Question

Find the principal value of each of the following

$$\csc^{-1}(-\sqrt{2})$$

Answer

$$cosec^{-1}(-\sqrt{2}) = -cosec^{-1}(\sqrt{2})$$
 [Formula: $cosec^{-1}(-x) = -cosec^{-1}(x)$]

$$=-\frac{\pi}{4}$$

This can also be solved as

$$cosec^{-1}(-\sqrt{2})$$

Since cosec is negative in the third quadrant, the angle we are looking for will be in the third quadrant.

$$=\pi+\frac{\pi}{4}$$

$$=\frac{5\pi}{4}$$

6. Question

Find the principal value of each of the following:

$$\cot^1(-1)$$

$$\cot^{-1}(-1) = \pi - \cot^{-1}(1)$$
 [Formula: $\cot^{-1}(-x) = \pi - \cot^{-1}(x)$]

$$=\pi-\frac{\pi}{4}$$

$$=\frac{3\pi}{4}$$

Find the principal value of each of the following:

$$\tan^{-1}\left(-\sqrt{3}\right)$$

Answer

$$\tan^{-1}(-\sqrt{3}) = -\tan^{-1}(\sqrt{3})$$
 [Formula: $\tan^{-1}(-x) = -\tan^{-1}(x)$]

$$=-\frac{\pi}{3}$$

8. Question

Find the principal value of each of the following:

$$\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$$

Answer

$$\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right) = \pi - \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 [Formula: $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$]

$$=\pi-\frac{\pi}{6}$$

$$=\frac{5\pi}{6}$$

9. Question

Find the principal value of each of the following:

cosec⁻¹ (2)

Answer

cosec⁻¹(2)

$$cosec^{-1}(2)$$

Putting the value directly

$$=\frac{\pi}{6}$$

10. Question

Find the principal value of each of the following:

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right)$$

[Formula:
$$sin(\pi - x) = sin x$$
)

$$=\sin^{-1}\left(\sin\frac{\pi}{3}\right)$$

[Formula:
$$sin^{-1}(sin x) = x$$
]

Find the principal value of each of the following:

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

Answer

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left(\tan\left(\pi - \frac{\pi}{4}\right)\right)$$

[Formula: $tan(\pi - x) = -tan(x)$, as tan is negative in the second quadrant.]

$$= \tan^{-1} \left(-\tan \frac{\pi}{4} \right)$$

[Formula: $tan^{-1}(tan x) = x$]

$$=-\frac{\pi}{4}$$

12. Question

Find the principal value of each of the following:

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$$

Answer

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi - \frac{5\pi}{6}\right)\right)$$

[Formula: $cos(2\pi - x) = cos(x)$, as cos has a positive vaule in the fourth quadrant.]

$$= \cos^{-1}\left(\cos\frac{5\pi}{6}\right) [Formula: \cos^{-1}(\cos x) = x]$$

$$=\frac{5\pi}{6}$$

13. Question

Find the principal value of each of the following:

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

Answer

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi + \frac{\pi}{6}\right)\right)$$

[Formula: $\cos (2\pi + x) = \cos x$, \cos is positive in the first quadrant.]

$$= \cos^{-1}\left(\cos\frac{\pi}{6}\right) [\text{Formula: } \cos^{-1}(\cos x) = x]$$

$$=\frac{\pi}{6}$$

14. Question

Find the principal value of each of the following:

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$$

$$tan^{-1}\left(tan\frac{7\pi}{6}\right) = tan^{-1}\left(tan\left(\pi + \frac{\pi}{6}\right)\right)$$

[Formula: $tan(\pi + x) = tan x$, as tan is positive in the third quadrant.]

$$= \tan^{-1}\left(\tan\frac{\pi}{6}\right) [\text{Formula: } \tan^{-1}(\tan x) = x]$$

$$=\frac{\pi}{6}$$

15. Question

Find the principal value of each of the following:

$$\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$$
 3

Answer

$$\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$$

Putting the value of $tan^{-1}\sqrt{3}$ and using the formula

$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

$$=\frac{\pi}{3}-\left(\pi-\cot^{-1}(\sqrt{3})\right)$$

Putting the value of $\cot^{-1}(\sqrt{3})$

$$=\frac{\pi}{3}-\left(\pi-\frac{\pi}{6}\right)$$

$$=\frac{\pi}{2}-\frac{5\pi}{6}$$

$$=-\frac{3\pi}{6}$$

$$=-\frac{\pi}{2}$$

16. Question

Find the principal value of each of the following:

$$\sin\left\{\frac{\pi}{3}-\sin^{-1}\left(\frac{-1}{2}\right)\right\}$$

Answer

$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right\} [\text{Formula: } \sin^{-1}(-x) = -\sin^{-1}x]$$

$$=\sin\left\{\frac{\pi}{3} - \left(-\sin^{-1}\frac{1}{2}\right)\right\}$$

$$= \sin\left\{\frac{\pi}{2} + \sin^{-1}\left(\frac{1}{2}\right)\right\}$$

Putting value of $\sin^{-1}\left(\frac{1}{2}\right)$

$$=\sin\left\{\frac{\pi}{3}+\frac{\pi}{6}\right\}$$

$$=\sin\frac{3\pi}{6}$$

$$=\sin\frac{\pi}{2}$$

= 1

Find the principal value of each of the following:

$$\cot\left(\tan^{-1}x + \cot^{-1}x\right)$$

Answer

$$\cot(\tan^{-1}x + \cot^{-1}x) = \cot(\frac{\pi}{2})$$
 [Formula: $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$]

Putting value of $\cot\left(\frac{\pi}{2}\right)$

= 0

18. Question

Find the principal value of each of the following:

$$\cos \operatorname{ec} \left(\sin^{-1} x + \cos^{-1} x \right)$$

Answer

cosec (sin⁻¹x + cos⁻¹x) = cosec
$$\frac{\pi}{2}$$
 [Formula: sin⁻¹x + cos⁻¹x = $\frac{\pi}{2}$]

Putting the value of cosec $\frac{\pi}{2}$

= 1

19. Question

Find the principal value of each of the following:

$$\sin\left(\sec^{-1}x + \cos ec^{-1}x\right)$$

Answer

$$\sin(\sec^{-1}x + \csc^{-1}x) = \sin\left(\frac{\pi}{2}\right)$$
 [Formula: $\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$]

Putting the value of $\sin\left(\frac{\pi}{2}\right)$

=1

20. Question

Find the principal value of each of the following:

$$\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$$

Answer

Putting the values of the inverse trigonometric terms

$$\frac{\pi}{3} + 2 \times \frac{\pi}{6}$$

$$=\frac{\pi}{2}+\frac{\pi}{2}$$

$$=\frac{2\pi}{2}$$

21. Question

Find the principal value of each of the following:

$$\tan^{-1} 1 + \cos^{-1} \left(-\frac{1}{2} \right) + \sin^{-1} \left(-\frac{1}{2} \right)$$

[Formula: $\cos^{-1}(-x) = \pi - \cos(x)$ and $\sin^{-1}(-x) = -\sin(x)$]

$$\tan^{-1}1+\left(\pi-\cos^{-1}\!\left(\!\frac{1}{2}\!\right)\!\right)+\left(-\sin^{-1}\!\left(\!\frac{1}{2}\!\right)\!\right)$$

Putting the values for each of the inverse trigonometric terms

$$=\frac{\pi}{4}+\left(\pi-\frac{\pi}{3}\right)-\frac{\pi}{6}$$

$$=\frac{\pi}{12}+\frac{2\pi}{3}$$

$$=\frac{9\pi}{12}$$

$$=\frac{3\pi}{4}$$

22. Question

Find the principal value of each of the following:

$$\sin^{-1}\left\{\sin\frac{3\pi}{5}\right\}$$

Answer

$$\sin^{-1}\left\{\sin\left(\frac{3\pi}{5}\right)\right\}$$

$$=\sin^{-1}\left\{\sin\left(\pi-\frac{2\pi}{5}\right)\right\}$$

[Formula: $sin(\pi - x) = sin x$, as sin is positive in the second quadrant.]

$$= \sin^{-1}\left\{\sin\frac{2\pi}{5}\right\} [\text{Formula: } \sin^{-1}(\sin x) = x]$$
$$= \frac{2\pi}{5}$$

$$=\frac{2\pi}{5}$$

Exercise 4C

1 A. Question

Prove that:

$$\tan^{-1}\left(\frac{1+x}{1-x}\right) = \frac{\pi}{4} + \tan^{-1}x, x < 1$$

Answer

To Prove:
$$\tan^{-1}\left(\frac{1+x}{1-x}\right) = \frac{\pi}{4} + \tan^{-1}x$$

Formula Used:
$$tan\left(\frac{\pi}{4} + A\right) = \frac{1 + tanA}{1 - tanA}$$

Proof:

LHS =
$$\tan^{-1} \left(\frac{1+x}{1-x} \right) ... (1)$$

Let
$$x = \tan A ... (2)$$

Substituting (2) in (1),

$$LHS = tan^{-1} \left(\frac{1 + tanA}{1 - tanA} \right)$$

$$= tan^{-1} \left(tan \left(\frac{\pi}{4} \, + \, A \right) \right)$$

$$=\frac{\pi}{4}+A$$

From (2), $A = \tan^{-1} x$,

$$\frac{\pi}{4} + A = \frac{\pi}{4} + \tan^{-1} x$$

Therefore, LHS = RHS

Hence proved.

1 B. Question

Prove that:

$$\tan^{-1} x + \cot^{-1} (x+1) = \tan^{-1} (x^2 + x + 1)$$

1)
$$\cot^{-1} x = \tan^{-1} \frac{1}{x}$$

2)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$$

LHS =
$$tan^{-1} x + cot^{-1} (x + 1) ... (1)$$

$$= \tan^{-1} x + \tan^{-1} \frac{1}{(x+1)}$$

$$\tan^{-1}x + \cot^{-1}(x+1) = \tan^{-1}(x^2 + x + 1)$$
Answer

To Prove: $\tan^{-1}x + \cot^{-1}(x+1) = \tan^{-1}(x^2 + x + 1)$

Formula Used:
1) $\cot^{-1}x = \tan^{-1}\frac{1}{x}$
2) $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$

Proof:

LHS = $\tan^{-1}x + \cot^{-1}(x+1) \dots (1)$

= $\tan^{-1}x + \tan^{-1}\frac{1}{(x+1)}$

= $\tan^{-1}\left(\frac{x+\frac{1}{(x+1)}}{1-\left(x\times\frac{1}{(x+1)}\right)}\right)$

= $\tan^{-1}\frac{x(x+1)+1}{x+1-x}$

= $\tan^{-1}(x^2 + x + 1)$

= RHS

$$= \tan^{-1} \frac{x(x+1)+1}{x+1-x}$$

$$= tan^{-1} (x^2 + x + 1)$$

Therefore, LHS = RHS

Hence proved.

2. Question

Prove that:

$$\sin^{-1}\left(2x\sqrt{1-x^2}\right) = 2\sin^{-1}x, |x| \le \frac{1}{\sqrt{2}}.$$

To Prove: $\sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}x$

Formula Used: $\sin 2A = 2 \times \sin A \times \cos A$

Proof:

LHS = $\sin^{-1}(2x\sqrt{1-x^2})$... (1)

Let $x = \sin A ... (2)$

Substituting (2) in (1),

 $LHS = \sin^{-1}(2\sin A\sqrt{1-\sin^2 A})$

 $= \sin^{-1} (2 \times \sin A \times \cos A)$

 $= \sin^{-1} (\sin 2A)$

= 2A

From (2), $A = \sin^{-1} x$,

 $2A = 2 \sin^{-1} x$

= RHS

Therefore, LHS = RHS

Therefore, LHS = RHS
Hence proved.

3 A. Question
Prove that:
$$\sin^{-1}(3x - 4x^3) = 3\sin^{-1}x, |x| \le \frac{1}{2}$$
Answer
To Prove: $\sin^{-1}(3x - 4x^3) = 3\sin^{-1}x$
Formula Used: $\sin 3A = 3\sin A - 4\sin^3 A$
Proof:
LHS = $\sin^{-1}(3x - 4x^3) \dots (1)$
Let $x = \sin A \dots (2)$
Substituting (2) in (1),
LHS = $\sin^{-1}(3\sin A - 4\sin^3 A)$

LHS = $\sin^{-1} (3 \sin A - 4 \sin^3 A)$

 $= \sin^{-1} (\sin 3A)$

= 3A

From (2), $A = \sin^{-1} x$,

 $3A = 3 \sin^{-1} x$

= RHS

Therefore, LHS = RHS

Hence proved.

3 B. Question

$$\cos^{-1}(4x^3 - 3x) = 3\cos^{-1}x, \frac{1}{2} \le x \le 1$$

To Prove: $\cos^{-1}(4x^3 - 3x) = 3 \cos^{-1} x$

Formula Used: $\cos 3A = 4 \cos^3 A - 3 \cos A$

Proof:

LHS =
$$\cos^{-1} (4x^3 - 3x) \dots (1)$$

Let
$$x = \cos A ... (2)$$

Substituting (2) in (1),

LHS =
$$\cos^{-1} (4 \cos^3 A - 3 \cos A)$$

$$= \cos^{-1} (\cos 3A)$$

= 3A

From (2),
$$A = \cos^{-1} x$$
,

$$3A = 3 \cos^{-1} x$$

= RHS

Therefore, LHS = RHS

Hence proved.

