26. Fundamental Concepts of 3-Dimensional Geometry

Exercise 26

1. Question

Find the direction cosines of a line segment whose direction ratios are:
(i) 2. $-6,3$
(ii) 2, - 1, - 2,
(iii) $-9,6,-2$

Answer

(i) direction ratios are:- $(2,-6,3)$

So, the direction cosines are- (I, m, n), where, $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$,
So, I, m, and n are:-
$\mathrm{l}=\frac{2}{\sqrt{2^{2}+(-6)^{2}+3^{2}}}$
$\mathrm{m}=-\frac{6}{\sqrt{2^{2}+(-6)^{2}+3^{2}}}$
$\mathrm{n}=\frac{3}{\sqrt{2^{2}+(-6)^{2}+3^{2}}}$
$(1, \mathrm{~m}, \mathrm{n})=\left(\frac{2}{7},-\frac{6}{7}, \frac{3}{7}\right)$
The direction cosines are:- $\left(\frac{2}{7},-\frac{6}{7}, \frac{3}{7}\right)$
(ii) direction ratios are:- $(2,-1,-2)$

So, the direction cosines are:- $(1, m, n)$, where, $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$,
So, I, m, and n are:-
$\mathrm{l}=\frac{2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$
$\mathrm{m}=-\frac{-1}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$
$\mathrm{n}=\frac{-2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$
$(1, \mathrm{~m}, \mathrm{n})=\left(\frac{2}{3},-\frac{1}{3}, \frac{-2}{3}\right)$
The direction cosines are:- $\left(\frac{2}{3},-\frac{1}{3}, \frac{-2}{3}\right)$
(iii) direction ratios are:- $(-9,6,-2)$

So, the direction cosines are- $(1, m, n)$, where, $l^{2}+m^{2}+n^{2}=1$,
So, I, m, and n are:-
$1=-\frac{9}{\sqrt{(-9)^{2}+6^{2}+(-2)^{2}}}$
$\mathrm{m}=\frac{6}{\sqrt{(-9)^{2}+6^{2}+(-2)^{2}}}$
$\mathrm{n}=\frac{-2}{\sqrt{(-9)^{2}+6^{2}+(-2)^{2}}}$
$(1, m, n)=\left(\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}\right)$
The direction cosines are:- $\left(\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}\right)$

2. Question

Find the direction ratios and the direction cosines of the line segment joining the points:
(i) $A(1,0,0)$ and $B(0,1,1)$
(ii) $A(5,6,-3)$ and $B(1,-6,3)$
(iii) A (-5, 7, -9) and B ($-3,4,-6$)

Answer

Given two line segments, we have the direction ratios, Of the line joining these 2 points as,
$A B=-\bar{i}+\hat{\jmath}+k$, (direction ratio)
The unit vector in this direction will be the direction cosines, i.e.,
Unit vector in this direction is:- $(-\bar{i}+\hat{\jmath}+k) / \sqrt{3}$
The direction cosines are ($-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$)
(ii) Given two line segments, we have the direction ratios,

Of the line joining these 2 points as,
$A B=-4 \overline{\mathrm{I}}+(-12) \hat{\mathrm{j}}+6 \mathrm{k}$
The direction ratio in the simplest form will be, $(2,6,-3)$
The unit vector in this direction will be the direction cosines, i.e.,
Unit vector in this direction is:- $(2 \bar{i}+6 \hat{\jmath}-3 k) / \sqrt{2^{2}+6^{2}+(-3)^{2}}$
The direction cosines are ($\left(\frac{2}{7}, \frac{6}{7},-\frac{3}{7}\right)$
(iii) Given two line segments, we have the direction ratios,

Of the line joining these 2 points as,
$\mathrm{AB}=2 \mathrm{i}-3 \hat{\mathrm{j}}+3 \mathrm{k}$, (direction ratio)
The unit vector in this direction will be the direction cosines, i.e.,
Unit vector in this direction is:- $(2 \hat{1}-3 \hat{\jmath}+3 k) / \sqrt{2^{2}+(-3)^{2}+3^{2}}$
The direction cosines are $\left(\frac{2}{\sqrt{22}},-\frac{3}{\sqrt{22}}, \frac{3}{\sqrt{22}}\right)$

3. Question

Show that the line joining the points $A(1,-1,2)$ and $B(3,4,-2)$ is perpendicular to the line joining the points $C(0,3,2)$ and $D(3,5,6)$.

