4. Angles, Lines and Triangles

Exercise 4A

1. Question

Define the following terms:
(i) Angle
(ii) Interior of an angle
(iii) Obtuse angle
(iv) Reflex angle
(v) Complementary angles
(vi) Supplementary angles

Answer

(i) Angle - A shape formed by two lines or rays diverging from a common vertex.

Types of angle: (a) Acute angle (less than 90°)
(b) Right angle (exactly 90°)
(c) Obtuse angle (between 90° and 180°)
(d) Straight angle (exactly 180°)
(e) Reflex angle (between 180° and 360°)
(f) Full angle (exactly 360°)
(ii) Interior of an angle - The area between the rays that make up an angle and extending away from the vertex to infinity.

The interior angles of a triangle always add up to 180°.

(iii) Obtuse angle - It is an angle that measures between 90 to 180 degrees.

(iv) Reflex angle - It is an angle that measures between 180 to 360 degrees.

(v) Complementary angles - Two angles are called complementary angles if the sum of two angles is 90°.

(vi) Supplementary angles - Angles are said to be supplementary if the sum of two angles is 180°.

2. Question

If $\angle A=36^{\circ} 27^{\prime} 46^{\prime \prime}$ and $\angle B=28^{\circ} 43^{\prime} 39^{\prime \prime}$, find $\angle A+\angle B$.
Answer
$65^{\circ} 11^{\prime} 25^{\prime}$
$\angle A+\angle B=36^{\circ} 27^{\prime} 46^{\prime \prime}+28^{\circ} 43^{\prime} 39^{\prime \prime}$
$=64^{\circ} 70^{\prime} 85^{\prime \prime}$
$\because 60^{\prime}=1^{\circ} \Rightarrow 70^{\prime}=1^{\circ} 10^{\prime}$
$60^{\prime \prime}=1^{\prime} \quad \Rightarrow 85^{\prime \prime}=1^{\prime} 25^{\prime \prime}$
$\because \angle A+\angle B=65^{\circ} 11^{\prime} 25^{\prime \prime}$

3. Question

Find the difference between two angles measuring 36° and $24^{\circ} 28^{\prime} 30^{\prime \prime}$

Answer

$11^{\circ} 31^{\prime} 30^{\prime \prime}$
$36^{\circ}-24^{\circ} 28^{\prime} 30^{\prime \prime}=35^{\circ} 59^{\prime} 60^{\prime \prime}-24^{\circ} 28^{\prime} 30^{\prime \prime}$
$=11^{\circ} 31^{\prime} 30^{\prime \prime}$

4. Question

Find the complement of each of the following angles.
(i) 58°
(ii) 16°
(iii) $\frac{2}{3}$ of a right angle
(iv) $46^{\circ} 30^{\prime}$
(v) $52^{\circ} 43^{\prime} 20^{\prime \prime}$
(vi) $68^{\circ} 35^{\prime} 45^{\prime \prime}$

Answer

(i) 32°

Complement of angle $=90^{\circ}-\theta$
Complement of $58^{\circ}=90^{\circ}-58^{\circ}$
$=32^{\circ}$
(ii) 74°

Complement of angle $=90^{\circ}-\theta$
Complement of $58^{\circ}=90^{\circ}-16^{\circ}$
$=74^{\circ}$
(iii) 30°

Right angle $=90^{\circ}$
$\frac{2}{3}$ of a right angle $=\frac{2}{3} \times 90^{\circ}$
$=60^{\circ}$
Complement of $60^{\circ}=90^{\circ}-60^{\circ}$
$=30^{\circ}$
(iv) $43^{\circ} 30^{\prime}$

Complement of angle $=90^{\circ}-\theta$
Complement of $46^{\circ} 30^{\prime}=90^{\circ}-46^{\circ} 30^{\prime}$
$=89^{\circ} 60^{\prime}-46^{\circ} 30^{\prime}$
(v) $37^{\circ} 16^{\prime} 40^{\prime \prime}$

Complement of angle $=90^{\circ}-\theta$
Complement of $52^{\circ} 43^{\prime} 20^{\prime \prime}=90^{\circ}-52^{\circ} 43^{\prime} 20^{\prime \prime}$
$=89^{\circ} 59^{\prime} 60^{\prime \prime}-52^{\circ} 43^{\prime} 20^{\prime \prime}$
$=37^{\circ} 16^{\prime} 40^{\prime \prime}$
(vi) $21^{\circ} 24^{\prime} 15^{\prime \prime}$

Complement of angle $=90^{\circ}-\theta$
Complement of $68^{\circ} 35^{\prime} 45^{\prime \prime}=90^{\circ}-68^{\circ} 35^{\prime} 45^{\prime \prime}$
$=89^{\circ} 59^{\prime} 60^{\prime \prime}-68^{\circ} 35^{\prime} 45^{\prime \prime}$
$=68^{\circ} 35^{\prime} 45^{\prime \prime}$

5. Question

Find the supplement of each of the following angles.
(i) 63°
(ii) 138°
(iii) $\frac{3}{5}$ of a right angle
(iv) $75^{\circ} 36^{\prime}$
(v) $124^{\circ} 20^{\prime} 40^{\prime \prime}$
(vi) $108^{\circ} 48^{\prime} 32^{\prime \prime}$

Answer

(i) 117°

Supplement of angle $=180^{\circ}-\theta$
Supplement of $58^{\circ}=180^{\circ}-63^{\circ}$
$=117^{\circ}$
(ii) 42°

Supplement of angle $=180^{\circ}-\theta$
Supplement of $58^{\circ}=180^{\circ}-138^{\circ}$
$=42^{\circ}$
(iii) 126°

Right angle $=90^{\circ}$
$\frac{3}{5}$ of a right angle $=\frac{3}{5} \times 90^{\circ}$
$=54^{\circ}$
Supplement of $54^{\circ}=180^{\circ}-54^{\circ}$
$=126^{\circ}$
(iv) $104^{\circ} 24^{\prime}$

Supplement of angle $=180^{\circ}-\theta$
Supplement of $75^{\circ} 36^{\prime}=180^{\circ}-75^{\circ} 36^{\prime}$
$=179^{\circ} 60^{\prime}-75^{\circ} 36^{\prime}$
$=104^{\circ} 24^{\prime}$
(v) $55^{\circ} 39^{\prime} 20^{\prime \prime}$

Supplement of angle $=180^{\circ}-\theta$
Supplement of $124^{\circ} 20^{\prime} 40^{\prime}=180^{\circ}-124^{\circ} 20^{\prime} 40^{\prime \prime}$
$=179^{\circ} 59^{\prime} 60^{\prime \prime}-124^{\circ} 20^{\prime} 40^{\prime \prime}$
$=55^{\circ} 39^{\prime} 20^{\prime \prime}$
(vi) $71^{\circ} 11^{\prime} 28^{\prime \prime}$

Supplement of angle $=180^{\circ}-\theta$
Supplement of $108^{\circ} 48^{\prime} 32^{\prime \prime}=180^{\circ}-108^{\circ} 48^{\prime} 32^{\prime \prime}$
$=179^{\circ} 59^{\prime} 60^{\prime \prime}-108^{\circ} 48^{\prime} 32^{\prime \prime}$
$=71^{\circ} 11^{\prime} 28^{\prime \prime}$

6. Question

Find the measure of an angle which is
(i) equal to its complement,
(ii) equal to its supplement.

Answer

(i) 45°

Let, measure of an angle $=X$
Complement of $X=90^{\circ}-X$
Hence,
$\Rightarrow X=90^{\circ}-X$
$\Rightarrow 2 \mathrm{X}=90^{\circ}$
$\Rightarrow \mathrm{X}=45^{\circ}$

Therefore measure of an angle $=45^{\circ}$
(ii) 90°

Let, measure of an angle $=X$
Supplement of $X=180^{\circ}-X$
Hence,
$\Rightarrow X=180^{\circ}-X$
$\Rightarrow 2 \mathrm{X}=180^{\circ}$
$\Rightarrow \mathrm{X}=90^{\circ}$
Therefore measure of an angle $=90^{\circ}$

7. Question

Find the measure of an angle which is 36° more than its complement.

Answer

63°
Let, measure of an angle $=X$
Complement of $X=90^{\circ}-X$
According to question,
$\Rightarrow \mathrm{X}=\left(90^{\circ}-\mathrm{X}\right)+36^{\circ}$
$\Rightarrow \mathrm{X}+\mathrm{X}=90^{\circ}+36^{\circ}$
$\Rightarrow 2 \mathrm{X}=126^{\circ}$
$\Rightarrow \mathrm{X}=63^{\circ}$
Therefore measure of an angle $=63^{\circ}$

8. Question

Find the measure of an angle which 25° less than its supplement.

Answer

$(77.5)^{\circ}$
Let, measure of an angle $=X$
Supplement of $\mathrm{X}=180^{\circ}-\mathrm{X}$
According to question,
$\Rightarrow X=\left(180^{\circ}-X\right)-25^{\circ}$
$\Rightarrow \mathrm{X}+\mathrm{X}=180^{\circ}-25^{\circ}$
$\Rightarrow 2 \mathrm{X}=155^{\circ}$
$\Rightarrow X=(77.5)^{\circ}$

Therefore measure of an angle $=(77.5)^{\circ}$

9. Question

Find the angle which is four times its complement.

Answer

72°
Let the angle $=X$
Complement of $X=90^{\circ}-X$
According to question,
$\Rightarrow X=4\left(90^{\circ}-X\right)$
$\Rightarrow X=360^{\circ}-4 X$
$\Rightarrow X+4 X=360^{\circ}$
$\Rightarrow 5 \mathrm{X}=360^{\circ}$
$\Rightarrow \mathrm{X}=72^{\circ}$
Therefore angle $=72^{\circ}$

10. Question

Find the angle which is five times its supplement.

Answer

150°
Let the angle $=\mathrm{X}$
Supplement of $X=180^{\circ}-X$
According to question,
$\Rightarrow X=5\left(180^{\circ}-X\right)$
$\Rightarrow X=900^{\circ}-4 X$
$\Rightarrow X+5 X=900^{\circ}$
$\Rightarrow 6 \mathrm{X}=900^{\circ}$
$\Rightarrow X=150^{\circ}$
Therefore angle $=150^{\circ}$

11. Question

Find the angle whose supplement is four times its complement.

Answer

60°
Let the angle $=X$

Complement of $X=90^{\circ}-X$
Supplement of $X=180^{\circ}-X$
According to question,
$\Rightarrow 180^{\circ}-X=4\left(90^{\circ}-X\right)$
$\Rightarrow 180^{\circ}-\mathrm{X}=360^{\circ}-4 \mathrm{X}$
$\Rightarrow-X+4 X=360^{\circ}-180^{\circ}$
$\Rightarrow 3 X=180^{\circ}$
$\Rightarrow \mathrm{X}=60^{\circ}$
Therefore angle $=60^{\circ}$

12. Question

Find the angle whose complement is four times its supplement.

Answer

180°
Let the angle $=X$
Complement of $X=90^{\circ}-X$
Supplement of $X=180^{\circ}-X$
According to question,
$\Rightarrow 90^{\circ}-X=4\left(180^{\circ}-X\right)$
$\Rightarrow 180^{\circ}-\mathrm{X}=720^{\circ}-4 \mathrm{X}$
$\Rightarrow-X+4 X=720^{\circ}-180^{\circ}$
$\Rightarrow 3 X=540^{\circ}$
$\Rightarrow \mathrm{X}=180^{\circ}$
Therefore angle $=180^{\circ}$

13. Question

Two supplementary angles are in the ratio 3:2 Find the angles.

Answer

$108^{\circ}, 72^{\circ}$
Let angle $=X$
Supplementary of $X=180^{\circ}-X$
According to question,
X : $180^{\circ}-X=3: 2$
$\Rightarrow X /\left(180^{\circ}-X\right)=3 / 2$
$\Rightarrow 2 \mathrm{X}=3\left(180^{\circ}-\mathrm{X}\right)$
$\Rightarrow 2 X=540^{\circ}-3 X$
$\Rightarrow 2 X+3 X=540^{\circ}$
$\Rightarrow 5 \mathrm{X}=540^{\circ}$
$\Rightarrow X=108^{\circ}$
Therefore angle $=108^{\circ}$
And its supplement $=180^{\circ}-108^{\circ}=72^{\circ}$

14. Question

Two complementary angles are in the ratio 4:5 Find the angles.

Answer

$40^{\circ}, 50^{\circ}$
Let angle $=X$
Complementary of $X=90^{\circ}-X$
According to question,
$X: 90^{\circ}-X=4: 5$
$\Rightarrow X /\left(90^{\circ}-X\right)=4 / 5$
$\Rightarrow 5 X=4\left(90^{\circ}-X\right)$
$\Rightarrow 5 \mathrm{X}=360^{\circ}-4 \mathrm{X}$
$\Rightarrow 5 \mathrm{X}+4 \mathrm{X}=360^{\circ}$
$\Rightarrow 9 X=360^{\circ}$
$\Rightarrow \mathrm{X}=40^{\circ}$
Therefore angle $=40^{\circ}$
And its supplement $=90^{\circ}-40^{\circ}=50^{\circ}$

15. Question

Find the measure of an angle, if seven times its complement is 10° less than three times its supplement.

Answer

25°
Let the measure of an angle $=X$
Complement of $X=90^{\circ}-X$
Supplement of $X=180^{\circ}-X$
According to question,
$\Rightarrow 7\left(90^{\circ}-X\right)=3\left(180^{\circ}-X\right)-10^{\circ}$
$\Rightarrow 630^{\circ}-7 X=540^{\circ}-3 X-10^{\circ}$
$\Rightarrow-7 X+3 X=540^{\circ}-10^{\circ}-630^{\circ}$
$\Rightarrow-4 X=100^{\circ}$
$\Rightarrow \mathrm{X}=25^{\circ}$
Therefore measure of an angle $=25^{\circ}$

Exercise 4B

1. Question

In the adjoining figure, $A O B$ is a straight line. Find the value of x.

Answer
118°
AOB is a straight line
Therefore, $\angle A O B=180^{\circ}$
$\Rightarrow \angle A O C+\angle B O C=180^{\circ}$
$\Rightarrow 62^{\circ}+\mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=180^{\circ}-62^{\circ}$
$=118^{\circ}$

2. Question

In the adjoining figure, $A O B$ is a straight line. Find the value of x. Hence, Find $\angle A O C$ And $\angle B O D$

Answer
$X=27.5, \angle A O C=77.5^{\circ} \angle B O D=47.5^{\circ}$
$A O B$ is a straight line
Therefore, $\angle A O C+\angle C O D+\angle B O D=180^{\circ}$
$\Rightarrow(3 x-5)^{\circ}+55^{\circ}+(x+20)^{\circ}=180^{\circ}$
$\Rightarrow 3 \mathrm{x}-5^{\circ}+55^{\circ}+\mathrm{x}+20^{\circ}=180^{\circ}$
$\Rightarrow 4 \mathrm{x}=180^{\circ}-70^{\circ}$
$\Rightarrow 4 \mathrm{x}=110^{\circ}$
$\Rightarrow \mathrm{x}=27.5^{\circ}$
$\angle A O C=(3 x-5)^{\circ}$
$=3 \times 27.5-5=77.5^{\circ}$
$\angle B O D=(\mathrm{x}+20)^{\circ}$
$=27.5+20=47.5^{\circ}$

3. Question

In the adjoining figure, $A O B$ is a straight line. Find the value of x. Hence, find $\angle A O C, \angle C O D$ and $\angle B O D$.