3 C. Question

Prove that:

$$\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) = 3\tan^{-1}x, |x| < \frac{1}{\sqrt{3}}$$

Answer

To Prove:
$$tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right) = 3 tan^{-1} x$$

Formula Used: $tan 3A = \frac{3tan A - tan^3 A}{1 - 3tan^2 A}$

Proof:

LHS =
$$tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right) \dots (1)$$

Let
$$x = \tan A ... (2)$$

Substituting (2) in (1),

$$LHS = tan^{-1} \left(\frac{3 tan A - tan^3 A}{1 - 3 tan^2 A} \right)$$

$$= tan^{-1} (tan 3A)$$

$$= 3A$$

From (2),
$$A = \tan^{-1} x$$
,

$$3A = 3 \tan^{-1} x$$

= RHS

Therefore, LHS = RHS

Hence proved.

3 D. Question

Prove that:

$$\tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 - x^2} \right) = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$

Answer

To Prove:
$$tan^{-1}x + tan^{-1}\left(\frac{2x}{1-x^2}\right) = tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$$

Formula Used:
$$tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

Proof:

LHS =
$$tan^{-1} x + tan^{-1} \left(\frac{2x}{1-x^2} \right) \dots (1)$$

LHS =
$$tan^{-1} x + tan^{-1} \left(\frac{2x}{1-x^2} \right) \dots (1)$$

= $tan^{-1} \left(\frac{x + \left(\frac{2x}{1-x^2} \right)}{1 - \left(x \times \left(\frac{2x}{1-x^2} \right) \right)} \right)$
= $tan^{-1} \left(\frac{x(1-x^2) + 2x}{1-x^2 - 2x^2} \right)$
= $tan^{-1} \left(\frac{3x - x^3}{1-3x^2} \right)$
= RHS
Therefore, LHS = RHS
Hence proved.
4 A. Question
Prove that:
 $cos^{-1} (1-2x^2) = 2 sin^{-1} x$

$$= tan^{-1} \left(\frac{x(1-x^2) + 2x}{1 - x^2 - 2x^2} \right)$$

$$= tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$

Therefore, LHS = RHS

Hence proved.

4 A. Question

Prove that:

$$\cos^{-1}(1-2x^2) = 2\sin^{-1}x$$

Answer

To Prove:
$$\cos^{-1}(1 - 2x^2) = 2 \sin^{-1} x$$

Formula Used:
$$\cos 2A = 1 - 2 \sin^2 A$$

Proof:

LHS =
$$\cos^{-1} (1 - 2x^2) \dots (1)$$

Let
$$x = \sin A \dots (2)$$

Substituting (2) in (1),

LHS =
$$\cos^{-1} (1 - 2 \sin^2 A)$$

$$= \cos^{-1} (\cos 2A)$$

$$= 2A$$

From (2),
$$A = \sin^{-1} x$$
,

$$2A = 2 \sin^{-1} x$$

= RHS

Therefore, LHS = RHS

Hence proved.

4 B. Question

Prove that:

$$\cos^{-1}(2x^2-1) = 2\cos^{-1}x$$

Answer

To Prove: $\cos^{-1}(2x^2 - 1) = 2 \cos^{-1} x$

Formula Used: $\cos 2A = 2 \cos^2 A - 1$

Proof:

LHS =
$$\cos^{-1}(2x^2 - 1) \dots (1)$$

Let
$$x = \cos A ... (2)$$

Substituting (2) in (1),

LHS =
$$\cos^{-1} (2 \cos^2 A - 1)$$

$$= \cos^{-1} (\cos 2A)$$

$$= 2A$$

From (2),
$$A = \cos^{-1} x$$
,

$$2A = 2 \cos^{-1} x$$

= RHS

Therefore, LHS = RHS

Hence proved.

4 C. Question

Prove that:

$$\sec^{-1}\left(\frac{1}{2x^2-1}\right) = 2\cos^{-1}x$$

Answer

To Prove:
$$\sec^{-1}\left(\frac{1}{2x^2-1}\right) = 2\cos^{-1}x$$

Formula Used:

1)
$$\cos 2A = 2 \cos^2 A - 1$$

2)
$$\cos^{-1} A = \sec^{-1} \left(\frac{1}{A}\right)$$

Proof:

$$\mathsf{LHS} = \mathsf{sec^{-1}}\left(\frac{1}{2x^2-1}\right)$$

$$= \cos^{-1} (2x^2 - 1)...(1)$$

Let
$$x = \cos A ... (2)$$

Substituting (2) in (1),

LHS =
$$\cos^{-1} (2 \cos^2 A - 1)$$

$$= \cos^{-1} (\cos 2A)$$

From (2), $A = \cos^{-1} x$,

$$2A = 2 \cos^{-1} x$$

Therefore, LHS = RHS

Hence proved.

4 D. Question

Prove that:

$$\cot^{-1}\left(\sqrt{1+x^2}-x\right) = \frac{\pi}{2} - \frac{1}{2}\cot^{-1}x$$

Answer

To Prove: $\cot^{-1}(\sqrt{1+x^2}-x)=\frac{\pi}{2}-\frac{1}{2}\cot^{-1}x$

Formula Used:

1)
$$\tan\left(\frac{\pi}{4} + A\right) = \frac{1 + \tan A}{1 - \tan A}$$

2)
$$\csc^2 A = 1 + \cot^2 A$$

3)
$$1 - \cos A = 2 \sin^2 \left(\frac{A}{2}\right)$$

4)
$$\sin A = 2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right)$$

Proof:

$$\mathsf{LHS} = \, \mathsf{cot}^{-1} \big(\sqrt{1 + x^2} - x \big)$$

Let
$$x = \cot A$$

$$LHS = \cot^{-1} \left(\sqrt{1 + \cot^2 A} - \cot A \right)$$

$$= \cot^{-1}(\operatorname{cosec} A - \cot A)$$

$$=\cot^{-1}\left(\frac{1-\cos A}{\sin A}\right)$$

$$=\cot^{-1}\left(\frac{2\sin^2\left(\frac{A}{2}\right)}{2\sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)}\right)$$

$$=\cot^{-1}\left(\tan\left(\frac{A}{2}\right)\right)$$

$$= \frac{\pi}{2} - tan^{-1} \left(tan \left(\frac{A}{2} \right) \right)$$

$$=\frac{\pi}{2}-\frac{A}{2}$$

From (2), $A = \cot^{-1} x$,

$$\frac{\pi}{2} - \frac{A}{2} = \frac{\pi}{2} - \frac{1}{2} cot^{-1} x$$

Therefore, LHS = RHS

Hence proved.

5 A. Question

Prove that:

$$\tan^{-1}\left(\frac{\sqrt{x} + \sqrt{y}}{1 - \sqrt{xy}}\right) = \tan^{-1}\sqrt{x} + \tan^{-1}\sqrt{y}$$

Answer

To Prove:
$$tan^{-1}(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}) = tan^{-1}\sqrt{x} + tan^{-1}\sqrt{y}$$

We know that,
$$\tan A + \tan B = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Also,
$$\tan^{-1}(\frac{A+B}{1-AB}) = \tan^{-1}A + \tan^{-1}B$$

Taking
$$A = \sqrt{x}$$
 and $B = \sqrt{y}$

$$\tan^{-1}(\frac{\sqrt{x} + \sqrt{y}}{1 - \sqrt{xy}}) = \tan^{-1}\sqrt{x} + \tan^{-1}\sqrt{y}$$

Also,
$$\tan^{-1}(\frac{A+B}{1-AB}) = \tan^{-1}A + \tan^{-1}B$$

Taking $A = \sqrt{x}$ and $B = \sqrt{y}$
We get,
 $\tan^{-1}(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}) = \tan^{-1}\sqrt{x} + \tan^{-1}\sqrt{y}$
Hence, Proved.
5 B. Question
Prove that:
 $\tan^{-1}\left(\frac{x+\sqrt{x}}{1-x^{3/2}}\right) = \tan^{-1}x + \tan^{-1}\sqrt{x}$
Answer
We know that,
 $\tan^{-1}(\frac{A+B}{1-AB}) = \tan^{-1}A + \tan^{-1}B$
Now, taking $A = x$ and $B = \sqrt{x}$

$$\tan^{-1}(\frac{A+B}{1-AB}) = \tan^{-1}A + \tan^{-1}B$$

Now, taking A = x and $B = \sqrt{x}$

We get,

$$\tan^{-1}x + \tan^{-1}\sqrt{x} = \tan^{-1}(\frac{x + \sqrt{x}}{1 - x^{3/2}})$$

As,
$$x.x^{1/2} = x^{3/2}$$

Hence, Proved.

5 C. Question

$$\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right) = \frac{x}{2}$$

To Prove: $\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right) = \frac{x}{2}$

Formula Used:

1)
$$\sin A = 2 \times \sin \frac{A}{2} \times \cos \frac{A}{2}$$

2)
$$1 + \cos A = 2 \cos^2 \frac{A}{2}$$

Proof:

$$LHS = tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right)$$

$$= \tan^{-1}\left(\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}}\right)$$

$$= \tan^{-1} \left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \right)$$

$$= \tan^{-1} \left(\tan \frac{x}{2} \right)$$

$$=\frac{x}{2}$$

Therefore LHS = RHS

Hence proved.

6 A. Question

Prove that:

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$$

Answer

$$= \tan^{-1}\left(\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\right)$$

$$= \tan^{-1}\left(\tan\frac{x}{2}\right)$$

$$= \frac{x}{2}$$

$$= RHS$$
Therefore LHS = RHS
Hence proved.
6 A. Question
Prove that:
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$$
Answer
To Prove: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$

Proof:

$$LHS = tan^{-1}\frac{1}{2} + tan^{-1}\frac{2}{11}$$

$$= \tan^{-1} \left(\frac{\frac{1}{2} + \frac{2}{11}}{1 - \left(\frac{1}{2} \times \frac{2}{11} \right)} \right)$$

$$= \tan^{-1} \left(\frac{11+4}{22-2} \right)$$

$$= \tan^{-1} \frac{15}{20}$$

$$= \tan^{-1} \frac{3}{4}$$

Therefore LHS = RHS

Hence proved.

6 B. Question

Prove that:

$$\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$$

Answer

To Prove: $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$

Proof:

LHS =
$$\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24}$$

$$= \tan^{-1} \left(\frac{\frac{2}{11} + \frac{7}{24}}{1 - \left(\frac{2}{11} \times \frac{7}{24}\right)} \right)$$

$$= \tan^{-1} \left(\frac{48 + 77}{264 - 14} \right)$$

$$= \tan^{-1} \frac{125}{250}$$

$$= \tan^{-1} \frac{1}{2}$$

Therefore LHS = RHS

Hence proved.

6 C. Question

Prove that:

$$= \tan^{-1}\left(\frac{\frac{2}{11} + \frac{7}{24}}{1 - \left(\frac{2}{11} \times \frac{7}{24}\right)}\right)$$

$$= \tan^{-1}\left(\frac{48 + 77}{264 - 14}\right)$$

$$= \tan^{-1}\frac{125}{250}$$

$$= \tan^{-1}\frac{1}{2}$$

$$= RHS$$
Therefore LHS = RHS
Hence proved.

6 C. Question

Prove that:
$$\tan^{-1}1 + \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{2}$$

Answer

To Prove:
$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{2}$$

Formula Used:
$$tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

Proof:

LHS =
$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$$

$$= \tan^{-1} 1 + \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2} \times \frac{1}{3} \right)} \right)$$

$$= \tan^{-1} 1 + \tan^{-1} \left(\frac{5}{6-1} \right)$$

$$= \tan^{-1} 1 + \tan^{-1} 1$$

$$=\frac{\pi}{4}+\frac{\pi}{4}$$

$$=\frac{\pi}{2}$$

= RHS

Therefore LHS = RHS

Hence proved.

6 D. Question

Prove that:

$$2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$$

Answer

To Prove:
$$2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$$

Formula Used:
$$tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

LHS =
$$2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7}$$

$$= \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7}$$

Formula Used:
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$$

Proof:
LHS = $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \left(\frac{1}{3} + \frac{1}{3}}{1 - \left(\frac{1}{3} \times \frac{1}{3}\right)}\right) + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \left(\frac{6}{9 - 1}\right) + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \left(\frac{3}{4} + \tan^{-1} \frac{1}{7}\right)$
= $\tan^{-1} \left(\frac{3}{4} + \frac{1}{7}\right)$
= $\tan^{-1} \left(\frac{21 + 4}{28 - 3}\right)$
= $\tan^{-1} \left(\frac{25}{25}\right)$

$$= \tan^{-1}\left(\frac{6}{9-1}\right) + \tan^{-1}\frac{1}{7}$$

$$= \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{7}$$

$$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \left(\frac{3}{4} \times \frac{1}{7} \right)} \right)$$

$$= \tan^{-1} \left(\frac{21+4}{28-3} \right)$$

$$= \tan^{-1} \frac{25}{25}$$

$$= tan^{-1} 1$$

$$=\frac{\pi}{4}$$

Therefore LHS = RHS

Hence proved.

6 E. Question

$$\tan^{-1} 2 - \tan^{-1} 1 = \tan^{-1} \frac{1}{3}$$

To Prove: $\tan^{-1} 2 - \tan^{-1} 1 = \tan^{-1} \frac{1}{3}$

Formula Used: $tan^{-1}x - tan^{-1}y = tan^{-1}\left(\frac{x-y}{1+xy}\right)$ where xy > -1

Proof:

LHS =
$$tan^{-1} 2 - tan^{-1} 1$$

$$= \tan^{-1}\left(\frac{2-1}{1+2}\right)$$

$$= \tan^{-1}\left(\frac{1}{3}\right)$$

= RHS

Therefore LHS = RHS

Hence proved.