Answer

Given: $A(1,-1,2)$ and $B(3,4,-2)$
The line joining these two points is given by,
$A B=2 i+5 j-4 k$
$C(0,3,2)$ and $D(3,5,6)$,
The line joining these two points,
$C D=3 i+2 j+4 k$
To prove that the two lines are perpendicular we need to show that the angle between these two lin is $\frac{\pi}{2}$
So, AB.CD $=0$ (dot product)
Thus, $(2 \mathrm{i}+5 \mathrm{j}-4 \mathrm{k}) .(3 \mathrm{i}+2 \mathrm{j}+4 \mathrm{k})=6+10-16=0$.
Thus, the two lines are perpendicular.

4. Question

Show that the line segment joining the origin to the point $A(2,1,1)$ is perpendicular to the line segment joining the points $B(3,5,-1)$ and $C(4,3,-1)$.

Answer

Given: $O(0,0,0)$ and $A(2,1,1)$
The line joining these two points is given by,
$O A=2 i+j+k$
$B(3,5,-1)$ and $D(4,3,-1)$,
The line joining these two points,
$B C=i-2 j+0 k$
To prove that the two lines are perpendicular we need to show that the angle between these two lines is $\frac{\pi}{2}$
So, OA.BC $=0$ (dot product)
Thus, $(2 \mathrm{i}+\mathrm{j}+\mathrm{k}) .(\mathrm{i}-2 \mathrm{j}+0 \mathrm{k})=2-2+0=0$.
Thus, the two lines are perpendicular.

5. Question

Find the value of p for which the line through the points $A(3,5,-1)$ and $B(5, p, 0) 9$ is perpendicular to the line through the points $C(2,1,1)$ and $D(3,3,-1)$.

Answer

Given: $A(3,5,-1)$ and $B(5, p, 0)$
The line joining these two points is given by,
$A B=2 i+(p-5) j+k$
$C(2,1,1)$ and $D(3,3,-1)$,
The line joining these two points,
$C D=i+2 j-2 k$

As the two lines are perpendicular, we know that the angle between these two lines is $\frac{\pi}{2}$
So, AB.CD $=0$ (dot product)
Thus, $(2 i+(p-5) j+k) .(i+2 j-2 k)=0$.
ð $2+2(p-5)-2=0$
ð $p=5$
Thus, $\mathrm{p}=5$.

6. Question

If O is the origin and $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(1,-2,1)$ be any two points show that $\mathrm{OP} \perp \mathrm{OQ}$.

Answer

Given $\mathrm{O}(0,0,0), \mathrm{P}(2,3,4) \mathrm{So}, \mathrm{OP}=2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}$
$Q(1,-2,1), S o, O Q=i-2 j+k$
To prove that $\mathrm{OP} \perp \mathrm{OQ}$ we have,
$O P . O Q=0$, i.e. the angle between the line segments is $\frac{\pi}{2}$
So, the dot product i.e. $|\mathrm{OP} \| \mathrm{OQ}| \cos \theta=0, \cos \theta=0$,
$\mathrm{OP} . \mathrm{OQ}=0$
Thus, $(2 i+3 j+4 k) .(i-2 j+k)=2-6+4=0$
Hence, proved.

7. Question

Show that the line segment joining the points $A(1,2,3)$ and $B(4,5,7)$ is parallel to the segment joining the points $C(-4,3,-6)$ and $D(2,9,2)$.

Answer

Given $A(1,2,3), B(4,5,7)$, the line joining these two points will be
$A B=3 i+3 j+4 k$
And the line segment joining, $C(-4,3,-6)$ and $D(2,9,2)$ will be
$C D=6 i+6 j+8 k$
If $C D=r(A B)$, where r is a scalar constant then,
The two lines are parallel.
Here, $C D=2(A B)$,
Thus, the two lines are parallel.