Answer

$\mathrm{X}=32, \angle A O C=103^{\circ}, \angle \mathrm{COD}=45^{\circ} \angle B O D=32^{\circ}$
AOB is a straight line
Therefore, $\angle A O C+\angle C O D+\angle B O D=180^{\circ}$
$\Rightarrow(3 x+7)^{\circ}+(2 x-19)^{\circ}+x^{\circ}=180^{\circ}$
$\Rightarrow 3 \mathrm{x}+7^{\circ}+2 \mathrm{x}-19^{\circ}+\mathrm{x}^{\circ}=180^{\circ}$
$\Rightarrow 6 \mathrm{x}=180^{\circ}+12^{\circ}$
$\Rightarrow 6 \mathrm{x}=192^{\circ}$
$\Rightarrow \mathrm{x}=32^{\circ}$
$\angle A O C=(3 x+7)^{\circ}$
$=3 \times 32^{\circ}+7=103^{\circ}$
$\angle C O D=(2 x-19)^{\circ}$
$=2 \times 32^{\circ}-19=45^{\circ}$
$\angle B O D=x$
$=32^{\circ}$

4. Question

In the adjoining figure, $x: y: z=5: 4: 6$. If $X O Y$ is a straight line, find the values of x, y and z

Answer
$X=60, Y=48, Z=72$
AOB is a straight line
Therefore, $\angle \mathrm{XOP}+\angle \mathrm{POQ}+\angle \mathrm{YOQ}=180^{\circ}$
Given, $x: y: z=5: 4: 6$
Let $\angle X O P=x^{\circ}=5 a, \angle P O Q=y^{\circ}=4 a, \angle Y O Q=z^{\circ}=6 a$
$\Rightarrow 5 \mathrm{a}+4 \mathrm{a}+6 \mathrm{a}=180^{\circ}$
$\Rightarrow 15 \mathrm{a}=180^{\circ}$
$\Rightarrow \mathrm{a}=12^{\circ}$
Therefore,
$x=5 a=5 \times 12^{\circ}=60^{\circ}$
$y=4 a=4 \times 12^{\circ}=48^{\circ}$
$z=6 a=6 \times 12^{\circ}=72^{\circ}$

5. Question

In the adjoining figure, what value of x will make $A O B$, a straight line?

Answer

$X=28^{\circ}$
$A O B$ is a straight line
Therefore, $\angle A O B=180^{\circ}$
$\Rightarrow(3 \mathrm{x}+20)^{\circ}+(4 \mathrm{x}-36)^{\circ}=180^{\circ}$
$\Rightarrow 3 \mathrm{x}+20^{\circ}+4 \mathrm{x}-36^{\circ}=180^{\circ}$
$\Rightarrow 7 \mathrm{x}-16^{\circ}=180^{\circ}$
$\Rightarrow 7 \mathrm{x}=196^{\circ}$
$\Rightarrow \mathrm{x}=28^{\circ}$

6. Question

Two lines AB and CD intersect at O . If $\angle A O C=50^{\circ}$, find $\angle A O D \angle B O D$ and $\angle B O C$.

Answer
$\angle A O D=130^{\circ}, \angle B O D=50^{\circ}, \angle B O C=130^{\circ}$
Given $A B$ and $C D$ intersect a O
Therefore, $\angle A O C=\angle B O D$ \qquad (i)

And $\angle B O C=\angle A O D$ \qquad (ii)
$\angle A O C=50^{\circ}$
Therefore, $\angle B O D=50^{\circ}$ from equation (i).
AOB is a straight line,
$\Rightarrow \angle A O C+\angle B O C=180^{\circ}$
$\Rightarrow 50^{\circ}+\angle B O C=180^{\circ}$
$\Rightarrow \angle B O C=180^{\circ}-50^{\circ}$
$\Rightarrow \angle B O C=130^{\circ}$
$\angle A O D=\angle B O C=130^{\circ}$ from equation (ii).

7. Question

In the adjoining figure, there coplanar lines AB, CD and EF intersect at a point O , forming angles as shown. Find the values of x, y, z and t.

Answer
$X=4, Y=4, Z=50, t=90$
Given, coplanar lines $A B, C D$ and $E F$ intersect at a point O.
Therefore, $\angle A O F=\angle B O E$
$\angle B O D=\angle A O C$
$\angle D O F=\angle C O E$ \qquad
$x=y$ from equation (i)
$\mathrm{t}=90$ from equation (ii)
$z=50$ from equation (iii)
$\angle \mathrm{AOF}+\angle \mathrm{DOF}+\angle \mathrm{BOD}=180^{\circ}$ (from AOB straight line)
$\Rightarrow x+50^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}=180^{\circ}-140^{\circ}$
$\Rightarrow \mathrm{x}=40^{\circ}$
$x=y=40^{\circ}$ from equation (i)

8. Question

In the adjoining, there coplanar lines $A B, C D$ and $E F$ intersect at a point O. Find the value of x. Hence, find $\angle A O D, \angle C O E$ and $\angle A O E$.

Answer
)
$\angle \mathrm{AOD}+\angle \mathrm{DOF}+\angle \mathrm{BOF}+\angle \mathrm{BOC}+\angle \mathrm{COE}+\angle \mathrm{AOE}=360^{\circ}$
$\Rightarrow 2 x+5 x+3 x+2 x+5 x+3 x=360^{\circ}$
$\Rightarrow 20 \mathrm{x}=360^{\circ}$
$\Rightarrow \mathrm{x}=18^{\circ}$
$\angle A O D=2 x=2 \times 18^{\circ}=36^{\circ}$
$\angle C O E=3 x=3 \times 18^{\circ}=54^{\circ}$
$\angle A O E=4 x=4 \times 18^{\circ}=72^{\circ}$

9. Question

Two adjacent angles on a straight line are in the ratio 5:4 Find the measure of each one of these angles.

Answer

$100^{\circ}, 80^{\circ}$
Explanation:

EOF is a straight line and its adjacent angles are $\angle \mathrm{EOB}$ and $\angle \mathrm{FOB}$.
Let $\angle \mathrm{EOB}=5 \mathrm{a}$, and $\angle \mathrm{FOB}=4 \mathrm{a}$
$\angle E O B+\angle F O B=180^{\circ}(E O F$ is a straight line $)$
$\Rightarrow 5 \mathrm{a}+4 \mathrm{a}=180^{\circ}$
$\Rightarrow 9 \mathrm{a}=180^{\circ}$
$\Rightarrow \mathrm{a}=20^{\circ}$
Therefore, $\angle E O B=5 a$
$=5 \times 20^{\circ}=100^{\circ}$
And $\angle \mathrm{FOB}=4 \mathrm{a}$
$=4 \times 20^{\circ}=80^{\circ}$

10. Question

If two straight lines intersect each other in such a way that one of the angles formed measure 90°, show that each of the remaining angles measures 90°.

Answer

Proof

Given lines $A B$ and $C D$ intersect each other at point O and $\angle A O C=90^{\circ}$
$\angle A O C=\angle B O D$ (Opposite angles)
Therefore, $\angle \mathrm{BOD}=90^{\circ}$
$\Rightarrow \angle B O D+\angle A O C=180^{\circ}$
$\Rightarrow \angle B O C+90^{\circ}=180^{\circ}$
$\Rightarrow \angle B O C=90^{\circ}$
Now, $\angle A O D=\angle B O C$ (Opposite angles)
Therefore,
$\angle A O D=90^{\circ}$
Proved each of the remaining angles measures 90°.

11. Question

Two lines AB and CD intersect at a point O such that $\angle B O C+\angle A O D=280^{\circ}$, as shown in the figure. Find all the four angles.

Answer
$\angle B O C=140^{\circ}, \angle A O C=40^{\circ}, \angle A O D=140^{\circ}, \angle B O D=40^{\circ}$
Given lines AB and Cd intersect at a point O and $\angle B O C+\angle A O D=280^{\circ}$
$\angle B O C=\angle A O D$ (Opposite angle)
$\Rightarrow \angle B O C+\angle A O D=280^{\circ}$
$\Rightarrow \angle B O C+\angle B O C=280^{\circ}$
$\Rightarrow 2 \angle B O C=280^{\circ}$
$\Rightarrow \angle B O C=140^{\circ}$
$\angle B O C=\angle A O D=140^{\circ}$
Now,
$\angle A O C+\angle B O C=180^{\circ}$ (Because $A O B$ is a straight line $)$
$\Rightarrow \angle A O C+140^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C=40^{\circ}$
$\angle A O C=\angle B O D=40^{\circ}$

12. Question

In the given figure, ray $O C$ is the bisector of $\angle A O B$ and $O D$ is the ray opposite to $O C$. Show that $\angle A O D=$ $\angle B O D$.

Answer

Proof
Given OC is the bisector of $\angle A O B$
Therefore, $\angle A O C=\angle C O B$
DOC is a straight line,
$\angle B O D+\angle C O B=180^{\circ}$ \qquad
Similarly, $\angle A O C+\angle A O D=180^{\circ}$ \qquad

From equations (i) and (ii)
$\Rightarrow \angle B O D+\angle C O B=\angle A O C+\angle A O D$
$\Rightarrow \angle B O D+\angle A O C=\angle A O C+\angle A O D$ (from equation (i))
$\Rightarrow \angle B O D=\angle A O D$ Proved

13. Question

In the given figure, AB is a mirror; PQ is the incident ray and QR , the reflected ray. If $\angle P Q R=112^{\circ}$, Find $\angle P Q A$.

Answer

34°
Angle of incidence =angle of reflection.
Therefore, $\angle \mathrm{PQA}=\angle \mathrm{BQR}$ \qquad (i)
$\Rightarrow \angle \mathrm{BQR}+\angle \mathrm{PQR}+\angle \mathrm{PQA}=180^{\circ}[$ Because AQB is a straight line $]$
$\Rightarrow \angle \mathrm{BQR}+112^{\circ}+\angle \mathrm{PQA}=180^{\circ}$
$\Rightarrow \angle \mathrm{BQR}+\angle \mathrm{PQA}=180^{\circ}-112^{\circ}$
$\Rightarrow \angle P Q A+\angle P Q A=68^{\circ}$ [from equation (i)]
$\Rightarrow 2 \angle P Q A=68^{\circ}$
$\Rightarrow \angle \mathrm{PQA}=34^{\circ}$

14. Question

If two straight lines intersect each other then prove that the ray opposite to the bisector of one of the angles so formed bisects the vertically opposite angle.

Answer

Given, lines $A B$ and $C D$ intersect each other at point O.
OE is the bisector of $\angle \mathrm{BOD}$.
TO prove: OF bisects $\angle A O C$.
Proof:
$A B$ and $C D$ intersect each other at point O.

Therefore, $\angle A O C=\angle B O D$
$\angle 1=\angle 2$ [OE is the bisector of $\angle \mathrm{BOD}$] \qquad (i)
$\angle 1=\angle 3$ and $\angle 2=\angle 4$ [Opposite angles]
From equations (i) and (ii)
$\angle 3=\angle 4$
Hence, OF is the bisector of $\angle A O C$.

15. Question

Prove that the bisectors of two adjacent supplementary angles include a right angle.

Answer

Given, $\angle A O C$ and $\angle B O C$ are supplementary angles
$O E$ is the bisector of $\angle B O C$ and
$O D$ is the bisector of $\angle A O C$
Therefore, $\angle 1=\angle 2$ and $\angle 3=\angle 4$ \qquad
$\angle B O C+\angle A O C=180^{\circ}$ [Because $A O B$ is a straight line]
$\Rightarrow \angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$
$\Rightarrow \angle 1+\angle 1+\angle 3+\angle 3=180^{\circ}$ [From equation (i)]
$\Rightarrow 2 \angle 1+2 \angle 3=180^{\circ}$
$\Rightarrow 2(\angle 1+\angle 3)=180^{\circ}$
$\Rightarrow \angle 1+\angle 3=90^{\circ}$
Hence, $\angle E O D=90^{\circ}$ proved.

Exercise 4C

1. Question

In the adjoining figure, $A B \| C D$ are cut by a transversal t at E and F respectively. If $\angle 1=70^{\circ}$, Find measure of each of the remaining marked angles.

Answer

$$
\angle 2=110^{\circ}, \angle 3=70^{\circ}, \angle 4=110^{\circ}, \angle 5=70^{\circ}, \angle 6=110^{\circ}, \angle 7=70^{\circ}, \angle 8=110^{\circ}
$$

Given $A B \| C D$ are cut by a transversal t at E and F respectively.
And $\angle 1=70^{\circ}$
$\angle 1=\angle 3=70^{\circ}$ [Opposite angles]
$\angle 5=\angle 1=70^{\circ}$ [Corresponding angles]
$\angle 3=\angle 7=70^{\circ}$ [Corresponding angles]
$\angle 1+\angle 2=180^{\circ}$ [Because $A B$ is a straight line]
$\Rightarrow 70^{\circ}+\angle 2=180^{\circ}$
$\Rightarrow \angle 2=110^{\circ}$
$\angle 4=\angle 2=110^{\circ}$ [Opposite angles]
$\angle 6=\angle 2=110^{\circ}$ [Corresponding angles]
$\angle 8=\angle 4=110^{\circ}$ [Corresponding angles]

2. Question

In the adjoining figure, $A B \| C D$ are cut by a transversal t at E and F respectively. If $\angle 1: \angle 2=5: 4$, Find measure of each of the remaining marked angles.

Answer

$\angle=100^{\circ}, \angle 2=80^{\circ}, \angle 3=100^{\circ} \angle 4=80^{\circ}, \angle 5=100^{\circ}, \angle 6=80^{\circ}, \angle 7=100^{\circ}, \angle 8=80^{\circ}$
Given $A B \| C D$ are cut by a transversal t at E and F respectively.
And $\angle 1: \angle 2=5: 4$
Let $\angle 1=5$ a and $\angle 2=4$ a
$\angle 1+\angle 2=180^{\circ}$ [Because $A B$ is a straight line]
$\Rightarrow 5 \mathrm{a}+4 \mathrm{a}=180^{\circ}$
$\Rightarrow 9 \mathrm{a}=180^{\circ}$
$\Rightarrow \mathrm{a}=20^{\circ}$
Therefore, $\angle 1=5$ a
$\angle 1=5 \times 20^{\circ}=100^{\circ}$
$\angle 2=4 a$
$\angle 2=4 \times 20^{\circ}=80^{\circ}$
$\angle 3=\angle 1=100^{\circ}$ [Opposite angles]
$\angle 4=\angle 2=80^{\circ}$ [Opposite angles]
$\angle 5=\angle 1=100^{\circ}$ [Crossponding angles]
$\angle 6=\angle 4=80^{\circ}$ [Crossponding angles]
$\angle 7=\angle 5=100^{\circ}$ [Opposite angles]
$\angle 8=\angle 6=80^{\circ}$ [Opposite angles]

3. Question

In the adjoining figure, ABCD is a quadrilateral in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC}$. Prove that $\angle A D C=\angle A B C$.

Answer

Given $A B|\mid D C$ and $A D \| B C$
Therefore, $\angle A D C+\angle D C B=180^{\circ}$ \qquad (i)
$\angle D C B+\angle A B C=180^{\circ}$ \qquad
From equations (i) and (ii)
$\angle A D C+\angle D C B=\angle D C B+\angle A B C$
$\angle A D C=\angle A B C$ Proved.