6 F. Question

Prove that:

$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$$

Answer

To Prove: $tan^{-1} 1 + tan^{-1} 2 + tan^{-1} 3 = \pi$

Formula Used: $tan^{-1}x + tan^{-1}y = \pi + tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy > 1

Proof:

LHS =
$$tan^{-1}1 + tan^{-1}2 + tan^{-1}3$$

$$= \frac{\pi}{4} + \pi + \tan^{-1}\left(\frac{2+3}{1-(2\times3)}\right) \{\text{since } 2\times3 = 6 > 1\}$$

$$= \frac{5\pi}{4} + \tan^{-1}\left(\frac{5}{-5}\right)$$

$$=\frac{5\pi}{4}+\tan^{-1}(-1)$$

$$=\frac{5\pi}{4}-\frac{\pi}{4}$$

 $= \pi$

= RHS

Therefore LHS = RHS

Hence proved.

6 G. Question

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

To Prove: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1

Proof:

LHS =
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8}$$

$$= \tan^{-1}\frac{1}{2} + \tan^{-1}\left(\frac{\frac{1}{5} + \frac{1}{8}}{1 - \left(\frac{1}{5} \times \frac{1}{8}\right)}\right)$$

$$= \tan^{-1}\frac{1}{2} + \tan^{-1}\left(\frac{8+5}{40-1}\right)$$

$$= \tan^{-1}\frac{1}{2} + \tan^{-1}\left(\frac{13}{39}\right)$$

$$= \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$$

$$= \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2} \times \frac{1}{3} \right)} \right)$$

$$= \tan^{-1}\left(\frac{3+2}{6-1}\right)$$

$$=\frac{\pi}{4}$$

Therefore LHS = RHS

Hence proved.

6 H. Question

Prove that:

$$= \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$$

$$= \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - (\frac{1}{2} \times \frac{1}{3})}\right)$$

$$= \tan^{-1}\left(\frac{3 + 2}{6 - 1}\right)$$

$$= \tan^{-1}1$$

$$= \frac{\pi}{4}$$

$$= RHS$$
Therefore LHS = RHS
Hence proved.
6 H. Question
Prove that:
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\tan^{1}\frac{4}{3}$$

Answer

To Prove:
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\tan^{-1}\frac{4}{3} \Rightarrow 2\left(\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9}\right) = \tan^{-1}\frac{4}{3}$$

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1

Proof:

LHS =
$$2(\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9})$$

$$=2\left(tan^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\left(\frac{1}{4}\times\frac{2}{9}\right)}\right)\right)$$

$$= 2 \tan^{-1} \left(\frac{9+8}{36-2} \right)$$

$$= 2 \tan^{-1} \frac{17}{34}$$

$$=2\tan^{-1}\frac{1}{2}$$

$$= \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{2}$$

$$= \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{2}}{1 - \left(\frac{1}{2} \times \frac{1}{2}\right)} \right)$$

$$= \tan^{-1}\left(\frac{1}{\frac{4-1}{4}}\right)$$

$$= \tan^{-1}\frac{4}{3}$$

Therefore LHS = RHS

Hence proved.

7 A. Question

Prove that:

$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Answer

To Prove:
$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Formula Used:
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy - \sqrt{1-x^2} \times \sqrt{1-y^2})$$

Proof:

LHS =
$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}$$

$$= \cos^{-1}\left(\frac{4}{5} \times \frac{12}{13} - \sqrt{1 - \left(\frac{4}{5}\right)^2} \times \sqrt{1 - \left(\frac{12}{13}\right)^2}\right)$$

$$=\cos^{-1}\left(\frac{48}{65}-\sqrt{1-\frac{16}{25}}\times\sqrt{1-\frac{144}{169}}\right)$$

$$=\cos^{-1}\left(\frac{48}{65} - \left(\sqrt{\frac{25-16}{25}} \times \sqrt{\frac{169-144}{169}}\right)\right)$$

$$= \cos^{-1}\left(\frac{48}{65} - \left(\sqrt{\frac{9}{25}} \times \sqrt{\frac{25}{169}}\right)\right)$$

$$=\cos^{-1}\left(\frac{48}{65} - \frac{3}{13}\right)$$

$$= \cos^{-1}\left(\frac{48 - 15}{65}\right)$$

$$=\cos^{-1}\frac{33}{65}$$

Therefore, LHS = RHS

Hence proved.

7 B. Question

Prove that:

$$\sin^{-1}\frac{1}{\sqrt{5}} + \sin^{-1}\frac{2}{\sqrt{5}} = \frac{\pi}{2}$$

Answer

To Prove:
$$\sin^{-1}\frac{1}{\sqrt{5}} + \sin^{-1}\frac{2}{\sqrt{5}} = \frac{\pi}{2}$$

Formula Used:
$$\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x \times \sqrt{1 - y^2} + y \times \sqrt{1 - x^2})$$

Proof:
LHS = $\sin^{-1}\frac{1}{\sqrt{5}} + \sin^{-1}\frac{2}{\sqrt{5}}$
= $\sin^{-1}\left(\frac{1}{\sqrt{5}} \times \sqrt{1 - \left(\frac{2}{\sqrt{5}}\right)^2} + \frac{2}{\sqrt{5}} \times \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2}\right)$

Proof:

LHS =
$$\sin^{-1}\frac{1}{\sqrt{5}} + \sin^{-1}\frac{2}{\sqrt{5}}$$

$$=\sin^{-1}\left(\frac{1}{\sqrt{5}}\times\sqrt{1-\left(\frac{2}{\sqrt{5}}\right)^2}\,+\,\frac{2}{\sqrt{5}}\times\,\sqrt{1-\left(\frac{1}{\sqrt{5}}\right)^2}\right)$$

$$= \sin^{-1}\left(\frac{1}{\sqrt{5}} \times \sqrt{1 - \frac{4}{5}} + \frac{2}{\sqrt{5}} \times \sqrt{1 - \frac{1}{5}}\right)$$
$$= \sin^{-1}\left(\frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}} \times \frac{2}{\sqrt{5}}\right)$$

$$= \sin^{-1}\left(\frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}} \times \frac{2}{\sqrt{5}}\right)$$

$$=\sin^{-1}\left(\frac{1}{5}+\frac{4}{5}\right)$$

$$=\sin^{-1}\frac{5}{5}$$

$$=\frac{\pi}{2}$$

Therefore, LHS = RHS

Hence proved.

7 C. Question

Prove that:

$$\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13} = \sin^{-1}\frac{56}{65}$$

To Prove:
$$\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13} = \sin^{-1}\frac{56}{65}$$

Formula Used:
$$\sin^{-1} x + \sin^{-1} y = \sin^{-1} (x \times \sqrt{1 - y^2} + y \times \sqrt{1 - x^2})$$

Proof:

LHS =
$$\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13}...(1)$$

Let
$$\cos \theta = \frac{3}{5}$$

Therefore
$$\theta = \cos^{-1}\frac{3}{5}$$
 ... (2)

From the figure,
$$\sin \theta = \frac{4}{5}$$

$$\Rightarrow \theta = \sin^{-1}\frac{4}{5}\dots(3)$$

From (2) and (3),

$$\cos^{-1}\frac{3}{5} = \sin^{-1}\frac{4}{5}$$

Substituting in (1), we get

LHS =
$$\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{12}{13}$$

$$= \sin^{-1}\left(\frac{4}{5} \times \sqrt{1 - \left(\frac{12}{13}\right)^2} + \frac{12}{13} \times \sqrt{1 - \left(\frac{4}{5}\right)^2}\right)$$

$$= \sin^{-1}\left(\frac{4}{5} \times \sqrt{1 - \frac{144}{169}} + \frac{12}{13} \times \sqrt{1 + \frac{16}{25}}\right)$$

$$= \sin^{-1}\left(\frac{4}{5} \times \sqrt{\frac{25}{169}} + \frac{12}{13} \times \sqrt{\frac{9}{25}}\right)$$

$$=\sin^{-1}\left(\frac{4}{5}\times\frac{5}{13}+\frac{12}{13}\times\frac{3}{5}\right)$$

$$=\sin^{-1}\left(\frac{20}{65}+\frac{36}{65}\right)$$

$$=\sin^{-1}\frac{56}{65}$$

Therefore, LHS = RHS

Hence proved.

7 D. Question

$$\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{27}{11}$$

To Prove: $\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{27}{11}$

Formula Used: $\sin^{-1} x + \sin^{-1} y = \sin^{-1} (x \times \sqrt{1 - y^2} + y \times \sqrt{1 - x^2})$

Proof:

LHS =
$$\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{3}{5}$$
 ... (1)

Let
$$\cos\theta = \frac{4}{5}$$

Therefore $\theta = \cos^{-1}\frac{4}{5}$... (2)

From the figure, $\sin \theta = \frac{3}{5}$

$$\Rightarrow \theta = \sin^{-1}\frac{3}{5}\dots(3)$$

From (2) and (3),

$$\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{3}{5}$$

Substituting in (1), we get

LHS =
$$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{3}{5}$$

Therefore
$$\theta = \cos^{-1}\frac{4}{5}$$
 ... (2)

From the figure, $\sin \theta = \frac{3}{5}$

$$\Rightarrow \theta = \sin^{-1}\frac{3}{5}$$
 ... (3)

From (2) and (3),
$$\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{3}{5}$$

Substituting in (1), we get

$$LHS = \sin^{-1}\frac{3}{5} + \sin^{-1}\frac{3}{5}$$

$$= \sin^{-1}\left(2 \times \frac{3}{5} \times \sqrt{1 - \left(\frac{3}{5}\right)^2}\right)$$

$$=\sin^{-1}\left(2\times\frac{3}{5}\times\sqrt{1-\frac{9}{25}}\right)$$

$$=\sin^{-1}\left(2\times\frac{3}{5}\times\sqrt{\frac{16}{25}}\right)$$

$$=\sin^{-1}\left(2\times\frac{3}{5}\times\frac{4}{5}\right)$$

$$=\sin^{-1}\frac{24}{25}$$

7 E. Question

$$\tan^{-1}\frac{1}{3} + \sec^{-1}\frac{\sqrt{5}}{2} = \frac{\pi}{4}$$

To Prove: $\tan^{-1}\frac{1}{3} + \sec^{-1}\frac{\sqrt{5}}{2} = \frac{\pi}{4}$

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1

Proof:

LHS =
$$\tan^{-1}\frac{1}{3} + \sec^{-1}\frac{\sqrt{5}}{2}$$
 ... (1)

Let
$$\sec \theta = \frac{\sqrt{5}}{2}$$

Therefore $\theta = \sec^{-1} \frac{\sqrt{5}}{2} \dots (2)$

From the figure, $\tan \theta = \frac{1}{2}$

$$\Rightarrow \theta = \tan^{-1}\frac{1}{2}\dots$$
 (3)

From (2) and (3),

$$\sec^{-1}\frac{\sqrt{5}}{2} = \tan^{-1}\frac{1}{2}$$

Substituting in (1), we get

$$\mathsf{LHS} = \mathsf{tan}^{-1} \tfrac{1}{3} + \mathsf{tan}^{-1} \tfrac{1}{2}$$

$$= \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \left(\frac{1}{3} \times \frac{1}{2} \right)} \right)$$

$$= \tan^{-1} \left(\frac{2+3}{6-1} \right)$$

$$=\tan^{-1}\frac{5}{5}$$

$$= tan^{-1} 1$$

$$=\frac{\pi}{4}$$

Therefore, LHS = RHS

Hence proved.