8. Question

If the line segment joining the points $A(7, p, 2)$ and $B(q,-2,5)$ be parallel to the line segment joining the points $C(2,-3,5)$ and $D(-6,-15,11)$, find the values of p and q.

Answer

Given: $A(7, p, 2)$ and $B(q,-2,5)$, line segment joining these two points will be, $A B=(q-7) i+(-2-p) j+3 k$ And the line segment joining $C(2,-3,5)$ and $D(-6,-15,11)$ will be, $C D=-8 i-12 j+6 k$ Then, the angle between these two line segments will be 0 degree. So, the cross product will be 0 .
$A B \times C D=0$

ठ ((q-7)i+(-2-p)j+3k)×(-8i-12j+6k)=0
Thus, solving this we get,
$p=4$ and $q=3$

9. Question

Show that the points $A(2,3,4), B(-1,-2,1)$ and $C(5,8,7)$ are collinear.

Answer

We have to show that the three points are colinear, i.e. they all lie on the same line,
If we define a line which is having a parallel line to $A B$ and the points A and B lie on it, if point C also satisfies the line then, the three points are colinear,

Given $A(2,3,4)$ and $B(-1,-2,1), A B=-3 i-5 j-3 k$
The points on the line $A B$ with A on the line can be written as,
$R=(2,3,4)+a(-3,-5,-3)$
Let $C=(2-3 a, 3-5 a, 4-3 a)$
才 $(5,8,7)=(2-3 a, 3-5 a, 4-3 a)$
ð If $a=-1$, then L.H.S $=$ R.H.S, thus
The point C lies on the line joining $A B$,
Hence, the three points are colinear.

10. Question

Show that the points $A(-2,4.7), B(3,-6 .-8)$ and $C(1,-2,-2)$ are collinear.

Answer

We have to show that the three points are colinear, i.e. they all lie on the same line,
If we define a line which is having a parallel line to $A B$ and the points A and B lie on it, if point C also satisfies the line then, the three points are colinear,

Given $A(-2,4,7)$ and $B(3,-6,-8), A B=5 i-10 j-15 k$
The points on the line $A B$ with A on the line can be written as,
$R=(-2,4,7)+a(5,-10,-15)$
Let $C=(-2+5 a, 4-10 a, 7-15 a)$
ð $(1,-2,-2)=(-2+5 a, 4-10 a, 7-15 a)$
ð If $a=3 / 5$, then L.H.S $=$ R.H.S, thus
The point C lies on the line joining $A B$,
Hence, the three points are colinear.

11. Question

Find the value of p for which the points $A(-1,3,2), B(-4,2,-2)$, and $C(5,5, p)$ are collinear.

Answer

We have to show that the three points are colinear, i.e. they all lie on the same line,
If we define a line which is having a parallel line to $A B$ and the points A and B lie on it, as the points are colinear so C must satisfy the line,

Given $A(-1,3,2)$ and $B(-4,2,-2), A B=-3 i-j-4 k$
The points on the line $A B$ with A on the line can be written as,
$R=(-1,3,2)+a(-3,-1,-4)$
Let $C=(-1-3 a, 3-1 a, 2-4 a)$
б $(5,5, p)=(-1-3 a, 3-1 a, 2-4 a)$
ð As L.H.S = R.H.S, thus
ð $5=-1-3 \mathrm{a}, \mathrm{a}=-2$
Substituting $a=-2$ we get, $p=2-4(-2)=10$
Hence, $\mathrm{p}=10$.

12. Question

Find the angle between the two lines whose direction cosines are:
$\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$ and $\frac{3}{7}, \frac{2}{7}, \frac{6}{7}$

Answer

Let
$R_{1}=\frac{2}{3} \mathrm{i}-\frac{1}{3} \mathrm{j}-\frac{2}{3} \mathrm{k}$
And $\mathrm{R}_{2}=\frac{3}{7} \mathrm{i}+\frac{2}{7} \mathrm{j}+\frac{6}{7} \mathrm{k}$
$\mathrm{R}_{1} \cdot \mathrm{R}_{2}=\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{2}\right| \cos \theta$
Here, as R1 and R2 are the unit vectors with a direction given by the direction cosines hence, |R1| and |R2| are 1.