4. Question

In each of the figure given below, $A B \| C D$. Find the value of x in each case.

(ii)

Answer

(i) $x=100$

Given $A B \| C D, \angle A B E=35^{\circ}$ and $\angle E D C=65^{\circ}$
Draw a line PEQ\|AB or CD

$\angle 1=\angle \mathrm{ABE}=35^{\circ}[\mathrm{AB}| | \mathrm{PQ}$ and alternate angle] \qquad (i)
$\angle 2=\angle E D C=65^{\circ}[C D \| P Q$ and alternate angle $]$ \qquad
From equations (i) and (ii)
$\angle 1+\angle 2=100^{\circ}$
$\Rightarrow \mathrm{x}=100^{\circ}$
(ii) $x=280$

Given $A B\left|\mid C D, \angle A B E=35^{\circ}\right.$ and $\angle E D C=65^{\circ}$
Draw a line $P O Q \| A B$ or $C D$

(ii)
$\angle 1=\angle \mathrm{ABO}=55^{\circ}[\mathrm{AB} \| \mathrm{PQ}$ and alternate angle $]$ \qquad
$\angle 2=\angle \mathrm{CDO}=25^{\circ}[\mathrm{CD}| | \mathrm{PQ}$ and alternate angle] \qquad
From equations (i) and (ii)
$\angle 1+\angle 2=80^{\circ}$
Now,
$\angle \mathrm{BOD}+\angle \mathrm{DOB}=360^{\circ}$
$\Rightarrow 80^{\circ}+x^{\circ}=360^{\circ}$
$\Rightarrow \mathrm{x}=280^{\circ}$
(iii) $x=120$

Given $A B\left|\mid C D, \angle B A E=116^{\circ}\right.$ and $\angle D C E=124^{\circ}$
Draw a line $E F \| A B$ or $C D$

$\angle \mathrm{BAE}+\angle \mathrm{PAE}=180^{\circ}$ [Because PAB is a straight line]
$\Rightarrow 116^{\circ}+\angle 3=180^{\circ}$
$\Rightarrow \angle 3=180^{\circ}-116^{\circ}$
$\Rightarrow \angle 3=64^{\circ}$
Therefore,
$\angle 1=\angle 3=64^{\circ}$ [Alternate angles] \qquad (i)

Similarly, $\angle 4=180^{\circ}-124^{\circ}$
$\angle 4=56^{\circ}$
Therefore,
$\angle 2=\angle 4=56^{\circ}$ [Alternate angles]

From equations (i) and (ii)
$\Rightarrow \angle 1+\angle 2=64^{\circ}+56^{\circ}$
$\Rightarrow \mathrm{x}=120^{\circ}$

5. Question

In the given figure, $A B\|C D\| E F$. Find the value of x.

Answer
$X=20$
Given $A B \| C D| | E F, \angle A B C=70^{\circ}$ and $\angle C E F=130^{\circ}$
$A B \| C D$

Therefore,
$\angle \mathrm{ABC}=\angle \mathrm{BCD}=70^{\circ}$ [Alternate angles] \qquad
EF||CD
Therefore,
$\angle \mathrm{DCE}+\angle \mathrm{CEF}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCE}+130^{\circ}=180^{\circ}$
$\Rightarrow \angle D C E=50^{\circ}$
Now,
$\angle B C E+\angle D C E=\angle B C D$
$\Rightarrow x+50^{\circ}=70^{\circ}$
$\Rightarrow \mathrm{x}=20^{\circ}$

6. Question

In the given figure, $A B \| C D$. Find the value of x.

Answer
$X=110$
Given $A B \| C D, \angle D C E=130^{\circ}$ and $\angle A E C=20^{\circ}$
Draw a line EF||AB||CD

CDIIEF
Therefore, $\angle \mathrm{DCE}+\angle \mathrm{CEF}=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle 1=180^{\circ}$
$\Rightarrow \angle 1=180^{\circ}-130^{\circ}$
$\Rightarrow \angle 1=50^{\circ}$

AB||EF
Therefore, $\angle B A E+\angle A E F=180^{\circ}$
$\Rightarrow \mathrm{x}+\angle 1+20^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}+50^{\circ}+20^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}=180^{\circ}-70^{\circ}$
$\Rightarrow x=110^{\circ}$

7. Question

In the given figure, $\mathrm{AB} \| \mathrm{CD}$. Prove that $/ R A F-\angle D C E=/ A E C$.

Answer
Draw a line EF\|AB\|CD.

$\angle B A E+\angle A E F=180^{\circ}$ [Because $\mathrm{AB}|\mid E \mathrm{~F}$ and AE is the transversal]
$\angle D C E+\angle C E F=180^{\circ}$ [Because $\mathrm{DC}|\mid E F$ and CE is the transversal] \qquad
From equations (i) and (ii)
$\Rightarrow \angle B A E+\angle A E F=\angle D C E+\angle C E F$
$\Rightarrow \angle B A E-\angle D C E=\angle C E F-\angle A E F$
$\Rightarrow \angle B A E-\angle D C E=\angle A E C$ Proved.

8. Question

In the given figure, $A B \| C D$ and $B C \| E D$. Find the value of x.

Answer

$X=105$
Given $A B \| C D$ and $B C \| E D$.

$A B \| C D$
Therefore, $\angle B C F=\angle E D C=75^{\circ}$ [Crossponding angles]
$\angle A B C+\angle B C F=180^{\circ}$ [Because $A B|\mid D C F]$
$\Rightarrow x+75^{\circ}=180^{\circ}$
$\Rightarrow x=105^{\circ}$

9. Question

In the given figure, $A B \| C D$. Prove that $p+q-r=180$

Answer
Given $A B \| C D, \angle A E F=\mathrm{P}^{\circ}, \angle E F G=\mathrm{q}^{\circ}, \angle F G D=\mathrm{r}^{\circ}$
Draw a line $F H\|A B\| C D$

$\angle \mathrm{HFG}=\angle \mathrm{FGD}=\mathrm{r}^{\circ}$ [Because HF\|CD and alternate angles] \qquad (i)
$\angle \mathrm{EFH}=\angle \mathrm{EFG}-\angle \mathrm{HFG}$
$\Rightarrow \angle E F H=q-r$
$\angle A E F+\angle E F H=180^{\circ}[$ Because $A B| | H F]$
$\Rightarrow \angle A E F+\angle E F H=180^{\circ}$
$\Rightarrow \mathrm{p}+(\mathrm{q}-\mathrm{r})=180^{\circ}$
$\Rightarrow \mathrm{p}+\mathrm{q}-\mathrm{r}=180^{\circ}$ Proved.

10. Question

In the given figure, $A B \| P Q$. Find the value of x and y.

Answer
$x=70, y=50$
Given $A B \| P Q$
$\angle \mathrm{GEF}+20^{\circ}+75^{\circ}=180^{\circ}$ [Because EF is a straight line]
$\Rightarrow \angle \mathrm{GEF}=180^{\circ}-95^{\circ}$
$\Rightarrow \angle \mathrm{GEF}=85^{\circ}$
In triangle EFG,
$\Rightarrow \mathrm{X}+25^{\circ}+85^{\circ}=180^{\circ}\left[\angle \mathrm{GEF}=85^{\circ}\right]$
$\Rightarrow X=60^{\circ}$
Now,
$\Rightarrow \angle B E F+\angle E F Q=180^{\circ}$ [Interior angles on same side of transversal]
$\Rightarrow\left(20^{\circ}+85^{\circ}\right)+\left(25^{\circ}+Y\right)=180^{\circ}$
$\Rightarrow Y=180^{\circ}-130^{\circ}$
$\Rightarrow Y=50^{\circ}$

11. Question

In the given figure, $A B \| C D$. Find the value of x.

Answer

Given $A B \| C D$
Therefore, $\angle B A C+\angle A C D=180^{\circ}$
$\Rightarrow 75^{\circ}+\angle A C D=180^{\circ}$
$\Rightarrow \angle A C D=105^{\circ}$
$\angle \mathrm{ACD}=\angle \mathrm{ECF}=105^{\circ}$ [Opposite angles]
In triangle CEF,
$\Rightarrow \angle C E F+\angle E F C+\angle F C E=180^{\circ}$
$\Rightarrow \mathrm{x}+30^{\circ}+105^{\circ}=180^{\circ}$
$\Rightarrow x+135^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}=45^{\circ}$

12. Question

In the given figure, $A B \| C D$. Find the value of x.

Answer

$\mathrm{x}=20$
Given $A B \| C D$
Therefore,
$\angle Q G H=\angle G E F$ [Crossponding angles]
$\angle Q G H=95^{\circ}$
In CD straight line,
$\Rightarrow \angle C H Q+\angle G H Q=180^{\circ}$
$\Rightarrow 115^{\circ}+\angle G H Q=180^{\circ}$
$\Rightarrow \angle G H Q=65^{\circ}$
In triangle GHQ,
$\Rightarrow \angle \mathrm{QGH}+\angle \mathrm{GHQ}+\angle \mathrm{GQH}=180^{\circ}$
$\Rightarrow 95^{\circ}+65^{\circ}+\mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=20^{\circ}$

13. Question

In the given figure, $A B \| C D$. Find the value of x, y and z.

Answer

$Z=75, x=35, y=70$
Given $A B \| C D$
Therefore,
$\mathrm{X}=35^{\circ}$ [Alternate angles]
In triangle AOB,
$\Rightarrow x+75^{\circ}+y=180^{\circ}$
$\Rightarrow 35^{\circ}+75^{\circ}+y=180^{\circ}$
$\Rightarrow \mathrm{y}=70^{\circ}$
$\Rightarrow \angle C O D=y=70^{\circ}$ [Opposite angles]
In triangle COD,
$\Rightarrow z+35^{\circ}+\angle C O D=180^{\circ}$
$\Rightarrow \mathrm{z}+35^{\circ}+70^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{z}=75^{\circ}$

14. Question

In the given figure, $A B \| C D$. Find the values of x, y and z.

Answer
$x=105, y=75, z=50$
Given $A B \| C D$
Therefore,
$\Rightarrow \angle \mathrm{AEF}=\angle \mathrm{EFG}=75^{\circ}$ [Alternate angles]
$\Rightarrow \mathrm{y}=75^{\circ}$
For CD straight line,
$\Rightarrow x+y=180^{\circ}$
$\Rightarrow \mathrm{x}+75^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}=105^{\circ}$
Again,
$\Rightarrow \angle E G F+125^{\circ}=180^{\circ}$
$\Rightarrow \angle E G F=155^{\circ}$
In triangle EFG,
$\Rightarrow \mathrm{y}+\mathrm{z}+\angle \mathrm{EGF}=180^{\circ}$
$\Rightarrow 75^{\circ}+\mathrm{z}+155^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{z}+130^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{z}=50^{\circ}$

15. Question

In the given figure, $A B \| C D$ and $E F \| G H$. Find the values of x, y, z and t.

Answer

$X=60, y=60, z=70, t=70$
Given $A B|\mid C D$ and $E F| \mid G H$
$x=60^{\circ}$ [Opposite angles]
$y=x=60^{\circ}$ [Alternate angles]
$\angle \mathrm{PQS}=\angle \mathrm{APR}=110^{\circ}$ [Crossponding angles]
$\angle P Q S=\angle P Q R+y=110^{\circ}$
For $A B$ straight line,
$\Rightarrow \mathrm{y}+\mathrm{z}+\angle \mathrm{PQR}=180^{\circ}$
$\Rightarrow \mathrm{z}+110^{\circ}=180^{\circ}[$ From equation (i)]
$\Rightarrow \mathrm{z}=70^{\circ}$
$A B \| C D$
Therefore,
$\mathrm{t}=\mathrm{z}=70^{\circ}$ [Because alternate angles]

16. Question

For what value of x will the lines I and m be parallel to each other?
(i).

(ii)

Answer

(i) $x=30$

Given IIIm
Therefore,
$3 x-20^{\circ}=2 x+10^{\circ}$ [Crossponding angles]
$\Rightarrow 3 \mathrm{x}-2 \mathrm{x}=10^{\circ}+20^{\circ}$
$\Rightarrow \mathrm{x}=30^{\circ}$
(ii) $x=25$

Given IIIm
Therefore,
$(3 x+5)^{\circ}+4 x^{\circ}=180^{\circ}$
$\Rightarrow 7 \mathrm{x}+5^{\circ}=180^{\circ}$
$\Rightarrow 7 \mathrm{x}=175^{\circ}$
$\Rightarrow \mathrm{x}=25^{\circ}$

17. Question

If two straight lines are perpendicular to the same line, prove that they are parallel to each other.

Answer

$A B \perp P Q$,
Therefore, $\angle \mathrm{ABD}=90^{\circ}$ \qquad
$C D \perp P Q$,
Therefore, $\angle \mathrm{CDQ}=90^{\circ}$ \qquad (ii)

From equations (i0 and (ii)
$\angle \mathrm{ABD}=\angle \mathrm{CDQ}=90^{\circ}$
Hence, $A B \| C D$ because Cross ponding angles are equal.

Exercise 4D

1. Question

In $\triangle A B C$, if $=\angle B=76^{\circ}$ and $\angle C=48^{\circ}$, find $\angle A$.

Answer

$\angle A=56^{\circ}$
In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of angles]
$\Rightarrow \angle \mathrm{A}+76^{\circ}+48^{\circ}=180^{\circ}$
$\Rightarrow \angle A+124^{\circ}=180^{\circ}$
$\Rightarrow \angle A=56^{\circ}$

2. Question

The angles of a triangle are in the ratio $2: 3: 4$. Find the angles.

Answer

$40^{\circ}, 60^{\circ}, 80^{\circ}$
Let the angles of triangle are 2a, 3a and 4a.
Therefore,
$2 a+3 a+4 a=180^{\circ}$ [Sum of angles]
$\Rightarrow 9 \mathrm{a}=180^{\circ}$
$\Rightarrow \mathrm{a}=20^{\circ}$
Angles of triangle are,
$2 \mathrm{a}=2 \times 20^{\circ}=40^{\circ}$
$3 \mathrm{a}=3 \times 20^{\circ}=60^{\circ}$
$4 \mathrm{a}=4 \times 20^{\circ}=80^{\circ}$

3. Question

In $\triangle A B C$, if $3 \angle A=4 \angle B=6 \angle C$, calculate $\angle A, \angle B$ and $\angle C$.

Answer

$\angle A=80^{\circ}, \angle B=60^{\circ}, \angle C=40^{\circ}$
Let $3 \angle A=4 \angle B=6 \angle C=\mathrm{a}$
Therefore,
$\angle A=a / 3, \angle B=a / 4, \angle C=a / 6$ \qquad
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of angles]
$\Rightarrow a / 3+a / 4+a / 6=180^{\circ}$
$\Rightarrow 9 \mathrm{a} / 12=180^{\circ}$
$\Rightarrow \mathrm{a}=240^{\circ}$
$\Rightarrow \angle A=a / 3=240^{\circ} / 3=80^{\circ}$
$\Rightarrow \angle \mathrm{B}=\mathrm{a} / 4=240^{\circ} / 4=60^{\circ}$
$\Rightarrow \angle \mathrm{C}=\mathrm{a} / 6=240^{\circ} / 6=40^{\circ}$

4. Question

In $\triangle A B C$, if $\angle A+\angle B=108^{\circ}$ and $\angle B+\angle C=130^{\circ}$, Find $\angle A, \angle B$ and $\angle C$.