7 F. Question

$$\sin^{-1}\frac{1}{\sqrt{17}} + \cos^{-1}\frac{9}{\sqrt{85}} = \tan^{-1}\frac{1}{2}$$

To Prove: $\sin^{-1}\frac{1}{\sqrt{17}} + \cos^{-1}\frac{9}{\sqrt{85}} = \tan^{-1}\frac{1}{2}$

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1

Proof:

LHS =
$$\sin^{-1} \frac{1}{\sqrt{17}} + \cos^{-1} \frac{9}{\sqrt{85}} \dots (1)$$

Let $\sin \theta = \frac{1}{\sqrt{17}}$

Therefore $\theta = \sin^{-1} \frac{1}{\sqrt{17}} \dots (2)$

From the figure, $\tan \theta = \frac{1}{4}$

$$\Rightarrow \theta = \tan^{-1}\frac{1}{4}\dots(3)$$

From (2) and (3),

$$\sin^{-1}\frac{1}{\sqrt{17}} = \tan^{-1}\frac{1}{4}\dots$$
 (3)

Now, let $\cos\theta = \frac{9}{\sqrt{85}}$

Therefore $\theta = \cos^{-1} \frac{9}{\sqrt{g_5}} \dots$ (4)

From the figure, $\tan\theta = \frac{2}{9}$

$$\Rightarrow \theta = \tan^{-1}\frac{2}{9}\dots(5)$$

From (4) and (5),

$$\cos^{-1}\frac{9}{\sqrt{85}} = \tan^{-1}\frac{2}{9}\dots$$
 (6)

Substituting (3) and (6) in (1), we get

LHS =
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9}$$

$$= \tan^{-1} \left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \left(\frac{1}{4} \times \frac{2}{9} \right)} \right)$$

$$= \tan^{-1} \left(\frac{9+8}{36-2} \right)$$

$$= \tan^{-1} \frac{17}{34}$$

$$= \tan^{-1} \frac{1}{2}$$

= RHS

Therefore, LHS = RHS

Prove that:

$$2\sin^{-1}\frac{3}{5}-\tan^{-1}\frac{17}{31}=\frac{\pi}{4}$$

Answer

To Prove: $2\sin^{-1}\frac{3}{5} - \tan^{-1}\frac{17}{31} = \frac{\pi}{4}$

Formula Used:

1)
$$2 \sin^{-1} x = \sin^{-1}(2x \times \sqrt{1-x^2})$$

2)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$$
 where $xy < 1$

Proof:

LHS =
$$2 \sin^{-1} \frac{3}{5} - \tan^{-1} \frac{17}{31} \dots (1)$$

LHS =
$$2 \sin^{-1} \frac{3}{5} - \tan^{-1} \frac{17}{31} \dots (1)$$

 $2 \sin^{-1} \frac{3}{5} = \sin^{-1} \left(2 \times \frac{3}{5} \times \sqrt{1 - \left(\frac{3}{5} \right)^2} \right)$
 $= \sin^{-1} \left(\frac{6}{5} \times \frac{4}{5} \right)$
 $= \sin^{-1} \frac{24}{25} \dots (2)$
Substituting (2) in (1), we get
LHS = $\sin^{-1} \frac{24}{25} - \tan^{-1} \frac{17}{31} \dots (3)$
Let $\sin \theta = \frac{24}{25}$
Therefore $\theta = \sin^{-1} \frac{24}{25} \dots (4)$

$$=\sin^{-1}\left(\frac{6}{5}\times\frac{4}{5}\right)$$

$$=\sin^{-1}\frac{24}{25}\dots(2)$$

Substituting (2) in (1), we get

LHS =
$$\sin^{-1}\frac{24}{25} - \tan^{-1}\frac{17}{31}...$$
 (3)

Let
$$\sin \theta = \frac{24}{25}$$

Therefore
$$\theta = \sin^{-1}\frac{24}{25}...(4)$$

From the figure, $\tan \theta = \frac{24}{7}$

$$\Rightarrow \theta = \tan^{-1}\frac{24}{7}\dots(5)$$

From (4) and (5),

$$\sin^{-1}\frac{24}{25} = \tan^{-1}\frac{24}{7}\dots$$
 (6)

Substituting (6) in (3), we get

LHS =
$$\tan^{-1}\frac{24}{7} - \tan^{-1}\frac{17}{31}$$

$$= \tan^{-1} \left(\frac{\frac{24}{7} - \frac{17}{31}}{1 + \left(\frac{24}{7} \times \frac{17}{31} \right)} \right)$$

$$= \tan^{-1} \left(\frac{744 - 119}{217 + 408} \right)$$

$$= \tan^{-1} \frac{625}{625}$$

$$= tan^{-1} 1$$

$$=\frac{\pi}{4}$$

Therefore, LHS = RHS

Hence proved.

8 A. Question

Solve for x:

$$\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\frac{8}{31}$$

Answer

To find: value of x

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1

Given:
$$tan^{-1}(x+1) + tan^{-1}(x-1) = tan^{-1}\frac{8}{31}$$

$$\mathsf{LHS} = tan^{-1} \left(\frac{x + 1 + x - 1}{1 - \{(x + 1) \times (x - 1)\}} \right)$$

$$= \tan^{-1} \frac{2x}{1 - (x^2 - x + x - 1)}$$

$$= \tan^{-1} \frac{2x}{2 - x^2}$$

Therefore,
$$tan^{-1} \frac{2x}{2-x^2} = tan^{-1} \frac{8}{31}$$

Taking tangent on both sides, we get

$$\frac{2x}{2-x^2} = \frac{8}{31}$$

$$\Rightarrow 62x = 16 - 8x^2$$

$$\Rightarrow 8x^2 + 62x - 16 = 0$$

$$\Rightarrow 4x^2 + 31x - 8 = 0$$

$$\Rightarrow 4x^2 + 32x - x - 8 = 0$$

$$\Rightarrow 4x \times (x + 8) - 1 \times (x + 8) = 0$$

$$\Rightarrow (4x - 1) \times (x + 8) = 0$$

$$\Rightarrow x = \frac{1}{4} \text{ or } x = -8$$

Therefore, $x = \frac{1}{4}$ or x = -8 are the required values of x.

8 B. Question

Solve for x:

$$\tan^{-1}(2+x) + \tan^{-1}(2-x) = \tan^{-1}\frac{2}{3}$$

To find: value of x

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1

Given: $tan^{-1}(2+x) + tan^{-1}(2-x) = tan^{-1}\frac{2}{3}$

$$\mathsf{LHS} = tan^{-1} \left(\frac{2 + x + 2 - x}{1 - \{(2 + x) \times (2 - x)\}} \right)$$

$$= \tan^{-1} \frac{4}{1 - (4 - 2x + 2x - x^2)}$$

$$= tan^{-1}\frac{4}{x^2-3}$$

Therefore, $\tan^{-1} \frac{4}{x^2 - 3} = \tan^{-1} \frac{2}{3}$

Taking tangent on both sides, we get

$$\frac{4}{x^2-3}=\frac{2}{3}$$

$$\Rightarrow 12 = 2x^2 - 6$$

$$\Rightarrow 2x^2 = 18$$

$$\Rightarrow x^2 = 9$$

$$\Rightarrow x = 3 \text{ or } x = -3$$

Taking tangent on both sides, we get

$$\frac{4}{x^2 - 3} = \frac{2}{3}$$

$$\Rightarrow 12 = 2x^2 - 6$$

$$\Rightarrow 2x^2 = 18$$

$$\Rightarrow x^2 = 9$$

$$\Rightarrow x = 3 \text{ or } x = -3$$
Therefore, $x = \pm 3$ are the required values of x .

8 C. Question

Solve for x :
$$\cos(\sin^{-1} x) = \frac{1}{9}$$
Answer

To find: value of x

To find: value of x

Given:
$$\cos(\sin^{-1}x) = \frac{1}{9}$$

LHS =
$$\cos(\sin^{-1} x)$$
 ... (1)

Let $\sin \theta = x$

Therefore $\theta = \sin^{-1} x \dots (2)$

From the figure, $\cos\theta = \sqrt{1-x^2}$

$$\Rightarrow \theta = \cos^{-1}\sqrt{1 - x^2} \dots (3)$$

From (2) and (3),

$$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2} \dots (4)$$

Substituting (4) in (1), we get

$$LHS = \cos(\cos^{-1}\sqrt{1-x^2})$$

$$=\sqrt{1-x^2}$$

Therefore,
$$\sqrt{1-x^2} = \frac{1}{9}$$

Squaring and simplifying,

$$\Rightarrow 81 - 81x^2 = 1$$

$$\Rightarrow 81x^2 = 80$$

$$\Rightarrow x^2 = \frac{80}{81}$$

$$\Rightarrow x = \pm \frac{4\sqrt{5}}{9}$$

9
.er
To find: value of x
Formula Used: $2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2})$ Given: $\cos(2\sin^{-1}x) = \frac{1}{9}$ HS = $\cos(2\sin^{-1}x)$ et $\theta = \sin^{-1}x$ $x = \sin \theta$

$$\cos\left(2\sin^{-1}x\right) = \frac{1}{9}$$

Given:
$$cos(2sin^{-1}x) = \frac{1}{6}$$

LHS =
$$cos(2sin^{-1} x)$$

Let
$$\theta = \sin^{-1} x$$

So
$$x = \sin A$$
 (1)

LHS =
$$cos(2\theta)$$

$$= 1 - 2\sin^2\theta$$

Substituting in the given equation,

$$1-2\sin^2\theta=\frac{1}{9}$$

$$2\sin^2\theta = \frac{8}{9}$$

$$\sin^2\theta = \frac{4}{9}$$

Substituting in (1),

$$x^2 = \frac{4}{9}$$

$$x = \pm \frac{2}{3}$$

Therefore, $x = \pm \frac{2}{3}$ are the required values of x.

8 E. Question

Solve for x:

$$\sin^{-1}\frac{8}{x} + \sin^{-1}\frac{15}{x} = \frac{\pi}{2}$$

Answer

To find: value of x

Given:
$$\sin^{-1}\frac{8}{x} + \sin^{-1}\frac{15}{x} = \frac{\pi}{2}$$

We know
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

Let
$$\sin^{-1}\frac{8}{x} = P$$

$$\Rightarrow \sin P = \frac{8}{x}$$

Therefore,
$$\cos P = \frac{\sqrt{x^2-64}}{x}$$

$$P=cos^{-1}\frac{\sqrt{x^2-64}}{x}$$

$$\cos^{-1}\frac{\sqrt{x^2-64}}{x} + \sin^{-1}\frac{15}{x} = \frac{\pi}{2}$$

Therefore,
$$\frac{\sqrt{x^2-64}}{x} = \frac{15}{x}$$

$$\Rightarrow \sqrt{x^2 - 64} = 15$$

Squaring both sides,

$$\Rightarrow x^2 - 64 = 225$$

$$\Rightarrow$$
 x² = 289

$$\Rightarrow x = \pm 17$$

Therefore, $x = \pm 17$ are the required values of x.

9 A. Question

Solve for x:

$$\cos\left(\sin^{-1}x\right) = \frac{1}{2}$$

Answer

To find: value of x

Given:
$$\cos(\sin^{-1}x) = \frac{1}{2}$$

$$LHS = \cos(\sin^{-1}x)$$

$$=\cos(\cos^{-1}(\sqrt{1-x^2}))$$

$$=\sqrt{1-x^2}$$

Therefore,
$$\sqrt{1-x^2} = \frac{1}{2}$$

Squaring both sides,

$$1-x^2=\frac{1}{4}$$

$$x^2 = 1 - \frac{1}{4}$$

$$x^2 = \frac{3}{4}$$

$$x = \pm \frac{\sqrt{3}}{2}$$

Therefore, $x = \pm \frac{\sqrt{3}}{2}$ are the required values of x.

9 B. Question

Solve for x:

$$\tan^{-1}x = \sin^{-1}\frac{1}{\sqrt{2}}$$

Answer

To find: value of x

Given:
$$\tan^{-1} x = \sin^{-1} \frac{1}{\sqrt{2}}$$

We know that
$$\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

Therefore,
$$\frac{\pi}{4} = \sin^{-1}\frac{1}{\sqrt{2}}$$

Substituting in the given equation,

$$tan^{-1}\,x=\,\frac{\pi}{4}$$

$$x=tan\frac{\pi}{4}$$

$$\Rightarrow x = 1$$

Therefore, x = 1 is the required value of x.

9 C. Question

Solve for x:

$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$$

Given:
$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$$

We know that
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

So,
$$\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x$$

Substituting in the given equation,

$$\frac{\pi}{2} - \cos^{-1} x - \cos^{-1} x = \frac{\pi}{6}$$

Rearranging,

$$2\cos^{-1}x=\frac{\pi}{2}-\frac{\pi}{6}$$

$$2\,cos^{-1}x=\frac{\pi}{3}$$

$$cos^{-1}x = \frac{\pi}{6}$$

$$x = \frac{\sqrt{3}}{2}$$

Therefore, $\chi = \frac{\sqrt{3}}{2}$ is the required value of x.

Exercise 4D

1. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

Answer

Principal value branch of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

2. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

Answer

Principal value branch of $\cos^{-1} x$ is $[0, \pi]$

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

 $tan^{-1} x$

Answer

Principal value branch of $tan^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

4. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

cot-1 x

Answer

Principal value branch of $cot^{-1} \ x$ is (0, π)

5. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

sec⁻¹ x

Answer

Principal value branch of $\sec^{-1} x$ is $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$

6. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

cosec⁻¹ x

Answer

Principal value branch of cosec^-1 x is $\left[-\frac{\pi}{2},0\right)$ U $\left(0,\frac{\pi}{2}\right]$

Objective Questions

1. Question

Mark the tick against the correct answer in the following:

The principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{5\pi}{6}$$

To Find:The Principle value of $\cos^{-1}(\frac{\sqrt{3}}{2})$

Let the principle value be given by x

Now, let
$$x = \cos^{-1}(\frac{\sqrt{3}}{2})$$

$$\Rightarrow$$
 cos $x = \frac{\sqrt{3}}{2}$

$$\Rightarrow$$
 cos x=cos $(\frac{\pi}{6})$ (: cos $(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$)

$$\Rightarrow x = \frac{\pi}{6}$$

2. Question

Mark the tick against the correct answer in the following:

The principal value of cosec⁻¹(2) is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{6}$$

c.
$$\frac{2\pi}{3}$$

D.
$$\frac{5\pi}{6}$$

Answer

To Find: The Principle value of cosec 1(2)

Let the principle value be given by x

Now, let
$$x = \csc^{-1}(2)$$

$$\Rightarrow$$
 cosec x =2

$$\Rightarrow$$
 cosec x=cosec($\frac{\pi}{6}$) (: $\cos\left(\frac{\pi}{6}\right) = 2$)

$$\Rightarrow x = \frac{\pi}{6}$$

3. Question

The principal value of
$$\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$
 is