So, $\cos \theta=R_{1} \cdot R_{2} / 1$
ð $\cos \theta=\frac{6}{21}-\frac{2}{21}-\frac{12}{21}=\frac{8}{21}$
ð $\theta=\cos ^{-1}-\frac{8}{21}$
The angle between the lines is $\cos ^{-1}-\frac{8}{21}$

13. Question

Find the angle between the two lines whose direction ratios are:
a, b, c and $(b-c),(c-a),(a-b)$.

Answer

The angle between the two lines is given by
$\cos \theta=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\left|\mathrm{R}_{1} \| \mathrm{R}_{2}\right|}$
where R_{1} an R_{2} denote the vectors with the direction ratios,
So, here we have,
$R_{1}=a i+b j+c k$ and $R_{2}=(b-c) i+(c-a) j+(a-b) k$
$\cos \theta=\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}=0$
$\cos \theta=0$
Hence, $\theta=\frac{\pi}{2}$

14. Question

Find the angle between the lines whose direction ratios are:
$2,-3,4$ and $1,2,1$.

Answer

The angle between the two lines is given by
$\cos \theta=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\left|\mathrm{R}_{1} \| \mathrm{R}_{2}\right|}$
where R_{1} and R_{2} denote the vectors with the direction ratios,
So, here we have,
$R_{1}=2 i-3 j+4 k$ and $R_{2}=i+2 j+k$
$\cos \theta=\frac{2-6+4}{\sqrt{2^{2}+(-3)^{2}+4^{2}} \sqrt{1^{2}+2^{2}+1^{2}}}=0$
$\cos \theta=0$
Hence, $\theta=\frac{\pi}{2}$

15. Question

Find the angle between the lines whose direction ratios are:
$1,1,2$ and $(\sqrt{3-1}),(-\sqrt{3-1}), 4$

Answer

The angle between the two lines is given by
$\cos \theta=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\left|\mathrm{R}_{1} \| \mathrm{R}_{2}\right|}$
where R_{1} and R_{2} denote the vectors with the direction ratios,
So, here we have,
$R 1=i+j+2 k$ and $R 2=(\sqrt{3}-1) i-(\sqrt{3}+1) j+(4) k$
$\cos \theta=\frac{\sqrt{3}-1-\sqrt{3}-1+8}{\sqrt{1^{2}+1^{2}+2^{2}} \sqrt{(\sqrt{3}-1)^{2}+(-(\sqrt{3}+1))^{2} 4^{2}}}=\frac{6}{\sqrt{6} \cdot \sqrt{24}}$
$\cos \theta=\frac{1}{2}$
Hence, $\theta=\frac{\pi}{3}$

16. Question

Find the angle between the vectors $\overrightarrow{r_{1}}=(3 \hat{i}-2 \hat{j}+\hat{k})$ and $\overrightarrow{r_{2}}=(4 \hat{i}+5 \hat{j}+7 \hat{k})$

Answer

The angle between the two lines is given by
$\cos \theta=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{2}\right|}$
where R_{1} and R_{2} denote the vectors with the direction ratios,
So, here we have,
$R 1=3 i-2 j+k$ and $R 2=4 i+5 j+7 k$
$\cos \theta=\frac{12-10+7}{\sqrt{3^{2}+(-2)^{2}+1^{2}} \sqrt{4^{2}+5^{2}+7^{2}}}=\frac{9}{\sqrt{14} \cdot \sqrt{90}}$
$\cos \theta=\frac{3}{2 \sqrt{35}}$
Hence, $\theta=\cos ^{-1} \frac{3}{2 \sqrt{35}}$

17. Question

Find the angles made by the following vectors with the coordinate axes:
(i) $(\hat{i}-\hat{j}+\hat{k})$
(ii) $(\hat{\mathrm{j}}-\hat{\mathrm{k}})$
(iii) $(\hat{\mathrm{i}}-4 \hat{\mathrm{j}}+8 \hat{\mathrm{k}})$