Answer

$\angle A=50^{\circ}, \angle B=58^{\circ}, \angle C=72^{\circ}$
Given,
$\angle A+\angle B=108^{\circ}$ \qquad
$\angle B+\angle C=130^{\circ}$ \qquad
We know that sum of angles of triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of angles]
$\angle \mathrm{A}+130^{\circ}=180^{\circ}$ [From equation (ii)]
$\Rightarrow \angle A=50^{\circ}$
Value of $\angle \mathrm{A}=50^{\circ}$ put in equation (i),
$\angle A+\angle B=108^{\circ}$
$\Rightarrow 50^{\circ}+\angle B=108^{\circ}$
$\Rightarrow \angle B=58^{\circ}$
Value of $\angle \mathrm{B}=58^{\circ}$ put in equation (ii),
$\angle B+\angle C=130^{\circ}$
$\Rightarrow 58^{\circ}+\angle C=130^{\circ}$
$\Rightarrow \angle C=72^{\circ}$

5. Question

In $\triangle A B C$, if $\angle A+\angle B=125^{\circ}$ and $\angle B+\angle C=113^{\circ}$, Find $\angle A, \angle B$ and $\angle C$.

Answer

$\angle A=67^{\circ}, \angle B=41^{\circ}, \angle C=89^{\circ}$
Given,
$\angle A+\angle B=125^{\circ}$ \qquad
$\angle B+\angle C=113^{\circ}$ \qquad
We know that sum of angles of triangle $=180^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of angles]
$\angle \mathrm{A}+113^{\circ}=180^{\circ}[$ From equation (ii)]
$\Rightarrow \angle A=67^{\circ}$
Value of $\angle \mathrm{A}=50^{\circ}$ put in equation (i),
$\angle A+\angle B=125^{\circ}$
$\Rightarrow 67^{\circ}+\angle B=108^{\circ}$
$\Rightarrow \angle B=41^{\circ}$
Value of $\angle \mathrm{B}=41^{\circ}$ put in equation (ii),
$\angle B+\angle C=130^{\circ}$
$\Rightarrow 41^{\circ}+\angle C=130^{\circ}$
$\Rightarrow \angle C=89^{\circ}$

6. Question

In $\triangle P O R$, if $\angle P-\angle Q=42^{\circ}$ and $\angle Q-\angle R=21^{\circ}$, Find $\angle P, \angle Q$ and $\angle R$.

Answer

$\angle P=95^{\circ}, \angle Q=53^{\circ}, \angle R=32^{\circ}$
Given,
$\angle P-\angle Q=42^{\circ}$
$\angle Q-\angle R=21^{\circ}$ \qquad
$\angle P=42^{\circ}+\angle Q$ [From equation (i)] \qquad
$\angle R=\angle Q-21^{\circ}$ [From equation (ii)] \qquad (iv)

We know that sum of angles of triangle $=180^{\circ}$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$ [Sum of angles]
$\Rightarrow 42^{\circ}+\angle \mathrm{Q}+\angle \mathrm{Q}+\angle \mathrm{Q}-21^{\circ}=180^{\circ}$ [From equation (iii) and (iv)]
$\Rightarrow 3 \angle Q+21^{\circ}=180^{\circ}$
$\Rightarrow 3 \angle Q=159^{\circ}$
$\Rightarrow \angle Q=53^{\circ}$
Value of $\angle \mathrm{Q}=53^{\circ}$ put in equation (iii),
$\angle P=42^{\circ}+\angle Q$
$\Rightarrow \angle P=42^{\circ}+53^{\circ}$
$\Rightarrow \angle P=95^{\circ}$
Value of $\angle \mathrm{Q}=53^{\circ}$ put in equation (iv),
$\angle R=\angle Q-21^{\circ}$
$\Rightarrow \angle R=53^{\circ}-21^{\circ}$
$\Rightarrow \angle R=32^{\circ}$

7. Question

The sum of two angles of a triangle is 116° and their difference is 24°. Find the measure of each angle of the triangle.

Answer

$70^{\circ}, 46^{\circ}, 64^{\circ}$
Let $\angle P, \angle Q$ and $\angle R$ are three angles of triangle $P Q R$.
Now,
$\angle P+\angle Q=116^{\circ}$ \qquad
$\angle P-\angle Q=24^{\circ}$ \qquad
Adding equation (i) and (ii),
$2 \angle P=140^{\circ}$
$\Rightarrow \angle \mathrm{P}=70^{\circ}$ \qquad
Subtracting equation (i) and (ii),
$2 \angle \mathrm{Q}=92^{\circ}$
$\Rightarrow \angle Q=46^{\circ}$ \qquad

We know that sum of angles of triangle $=180^{\circ}$
$\angle P+\angle Q+\angle R=180^{\circ}$ [Sum of angles]
$\Rightarrow 70^{\circ}+46^{\circ}+\angle \mathrm{R}=180^{\circ}$ [From equation (iii) and (iv)]
$\Rightarrow \angle \mathrm{R}=64^{\circ}$

8. Question

Of the three angles of a triangle are equal and the third angle is greater than each one of them by 18°. Find the angle.

Answer

$54^{\circ}, 54^{\circ}, 72^{\circ}$
Let $\angle P, \angle Q$ and $\angle R$ are three angles of triangle $P Q R$,
And $\angle \mathrm{P}=\angle \mathrm{Q}=\mathrm{a}$ \qquad (i)

Then, $\angle \mathrm{R}=\mathrm{a}+18^{\circ}$
We know that sum of angles of triangle $=180^{\circ}$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$ [Sum of angles]
$\Rightarrow \mathrm{a}+\mathrm{a}+\mathrm{a}+18^{\circ}=180^{\circ}$ [From equation (i) and (ii)]
$\Rightarrow 3 \mathrm{a}=162^{\circ}$
$\Rightarrow \mathrm{a}=54^{\circ}$
Therefore,
$\angle \mathrm{P}=\angle \mathrm{Q}=54^{\circ}$ [from equation (i)]
$\angle R=54^{\circ}+18^{\circ}[$ from equation (i)]
$=72^{\circ}$

9. Question

Of the three angles of a triangle, one is twice the smallest and mother one is thrice the smallest. Find the angle.

Answer

$60^{\circ}, 90^{\circ}, 30^{\circ}$
Let $\angle P, \angle Q$ and $\angle R$ are three angles of triangle $P Q R$,
And $\angle \mathrm{P}$ is the smallest angle.
Now,
$\angle \mathrm{Q}=2 \angle \mathrm{P}$ \qquad
$\angle R=3 \angle P$ \qquad
We know that sum of angles of triangle $=180^{\circ}$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$ [Sum of angles]
$\Rightarrow \angle \mathrm{P}+2 \angle \mathrm{P}+3 \angle \mathrm{P}=180^{\circ}$ [From equation (i) and (ii)]
$\Rightarrow 6 \angle P=180^{\circ}$
$\Rightarrow \angle P=30^{\circ}$
Therefore,
$\Rightarrow \angle \mathrm{Q}=2 \angle \mathrm{P}=60^{\circ}$ [from equation (i)]
$\Rightarrow \angle \mathrm{R}=3 \angle \mathrm{P}=90^{\circ}$ [from equation (ii)]

10. Question

In a right-angled triangle, one of the acute measures 53°. Find the measure of each angle of the triangle.

Answer

$53^{\circ}, 37^{\circ}, 90^{\circ}$
Let $P Q R$ be a right angle triangle.
Right angle at P , then
$\angle \mathrm{P}=90^{\circ}$ and $\angle \mathrm{Q}=53^{\circ}$
We know that sum of angles of triangle $=180^{\circ}$
$\angle P+\angle Q+\angle R=180^{\circ}$ [Sum of angles]
$\Rightarrow 90^{\circ}+53^{\circ}+\angle \mathrm{R}=180^{\circ}$ [From equation (i)]
$\Rightarrow \angle \mathrm{R}=37^{\circ}$

11. Question

If one angle of a triangle is equal to the sum of the other two, show that the triangle is right angled.

Answer

Proof
Let $P Q R$ be a right angle triangle,
Now,
$\angle P=\angle Q+\angle R$
We know that sum of angles of triangle $=180^{\circ}$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$ [Sum of angles]
$\Rightarrow \angle \mathrm{P}+\angle \mathrm{P}=180^{\circ}$ [From equation (i)]
$\Rightarrow 2 \angle P=180^{\circ}$
$\Rightarrow \angle P=90^{\circ}$
Hence, $P Q R$ is a right angle triangle Proved.

12. Question

A $\triangle A B C$ is right angled at A . If $\mathrm{AL} \perp \mathrm{BC}$, prove that $\angle B A L=\angle A C B$.

Answer

proof
We know that the sum of two acute angles of a right triangle is 90°.
Therefore,
$\angle B A L+\angle A B L=90^{\circ}$
$\Rightarrow \angle B A L=90^{\circ}-\angle A B L$
$\Rightarrow \angle B A L=90^{\circ}-\angle A B C$ \qquad
$\angle A B C+\angle A C B=90^{\circ}$
$\Rightarrow \angle A C B=90^{\circ}-\angle A B C$ \qquad
From equation (i) and (ii),
$\angle B A L=\angle A C B$ Proved.

13. Question

If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

Answer

Proof
Let $A B C$ be a triangle,
Now,
$\angle A<\angle B+\angle C$ \qquad
$\angle B<\angle A+\angle C$ \qquad
$\angle C<\angle A+\angle B$ \qquad
$\Rightarrow 2 \angle A<\angle A+\angle B+\angle C$ [From equation (i)]
$\Rightarrow 2 \angle A<180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle A<90^{\circ}$ \qquad (a)

Similarly,
$\Rightarrow \angle B<90^{\circ}$ \qquad
$\Rightarrow \angle C<90^{\circ}$ \qquad
From equation (a), (b) and (c), each angle is less than 90°
Therefore triangle is an acute angled Proved.

14. Question

If each angle of a triangle is greater than the sum of the other two, show that the triangle is obtuse angled.

Answer

Proof
Let $A B C$ be a triangle,
Now,
$\angle A>\angle B+\angle C$
$\angle B>\angle A+\angle C$ \qquad
$\angle C>\angle A+\angle B$
$\Rightarrow 2 \angle A>\angle A+\angle B+\angle C$ [From equation (i)]
$\Rightarrow 2 \angle A>180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle A>90^{\circ}$ \qquad
Similarly,
$\Rightarrow \angle B>90^{\circ}$ \qquad
$\Rightarrow \angle C>90^{\circ}$ \qquad (c)

From equation (a), (b) and (c), each angle is less than 90°
Therefore triangle is an acute angled Proved.

15. Question

In the given figure, side $B C$ of $\triangle A B C$ is produced to D. If $\angle A C D=128^{\circ}$ and $\angle A B C=43^{\circ}$, Find $\angle B A C$ and $\angle A C B$.

Answer

$\angle B A C=85^{\circ}, \angle A C B=52^{\circ}$
Given, $\angle A C D=128^{\circ}$ and $\angle A B C=43^{\circ}$
In triangle $A B C$,

$$
\begin{aligned}
& \angle A C B+\angle A C D=180^{\circ}[\text { Because } B C D \text { is a straight line }] \\
& \Rightarrow \angle A C B+128^{\circ}=180^{\circ} \\
& \Rightarrow \angle A C B=52^{\circ} \\
& \left.\angle A B C+\angle A C B+\angle B A C=180^{\circ} \text { [Sum of angles of triangle } A B C\right] \\
& \Rightarrow 43^{\circ}+52^{\circ}+\angle B A C=180^{\circ}
\end{aligned}
$$

$\Rightarrow \angle B A C=85^{\circ}$

16. Question

In the given figure, the side $B C$ of $\triangle A B C$ has been produced on both sides-on the left to D and on the right to E . If $\angle A B D=106^{\circ}$ and $\angle A C E=118^{\circ}$, Find the measure of each angle of the triangle.

Answer

$74^{\circ}, 62^{\circ}, 44^{\circ}$
Given, $\angle A B D=106^{\circ}$ and $\angle A C E=118^{\circ}$
$\angle A B D+\angle A B C=180^{\circ}$ [Because DC is a straight line]
$\Rightarrow 106^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=74^{\circ}$
$\angle A C B+\angle A C E=180^{\circ}$ [Because $B E$ is a straight line]
$\Rightarrow \angle A C B+118^{\circ}=180^{\circ}$
$\Rightarrow \angle A C B=62^{\circ}$ \qquad
Now, triangle $A B C$
$\angle \mathrm{ABC}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 74^{\circ}+62^{\circ}+\angle \mathrm{BAC}=180^{\circ}$ [From equation (i) and (ii)]
$\Rightarrow \angle B A C=44^{\circ}$

17. Question

Calculate the value of x in each of the following figure.
(i).

(1)
(ii)

(ii)
(iii)

(iii)
(iv)

(v)

(v)
(vi)

(vi)

Answer

(i) 50°

Given, $\angle B A E=110^{\circ}$ and $\angle A C D=120^{\circ}$
$\angle A C B+\angle A C D=180^{\circ}$ [Because $B D$ is a straight line]
$\Rightarrow \angle \mathrm{ACB}+120^{\circ}=180^{\circ}$
$\Rightarrow \angle A C B=60^{\circ}$ \qquad (i)

In triangle $A B C$,
$\angle B A E=\angle A B C+\angle A C B$
$\Rightarrow 110^{\circ}=x+60^{\circ}$
$\Rightarrow x=50^{\circ}$
(ii) 120°

In triangle $A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of angles of triangle $A B C$]
$\Rightarrow 30^{\circ}+40^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=110^{\circ}$
$\angle B C A+\angle D C A=180^{\circ}$ [Because $B D$ is a straight line]
$\Rightarrow 110^{\circ}+\angle D C A=180^{\circ}$
$\Rightarrow \angle D C A=70^{\circ}$
In triangle ECD,
$\angle A E D=\angle E C D+\angle E D C$
$\Rightarrow \mathrm{x}=70^{\circ}+50^{\circ}$
$\Rightarrow x=120^{\circ}$
(iii) 55°

Explanation:
$\angle B A C=\angle E A F=60^{\circ}$ [Opposite angles]
In triangle $A B C$,
$\angle A B C+\angle B A C=\angle A C D$
$\Rightarrow X^{\circ}+60^{\circ}=115^{\circ}$
$\Rightarrow X^{\circ}=55^{\circ}$
(iv) 75°

Given $A B \| C D$
Therefore,
$\angle \mathrm{BAD}=\angle \mathrm{EDC}=60^{\circ}$ [Alternate angles]
In triangle CED,
$\angle C+\angle D+\angle E=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 45^{\circ}+60^{\circ}+x=180^{\circ}\left[\angle E D C=60^{\circ}\right]$
$\Rightarrow x=75^{\circ}$
(v) 30°

Explanation:
In triangle $A B C$,
$\angle B A C+\angle B C A+\angle A B C=180^{\circ}[$ Sum of angles of triangle $]$
$\Rightarrow 40^{\circ}+90^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=50^{\circ}$ \qquad
In triangle BDE ,
$\angle B D E+\angle B E D+\angle E B D=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \mathrm{x}^{\circ}+100^{\circ}+50^{\circ}=180^{\circ}\left[\angle E B D=\angle \mathrm{ABC}=50^{\circ}\right]$
$\Rightarrow \mathrm{x}^{\circ}=30^{\circ}$
(vi) $x=30$

Explanation:
In triangle $A B E$,
$\angle B A E+\angle B E A+\angle A B E=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 75^{\circ}+\angle B E A+65^{\circ}=180^{\circ}$
$\Rightarrow \angle B E A=40^{\circ}$
$\angle B E A=\angle C E D=40^{\circ}$ [Opposite angles]
In triangle CDE,
$\angle C D E+\angle C E D+\angle E C D=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \mathrm{x}^{\circ}+40^{\circ}+110^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=30^{\circ}$

18. Question

Calculate the value of x in the given figure.