A.
$$\frac{-\pi}{4}$$

B.
$$\frac{\pi}{4}$$

c.
$$\frac{3\pi}{4}$$

D.
$$\frac{5\pi}{4}$$

To Find: The Principle value of $\cos^{-1}(\frac{-1}{\sqrt{2}})$

Let the principle value be given by x

Now, let
$$x = \cos^{-1}(\frac{-1}{\sqrt{2}})$$

$$\Rightarrow$$
 cos x = $\frac{-1}{\sqrt{2}}$

$$\Rightarrow$$
 cos x= - cos $(\frac{\pi}{4})$ (: cos $(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$)

$$\Rightarrow \cos x = \cos(\pi - \frac{\pi}{4}) (\because -\cos(\theta) = \cos(\pi - \theta))$$

$$\Rightarrow X = \frac{3\pi}{4}$$

4. Question

a: Mark the tick against the correct answer in the following:

The principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is

A.
$$\frac{-\pi}{6}$$

B.
$$\frac{5\pi}{6}$$

c.
$$\frac{7\pi}{6}$$

D. none of these

Answer

To Find: The Principle value of $\sin^{-1}(\frac{-1}{2})$

Let the principle value be given by x

Now, let
$$x = \sin^{-1}(\frac{-1}{2})$$

$$\Rightarrow$$
 sin x = $\frac{-1}{2}$

$$\Rightarrow$$
 sin x= - sin($\frac{\pi}{6}$) (: sin($\frac{\pi}{6}$) = $\frac{1}{2}$)

$$\Rightarrow$$
 sin x=sin($-\frac{\pi}{6}$) (: $-\sin(\theta) = \sin(-\theta)$)

$$\Rightarrow x = -\frac{\pi}{4}$$

Mark the tick against the correct answer in the following:

The principal value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is

- A. $\frac{-\pi}{3}$
- B. $\frac{2\pi}{3}$
- C. $\frac{4\pi}{3}$
- D. $\frac{\pi}{3}$

Answer

To Find: The Principle value of $\cos^{-1}(\frac{-1}{2})$

Now, let
$$x = \cos^{-1}(\frac{-1}{2})$$

$$\Rightarrow$$
 cos x = $\frac{-1}{2}$

$$\Rightarrow$$
 cos x= - cos($\frac{\pi}{3}$) (: cos($\frac{\pi}{3}$)= $\frac{1}{2}$)

To Find: The Principle value of
$$\cos^{-1}(\frac{-1}{2})$$

Let the principle value be given by x
Now, let $x = \cos^{-1}(\frac{-1}{2})$
 $\Rightarrow \cos x = \frac{-1}{2}$
 $\Rightarrow \cos x = -\cos(\frac{\pi}{3})$ ($\because \cos(\frac{\pi}{3}) = \frac{1}{2}$)
 $\Rightarrow \cos x = \cos(\pi - \frac{\pi}{3})$ ($\because -\cos(\theta) = \cos(\pi - \theta)$)
 $\Rightarrow x = \frac{2\pi}{3}$
6. Question
Mark the tick against the correct answer in the following:
The principal value of $\tan^{-1}(-\sqrt{3})$ is

$$\Rightarrow x = \frac{2\pi}{3}$$

The principal value of $tan^{-1}(-\sqrt{3})$ is

- A. $\frac{2\pi}{3}$
- B. $\frac{4\pi}{3}$
- C. $\frac{-\pi}{3}$

D. none of these

Answer

To Find: The Principle value of $tan^{-1}(-\sqrt{3})$

Let the principle value be given by x

Now, let
$$x = \tan^{-1}(-\sqrt{3})$$

$$\Rightarrow$$
 tan x = $-\sqrt{3}$

$$\Rightarrow$$
 tan x= - tan($\frac{\pi}{3}$) (: tan($\frac{\pi}{3}$)= $-\sqrt{3}$)

$$\Rightarrow \tan x = \tan(-\frac{\pi}{3}) (\because -\tan(\theta) = \tan(-\theta))$$

$$\Rightarrow x = -\frac{\pi}{3}$$

Mark the tick against the correct answer in the following:

The principal value of cot⁻¹ (-1) is

A.
$$\frac{-\pi}{4}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{5\pi}{4}$$

D.
$$\frac{3\pi}{4}$$

Answer

To Find: The Principle value of $\cot^{-1}(-1)$

Let the principle value be given by x

Now, let
$$x = \cot^{-1}(-1)$$

$$\Rightarrow$$
 cot x= - cot($\frac{\pi}{4}$) (: cot($\frac{\pi}{4}$)= 1)

4

C.
$$\frac{5\pi}{4}$$

D. $\frac{3\pi}{4}$

Answer

To Find: The Principle value of $\cot^{-1}(-1)$

Let the principle value be given by x

Now, let $x = \cot^{-1}(-1)$
 $\Rightarrow \cot x = -\cot(\frac{\pi}{4})$ ($\because \cot(\frac{\pi}{4}) = 1$)

 $\Rightarrow \cot x = \cot(\pi - \frac{\pi}{4})$ ($\because -\cot(\theta) = \cot(\pi - \theta)$)

$$\Rightarrow X = \frac{3\pi}{4}$$

8. Question

Mark the tick against the correct answer in the following:

The principal value of $\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{-\pi}{6}$$

c.
$$\frac{5\pi}{6}$$

D.
$$\frac{7\pi}{6}$$

To Find: The Principle value of $\sec^{-1}(\frac{-2}{\sqrt{3}})$

Let the principle value be given by x

Now, let
$$x = \sec^{-1}(\frac{-2}{\sqrt{3}})$$

$$\Rightarrow$$
 sec x = $\frac{-2}{\sqrt{3}}$

$$\Rightarrow$$
 sec x= - sec($\frac{\pi}{6}$) (: sec($\frac{\pi}{6}$)= $\frac{2}{\sqrt{3}}$)

$$\Rightarrow$$
 sec x=sec($\pi - \frac{\pi}{6}$) (: $-\sec(\theta) = \sec(\pi - \theta)$)

$$\Rightarrow X = \frac{5\pi}{6}$$

9. Question

Mark the tick against the correct answer in the following:

The principal value of $\csc^{-1}(-\sqrt{2})$ is

A.
$$\frac{-\pi}{4}$$

B.
$$\frac{3\pi}{4}$$

C.
$$\frac{5\pi}{4}$$

D. none of these

Answer

To Find: The Principle value of $cosec^{-1}(-\sqrt{2})$

Let the principle value be given by x

Now, let
$$x = cosec^{-1}(-\sqrt{2})$$

$$\Rightarrow$$
 cosec x = $-\sqrt{2}$

$$\Rightarrow$$
 cosec x= - cosec($\frac{\pi}{4}$) (: $cosec(\frac{\pi}{4}) = \sqrt{2}$)

$$\Rightarrow$$
 cosec x=cosec($-\frac{\pi}{4}$) (: $-cosec(\theta) = cosec(-\theta)$)

$$\Rightarrow x = -\frac{\pi}{4}$$

10. Question

Mark the tick against the correct answer in the following:

The principal value of $\cot^{-1}(-\sqrt{3})$ is

- A. $\frac{2\pi}{6}$
- c. $\frac{7\pi}{6}$
- D. $\frac{5\pi}{6}$

To Find: The Principle value of $\cot^{-1}(-\sqrt{3})$

Let the principle value be given by x

Now, let
$$x = \cot^{-1}(-\sqrt{3})$$

$$\Rightarrow$$
 cot x = $-\sqrt{3}$

$$\Rightarrow$$
 cot x= - cot $(\frac{\pi}{6})$ (: $cot(\frac{\pi}{6}) = \sqrt{3}$)

$$\Rightarrow$$
 cot x=cot($\pi - \frac{\pi}{6}$) (: $-cot(\theta) = \cot(\pi - \theta)$)

$$\Rightarrow X = \frac{5\pi}{6}$$

L1. Question Mark the tick against the correct answer in the following: The value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is $\frac{2\pi}{3}$

A.
$$\frac{2\pi}{3}$$

B.
$$\frac{5\pi}{3}$$

c.
$$\frac{\pi}{3}$$

D. none of these

Answer

To Find: The value of $\sin^{-1}(\sin(\frac{2\pi}{3}))$

Now, let
$$x = \sin^{-1}(\sin(\frac{2\pi}{3}))$$

$$\Rightarrow$$
 sin x = sin $(\frac{2\pi}{3})$

Here range of principle value of sine is $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{2\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\sin^{-1}(\sin(\frac{2\pi}{3}))$$
 is

$$\Rightarrow$$
 sin x =sin $(\pi - \frac{\pi}{3})$ (:sin $(\frac{2\pi}{3})$ = sin $(\pi - \frac{\pi}{3})$)

 \Rightarrow sin x = sin $(\frac{\pi}{3})$ (:sin $(\pi - \theta)$ = sin θ as here θ lies in II quadrant and sine is positive)

$$\Rightarrow X = \frac{\pi}{3}$$

12. Question

Mark the tick against the correct answer in the following:

The value of $\cos^{-1} \left(\cos \frac{13\pi}{6} \right)$ is

A.
$$\frac{13\pi}{6}$$

C.
$$\frac{5\pi}{6}$$

D.
$$\frac{\pi}{6} \frac{7\pi}{6}$$

Answer

To Find: The value of $\cos^{-1}(\cos(\frac{13\pi}{6}))$

Now, let
$$x = \cos^{-1}(\cos(\frac{13\pi}{6}))$$

$$\Rightarrow \cos x = \cos \left(\frac{13\pi}{\epsilon}\right)$$

Here ,range of principle value of $\cos is [0,\pi]$

$$\Rightarrow X = \frac{13\pi}{6} \notin [0,\pi]$$

Hence for all values of x in range $[0,\pi]$, the value of

$$\cos^{-1}(\cos(\frac{13\pi}{6}))$$
 is

$$\Rightarrow$$
 cos x = cos $(2\pi - \frac{\pi}{6})$ (\because cos $(\frac{13\pi}{6})$ = cos $(2\pi - \frac{\pi}{6})$)

$$\Rightarrow$$
 cos x = cos $\binom{\pi}{6}$ (:cos $(2\pi - \theta)$ = cos θ)

$$\Rightarrow x = \frac{\pi}{6}$$

13. Question

The value of
$$\tan^{-1} \left(\tan \frac{7\pi}{6} \right)$$
 is

A.
$$\frac{7\pi}{6}$$

B.
$$\frac{5\pi}{6}$$

C.
$$\frac{\pi}{6}$$

D. none of these

Answer

To Find: The value of $tan^{-1}(tan(\frac{7\pi}{6}))$

Now, let
$$x = \tan^{-1}(\tan(\frac{7\pi}{6}))$$

$$\Rightarrow$$
 tan x =tan $(\frac{7\pi}{6})$

Here range of principle value of tan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow \mathsf{X} = \frac{7\pi}{6} \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\tan^{-1}(\tan(\frac{13\pi}{6}))$$
 is

$$\Rightarrow$$
 tan x =tan $(\pi + \frac{\pi}{6})$ (:tan $(\frac{7\pi}{6})$ = tan $(\pi + \frac{\pi}{6})$)

$$\Rightarrow$$
 tan x =tan $(\frac{\pi}{6})$ (:tan $(\pi + \theta)$ = tan θ)

$$\Rightarrow x = \frac{\pi}{6}$$

14. Question

Mark the tick against the correct answer in the following:

The value of
$$\cot^{-1}\left(\cot\frac{5\pi}{4}\right)$$
 is

A.
$$\frac{\pi}{4}$$

B.
$$\frac{-\pi}{4}$$

C.
$$\frac{3\pi}{4}$$

D. none of these

Answer

To Find: The value of $\cot^{-1}(\cot(\frac{5\pi}{4}))$

Now, let
$$x = \cot^{-1}(\cot(\frac{5\pi}{4}))$$

$$\Rightarrow$$
 cot x = cot $(\frac{5\pi}{4})$

Here range of principle value of cot is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow \mathsf{X} = \frac{5\pi}{4} \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\cot^{-1}(\cot(\frac{5\pi}{4}))$$
 is

$$\Rightarrow$$
 cot x = cot $(\pi + \frac{\pi}{4})$ (::cot $(\frac{5\pi}{4})$ = cot $(\pi + \frac{\pi}{4})$)

$$\Rightarrow$$
 cot x = cot $(\frac{\pi}{4})$ (:cot $(\pi + \theta)$ = cot θ)

$$\Rightarrow x = \frac{\pi}{4}$$

15. Ouestion

Mark the tick against the correct answer in the following:

Line of these

Answer

To Find: The value of $\sec^{-1}(\sec(\frac{8\pi}{5}))$ Now, let $x = \sec^{-1}(\sec(\frac{8\pi}{5}))$ $\Rightarrow \sec x = \sec(\frac{8\pi}{5})$ $\Rightarrow \sec x = \sec(\frac{8\pi}{5})$ $\Rightarrow \sec x = \sec(\frac{8\pi}{5})$

A.
$$\frac{2\pi}{5}$$

B.
$$\frac{3\pi}{5}$$

c.
$$\frac{8\pi}{5}$$

Now, let
$$x = \sec^{-1}(\sec(\frac{8\pi}{5}))$$

$$\Rightarrow$$
 sec x = sec $(\frac{8\pi}{5})$

$$\Rightarrow x = \frac{8\pi}{5} \notin [0,\pi]$$

Hence for all values of x in range $[0,\pi]$, the value of

$$\sec^{-1}(\sec(\frac{8\pi}{5}))$$
 is

$$\Rightarrow$$
 sec x =sec $(2\pi - \frac{2\pi}{5})$ (:sec $(\frac{8\pi}{5})$ = sec $(2\pi - \frac{2\pi}{5})$)

$$\Rightarrow$$
 sec x = sec $(\frac{2\pi}{5})$ (:sec $(2\pi - \theta)$ = sec θ)

$$\Rightarrow x = \frac{2\pi}{5}$$

Mark the tick against the correct answer in the following:

The value of $\csc^{-1}\left(\csc\frac{4\pi}{3}\right)$ is

- A. $\frac{\pi}{3}$
- B. $\frac{-\pi}{3}$
- c. $\frac{2\pi}{3}$

D. none of these

Answer

To Find: The value of $\csc^{-1}(\csc(\frac{4\pi}{3}))$

Now, let $x = \csc^{-1}(\csc(\frac{4\pi}{3}))$

$$\Rightarrow$$
 cosec x =cosec $(\frac{4\pi}{3})$

Here range of principle value of cosec is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{4\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$cosec^{-1}(cosec(\frac{4\pi}{3}))$$
 is

$$\Rightarrow$$
 cosec x =cosec $(\pi + \frac{\pi}{3})$ (:cosec $(\frac{4\pi}{3})$) = cosec $(\pi + \frac{\pi}{3})$)

$$\Rightarrow$$
 cosec x =cosec $\left(-\frac{\pi}{3}\right)$ (:cosec $(\pi + \theta)$ = cosec $(-\theta)$)

$$\Rightarrow x = -\frac{\pi}{3}$$

17. Question

Mark the tick against the correct answer in the following:

The value of $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$ is

A.
$$\frac{3\pi}{4}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{-\pi}{4}$$

D. none of these

To Find: The value of $\tan^{-1}(\tan(\frac{3\pi}{4}))$

Now, let $x = tan^{-1} \left(tan \left(\frac{3\pi}{4} \right) \right)$

 \Rightarrow tan x =tan $(\frac{3\pi}{4})$

Here range of principle value of tan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\Rightarrow X = \frac{3\pi}{4} \notin [-\frac{\pi}{2}, \frac{\pi}{2}]$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

 $\tan^{-1}(\tan(\frac{3\pi}{4}))$ is

$$\Rightarrow$$
 tan x =tan $(\pi - \frac{\pi}{4})$ (:tan $(\frac{3\pi}{4})$ = tan $(\pi - \frac{\pi}{4})$)

$$\Rightarrow$$
 tan x =tan $\left(-\frac{\pi}{4}\right)$ (:tan $(\pi - \theta)$ = tan $(-\theta)$)

$$\Rightarrow x = -\frac{\pi}{4}$$

18. Question

Mark the tick against the correct answer in the following:

$$\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right) = ?$$

A. 0

B.
$$\frac{2\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D. π

Answer

To Find: The value of $\frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})$

Now, let
$$x = \frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})$$

$$\Rightarrow X = \frac{\pi}{3} - (-\sin^{-1}(\frac{1}{2})) \ (\because \sin(-\theta) = -\sin(\theta))$$

$$\Rightarrow X = \frac{\pi}{3} - \left(-\frac{\pi}{6}\right) (\because \sin \frac{\pi}{6} = \frac{1}{2})$$

$$\Rightarrow x = \frac{\pi}{3} + \frac{\pi}{6}$$

$$\Rightarrow x = \frac{3\pi}{6} = \frac{\pi}{2}$$

19. Question

The value of $\sin \left(\sin^{-1} \frac{1}{2} + \cos^{-1} \frac{1}{2} \right) = ?$

- A. 0
- B. 1
- C. -1
- D. none of these

Answer

To Find: The value of $\sin(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2})$

Now, let
$$x = \sin(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2})$$

$$\Rightarrow$$
 x = sin $(\frac{\pi}{2})$ (: $\sin^{-1}\theta + \cos^{-1}\theta = \frac{\pi}{2}$)

$$\Rightarrow$$
 x = 1 (: $\sin\left(\frac{\pi}{2}\right)$ = 1)

20. Question

If
$$x \neq 0$$
 then $\cos(\tan^{-1} x + \cot^{-1} x) = 3$

Now, let
$$x = \cos(\tan^{-1} x + \cot^{-1} x)$$

20. Question

Mark the tick against the correct answer in the following:

If
$$x \neq 0$$
 then $\cos(\tan^1 x + \cot^1 x) = ?$

A. -1

B. 1

C. 0

D. none of these

Answer

Given: $x \neq 0$

To Find: The value of $\cos(\tan^{-1} x + \cot^{-1} x)$

Now, let $x = \cos(\tan^{-1} x + \cot^{-1} x)$
 $\Rightarrow x = \cos(\frac{\pi}{2})$ (: $\tan^{-1} \theta + \cot^{-1} \theta = \frac{\pi}{2}$)

 $\Rightarrow x = 0$ (: $\cos(\frac{\pi}{2}) = 0$)

21. Question

$$\Rightarrow x = 0 \ (\because \cos\left(\frac{\pi}{2}\right) = 0)$$

21. Question

The value of
$$\sin\left(\cos^{-1}\frac{3}{5}\right)$$
 is

- A. $\frac{2}{5}$
- c. $\frac{-2}{5}$

D. none of these

Answer

To Find: The value of $\sin(\cos^{-1}\frac{3}{5})$

Now, let
$$x = \cos^{-1}\frac{3}{5}$$

$$\Rightarrow$$
 cos x = $\frac{3}{5}$

Now ,sin
$$x = \sqrt{1 - \cos^2 x}$$

$$=\sqrt{1-(\frac{3}{5})^2}$$

$$=\frac{4}{5}$$

$$\Rightarrow X = \sin^{-1}\frac{4}{5} = \cos^{-1}\frac{3}{5}$$

Therefore,

$$\sin(\cos^{-1}\frac{3}{5}) = \sin(\sin^{-1}\frac{4}{5})$$

Let , Y=
$$\sin(\sin^{-1}\frac{4}{5})$$

$$\Rightarrow \sin^{-1} Y = \sin^{-1} \frac{4}{5}$$

$$\Rightarrow Y = \frac{4}{5}$$

22. Question

Mark the tick against the correct answer in the following:

$$\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right) = ?$$

A.
$$\frac{4\pi}{3}$$

B.
$$\frac{\pi}{2}$$

c.
$$\frac{5\pi}{3}$$

D. π

Answer

To Find: The value of $\cos^{-1}(\cos(\frac{2\pi}{3})) + \sin^{-1}(\sin(\frac{2\pi}{3}))$

Here, consider $\cos^{-1}(\cos(\frac{2\pi}{3}))$ (: the principle value of \cos lies in the range $[0,\pi]$ and since $\frac{2\pi}{3}\in[0,\pi]$)

$$\Rightarrow \cos^{-1}(\cos(\frac{2\pi}{3})) = \frac{2\pi}{3}$$

Now, consider $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$

Since here the principle value of sine lies in range $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and since $\frac{2\pi}{3}\notin\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

$$\Rightarrow \sin^{-1}(\sin(\frac{2\pi}{3})) = \sin^{-1}(\sin(\pi - \frac{\pi}{3}))$$

$$=\sin^{-1}(\sin(\frac{\pi}{3}))$$

$$=\frac{\pi}{3}$$

Therefore,

$$\cos^{-1}(\cos(\frac{2\pi}{3})) + \sin^{-1}(\sin(\frac{2\pi}{3})) = \frac{2\pi}{3} + \frac{\pi}{3}$$

$$=\frac{3\pi}{3}$$

 $=\pi$

23. Question

Mark the tick against the correct answer in the following:

$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = ?$$

A.
$$\frac{\pi}{3}$$

B.
$$\frac{-\pi}{3}$$

c.
$$\frac{5\pi}{3}$$

Let,
$$x = \tan^{-1}(\sqrt{3}) - \sec^{-1}(\cancel{2})$$

$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = ?$$

A. $\frac{\pi}{3}$

B. $\frac{-\pi}{3}$

C. $\frac{5\pi}{3}$

D. none of these

Answer

To Find: The value of $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$

Let , $x = \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$
 $\Rightarrow x = \frac{\pi}{3} - [\pi - \sec^{-1}(2)] (\because \tan(\frac{\pi}{3}) = \sqrt{3} \text{ and } \sec^{-1}(-\theta) = \pi - \sec^{-1}(\theta))$
 $\Rightarrow x = \frac{\pi}{3} - [\pi - \frac{\pi}{3}]$
 $\Rightarrow x = \frac{\pi}{3} - [\frac{2\pi}{3}]$

$$\Rightarrow x = \frac{\pi}{3} - [\pi - \frac{\pi}{3}]$$

$$\Rightarrow x = \frac{\pi}{3} - \left[\frac{2\pi}{3}\right]$$

$$\Rightarrow x = -\frac{\pi}{2}$$

24. Question

$$\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2} = ?$$

A.
$$\frac{2\pi}{3}$$

B.
$$\frac{3\pi}{2}$$

C.
$$2\pi$$

D. none of these

Answer

To Find: The value of $\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$

Now, let
$$x = \cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$$

$$\Rightarrow X = \frac{\pi}{3} + 2(\frac{\pi}{6}) (\cos(\frac{\pi}{3}) = \frac{1}{2} \text{ and } \sin(\frac{\pi}{6}) = \frac{1}{2})$$

$$\Rightarrow x = \frac{\pi}{3} + \frac{\pi}{3}$$

$$\Rightarrow x = \frac{2\pi}{3}$$

25. Question

Mark the tick against the correct answer in the following:

$$\tan^{-1} 1 + \cos^{-1} \left(\frac{-1}{2} \right) + \sin^{-1} \left(\frac{-1}{2} \right) = ?$$

Α. π

B.
$$\frac{2\pi}{3}$$

C.
$$\frac{3\pi}{4}$$

D.
$$\frac{\pi}{2}$$

Answer

To Find: The value of $\tan^{-1} 1 + \cos^{-1} (\frac{-1}{2}) + \sin^{-1} (\frac{-1}{2})$

Now, let
$$x = \tan^{-1} 1 + \cos^{-1}(\frac{-1}{2}) + \sin^{-1}(\frac{-1}{2})$$

$$\Rightarrow \mathsf{X} = \frac{\pi}{4} + \left[\pi \cdot \cos^{-1}(\frac{1}{2})\right] + \left[-\sin^{-1}\frac{1}{2}\right] \ (\because \tan\left(\frac{\pi}{4}\right) = 1 \ and \ \cos^{-1}(-\theta) = \left[\pi - \cos^{-1}\theta\right] \\ and \ \sin^{-1}(-\theta) = -\sin^{-1}\theta) = \left[\pi - \cos^{-1}\theta\right] \\ = -\sin^{-1}\theta + \left[\pi - \cos^{-1}\theta\right] \\ = -\cos^{-1}\theta + \left[\pi - \cos^{-1}\theta\right] \\ = -\cos^{-1}\theta$$

$$\Rightarrow X = \frac{\pi}{4} + \left[\pi - \frac{\pi}{3}\right] + \left[-\frac{\pi}{6}\right]$$

$$\Rightarrow X = \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$$

$$\Rightarrow X = \frac{3\pi}{4}$$

26. Question

$$\tan \left[2 \tan^{-1} \frac{1}{5} - \frac{\pi}{4} \right] = ?$$

A.
$$\frac{7}{17}$$

B.
$$\frac{-7}{17}$$

c.
$$\frac{7}{12}$$

D.
$$\frac{-7}{12}$$

To Find: The value of $\tan(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4})$

Consider, $\tan(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}) = \tan(\tan^{-1}(\frac{2(\frac{1}{5})}{1-(\frac{1}{5})^2})-\frac{\pi}{4})$

$$(:2 \tan^{-1} x = \tan^{-1}(\frac{2x}{1-x^2}))$$

$$= \tan(\tan^{-1}(\frac{\frac{2}{5}}{1-\frac{1}{25}}) - \frac{\pi}{4})$$

$$= \tan(\tan^{-1}(\frac{5}{12}) - \frac{\pi}{4})$$

=
$$tan(tan^{-1}(\frac{5}{12}) - tan^{-1}(1))$$
 (: $tan(\frac{\pi}{4}) = 1$)

$$= \tan(\tan^{-1}(\frac{\frac{5}{12}-1}{1+\frac{5}{12}}))$$

$$(\tan^{-1} x - \tan^{-1} y = \tan^{-1}(\frac{x-y}{1+xy})$$

$$= \tan(\tan^{-1}(\frac{-7}{17}))$$

$$\tan(2\tan^{-1}\frac{1}{5} - \frac{\pi}{4}) = \frac{-7}{17}$$

27. Question

$$\tan\frac{1}{2}\left(\cos^{-1}\frac{\sqrt{5}}{3}\right) = ?$$

A.
$$\frac{(3-\sqrt{5})}{2}$$

B.
$$\frac{(3+\sqrt{5})}{2}$$

c.
$$\frac{\left(5-\sqrt{3}\right)}{2}$$

D.
$$\frac{(5+\sqrt{3})}{2}$$

To Find: The value of $\tan \frac{1}{2} (\cos^{-1} \frac{\sqrt{5}}{3})$

Let,
$$x = \cos^{-1} \frac{\sqrt{5}}{3}$$

⇒cos x =
$$\frac{\sqrt{5}}{3}$$

Now, $\tan \frac{1}{2} (\cos^{-1} \frac{\sqrt{5}}{3})$ becomes

$$\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3}) = \tan \frac{1}{2}(x) = \tan \frac{x}{2}$$

$$=\sqrt{\frac{1-\cos x}{1+\cos x}}$$

$$= \sqrt{\frac{1 - (\frac{\sqrt{5}}{3})}{1 + \frac{\sqrt{5}}{3}}}$$

$$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}$$

$$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}} \times \sqrt{\frac{3-\sqrt{5}}{3-\sqrt{5}}}$$

$$\tan \frac{1}{2} (\cos^{-1} \frac{\sqrt{5}}{3}) = \frac{3 - \sqrt{5}}{2}$$

28. Question

Mark the tick against the correct answer in the following:

$$\sin\left(\cos^{-1}\frac{3}{5}\right) = ?$$

A.
$$\frac{3}{4}$$

B.
$$\frac{4}{5}$$

c.
$$\frac{3}{5}$$

D. none of these

Answer

To Find: The value of $\sin(\cos^{-1}\frac{3}{5})$

Let,
$$x = \cos^{-1} \frac{3}{5}$$

⇒cos x =
$$\frac{3}{5}$$

Now, $\sin(\cos^{-1}\frac{3}{5})$ becomes $\sin(x)$

Since we know that $\sin x = \sqrt{1 - \cos^2 x}$

$$=\sqrt{1-(\frac{3}{5})^2}$$

$$\sin(\cos^{-1}\frac{3}{5}) = \sin x = \frac{4}{5}$$

29. Question

Mark the tick against the correct answer in the following:

$$\cos\left(\tan^{-1}\frac{3}{4}\right) = ?$$

- A. $\frac{3}{5}$
- c. $\frac{4}{9}$

D. none of these

Answer

To Find: The value of $\cos(\tan^{-1}\frac{3}{4})$

Let
$$x = \tan^{-1} \frac{3}{4}$$

⇒tan x =
$$\frac{3}{4}$$

$$\Rightarrow$$
tan $X = \frac{3}{4} = \frac{opposite side}{adjacent side}$

We know that by pythagorus theorem

(Hypotenuse)² = (opposite side)² + (adjacent side)²

Therefore, Hypotenuse = 5

$$\Rightarrow$$
 cos x = $\frac{adjacent side}{hypotenuse} = \frac{4}{5}$

Since here $x = tan^{-1} \frac{3}{4}$ hence $cos(tan^{-1} \frac{3}{4})$ becomes cos x