Answer

$\mathrm{x}=130$
Explanation:

In triangle ACD,
$\angle 3=\angle 1+\angle C$ \qquad
In triangle ABD,
$\angle 4=\angle 2+\angle B$ \qquad
Adding equation (i) and (ii),
$\angle 3+\angle 4=\angle 1+\angle C+\angle 2+\angle B$
$\Rightarrow \angle \mathrm{BDC}=(\angle 1+\angle 2)+\angle \mathrm{C}+\angle \mathrm{B}$
$\Rightarrow \mathrm{x}^{\circ}=55^{\circ}+30^{\circ}+45^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=130^{\circ}$

19. Question

In the given figure, $A D$ divides $\angle B A C$ in the ratio $1: 3$ and $A D=D B$. Determine the value of.

Answer
$X=90$
Explanation:
$\angle B A C+\angle C A E=180^{\circ}$ [Because BE is a straight line]
$\Rightarrow \angle B A C+108^{\circ}=180^{\circ}$
$\Rightarrow \angle B A C=72^{\circ}$
Now,AD = DB
$\Rightarrow \angle D B A=\angle B A D$
$\angle B A D=(\rangle) 72^{\circ}=18^{\circ}$
$\angle D A C=(\rangle) 72^{\circ}=54^{\circ}$
In triangle $A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 72^{\circ}+18^{\circ}+\mathrm{x}=180^{\circ}$
$\Rightarrow \mathrm{x}=90^{\circ}$

20. Question

If the side of a triangle are produced in order, Prove that the sum of the exterior angles so formed is equal to four right angles.

Answer

Proof
In triangle $A B C$,
$\angle A C D=\angle B+\angle A$
$\angle B A E=\angle B+\angle C$ \qquad
$\angle C B F=\angle C+\angle A$ \qquad
Adding equation (i), (ii) and (iii),
$\angle A C D+\angle B A E+\angle C E F=2(\angle A+\angle B+\angle C)$
$\Rightarrow \angle A C D+\angle B A E+\angle C E F=2\left(180^{\circ}\right)$ [Sum of angles of triangle]
$\Rightarrow \angle A C D+\angle B A E+\angle C E F=360^{\circ}$ Proved.

21. Question

In the adjoining figure, show that $\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$

Answer
Proof
In triangle BDF,
$\angle A+\angle C+\angle E=180^{\circ}$ [Sum of angles of triangle]
In triangle BDF,
$\angle B+\angle D+\angle F=180^{\circ}$ [Sum of angles of triangle] \qquad
From equation (i) and (ii),
$(\angle A+\angle C+\angle E)+(\angle B+\angle D+\angle F)=\left(180^{\circ}+180^{\circ}\right)$
$\Rightarrow \angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$ Proved.

22. Question

In $\triangle \mathrm{ABC}$ the angle bisectors of $\angle B$ and $\angle C$ meet at O . If $\angle A=70^{\circ}$, Find $\angle B O C$.

Answer

125°

Given, bisector of $\angle B$ and $\angle C$ meet at 0 .
If OB and OC are the bisector of $\angle B$ and $\angle C$ meet at point O .
Then,
$\angle B O C=90^{\circ}+\frac{1}{2} \angle A$
$\Rightarrow \angle B O C=90^{\circ}+\frac{1}{2} 70^{\circ}$
$\Rightarrow \angle B O C=125^{\circ}$

23. Question

The sides $A B$ and $A C$ of $\triangle A B C$ have been produced to D and E respectively. The bisectors of $\angle C B D$ and $\angle B C E$ meet at O. If $\angle A=40^{\circ}$ find $\angle B O C$.

Answer
70°
Given, bisector of $\angle C B D$ and $\angle B C E$ meet at O .
If OB and OC are the bisector of $\angle C B D$ and $\angle B C E$ meet at point O .
Then,
$\angle B O C=90^{\circ}-\frac{1}{2} \angle A$
$\Rightarrow \angle B O C=90^{\circ}-\frac{1}{2} 40^{\circ}$
$\Rightarrow \angle B O C=70^{\circ}$

24. Question

In the given figure, ABC is a triangle in which $\angle A: \angle B: \angle C=3: 2: 1$ and $\mathrm{AC} \perp \mathrm{CD}$. Find the measure of $\angle E C D$.

Answer
60°
Given, $\angle A: \angle B: \angle C=3: 2: 1$ and $\mathrm{AC} \perp \mathrm{CD}$
Let, $\angle A=3 a$
$\angle B=2 a$
$\angle C=a$
In triangle $A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 3 \mathrm{a}+2 \mathrm{a}+\mathrm{a}=180^{\circ}$
$\Rightarrow 6 \mathrm{a}=180^{\circ}$
$\Rightarrow \mathrm{a}=30^{\circ}$
Therefore, $\angle \mathrm{C}=\mathrm{a}=30^{\circ}$
Now,
$\angle A C B+\angle A C D+\angle E C D=180^{\circ}$ [Sum of angles of triangle $]$
$\Rightarrow 30^{\circ}+90^{\circ}+\angle E C D=180^{\circ}$
$\Rightarrow \angle E C D=60^{\circ}$

25. Question

In the given figure, $\mathrm{AM} \perp \mathrm{BC}$ and AN is the bisector of $\angle A$. Find the measure of $\angle M A N$.

Answer

17.5°
Given, $\mathrm{AM} \perp \mathrm{BC}$ and " AN " is the bisector of $\angle A$.
Therefore,
$\angle M A N=\frac{1}{2}(\angle B-\angle C)$
$\Rightarrow \angle M A N=\frac{1}{2}\left(65^{\circ}-30^{\circ}\right)$
$\Rightarrow \angle M A N=17.5^{\circ}$

26. Question

State 'True' or 'false':
(i) A triangle can have two right angles.
(ii) A triangle cannot have two obtuse angles.
(iii) A triangle cannot have two acute angles.
(iv) A triangle can have each angle less than 60°.
(v) A triangle can have each angle equal to 60°.
(vi) There cannot be a triangle whose angles measure $10^{\circ}, 80^{\circ}$ and 100°.

Answer
(i) False

Because, sum of angles of triangle equal to 180°. In a triangle maximum one right angle.

(ii) True

Because, obtuse angle measures in 90° to 180° and we know that the sum of angles of triangle is equal to 180°.

(iii) False

Because, in an obtuse triangle is one with one obtuse angle and two acute angles.

$\angle \mathrm{B}$ is obtuse angle
$\angle A$ and $\angle C$ are acute angles
(iv) False

If each angles of triangle is less than 180° then sum of angles of triangle are not equal to 180°.
Any triangle,
$\angle 1+\angle 2+\angle 3=180^{\circ}$
(v) True

If value of angles of triangle is same then the each value is equal to 60°.
$\angle 1+\angle 2+\angle 3=180^{\circ}$
$\Rightarrow \angle 1+\angle 1+\angle 1=180^{\circ}[\angle 1=\angle 2=\angle 3]$
$\Rightarrow 3 \angle 1=180^{\circ}$
$\Rightarrow \angle 1=60^{\circ}$
(vi) True

We know that sum of angles of triangle is equal to 180°.
Sum of angles,
$=10^{\circ}+80^{\circ}+100^{\circ}$
$=190^{\circ}$
Therefore, angles measure in $\left(10^{\circ}, 80^{\circ}, 100^{\circ}\right)$ cannot be a triangle.

CCE Questions

1. Question

If two angles are complements of each other, then each angle is
A. an acute angle
B. an obtuse angle
C. a right angle
D. a reflex angle

Answer

If two angles are complements of each other, then each angle is an acute angle

2. Question

An angle which measures more than 180° but less than 360°, is called
A. an acute angle
B. an obtuse angle
C. a straight angle
D. a reflex angle

Answer

An angle which measures more than 180° but less than 360°, is called a reflex angle.

3. Question

The complement of $72^{\circ} 40^{\prime}$ is
A. $107^{\circ} 20^{\prime}$
B. $27^{\circ} 20^{\prime}$
C. $17^{\circ} 20^{\prime}$
D. $12^{\circ} 40^{\prime}$

Answer

As we know that sum of two complementary - angles is 90°.
So, $x+y=90^{\circ}$
$72^{\circ} 40^{\prime}+\mathrm{y}=90$
$y=90^{\circ}-72^{\circ} 40^{\prime}$
$y=17^{\circ} 20$

4. Question

The supplement of $54^{\circ} 30^{\prime}$ is
A. $35^{\circ} 30^{\prime}$
B. $125^{\circ} 30$
C. $45^{\circ} 30^{\prime}$
D. $65^{\circ} 30^{\prime}$

Answer

As we know that sum of two supplementary - angles is 180°.
So, $x+y=180^{\circ}$
$54^{\circ} 30^{\prime}+\mathrm{y}=180$
$y=180^{\circ}-54^{\circ} 30^{\prime}$
$y=125^{\circ} 30^{\prime}$

5. Question

The measure of angle is five times its complement. The angle measures
A. 25°
B. 35°
C. 65°
D. 75°

Answer

As we know that sum of two complementary - angles is 90°.

So, $x+y=90^{\circ}$
According to question $y=5 x$
$x+5 x=90$
$6 x=90^{\circ}$
$x=15^{\circ}$
$y=75^{\circ}$

6. Question

Two complementary angles are such that twice the measure of the one is equal to three times the measure of the other. The larger of the two measures
A. 72°
B. 54°
C. 63°
D. 36°

Answer

As we know that sum of two complementary - angles is 90°.
So, $x+y=90^{\circ}$
Let x be the common multiple.
According to question angles would be $2 x$ and $3 x$.
$2 x+3 x=90$
$5 x=90^{\circ}$
$x=18^{\circ}$
$2 x=36^{\circ}$
$3 x=54^{\circ}$
So, larger angle is 54°

7. Question

Two straight lines $A B$ and $C D$ cut each other at O. If $\angle B O D=63^{\circ}$, then $\angle B O D=$?
A. 63°
B. 117°
C. 17°
D. 153°

Answer

$\angle B O D=63^{\circ}$
As we know that sum of adjacent angle on a straight line is 180°.
$\angle B O D+\angle B O C=180^{\circ}$
$\angle B O C=180^{\circ}-63^{\circ}$
$\angle B O C=117^{\circ}$

8. Question

In the given figure, $A O B$ is a straight line. If $\angle A O C+\angle B O D=95^{\circ}$, then $\angle C O D=$?

A. 95°
B. 85°
C. 90°
D. 55°

Answer

As we know that sum of adjacent angle on a straight line is 180°.
$\angle A O C+\angle B O D+\angle C O D=180^{\circ}$
$\angle C O D=180^{\circ}-95^{\circ}$
$\angle C O D=85^{\circ}$

9. Question

In the given figure, $A O B$ is a straight line. If $\angle A O C=4 x^{\circ}$ and $\angle B O C=5 x^{\circ}$, then $\angle A O C=$?

A. 40°
B. 60°
C. 80°
D. 100°

Answer

As we know that sum of adjacent angle on a straight line is 180°.
According to question,
$\angle A O C=4 x^{\circ}$
$\angle B O C=5 x^{\circ}$,
$4 x+5 x=180^{\circ}$
$9 x=180^{\circ}$
$X=20^{\circ}$
$\angle A O C=4 x^{\circ}=80^{\circ}$

10. Question

In the given figure, $A O B$ is a straight line. If $\angle A O C(3 x+10)^{\circ}$ and $\angle B O C=(4 x-26)^{\circ}$, then $\angle B O C=$?

A. 96°
B. 86°
C. 76°
D. 106°

Answer

As we know that sum of adjacent angle on a straight line is 180°.
According to question,
$\angle A O C=(3 x+10)^{\circ}$
$\angle B O C=(4 x-26)^{\circ}$
$3 x+10+4 x-26=180^{\circ}$
$7 x-16=180^{\circ}$
$7 x=196^{\circ}$
$X=28^{\circ}$
$\angle B O C=(4 x-26)^{\circ}$
$\angle B O C=112^{\circ}-26^{\circ}$
$\angle B O C=86^{\circ}$

11. Question

In the given figure, $A O B$ is a straight line. If $\angle A O C=40^{\circ}, \angle C O D=4 x^{\circ}$, and $\angle B O D=3 x^{\circ}$, then $\angle C O D=$?

A. 80°
B. 100°
C. 120°
D. 140°

Answer

As we know that sum of all angles on a straight line is 180°

$$
\angle A O C+\angle C O D+\angle B O D=180^{\circ}
$$

$$
\angle \mathrm{AOC}+\angle \mathrm{COD}+\angle \mathrm{BOD}=180^{\circ}
$$

$$
40^{\circ}+4 \mathrm{x}+3 \mathrm{x}=180^{\circ}
$$

$$
7 \mathrm{x}=140^{\circ}
$$

${ }^{\mathrm{T}} \mathrm{x}=20^{\circ}$

So,

$$
\angle \mathrm{COD}=4 \mathrm{x}=80^{\circ}
$$

12. Question

In the given figure, $A O B$ is a straight line. If $\angle A O C=(3 x-10)^{\circ}, \angle C O D=50^{\circ}$ and $\angle B O D=(x+20)^{\circ}$, then $\angle A O C=$?

A. 40°
B. 60°
C. 80°
D. 50°

Answer

As we know that sum of all angles on a straight line is 180°.
$\angle \mathrm{AOC}+\angle \mathrm{COD}+\angle \mathrm{BOD}=180^{\circ}$
$(3 \mathrm{x}-10)+50^{\circ}+(\mathrm{x}+20)=180^{\circ}$
$4 \mathrm{x}+10=130^{\circ}$
$4 \mathrm{x}=120^{\circ}$
$\mathrm{x}=30^{\circ}$

So,
$\angle \mathrm{AOC}=3 \mathrm{x}-10=90^{\circ}-10^{\circ}=80^{\circ}$

13. Question

Which of the following statements is false?
A. Through a given point, only one straight line can be drawn.
B. Through two given points, it is possible to draw one and only one straight line.
C. Two straight lines can intersect only at one point.
D. A line segment can be produced to any desired length.

Answer

Through a given point, we can draw infinite number of lines.

14. Question

An angle is one - fifth of its supplement. The measure of the angle is
A. 15°
B. 30°
C. 75°
D. 150°

Answer

Let x be the common multiple.
According to question,
$y=5 x$
As we know that sum of two supplementary - angles is 180°.
So, $x+y=180^{\circ}$
$x+5 x=180$
$6 \mathrm{x}=180^{\circ}$
$x=30^{\circ}$

15. Question

In the adjoining figure, $A O B$ is a straight line. If $x: y: z=4: 5: 6$, then $y=$?

A. 60°
B. 80°
C. 48°
D. 72°

Answer

Let n be the common multiple
$x: y: z=4: 5: 6$,
As we know that sum of all angles on a straight line is 180°.
$4 n+5 n+6 n=180^{\circ}$
$15 n=180^{\circ}$
$\mathrm{N}=12^{\circ}$
$Y=5 n=60^{\circ}$

16. Question

In the given figure, straight lines $A B$ and $C D$ intersect at O. If $\angle A O C=\phi, \angle B O C=\theta$ and $\theta=3 \theta$, then $\theta=$?

A. 30°
B. 40°
C. 45°
D. 60°

Answer

As we know that sum of all angles on a straight line is 180°.
According to question,
$\theta=3 \phi$,
$\phi+\theta=180^{\circ}$
$\phi+3 \phi=180^{\circ}$
$4 \phi=180^{\circ}$
$\phi=45^{\circ}$

17. Question

In the given figure, straight lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O D=130^{\circ}$, then $\angle A O D=$?

A. 65°
B. 115°
C. 110°
D. 125°

Answer

$A C$ and $B D$ intersect at O.
$\angle \mathrm{AOC}=\angle \mathrm{BOD}$
$\angle \mathrm{AOC}+\angle \mathrm{BOD}=130^{\circ}$
$\angle \mathrm{BOD}+\angle \mathrm{BOD}=130^{\circ}$
$2 \angle \mathrm{BOD}=130^{\circ}$
$\angle \mathrm{BOD}=65^{\circ}$
As we know that sum of all angles on a straight line is 180°.
$\angle \mathrm{AOD}+\angle \mathrm{BOD}=180^{\circ}$
$\angle \mathrm{AOD}+65^{\circ}=180^{\circ}$
$\angle \mathrm{AOD}=180^{\circ}-65^{\circ}$
$\angle \mathrm{AOD}=115^{\circ}$

18. Question

In the given figure $A B$ is a mirror, $P Q$ is the incident ray and $Q R$ is the reflected ray. If $\angle P Q R=108^{\circ}$, then $\angle A Q P=$?

A. 72°
B. 18°
C. 36°
D. 54°

Answer

Incident ray makes the same angle as reflected ray.
So,
$\angle \mathrm{AQP}+\angle \mathrm{PQR}+\angle \mathrm{BQR}=180^{\circ}$
$\angle \mathrm{AQP}+\angle \mathrm{PQR}+\angle \mathrm{AQP}=180^{\circ}(\angle \mathrm{AQP}=\angle \mathrm{BQR})$
$2 \angle \mathrm{AQP}+108^{\circ}=180^{\circ}$
$2 \angle \mathrm{AQP}=180^{\circ}-108^{\circ}$
$2 \angle \mathrm{AQP}=72^{\circ}$
$\angle \mathrm{AQP}=36^{\circ}$

19. Question

In the given figure $A B \| C D$. If $\angle O A B=124^{\circ}, \angle O C D=136^{\circ}$, then $\angle A O C=$?

A. 80°
B. 90°
C. 100°
D. 110°

Answer

Draw a line EF such that EF \|AB and EF \| CD crossing point O.
$\angle \mathrm{FOC}+\angle \mathrm{OCD}=180^{\circ}$ (Sum of consecutive interior angles is 180°)
$\angle \mathrm{FOC}=180-136=44^{\circ}$
$E F \| A B$ such that $A O$ is traversal.
$\angle \mathrm{OAB}+\angle \mathrm{FOA}=180^{\circ}\left(\right.$ Sum of consecutive interior angles is 180°)
$\angle \mathrm{FOA}=180-124=56^{\circ}$
$\angle \mathrm{AOC}=\angle \mathrm{FOC}+\angle \mathrm{FOA}$
$=56+44$
$=100^{\circ}$

20. Question

In the given figure $A B \| C D$ and O is a point joined with B and D, as shown in the figure such that $\angle A B O=$ 35 and $\angle C D O=40^{\circ}$. Reflex $\angle B O D=$?

A. 255°
B. 265°
C. 275°
D. 285°

Answer

Draw a line EF such that $E F \| A B$ and $E F \| C D$ crossing point O.
$\angle \mathrm{ABO}+\angle \mathrm{EOB}=180^{\circ}$ (Sum of consecutive interior angles is 180°)
$\angle \mathrm{EOB}=180-35=145^{\circ}$
$E F \| A B$ such that $A O$ is traversal.
$\angle \mathrm{CDO}+\angle \mathrm{EOD}=180^{\circ}$ (Sum of consecutive interior angles is 180°)
$\angle \mathrm{EOD}=180-40=140^{\circ}$
$\angle \mathrm{BOD}=\angle \mathrm{EOB}+\angle \mathrm{EOD}$
$=145+140$
$=285^{\circ}$

21. Question

In the given figure, $A B\left|\mid C D\right.$. If $\angle A B O=130^{\circ}$ and $\angle O C D=110^{\circ}$, then $\angle B O C=$?

A. 50°
B. 60°
C. 70°
D. 80°

Answer

According to question,
$A B \| C D$
$A F \| C D$ (AB is produced to $F, C F$ is traversal)
$\angle \mathrm{DCF}=\angle \mathrm{BFC}=110^{\circ}$
Now, $\angle \mathrm{BFC}+\angle \mathrm{BFO}=180^{\circ}$ (Sum of angles of Linear pair is 180°)
$\angle \mathrm{BFO}=180^{\circ}-110^{\circ}=70^{\circ}$
Now in triangle BOF, we have
$\angle \mathrm{ABO}=\angle \mathrm{BFO}+\angle \mathrm{BOF}$
$130=70+\angle B O F$
$\angle B O F=130-70=60^{\circ}$
So, $\angle B O C=60^{\circ}$

22. Question

In the given figure, $A B\left|\mid C D\right.$. If $\angle B A O=60^{\circ}$ and $\angle O C D=110^{\circ}$, then $\angle A O C=$?

A. 70°
B. 60°
C. 50°
D. 40°

Answer

According to question,
$A B \| C D$
$A B \| D F$ ($D C$ is produced to F)
$\angle \mathrm{OCD}=110^{\circ}$
$\angle \mathrm{FCD}=180-110=70^{\circ}$ (linear pair)
Now in triangle FOC, we have
$\angle \mathrm{FOC}+\angle \mathrm{CFO}+\angle \mathrm{OCF}=180^{\circ}$
$\angle \mathrm{FOC}+60+70=180^{\circ}$
$\angle \mathrm{FOC}=180-130$
$=50^{\circ}$
So, $\angle A O C=50^{\circ}$

23. Question

In the given figure, $A B \| C D$. If $\angle A O C=30^{\circ}$ and $\angle O A B=100^{\circ}$, then $\angle O C D=$?

A. 130°
B. 150°
C. 80°
D. 100°

Answer

From O, draw E such that OE \| CD \| AB.
OE \| CD and OC is traversal.
So,
$\angle \mathrm{DCO}+\angle \mathrm{COE}=180$ (co -interior angles)
$x+\angle C O E=180$
$\angle \mathrm{COE}=(180-\mathrm{x})$
Now, $O E \| A B$ and $A O$ is the traversal.
$\angle \mathrm{BAO}+\angle \mathrm{AOE}=180$ (co -interior angles)
$\angle \mathrm{BAO}+\angle \mathrm{AOC}+\angle \mathrm{COE}=180$
$100+30+(180-x)=180$
$180-\mathrm{x}=50$
$X=180-50=130^{\circ}$

24. Question

In the given figure, $A B \| C D$. If $\angle C A B=80^{\circ}$ and $\angle E F C=25^{\circ}$, then $\angle C E F=$?

A. 65°
B. 55°
C. 45°
D. 75°

Answer

$A B \| C D$
$\angle \mathrm{BAC}=\angle \mathrm{DCF}=80^{\circ}$
$\angle \mathrm{ECF}+\angle \mathrm{DCF}=180^{\circ}$ (linear pair of angles)
$\angle E C F=100^{\circ}$
Now in triangle CFE,
$\angle \mathrm{ECF}+\angle \mathrm{EFC}+\angle \mathrm{CEF}=180^{\circ}$
$\angle C E F=180^{\circ}-100^{\circ}-25^{\circ}$
$=55^{\circ}$

25. Question

In the given figure, $A B \| C D$. If $\angle A P Q=70^{\circ}$ and $\angle P R D=120^{\circ}$, then $\angle Q P R=$?

A. 50°
B. 60°
C. 40°
D. 35°

Answer

$\angle \mathrm{PRD}=120^{\circ}$
$\angle \mathrm{PRQ}=180^{\circ}-120^{\circ}=60^{\circ}$
$\angle \mathrm{APQ}=\angle \mathrm{PQR}=70^{\circ}$
Now, in triangle PQR, we have
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QPQ}=180^{\circ}$
$70+60+\angle \mathrm{QPQ}=180^{\circ}$
$\angle \mathrm{QPQ}=180^{\circ}-130^{\circ}$
$=50^{\circ}$

26. Question

In the given figure, $x=$?

A. $a+\beta-y$
B. $a-\beta+\gamma$
C. $a+\beta+\gamma$
D. $a+\gamma-\beta$

Answer

$A C$ is produced to meet $O B$ at D.
$\angle \mathrm{OEC}=180-(\beta+\gamma)$
So, $\angle \mathrm{BEC}=180-(180-(\beta+\gamma))=(\beta+\gamma)$
Now, $x=\angle \mathrm{BEC}+\angle \mathrm{CBE}$ (Exterior Angle)
$=(\beta+\gamma)+\alpha$
$=\alpha+\beta+\gamma$

27. Question

If $3 \angle A=4 \angle B=6 \angle C$, then $A: B: C=$?
A. $3: 4: 6$
B. $4: 3: 2$
C. $2: 3: 4$
D. 6:4:3

Answer

Let say $3 \angle \mathrm{~A}=4 \angle \mathrm{~B}=6 \angle \mathrm{C}=\mathrm{x}$
$\angle \mathrm{A}=\mathrm{x} / 3$
$\angle \mathrm{B}=\mathrm{x} / 4$
$\angle \mathrm{C}=\mathrm{x} / 6$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180$
$x / 3+x / 4+x / 6=180$
$(4 x+3 x+2 x) / 12=180$
$9 \mathrm{x} / 12=180$
$X=240$
$\angle \mathrm{A}=\mathrm{x} / 3=240 / 3=80$
$\angle B=x / 4=240 / 4=60$
$\angle \mathrm{C}=\mathrm{x} / 6=240 / 6=40$
So, $A: B: C=4: 3: 2$

28. Question

In $\triangle A B C$, if $\angle A+\angle B=125^{\circ}$ and $\angle A+\angle C=113^{\circ}$, then $\angle A=$?
A. $\left(62.5^{\circ}\right)$
B. $(56.5)^{\circ}$
C. 58°
D. 63°

Answer

$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180$
$\angle \mathrm{C}=180-125=55^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{C}=113^{\circ}$
$\angle \mathrm{A}=113-55=58^{\circ}$

29. Question

In $\triangle A B C$, if $\angle A-\angle B=42^{\circ}$ and $\angle B-\angle C=21^{\circ}$, then $\angle B=$?
A. 95°
B. 53°
C. 32°
D. 63°

Answer

$\angle \mathrm{A}=\angle \mathrm{B}+42$
$\angle \mathrm{C}=\angle \mathrm{B}-21$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180$
$\angle \mathrm{B}+42+\angle \mathrm{B}+\angle \mathrm{B}-21=180$
$3 \angle B+21=180$
$3 \angle B=159$
$\angle B=53^{\circ}$
30. Question

In $\triangle A B C$, side $B C$ is produced to D. If $\angle A B C=40^{\circ}$ and $\angle A C D=120^{\circ}$, then $\angle A=$?

A. 60°
B. 40°
C. 80°
D. 50°

Answer

$\angle \mathrm{ACD}+\angle \mathrm{ACB}=180$ (Linear pair of angles)
$\angle \mathrm{ACB}=60^{\circ}$
$\angle \mathrm{ABC}=40^{\circ}$
As we know that
$\angle \mathrm{ACB}+\angle \mathrm{ACB}+\angle \mathrm{BAC}=180^{\circ}$
$\angle \mathrm{BAC}=180-60-40$
$=80^{\circ}$

31. Question

Side $B C$ of $\triangle A B C$ has been produced to D on left hand side and to E on right hand side such that $\angle A B D=$ 125° and $\angle A C E=130^{\circ}$. Then $\angle A=$?

A. 65°
B. 75°
C. 50°
D. 55°

Answer

$\angle \mathrm{ABD}+\angle \mathrm{ABC}=180$ (Linear pair of angles)
$\angle \mathrm{ABC}=180^{\circ}-125^{\circ}=55^{\circ}$
$\angle \mathrm{ACE}+\angle \mathrm{ACB}=180$ (Linear pair of angles)
$\angle \mathrm{ACB}=180^{\circ}-130^{\circ}=50^{\circ}$
As we know that
$\angle \mathrm{ACB}+\angle \mathrm{ABC}+\angle \mathrm{BAC}=180^{\circ}$
$\angle \mathrm{BAC}=180-55-50$
$=75^{\circ}$

32. Question

In the given figure, $\angle B A C=30^{\circ}, \angle A B C=50^{\circ}$ and $\angle C D E=40^{\circ}$. Then $\angle A E D=$?

A. 120°
B. 100°
C. 80°
D. 110°

Answer

$\angle \mathrm{ACB}+\angle \mathrm{ABC}+\angle \mathrm{BAC}=180$
$\angle \mathrm{ACB}=180-50-30=100^{\circ}$ (Sum of angles of triangle is 180)
$\angle \mathrm{ACB}+\angle \mathrm{ACD}=180$ (linear pair of angles)
$\angle \mathrm{ACD}=180-100=80^{\circ}$
In triangle ECD,
$\angle \mathrm{ECD}+\angle \mathrm{CDE}+\angle \mathrm{DEC}=180$
$\angle \mathrm{DEC}=180-80-40$
$=60^{\circ}$
$\angle \mathrm{DEC}+\angle \mathrm{AED}=180^{\circ}$ (linear pair of angles)
$\angle \mathrm{AED}=180^{\circ}-60^{\circ}$
$=120^{\circ}$
33. Question

In the given figure, $\angle B A C=40^{\circ}, \angle A C B=90^{\circ}$ and $\angle B E D=100^{\circ}$. Then $\angle B D E=$?

A. 50°
B. 30°
C. 40°
D. 25°

Answer

In triangle AEF,
$\angle \mathrm{BED}=\angle \mathrm{EFA}+\angle \mathrm{EAF}$
$\angle E F A=100-40=60^{\circ}$
$\angle \mathrm{CFD}=\angle \mathrm{EFA}$ (vertical opposite angles)
$=60^{\circ}$
In triangle CFD, we have
$\angle \mathrm{CFD}+\angle \mathrm{FCD}+\angle \mathrm{CDF}=180^{\circ}$
$\angle \mathrm{CDF}=180^{\circ}-90^{\circ}-60^{\circ}$
$=30^{\circ}$
So, $\angle \mathrm{BDE}=30^{\circ}$
34. Question

In the given figure, BO and CO are the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively. If $\angle \mathrm{A}=50^{\circ}$, then $\angle \mathrm{BOC}=$?