Hence,
$$\cos(\tan^{-1}\frac{3}{4}) = \cos x = \frac{4}{5}$$

30. Question

$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right\} = ?$$

- A. 1
- B. 0

c.
$$\frac{-1}{2}$$

D. none of these

Answer

To Find: The value of $\sin \left\{ \frac{\pi}{3} - \sin^{-1} \left(\frac{-1}{2} \right) \right\}$

Let,
$$x = \sin \left\{ \frac{\pi}{3} - \sin^{-1} \left(\frac{-1}{2} \right) \right\}$$

$$\Rightarrow x = \sin{\{\frac{\pi}{3} - (-\sin^{-1}{\frac{1}{2}})\}} \ (\because \sin^{-1}(-\theta) = -\sin{\theta})$$

$$\Rightarrow x = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right)$$

$$\Rightarrow x = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

31. Question

Mark the tick against the correct answer in the following:

$$\sin\left(\frac{1}{2}\cos^{-1}\frac{4}{5}\right) = ?$$

A.
$$\frac{1}{\sqrt{5}}$$

B.
$$\frac{2}{\sqrt{5}}$$

c.
$$\frac{1}{\sqrt{100}}$$

D.
$$\frac{2}{\sqrt{10}}$$

$$Let x = \cos^{-1}\frac{4}{5}$$

⇒cos x =
$$\frac{4}{5}$$

Answer

To Find: The value of $\sin(\frac{1}{2}\cos^{-1}\frac{4}{5})$ Let $x = \cos^{-1}\frac{4}{5}$ $\cos x = \frac{4}{5}$ erefore $\sin^{7/3}$

We know that $\sin(\frac{x}{2}) = \sqrt{\frac{1-\cos x}{2}}$

$$=\sqrt{\frac{1-\frac{4}{5}}{2}}$$

$$=\sqrt{\frac{1}{5}}$$

$$\sin\left(\frac{x}{2}\right) = \frac{1}{\sqrt{10}}$$

Mark the tick against the correct answer in the following:

$$\tan^{-1}\left\{2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right\} = ?$$

- A. $\frac{\pi}{3}$
- c. $\frac{3\pi}{4}$
- D. $\frac{2\pi}{3}$

Answer

To Find: The value of $tan^{-1} \{ 2 cos(2 sin^{-1} \frac{1}{2}) \}$

Let ,
$$x = \tan^{-1}\{2\cos(2\sin^{-1}\frac{1}{2})\}$$

$$\Rightarrow x = \tan^{-1} \{ 2 \cos(2(\frac{\pi}{6})) \} (\because \sin(\frac{\pi}{6}) = \frac{1}{2})$$

$$\Rightarrow x = \tan^{-1}(2\cos\frac{\pi}{3})$$

Answer

To Find: The value of
$$\tan^{-1}\{2\cos(2\sin^{-1}\frac{1}{2})\}$$

Let , $x = \tan^{-1}\{2\cos(2\sin^{-1}\frac{1}{2})\}$

$$\Rightarrow x = \tan^{-1}\{2\cos(2(\frac{\pi}{6}))\} \ (\because \sin(\frac{\pi}{6}) = \frac{1}{2})$$

$$\Rightarrow x = \tan^{-1}(2\cos\frac{\pi}{3})$$

$$\Rightarrow x = \tan^{-1}(2(\frac{1}{2})) = \tan^{-1}1 = \frac{\pi}{4} \ (\because \cos(\frac{\pi}{3}) = \frac{1}{2} \ and \ \tan(\frac{\pi}{4}) = 1)$$

33. Question

Mark the tick against the correct answer in the following:

If
$$\cot^{-1}\left(\frac{-1}{5}\right) = x$$
 then $\sin x = ?$

A.
$$\frac{1}{\sqrt{26}}$$

B.
$$\frac{5}{\sqrt{26}}$$

c.
$$\frac{1}{\sqrt{24}}$$

D. none of these

Answer

Given:
$$\cot^{-1}\frac{-1}{5} = x$$

To Find: The value of sin x

Since,
$$x = \cot^{-1} \frac{-1}{5}$$

$$\Rightarrow$$
cot $x = \frac{-1}{5} = \frac{adjacent \ side}{opposite \ side}$

By pythagorus theroem,

(Hypotenuse) 2 = (opposite side) 2 + (adjacent side) 2

Therefore, Hypotenuse = $\sqrt{26}$

$$\Rightarrow \sin x = \frac{opposite \, side}{hypotenuse} = \frac{5}{\sqrt{26}}$$

34. Question

Mark the tick against the correct answer in the following:

$$\sin^{-1}\left(\frac{-1}{2}\right) + 2\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = ?$$

- A. $\frac{\pi}{2}$
- Β. π
- c. $\frac{3\pi}{2}$
- D. none of these

Answer

To Find: The value of $\sin^{-1}(\frac{-1}{2}) + 2\cos^{-1}(\frac{-\sqrt{3}}{2})$

Let ,
$$x = \sin^{-1}(\frac{-1}{2}) + 2\cos^{-1}(\frac{-\sqrt{3}}{2})$$

$$\Rightarrow x = -\sin^{-1}(\frac{1}{2}) + 2\left[\pi - \cos^{-1}(\frac{\sqrt{3}}{2})\right] (\because \sin^{-1}(-\theta) = -\sin^{-1}(\theta) \text{ and } \cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta))$$

$$\Rightarrow x = -\left(\frac{\pi}{6}\right) + 2\left[\pi - \frac{\pi}{6}\right]$$

$$\Rightarrow x = -\left(\frac{\pi}{6}\right) + 2\left[\pi - \frac{\pi}{6}\right]$$

$$\Rightarrow x = -(\frac{\pi}{6}) + 2[\frac{5\pi}{6}]$$

$$\Rightarrow X = -\frac{\pi}{6} + \frac{5\pi}{3}$$

$$\Rightarrow X = \frac{3\pi}{2}$$

Tag:

35. Question

$$\tan^{-1}(-1) + \cos^{-1}(\frac{-1}{\sqrt{2}}) = ?$$

- A. $\frac{\pi}{2}$
- Β. π
- c. $\frac{3\pi}{2}$

D.
$$\frac{2\pi}{3}$$

To Find: The value of $tan^{-1}(-1) + cos^{-1}(\frac{-1}{\sqrt{2}})$

Let ,
$$x = \tan^{-1}(-1) + \cos^{-1}(\frac{-1}{\sqrt{2}})$$

$$\Rightarrow x = -\tan^{-1}(1) + (\pi - \cos^{-1}(\frac{1}{\sqrt{2}}))$$

$$(\because \tan^{-1}(-\theta) = -\tan^{-1}(\theta) \text{ and } \cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta))$$

$$\Rightarrow X = -\frac{\pi}{4} + (\pi - \frac{\pi}{4})$$

$$\Rightarrow X = -\frac{\pi}{4} + \frac{3\pi}{4}$$

$$\Rightarrow x = \frac{\pi}{2}$$

36. Question

$$\cot\left(\tan^{-1}x + \cot^{-1}x\right) = ?$$

B.
$$\frac{1}{2}$$

Let ,
$$x = \cot(\tan^{-1} x + \cot^{-1} x)$$

36. Question

Mark the tick against the correct answer in the following:

$$\cot\left(\tan^{-1}x + \cot^{-1}x\right) = ?$$

A. 1

B. $\frac{1}{2}$

C. 0

D. none of these

Answer

To Find: The value of $\cot\left(\tan^{-1}x + \cot^{-1}x\right)$

Let , $x = \cot\left(\tan^{-1}x + \cot^{-1}x\right)$
 $\Rightarrow x = \cot\left(\frac{\pi}{2}\right)$ (: $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$)

 $\Rightarrow x = 0$

37. Question

Mark the tick against the correct answer in the following:

$$\Rightarrow x = 0$$

$$\tan^{-1}1 + \tan^{-1}\frac{1}{3} = ?$$

A.
$$\tan^{-1} \frac{4}{3}$$

B.
$$\tan^{-1} \frac{2}{3}$$

To Find: The value of $\tan^{-1} 1 + \tan^{-1} \frac{1}{3}$

Let ,
$$x = \tan^{-1} 1 + \tan^{-1} \frac{1}{3}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} (\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}}) = \tan^{-1} 2$$

38. Question

Mark the tick against the correct answer in the following:

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = ?$$

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{2}$
- D. $\frac{2\pi}{3}$

Answer

To Find: The value of $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$

Let,
$$x = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{3} + \frac{1}{2}\right)} \right) = \tan^{-1} 1 = \frac{\pi}{4}$$

39. Question

Mark the tick against the correct answer in the following:

$$2 \tan^{-1} \frac{1}{3} = ?$$

A.
$$\tan^{-1} \frac{3}{2}$$

B.
$$\tan^{-1} \frac{3}{4}$$

C.
$$\tan^{-1} \frac{4}{3}$$

D. none of these

To Find: The value of $2 \tan^{-1} \frac{1}{3}$ i.e, $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3}$

Let,
$$x = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{2}}{1 - \left(\frac{1}{2} + \frac{1}{2} \right)} \right) = \tan^{-1} \frac{3}{4}$$

40. Question

Mark the tick against the correct answer in the following:

$$\cos\left(2\tan^{-1}\frac{1}{2}\right) = ?$$

- A. $\frac{3}{5}$
- B. $\frac{4}{5}$
- c. $\frac{7}{8}$

D. none of these

Answer

To Find: The value of cos $(2 \tan^{-1} \frac{1}{2})$

Let,
$$x = \cos(2\tan^{-1}\frac{1}{2})$$

$$\Rightarrow$$
x = cos (tan⁻¹ $\frac{1}{2}$ + tan⁻¹ $\frac{1}{2}$)

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{2} = \tan^{-1}(\frac{\frac{1}{2} + \frac{1}{2}}{1 - (\frac{1}{2} \times \frac{1}{2})}) = \tan^{-1}\frac{4}{3}$$

$$\Rightarrow x = \cos(\tan^{-1}\frac{4}{3})$$

Now, let
$$y = \tan^{-1} \frac{4}{3}$$

$$\Rightarrow \tan y = \frac{4}{3} = \frac{opposite \, side}{adjacent \, side}$$

By pythagorus theroem,

(Hypotenuse) 2 = (opposite side) 2 + (adjacent side) 2

Therefore, Hypotenuse = 5

$$\Rightarrow$$
 cos $(\tan^{-1}\frac{4}{3})$ = cos y = $\frac{3}{5}$

41. Question

$$\sin \left[2 \tan^{-1} \frac{5}{8} \right]$$

- A. $\frac{25}{64}$
- B. $\frac{80}{89}$
- c. $\frac{75}{128}$
- D. none of these

To Find: The value of sin $(2 \tan^{-1} \frac{5}{8})$

Let,
$$x = \sin(2 \tan^{-1} \frac{5}{8})$$

We know that $2 \tan^{-1} x = \sin^{-1} (\frac{2x}{1+x^2})$

Let ,
$$x = \sin(2\tan^{-1}\frac{5}{8})$$

We know that $2\tan^{-1}x = \sin^{-1}(\frac{2x}{1+x^2})$
 $\Rightarrow x = \sin(\sin^{-1}(\frac{2(\frac{5}{5})}{1+(\frac{3}{5})^2}) = \sin(\sin^{-1}(\frac{80}{89})) = \frac{80}{89}$
42. Question
Mark the tick against the correct answer in the following: $\sin\left[2\sin^{-1}\frac{4}{5}\right]$
A. $\frac{12}{25}$
B. $\frac{16}{25}$
C. $\frac{24}{25}$