A. 130°
B. 100°
C. 115°
D. 120°

Answer

In $\triangle A B C$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$50^{\circ}+\angle B+\angle C=180^{\circ}$
$\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}-50^{\circ}=130^{\circ}$
$\angle B=65^{\circ}$
$\angle C=65^{\circ}$
Now in $\triangle O B C$,
$\angle O B C+\angle O C B+\angle B O C=180^{\circ}$
$\angle B O C=180^{\circ}-65^{\circ}(\angle O B C+\angle O C B=65$ because O is bisector of $\angle B$ and $\angle C)$
$=115^{\circ}$
35. Question

In the given figure, $A B \| C D$. If $\angle E A B=50^{\circ}$ and $\angle E C D=60^{\circ}$, then $\angle A E B=$?

A. 50°
B. 60°
C. 70°
D. 55°

Answer

$A B \| C D$ and $B C$ is traversal.
So, $\angle D C B=\angle A B C=60^{\circ}$
Now in triangle AEB, we have
$\angle A B E+\angle B A E+\angle A E B=180^{\circ}$
$\angle A E B=180^{\circ}-60^{\circ}-50^{\circ}$
$=70^{\circ}$
36. Question

In the given figure, $\angle O A B=75^{\circ}, \angle O B A=55^{\circ}$ and $\angle O C D=100^{\circ}$. Then $\angle O D C=$?

A. 20°
B. 25°
C. 30°
D. 35°

Answer

In triangle AOB,

$$
\begin{aligned}
& \angle A O B=180^{\circ}-75^{\circ}-55^{\circ} \\
& =50^{\circ}
\end{aligned}
$$

$$
\angle A O B=\angle C O D=50^{\circ}(\text { Opposite angles })
$$

Now in triangle COD,
$\angle O D C=180^{\circ}-100^{\circ}-50^{\circ}$
$=30^{\circ}$

37. Question

In a $\triangle A B C$ its is given that $\angle A: \angle B: \angle C=3: 2: 1$ and $C D \perp A C$. Then $\angle E C D=$?

A. 60°
B. 45°
C. 75°
D. 30°

Answer

As per question,
$\angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}=3: 2: 1$
So,
$\angle A=90^{\circ}$
$\angle B=60^{\circ}$
$\angle C=30^{\circ}$
$\angle A C B+\angle A C D+\angle E C D=180^{\circ}$ (sum of angles on straight line)
$\angle E C D=180^{\circ}-90^{\circ}-30^{\circ}$
$=60^{\circ}$
38. Question

In the given figure, $A B \| C D$. If $\angle A B O=45^{\circ}$ and $\angle C O D=100^{\circ}$ then $\angle C D O=$?
A. 25°
B. 30°
C. 35°
D. 45°

Answer
$\angle B O A=100^{\circ}$ (Opposite pair of angles)
So,
$\angle B A O=180^{\circ}-100^{\circ}-45^{\circ}$
$=35^{\circ}$
$\angle B A O=\angle C D O=35^{\circ}$ (Corresponding Angles)

39. Question

In the given figure, $A B \| D C, \angle B A D=90^{\circ}, \angle C B D=28^{\circ}$ and $\angle B C E=65^{\circ}$. Then $\angle A B D=$?

A. 32°
B. 37°
C. 43°
D. 53°

Answer
$\angle B C E=\angle A B C=65^{\circ}$ (Alternate Angles)
$\angle A B C=\angle A B D+\angle D B C$
$65^{\circ}=\angle \mathrm{ABD}+28^{\circ}$
$\angle A B D=65-28$
$=37^{\circ}$
40. Question

For what value of x shall we have I\| $\|$?

A. $x=50$
B. $x=70$
C. $x=60$
D. $x=45$

Answer

$X+20=2 x-30$ (Corresponding Angles)
$2 x-x=30+20$
$X=50^{\circ}$

41. Question

For what value of x shall we have I || m?

A. $x=35$
B. $x=30$
C. $x=25$
D. $x=20$

Answer

$4 x+3 x+5=180^{\circ}$ (Interior angles of same side of traversal)
$7 x+5=180^{\circ}$
$7 x=175$
$X=25^{\circ}$

42. Question

In the given figure, sides $C B$ and $B A$ of $\triangle A B C$ have been produced to D and E respectively such that $\angle A B D=$ 110° and $\angle C A E=135^{\circ}$. Then $\angle A C B=$?

A. 35°
B. 45°
C. 55°
D. 65°

Answer

$\angle A B C=180-110=70^{\circ}$ (Linear pair of angles)
$\angle B A C=180-135=45^{\circ}$ (Linear pair of angles)
So,
In Triangle ABC, we have
$\angle A B C+\angle B A C+\angle A C B=180^{\circ}$
$\angle A C B=180-70-45=65^{\circ}$

43. Question

In $\triangle A B C, B D \perp A C, \angle C A E=30^{\circ}$ and $\angle C B D=40^{\circ}$. Then $\angle A E B=$?

A. 35°
B. 45°
C. 25°
D. 55°

Answer

In triangle BDC,
$\angle B=40, \angle D=90$
So, $\angle C=180-(90+40)$
$=50^{\circ}$
Now in triangle AEC,
$\angle C=50, \angle A=30$
So, $\angle \mathrm{E}=180-(50+30)$
$=100^{\circ}$
Thus, $\angle A E B=180-100$ (Sum of linear pair is 180°)
$=80^{\circ}$

44. Question

In the given figure, $A B\|C D, C D\| E F$ and $y: z=3: 7$, then $x=$?

A. 108°
B. 126°
C. 162°
D. 63°

Answer

Let n be the common multiple.
$Y+Z=180$
$3 \mathrm{n}+7 \mathrm{n}=180$
$N=18$
So, $y=3 n=54^{\circ}$
$z=7 n=126^{\circ}$
$x=z$ (Pair of alternate angles)
So, $x=126^{\circ}$

45. Question

In the given figure, $A B\|C D\| E F, E A \perp A B$ and $B D E$ is the transversal such that $\angle D E F=55^{\circ}$. Then $\angle A E B=$?

A. 35°
B. 45°
C. 25°
D. 55°

Answer

According to question
$A B \| C D| | E F$ and
$\mathrm{EA} \perp \mathrm{AB}$
So, $\angle \mathrm{D}=\angle \mathrm{B}$ (Corresponding angles)
According to question $C D \| E F$ and $B E$ is the traversal then,
$\angle D+\angle E=180$ (Interior angle on the same side is supplementary)
So, $\angle \mathrm{D}=180-55=125^{\circ}$
And $\angle B=125^{\circ}$
Now, $A B \| E F$ and $A E$ is the traversal.
So, $\angle B A E+\angle F E A=180$ (Interior angle on the same side of traversal is supplementary)
$90+x+55=180$
$X+145=180$
$X=180-145=35^{\circ}$
46. Question

In the given figure, $A M \perp B C$ and $A N$ is the bisector of $\angle A$. If $\angle A B C=70^{\circ}$ and $\angle A C B=20^{\circ}$, then $\angle M A N=$?

A. 20°
B. 25°
C. 15°
D. 30°

Answer

In triangle $A B C$,
$\angle B=70^{\circ}$
$\angle C=20^{\circ}$
So, $\angle \mathrm{A}=180^{\circ}-70^{\circ}-20^{\circ}=90^{\circ}$
According to question, $A N$ is bisector of $\angle A$

So, $\angle B A N=45^{\circ}$
Now, in triangle BAM,
$\angle B=70^{\circ}$
$\angle M=90^{\circ}$
$\angle B A M=180^{\circ}-70^{\circ}-90^{\circ}=20^{\circ}$
Now, $\angle M A N=\angle B A N-\angle B A M$
$=45^{\circ}-20^{\circ}$
$=25^{\circ}$

47. Question

An exterior angle of a triangle is 110° and one of its interior opposite angles is 45°, then the other interior opposite angle is
A. 45°
B. 65°
C. 25°
D. 135°

Answer

Exterior angle formed when the side of a triangle is produced is equal to the sum of the interior opposite angles.

Exterior angle $=110^{\circ}$
One of the interior opposite angles $=45^{\circ}$
Let the other interior opposite angle $=x$
$110^{\circ}=45^{\circ}+x$
$x=110^{\circ}-45^{\circ}$
$x=65^{\circ}$
Therefore, the other interior opposite angle is 65°.

48. Question

The sides $B C, C A$ and $A B$ of $\triangle A B C$ have been produced to D, E and F respectively as shown in the figure, forming exterior angles $\angle A C D, \angle B A E$ and $\angle C B F$. Then, $\angle A C D+\angle B A E+\angle C B F=$?

A. 240°
B. 300°
C. 320°
D. 360°

Answer

In $\triangle A B C$,
we have $C B F=1+3 \ldots$ (i) [exterior angle is equal to the sum of opposite interior angles] Similarly, $A C D=1$ +2 ...(ii)
and $\mathrm{BAE}=2+3$...(iii)
On adding Eqs. (i), (ii) and (iii),
we get CBF $+\mathrm{ACD}+\mathrm{BAE}=2[1+2+3]=2 \times 180^{\circ}=4 \times 90^{\circ}$
[by angle sum property of a triangle is 180°] CBF $+\mathrm{ACD}+\mathrm{BAE}=4$ right angles
Thus, if the sides of a triangle are produced in order, then the sum of exterior angles so formed is equal to four right angles $=360^{\circ}$

49. Question

The angles of a triangle are in the ratio 3:5:7. The triangle is
A. acute angled
B. right - angled
C. obtuse angled
D. isosceles

Answer

Let x be the common multiple.
$3 \mathrm{x}+5 \mathrm{x}+7 \mathrm{x}=180$
$15 \mathrm{x}=180$
$x=180 / 15$
$x=123 x=3 \times 12=36$
$5 x=5 \times 12=60$
$7 x=7 \times 12=84$
Since, all the angles are less than 90°. So, it is acute angled triangle.

50. Question

If the vertical angle of a triangle is 130°, then the angle between the bisectors of the base angles of the triangle is
A. 65°
B. 100°
C. 130°
D. 155°

Answer

Let x and y be the bisected angles.
So in the original triangle, sum of angles is
$130+2 x+2 y=180$
$2(x+y)=50$
$x+y=25$
In the smaller triangle consisting of the original side opposite 130 and the 2 bisectors,
$x+y+$ Base Angle $=180$
$25+$ Base Angle $=180$
Base Angle $=155^{\circ}$

51. Question

The sides $B C, B A$ and $C A$ of $\triangle A B C$ have been produced to D, E and F respectively, as shown in the given figure. Then, $\angle B=$?

A. 35°
B. 55°
C. 65°
D. 75°

Answer

$\mathrm{BAC}=35^{\circ}$ (opposite pair of angles)
$B C D=180-110=70^{\circ}$ (linear pair of angles)
Now, in Triangle ABC we have,
$A+B+C=180^{\circ}$
$35+B+70=180$
$B=180-105=75^{\circ}$

52. Question

In the adjoining figure, $\mathrm{y}=$?

A. 36°
B. 54°
C. 63°
D. 72°

Answer

$x+y+90=180$ (sum of angles on a straight line)
$x+y=90$
$3 x+72=180$ (sum of angles on a straight line)
$3 x=108$
$x=108 / 3=36^{\circ}$
Putting this value in eq (i), we get
$x+y=90$
$36+y=90$
$\mathrm{Y}=90-36=54^{\circ}$
53. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)
If the two angles of a triangle measure	
50° and 70°, then its third angle is 60°.	The sum of the angles of a triangle is 180°.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Sum of triangle is $=180^{\circ}$
And $70+60+50=180^{\circ}$

54. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)
If a ray $\overrightarrow{\mathrm{CD}}$ stands on a line $\overrightarrow{\mathrm{AB}}$ such that $\angle \mathrm{ACD}$ $=\angle \mathrm{BCD}$, then $\angle \mathrm{ACD}=90^{\circ}$.	If a ray $\overrightarrow{\mathrm{CD}}$ $\angle \mathrm{ACD}+\angle \mathrm{BCD}=180^{\circ}$.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

According to linear pair of angle, sum of angles on straight line is 180
And $90+90=180^{\circ}$
55. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)		
If the side $B C$ of a $\triangle A B C$ then $\angle A C D ~$$=\angle A+\angle B$.		\quad	The sum of the angles of a triangle is
:---			

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

No, this is not linked with the given reason.

56. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	
If two lines AB and CD intersect at O such that $\angle \mathrm{AOC}=40^{\circ}$, then $\angle \mathrm{BOC}=$ 140°.	If two straight lines intersect each other, then vertically opposite angles are equal.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Because when two lines intersect each other, then vertically opposite angles are always equal.

57. Question

Each question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct option.

Assertion (A)	Reason (R)	
If $\mathrm{AB} \\| \mathrm{CD}$ and t is the transversal as shown, then $\angle 3=\angle 5$.	If a ray stands on a straight line the sum of the adjacent angles so formed is 180°.	
C		

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

3 and 5 are pair of consecutive interior angles. It is not necessary to be always equal.

58. Question

Match the following columns:

Column I	Column II
(a) If x° and y° be the measures of two complementary angles such that $2 \mathrm{x}=3 \mathrm{y}$, then $\mathrm{x}=$. \qquad	(p) 45°
(b) If an angle is the Supplement of itself, then then the measure of the angle is \qquad	(q) 60°
(c) If an angle is the complement of itself, then the measure of the angle is. \qquad	$\text { (r) } 54^{\circ}$
(d) If x° and y° be the angles forming a linear pair such that $\mathrm{x}-\mathrm{y}=60^{\circ}$, then $\mathrm{y}=\ldots$	(s) 90°

The correct answer is:
A. - \qquad B. - \qquad
C. - \qquad D. - \qquad

Answer

(a) - (r), (b) - (s), (c) - (p), (d) - (q)
(a) $-(r)$
$x+y=90$
$x+2 x / 3=90$
$5 x / 3=90$
$X=270 / 5$
$=54$
(b) $-(\mathrm{s})$
$x+y=180$ (according to question $x=y$)
$X+x=180$
$2 x=180$
$X=90$
(c) $-(p)$
$x+y=90$ (according to question $x=y$)
$x+x=90$
$2 x=90$
$X=45$
(d) $-(q)$
$X+y=180$ (linear pair of angles)
$x-y=60$ (according to question)
(ii)

Adding (i) and (ii) we get,
$2 x=240$
$\mathrm{X}=120$
Now putting this in (ii) we get,
$Y=120-60=60$

59. Question

Match the following columns:

Column I	Column II
(a) In the given figure, ABC is a straight line. Then, $\angle \mathrm{ACD}=$ $\ldots .$.	(p) 110°

(b) In the given figure, $\angle \mathrm{AOC}=$ ($2 \mathrm{x}-10)^{\circ}$ and $\angle \mathrm{BOC}=(3 \mathrm{x}-$ $10)^{\circ}$. Then, $\angle \mathrm{AOD}=\ldots$	(q) 85°	
(c) In the given figure, side $B C$ of $\triangle A B C$ has been produced to D. If $\angle A=65^{\circ}$ and $\angle B=$ 60°, then $\angle \mathrm{ACD}=$?	(r) 72°	
(d) In the given figure, $A B \\|$ $\mathrm{DE}, \angle \mathrm{CDE}=50^{\circ}$ and $\angle \mathrm{BAC}=$ 45°, then $\angle \mathrm{ACB}=\ldots$.	(s) 125°	

The correct answer is:
A. - \qquad B. - \qquad
C. - \qquad D. - \qquad

Answer

(a) - (r), (b) - (p), (c) - (s), (d) - (q)
(a) $-(r)$
$2 x+3 x=180$ (linear pair of angles)
$5 x=180$
$X=36$
$2 x=2 \times 36=72$
(b) $-(p)$
$2 x-10+3 x-10=180$ (linear pair of angles)
$5 x-20=180$
$5 x=200$
$x=40$
AOD $=3 x-10$ (opposite angles are equal)
$=120-10$
$=110$
(c) $-(\mathrm{s})$
$\mathrm{C}=180-(\mathrm{A}+\mathrm{B})$ (sum of angles triangle is 180)
$=180-(60+65)$
$=55$
ACD = 180-55 (sum of linear pair of angles is 180)
$=180-55$
$=125$
(d) - (q)
$B=D)$ (alternate interior angles)
$=55$
$A C B=180-(55+40)($ sum of angles of triangle is 180$)$
$=180-95$

Formative Assessment (Unit Test)

1. Question

The angles of a triangle are in the ratio 3:2:7. Find the measure of each of its angles.

Answer

Let x be the common multiple.
$3 x+2 x+7 x=180$
$12 x=180$
$X=15$
$3 x=45^{\circ}$
$2 x=30^{\circ}$
$7 \mathrm{x}=105^{\circ}$

2. Question

In a $\triangle A B C$, if $\angle A-\angle B=40^{\circ}$ and $\angle B-\angle C=10^{\circ}$, find the measure of $\angle A, \angle B$ and $\angle C$.

Answer

$A=B+40$
$C=B-10$
$A+B+C=180$
$B+40+B+B-10=180$
$3 B+30=180$
$3 \mathrm{~B}=180-30=150$
$B=50^{\circ}$
So, $A=B+40=90^{\circ}$
$C=B-10=40^{\circ}$

3. Question

The side $B C$ of $\triangle A B C$ has been increased on both sides as shown. If $\angle A B D=105^{\circ}$ and $\angle A C E=110^{\circ}$, then find $\angle A$.

Answer
$B=180-105$ (sum of linear pair of angles is 180)
$=75$
$C=180-110$ (sum of linear pair of angles is 180)
$=70$
So, $A=180-(B+C)$ (sum of angles of triangle is 180)
$=180-(70+75)$
$=35^{\circ}$

4. Question

Prove that the bisectors of two adjacent supplementary angles include a right angle.

Answer

Given, $\angle \mathrm{DAB}+\mathrm{EBA}=180^{\circ}$. CA and CB are bisectors of $\angle \mathrm{DAB} \angle \mathrm{EBA}$ respectively. $. \angle \mathrm{DAC}+\angle \mathrm{CAB}=1 / 2$ $(\angle \mathrm{DAB}) \ldots . .(1) \Rightarrow \angle \mathrm{EBC}+\angle \mathrm{CBA}=1 / 2(\angle \mathrm{EBA}) \ldots(2) \Rightarrow \angle \mathrm{DAB}+\angle \mathrm{EBA}=180^{\circ} \Rightarrow 2(\angle \mathrm{CAB})+2(\angle \mathrm{CBA})=$ 180° [using (1) and (2)] $\Rightarrow \angle \mathrm{CAB}+\angle \mathrm{CBA}=90^{\circ}$

In $\triangle A B C$,
$\angle \mathrm{CAB}+\angle \mathrm{CBA}+\angle \mathrm{ABC}=180^{\circ}$ (Angle Sum property) $\Rightarrow 90^{\circ}+\angle \mathrm{ABC}=180^{\circ} \Rightarrow \angle \mathrm{ABC}=180^{\circ}-90^{\circ} \Rightarrow \angle \mathrm{ABC}$ $=90^{\circ}$

5. Question

If one angle of a triangle is equal to the sum of the two other angles, show that the triangle is right angled.

Answer

Let $\angle A=\mathrm{x}, \angle \mathrm{B}=\mathrm{y}$ and $\angle \mathrm{C}=\mathrm{z}$
$\angle A+\angle B+\angle C=180$ (sum of angles of triangle is 180)
$x+y+z=180$ \qquad i)

According to question,
$x=y+z$ \qquad
Adding eq (i) and (ii), we get
$x+x=180$
$2 \mathrm{x}=180$
$X=90$
Hence, It is a right angled triangle.

6. Question

In the given figure, $A C B$ is a straight line and $C D$ is a line segment such that $\angle A C D=(3 x-5)^{\circ}$ and $\angle B C D=$ $(2 x+10)^{\circ}$. Then, $x=$?

A. 25
B. 30
C. 35
D. 40

Answer

$3 x-5+2 x+10=180$ (linear pair of angles)
$5 x+5=180$
$5 \mathrm{x}=175$
$X=175 / 5=35$

7. Question

In the given figure, $A O B$ is a straight line. If $\angle A O C=40^{\circ}, \angle C O D=4 x^{\circ}$ and $\angle B O D=3 x^{\circ}$, then $x=$?

A. 20
B. 25
C. 30
D. 35

Answer

$40+4 x+3 x=180$ (sum of angles on a straight line)
$7 x+40=180$
$7 x=180-40$
$X=140 / 7=20$

8. Question

The supplement of an angle is six times its complement. The measure of this angle is
A. 36°
B. 54°
C. 60°
D. 72°

Answer

Let x be the angle then,complement $=90-\mathrm{xsupplement}=180-\mathrm{x}$
According to question, $180-x=6(90-x) 180-x=540-6 x 180+5 x=5405 x=360 x=72^{0}$
9. Question

In the given figure, $A B||C D|| E F$. If $\angle A B C=85^{\circ}, \angle B C E=x^{\circ}$ and $\angle C E F=130^{\circ}$, then $x=$?

A. 30
B. 25
C. 35
D. 15

Answer

According to question,
AB || EF
$E F \| C D$ ($A B$ is produced to $F, C F$ is traversal)
$\angle \mathrm{FEC}=130^{\circ}$
Now, $\angle \mathrm{BFC}+\angle \mathrm{BFO}=180^{\circ}$ (Sum of angles of Linear pair is 180°)
$\angle \mathrm{BFO}=180^{\circ}-130^{\circ}=50^{\circ}$
Now in triangle BOF, we have
$\angle \mathrm{ABO}=\angle \mathrm{BFO}+\angle \mathrm{BOF}$
$85=50+\angle \mathrm{BOF}$
$\angle \mathrm{BOF}=85-50=35^{\circ}$
So, $x=0$

10. Question

In the given figure, $A B \| C D, \angle B A D=30^{\circ}$ and $\angle E C D=50^{\circ}$. Find $\angle C E D$.

Answer

$\angle \mathrm{A}=\angle \mathrm{D}$ (Pair of alternate angles)
$=30^{\circ}$
Now, in triangle EDC we have
$\angle \mathrm{D}=30^{\circ}$ and $\angle \mathrm{C}=50^{\circ}$
So,
$\angle \mathrm{CED}=180-(\angle \mathrm{C}+\angle \mathrm{D})$
$=180-30-50$
$=100^{\circ}$

11. Question

In the given figure, $B A D \| E F, \angle A E F=55^{\circ}$ and $\angle A C B=25^{\circ}$, find $\angle A B C$.

Answer

According to question EF || BAD
Producing E to O, we get
$\angle \mathrm{EFA}+\angle \mathrm{AEO}=180$ (Linear pair of angles)
$\angle \mathrm{AEO}=180-55$
$=125$
Now, in triangle $A B C$ we get,
$\angle \mathrm{A}=125$ and $\angle \mathrm{C}=25$
So, $\angle \mathrm{ABC}=180-(\angle \mathrm{A}+\angle \mathrm{C})$
$=180-(125+25)$
$=180-150$
$=30^{\circ}$

12. Question

In the given figure, $B E \perp A C, \angle D A C=30^{\circ}$ and $\angle D B E=40^{\circ}$. Find $\angle A C B$ and $\angle A D B$.

Answer
In triangle BEC we have,
$\angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{E}=90^{\circ}$
So, $\angle \mathrm{C}=180^{\circ}-(90+40)$
$=50^{\circ}$
Therefore, $\angle \mathrm{ACB}=50^{\circ}$

Now intriangle ADC we have,
$\angle \mathrm{A}=30^{\circ}$ and $\angle \mathrm{C}=50^{\circ}$
So, $\angle \mathrm{D}=180^{\circ}-(30+50)$
$=100^{\circ}$
Therefore,
$\angle \mathrm{ADB}+\angle \mathrm{ADC}=180$ (sum of angles on straight line)
$\angle A D B+100=180$
$\angle \mathrm{ADB}=180-100$
$=80^{\circ}$

13. Question

In the given figure, $A B \| C D$ and $E F$ is a transversal, cutting them at G and H respectively. If $\angle E G B=35^{\circ}$ and $\mathrm{QP} \perp \mathrm{EF}$, find the measure of $\angle \mathrm{PQH}$.

Answer

$\angle \mathrm{EGB}=\angle \mathrm{QHP}$ (Alternate Exterior Angles) $=35^{\circ}$
$\angle \mathrm{QPH}=90^{\circ}$
So, in triangle QHP we have,
$\angle \mathrm{QPH}+\angle \mathrm{QHP}+\angle \mathrm{PQH}=180^{\circ}$
$90^{\circ}+35^{\circ}+\angle \mathrm{PQH}=180^{\circ}$
$\angle \mathrm{PQH}=180^{\circ}-90^{\circ}-35^{\circ}$
$=55^{\circ}$

14. Question

In the given figure, $A B \| C D$ and $E F \perp A B$. If $E G$ is the transversal such that $\angle G E D=130^{\circ}$, find $\angle E G F$.

Answer

$\angle \mathrm{GEC}=180-130=50^{\circ}$ (linear pair of angles)
According to question,
$A B \| C D$ and $E F$ is perpendicular to $A B$.
$\angle \mathrm{GEC}=\angle \mathrm{EGF}$ (pair of alternate interior angles)
$=50^{\circ}$

15. Question

Match the following columns:

Column I	Column II	
(a) An angle is 10° more than its complement. The measure of the angle is....	(p) 160°	
(b) In $\triangle \mathrm{ABC}, \angle \mathrm{A}=65^{\circ}$ and $\angle \mathrm{B}-\angle \mathrm{C}=$ 25°, then $\angle B=\ldots$	(q) 50°	
(c) In $\triangle \mathrm{ABC}, \angle \mathrm{A}=40^{\circ}$ and $\angle \mathrm{B}=\angle \mathrm{C}$? If $\mathrm{EF} \\| \mathrm{BC}$, then $\angle \mathrm{EFC}=\ldots$	(r) 70°	
(d) If the angles around a point are 2 x ${ }^{\circ}, 3 \mathrm{x}^{\circ}, 5 \mathrm{x}^{\circ}$ and 40° then the measure of largest angle is. \qquad	(s) 110°	

The correct answer is:
A. \qquad B. - \qquad
C. - \qquad D. - \qquad

Answer

$(a)-(q),(b)-(r),(c)-(s),(d)-(p)$
(a) - (q)
$x+x+10=90$
$2 x+10=90$
$2 x=80$
$x=40$
$x+10=50^{\circ}$
(b) $-(r)$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180$
$65+\angle \mathrm{B}+\angle \mathrm{B}-25=180$
$2 \angle B+40=180$
$2 \angle \mathrm{~B}=140$
$\angle B=70^{\circ}$
(d) - (p)
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360$
$2 x+3 x+5 x+40=360$
$10 x+40=360$
$10 \mathrm{x}=320$
$X=32^{\circ}$
$5 \mathrm{x}=32 \times 5=160^{\circ}$

16 A. Question

In the given figure, lines $A B$ and $C D$ intersect at O such that $\angle A O D+\angle B O D+\angle B O C=300^{\circ}$. Find $\angle A O D$.

Answer
According to question,
$\angle \mathrm{AOD}+\angle \mathrm{BOD}+\angle \mathrm{BOC}=300^{\circ}$.
In the given figure $C D$ is a straight line.
As we know, Sum of angle on a straight line is 180°
SO,
$A O D+B O D+B O C=300$
$A O D+180=300$
AOD $=300-180$
$=120^{\circ}$

16 B. Question

In the given figure $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=120^{\circ}$. Find $\angle Q P R$.

Answer

According to question,
$\operatorname{PRD}=120^{\circ}$
PRD = APR (Pair of alternate interior angles)
So,
$\mathrm{APR}=120$
$A P Q+Q P R=120$
$50+$ QPR $=120$
$Q P R=120-50$
$=70^{\circ}$
17. Question

In the given figure, $B E$ is the bisector of $\angle B$ and $C E$ is the bisector of $\angle A C D$.
Prove that

Answer

In triangle $A B C$ we have,
$A+B+C=180$
Let $B=x$ and $C=y$ then,
$A+2 x+2 y=180$ (BE and CE are the bisector of angles B and C respectively.)
$x+y+A=180$
$A=180-(x+y)$
Now, in triangle BEC we have,
$B=x / 2$
$C=y+((180-y) / 2)$
$=(180+y) / 2$
$B+C+B E C=180$
$x / 2+(180+y) / 2+B E C=180$
$B E C=(180-x-y) / 2$
From eq (i) and (ii) we get,
$B E C=A / 2$

18. Question

In $\triangle A B C$, sides $A B$ and $A C$ are produced to D and E respectively. $B O$ and $C O$ are the bisectors of $\angle C B D$ and $\angle B C E$ respectively. Then, prove that

Answer

Here BO, CO are the angle bisectors of $\angle \mathrm{DBC} \& \angle E C B$ intersect each other at O .
$\therefore \angle 1=\angle 2$ and $\angle 3=\angle 4$
Side $A B$ and $A C$ of $\triangle A B C$ are produced to D and E respectively.
\therefore Exterior of $\angle D B C=\angle A+\angle C$
And Exterior of $\angle E C B=\angle A+\angle B$ \qquad
Adding (1) and (2) we get
$\angle D B C+\angle E C B=2 \angle A+\angle B+\angle C$.
$2 \angle 2+2 \angle 3=\angle A+180^{\circ}$
$\angle 2+\angle 3=(1 / 2) \angle A+90^{\circ}$

But in a $\triangle B O C=\angle 2+\angle 3+\angle B O C=180^{\circ}$ \qquad
From eq (3) and (4) we get
$(1 / 2) \angle \mathrm{A}+90^{\circ}+\angle \mathrm{BOC}=180^{\circ}$
$\angle B O C=90^{\circ}-(1 / 2) \angle A$

19. Question

Of the three angles of a triangle, one is twice the smallest and another one is thrice the smallest. Find the angles.

Answer

Let x be the common multiple.
So, angles will be $\mathrm{x}, 2 \mathrm{x}$ and 3 x
$x+2 x+3 x=180$
$6 x=180$
$X=30$
$2 \mathrm{x}=2 \times 30=60$
$3 x=3 \times 30=90$
So, Angles are $30^{\circ}, 60^{\circ}$ and 90°

20. Question

In $\triangle A B C, \angle B=90^{\circ}$ and $B D \perp A C$. Prove that $\angle A B D=\angle A C B$.

Answer

Let $\angle A B D=x$ and $\angle A C B=y$

According to question,
$\angle B=90^{\circ}$
In triangle $B D C$, we have,
$\angle B D C=90^{\circ}$
$\angle D B C=(90-x)^{0}$
$\angle \mathrm{BDC}+\angle \mathrm{DBC}+\angle \mathrm{DCB}=180^{\circ}$
$90^{\circ}+(90-x)^{0}+y=180^{\circ}$
$180^{\circ}-x+y=180^{\circ}$
$x=y$
So,
$\angle A B D=\angle A C B$