42. Question

Mark the tick against the correct answer in the following:

$$\sin \left[2\sin^{-1}\frac{4}{5} \right]$$

- A. $\frac{12}{25}$
- B. $\frac{16}{25}$
- c. $\frac{24}{25}$
- D. None of these

Answer

To Find: The value of sin $(2 \sin^{-1} \frac{4}{5})$

Let ,
$$x = \sin^{-1} \frac{4}{5}$$

⇒sin x =
$$\frac{4}{5}$$

We know that ,cos $x = \sqrt{1 - \sin^2 x}$

$$=\sqrt{1-(\frac{4}{5})^2}$$

Now since, $x = \sin^{-1}\frac{4}{5}$, hence $\sin(2\sin^{-1}\frac{4}{5})$ becomes $\sin(2x)$

Here, sin(2x) = 2 sin x cos x

$$=2\times\frac{4}{5}\times\frac{3}{5}$$

$$=\frac{24}{25}$$

43. Question

Mark the tick against the correct answer in the following:

If
$$\tan^{-1} x = \frac{\pi}{4} - \tan^{-1} \frac{1}{3}$$
 then $x = ?$

- A. $\frac{1}{2}$
- B. $\frac{1}{4}$
- c. $\frac{1}{6}$
- D. None of these

Answer

To Find: The value of $\tan^{-1} x = \frac{\pi}{4} - \tan^{-1} \frac{1}{3}$

Now,
$$\tan^{-1} x = \tan^{-1} 1 - \tan^{-1} \frac{1}{3} (\because \tan \frac{\pi}{4} = 1)$$

Since we know that $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{1 - \frac{1}{3}}{1 + \frac{1}{3}} \right) = \tan^{-1} \frac{1}{2}$$

$$\Rightarrow \tan^{-1} x = \tan^{-1} \frac{1}{2}$$

$$\Rightarrow X = \frac{1}{2}$$

44. Question

Mark the tick against the correct answer in the following:

If
$$\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$$
 then $x = ?$

- A. 1
- B. -1
- C. 0
- D. $\frac{1}{2}$

Answer

To Find: The value of $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1}(1+x) + \tan^{-1}(1-x) = \tan^{-1}(\frac{(1+x)+(1-x)}{1-(1+x)(1-x)})$$

$$= \tan^{-1}(\frac{2}{1 - (1 - x^2)})$$

$$=\tan^{-1}(\frac{2}{x^2})$$

Here since $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$

$$\Rightarrow \tan^{-1}(\frac{2}{x^2}) = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1}(\frac{2}{x^2}) = \tan^{-1}(\infty) \ (\because \tan \frac{\pi}{2} = \infty)$$

$$\Rightarrow \frac{2}{x^2} = \infty$$

$$\Rightarrow \chi^2 = \frac{2}{m}$$

$$\Rightarrow x = 0$$

45. Question

Mark the tick against the correct answer in the following:

$$\Rightarrow x^{2} = \frac{2}{\infty}$$

$$\Rightarrow x = 0$$
45. Question
Mark the tick against the correct answer in the following:
If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$ then $(\cos^{-1}x + \cos^{-1}y) = ?$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{2\pi}{3}$

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

D.
$$\frac{2\pi}{3}$$

Answer

Given:
$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$$

To Find: The value of $\cos^{-1}x + \cos^{-1}y$

Since we know that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

$$\Rightarrow \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$$

Similarly
$$\cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y$$

Now consider $\cos^{-1} x + \cos^{-1} y = \frac{\pi}{2} - \sin^{-1} x + \frac{\pi}{2} - \sin^{-1} y$

$$=\frac{2\pi}{2}$$
 - $[\sin^{-1}x + \sin^{-1}y]$

$$=\pi-\frac{2\pi}{3}$$

$$=\frac{\pi}{3}$$

Mark the tick against the correct answer in the following:

$$(\tan^{-1} 2 + \tan^{-1} 3) = ?$$

A.
$$\frac{-\pi}{4}$$

B.
$$\frac{\pi}{4}$$

c.
$$\frac{3\pi}{4}$$

Answer

To Find: The value of tan⁻¹ 2+tan⁻¹ 3

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 2 + \tan^{-1} 3 = \tan^{-1} (\frac{2+3}{1-(2\times 3)})$$

$$= \tan^{-1}(\frac{5}{-5})$$

$$= \tan^{-1}(-1)$$

Since the principle value of tan lies in the range $[0,\pi]$

$$\Rightarrow \tan^{-1}(-1) = \frac{3\pi}{4}$$

47. Question

Mark the tick against the correct answer in the following:

If
$$tan^{-1} x + tan^{-1} 3 = tan^{-1} 8 then x = ?$$

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{5}$$

Answer

Given:
$$\tan^{-1} x + \tan^{-1} 3 = \tan^{-1} 8$$

To Find: The value of x

Here $tan^{-1}x+tan^{-1}3 = tan^{-1}8$ can be written as

$$\tan^{-1} x = \tan^{-1} 8 - \tan^{-1} 3$$

Since we know that
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} (\frac{x-y}{1+xy})$$

$$\tan^{-1} x = \tan^{-1} 8 \cdot \tan^{-1} 3 = \tan^{-1} (\frac{8-3}{1+(8\times 3)})$$

$$= \tan^{-1}(\frac{5}{25})$$

$$=\tan^{-1}(\frac{1}{5})$$

$$\Rightarrow x = \frac{1}{5}$$

Mark the tick against the correct answer in the following:

If
$$\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$$
 then $x = ?$

A.
$$\frac{1}{2}$$
 or -2

B.
$$\frac{1}{3}$$
 or -3

C.
$$\frac{1}{4}$$
 or -2

D.
$$\frac{1}{6}$$
 or -1

Answer

Given: $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$

To Find: The value of x

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 3x + \tan^{-1} 2x = \tan^{-1} \left(\frac{3x + 2x}{1 - (3x \times 2x)} \right)$$

$$=\tan^{-1}(\frac{5x}{1-6x^2})$$

Now since $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$

$$\tan^{-1} 3x + \tan^{-1} 2x = \tan^{-1} 1 \ (\because \tan \frac{\pi}{4} = 1)$$

$$\Rightarrow \tan^{-1}(\frac{5x}{1-6x^2}) = \tan^{-1} 1$$

$$\Rightarrow \frac{5x}{1-6x^2} = 1$$

$$\Rightarrow 6x^2 + 5x - 1 = 0$$

$$\Rightarrow x = \frac{1}{6}$$
 or $x = -1$

49. Question

$$\tan\left\{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right\} = ?$$

A.
$$\frac{13}{6}$$

B.
$$\frac{17}{6}$$

c.
$$\frac{19}{6}$$

D.
$$\frac{23}{6}$$

To Find: The value of tan $\left\{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right\}$

$$Let x = \cos^{-1}\frac{4}{5}$$

$$\Rightarrow$$
cos x = $\frac{4}{5} = \frac{adjacent side}{hypotenuse}$

$$\Rightarrow$$
tan $x = \frac{opposite side}{adjacent side} = \frac{3}{4}$

$$\Rightarrow x = \tan^{-1} \frac{3}{4}$$

Now tan
$$\{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\} = \tan \{\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\}$$

By pythagorus theroem,

(Hypotenuse)² = (opposite side)² + (adjacent side)²

Therefore, opposite side = 3

$$\Rightarrow \tan x = \frac{opposite side}{adjacent side} = \frac{3}{4}$$

$$\Rightarrow x = \tan^{-1}\frac{3}{4}$$
Now $\tan \{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\} = \tan \{\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\}$
Since we know that $\tan^{-1}x + \tan^{-1}y = \tan^{-1}(\frac{x+y}{1-xy})$

$$\tan \{\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{2}{3}\} = \tan (\tan^{-1}(\frac{\frac{3}{4}+2}{1-(\frac{2}{4}+3)})$$

$$= \tan (\tan^{-1}(\frac{17}{6}))$$

$$= \tan (\tan^{-1}(\frac{17}{6}))$$

$$=\frac{17}{6}$$

50. Question

$$\cos^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4} = ?$$

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

c.
$$\frac{\pi}{2}$$

D.
$$\frac{3\pi}{4}$$

To Find: The value of $\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}$

Now $\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4}$ can be written in terms of tan inverse as

$$\cot^{-1} 9 + \csc^{-1} \frac{\sqrt{41}}{4} = \tan^{-1} \frac{1}{9} + \tan^{-1} \frac{4}{5}$$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1}\frac{1}{9} + \tan^{-1}\frac{4}{5} = \tan^{-1}(\frac{\frac{\frac{1}{9} + \frac{4}{5}}{\frac{4}{5}}}{1 - (\frac{1}{9} \times \frac{4}{5})})$$

$$= \tan^{-1}(\frac{41}{41})$$

$$=\tan^{-1}(1) = \frac{\pi}{4}$$

51. Question

Mark the tick against the correct answer in the following:

Range of sin⁻¹ x is

A.
$$\left[0, \frac{\pi}{2}\right]$$

C.
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

D. None of these

Answer

To Find: The range of $\sin^{-1} x$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sin^{-1}(x)$ can be obtained from the graph of

 $Y = \sin x$ by interchanging x and y axes.i.e, if (a,b) is a point on $Y = \sin x$ then (b,a) is

The point on the function $y = \sin^{-1}(x)$

Below is the Graph of range of $\sin^{-1}(x)$

From the graph, it is clear that the range of $\sin^{-1}(x)$ is restricted to the interval

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

Mark the tick against the correct answer in the following:

Range of $\cos^{-1} x$ is

Α. [0, π]

B.
$$\left[0, \frac{\pi}{2}\right]$$

$$C.\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$$

D. None of these

Answer

To Find: The range of $\cos^{-1}x$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \cos^{-1}(x)$ can be obtained from the graph of

Y = cos x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cos x then (b,a) is the point on the function $y = \cos^{-1}(x)$

Below is the Graph of the range of $\cos^{-1}(x)$

From the graph, it is clear that the range of $\cos^{-1}(x)$ is restricted to the interval

 $[0,\pi]$

53. Question

Mark the tick against the correct answer in the following:

Range of tan⁻¹ x is

A.
$$\left(0,\frac{\pi}{2}\right)$$

B.
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

$$C.\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$$

D. None of these

Answer

To Find: The range of tan⁻¹ x

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \tan^{-1}(x)$ can be obtained from the graph of

Y = tan x by interchanging x and y axes.i.e, if (a,b) is a point on Y = tan x then (b,a) is the point on the function $y = tan^{-1}(x)$

Below is the Graph of the range of $tan^{-1}(x)$

From the graph, it is clear that the range of $\tan^{-1}(x)$ is restricted to any of the intervals like $[-\frac{3\pi}{2}, -\frac{\pi}{2}]$, $[-\frac{\pi}{2}, \frac{\pi}{2}]$, $[\frac{\pi}{2}, \frac{3\pi}{2}]$ and so on. Hence the range is given by

$$(-\frac{\pi}{2}, \frac{\pi}{2}).$$

54. Question

Mark the tick against the correct answer in the following:

Range of sec⁻¹ x is

A.
$$\left[0, \frac{\pi}{2}\right]$$

B.
$$[0, \pi]$$

$$\mathsf{C.}\left[0,\pi\right]\!-\!\left\{\frac{\pi}{2}\right\}$$

D. None of these

Answer

To Find:The range of $\sec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sec^{-1}(x)$ can be obtained from the graph of

Y = sec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = sec x then (b,a) is the point on the function $y = \sec^{-1}(x)$

Below is the Graph of the range of $\sec^{-1}(x)$

From the graph, it is clear that the range of $\sec^{-1}(x)$ is restricted to interval

$$[0,\pi] - \{\frac{\pi}{2}\}$$

55. Question

Mark the tick against the correct answer in the following:

Range of coses⁻¹ x is

A.
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

B.
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

$$\mathsf{C.}\left[\frac{-\pi}{2},\frac{\pi}{2}\right]\!-\!\{0\}$$

D. None of these

Answer

To Find: The range of $cosec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \csc^{-1}(x)$ can be obtained from the graph of

Y = cosec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cosec x then (b,a) is the point on the function $y = cosec^{-1}(x)$

Below is the Graph of the range of $cosec^{-1}(x)$

From the graph it is clear that the range of $\csc^{-1}(x)$ is restricted to interval

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

Mark the tick against the correct answer in the following:

Domain of cos-1 x is

A. [0, 1]

B. [-1, 1]

C. [-1, 0]

D. None of these

Answer

To Find: The Domain of $\cos^{-1}(x)$

Here, the inverse function of cos is given by $y = f^{-1}(x)$

The graph of the function $y = \cos^{-1}(x)$ can be obtained from the graph of

Y = cos x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cos x then (b,a) is the point on the function $y = \cos^{-1}(x)$

Below is the Graph of the domain of $\cos^{-1}(x)$

From the graph, it is clear that the domain of $\cos^{-1}(x)$ is [-1,1]

57. Question

Mark the tick against the correct answer in the following:

Domain of sec⁻¹ x is

A. [-1, 1]

B. R - {0}

C. R - [-1, 1]

D. R - {-1, 1}

Answer

To Find: The Domain of $\sec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sec^{-1}(x)$ can be obtained from the graph of

Y = sec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = sec x then (b,a) is the point on the function $y = \sec^{-1}(x)$

Below is the Graph of the domain of $\sec^{-1}(x)$

From the graph, it is clear that the domain of $\sec^{-1}(x)$ is a set of all real numbers excluding -1 and 1 i.e, R - [-1,1]