Answer

(i) The angle between the two lines is given by
$\cos \theta=\frac{\mathrm{R}_{\mathrm{R}} \cdot \mathrm{R}_{2}}{\left|\mathrm{R}_{1} \| \mathrm{R}_{2}\right|}$
where R_{1} and R_{2} denote the vectors with the direction ratios,
So, here we have,
$R 1=i-j+k$ and $R 2=i$ for $x-$ axis
$\cos \theta=\frac{1-0+0}{\sqrt{1^{2}+(-1)^{2}+1^{2}} \sqrt{1^{2}}}=\frac{1}{\sqrt{3}}$
$\cos \theta=\frac{1}{\sqrt{3}}$
Hence, $\theta=\cos ^{-1} \frac{1}{\sqrt{3}}$
With y - axis, i. e. $R 2=j$
$\cos \theta=\frac{0-1+0}{\sqrt{1^{2}+(-1)^{2}+1^{2}} \sqrt{1^{2}}}=-\frac{1}{\sqrt{3}}$
$\cos \theta=-\frac{1}{\sqrt{3}}$
Hence, $\theta=\cos ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
With z- axis, i. e. $R 2=k$
$\cos \theta=\frac{0-0+1}{\sqrt{1^{2}+(-1)^{2}+1^{2}} \sqrt{1^{2}}}=\frac{1}{\sqrt{3}}$
$\cos \theta=\frac{1}{\sqrt{3}}$
Hence, $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(ii) The angle between the two lines is given by
$\cos \theta=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\left|\mathrm{R}_{1}\right|\left|\mathrm{R}_{2}\right|}$
where R_{1} and R_{2} denote the vectors with the direction ratios,
So, here we have,
$R 1=j-k$ and $R 2=i$ for $x-$ axis
$\cos \theta=\frac{0-0+0}{\sqrt{0^{2}+1^{2}+(-1)^{2}} \sqrt{1^{2}}}=0$
$\cos \theta=0$
Hence, $\theta=\frac{\pi}{2}$
With y-axis, i. e. $R 2=j$
$\cos \theta=\frac{0+1+0}{\sqrt{0^{2}+1^{2}+(-1)^{2}} \sqrt{1^{2}}}=\frac{1}{\sqrt{2}}$
$\cos \theta=\frac{1}{\sqrt{2}}$
Hence, $\theta=\frac{\pi}{4}$
With $z-$ axis, i. e. $R 2=k$
$\cos \theta=\frac{0+0-1}{\sqrt{0^{2}+1^{2}+-(1)^{2}} \sqrt{1^{2}}}=-\frac{1}{\sqrt{2}}$
$\cos \theta=-\frac{1}{\sqrt{2}}$
Hence, $\theta=\frac{3 \pi}{4}$
(iii) The angle between the two lines is given by
$\cos \theta=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\left|\mathrm{R}_{1} \| \mathrm{R}_{2}\right|}$
where R_{1} and R_{2} denote the vectors with the direction ratios,
So, here we have,
$R 1=i-4 j+8 k$ and $R 2=i$ for x - axis
$\cos \theta=\frac{1-0+0}{\sqrt{1^{2}+(-4)^{2}+8^{2}} \sqrt{1^{2}}}=\frac{1}{\sqrt{81}}$
$\cos \theta=\frac{1}{9}$
Hence, $\theta=\cos ^{-1} \frac{1}{9}$
With y - axis, i.e. $R 2=j$
$\cos \theta=\frac{0-4+0}{\sqrt{1^{2}+(-4)^{2}+8^{2}} \sqrt{1^{2}}}=-\frac{4}{9}$
$\cos \theta=-\frac{1}{9}$
Hence, $\theta=\cos ^{-1}\left(-\frac{1}{9}\right)$
With z- axis, i. e. $\mathrm{R} 2=\mathrm{k}$
$\cos \theta=\frac{0-0+8}{\sqrt{1^{2}+(-4)^{2}+8^{2}} \sqrt{1^{2}}}=\frac{8}{9}$
$\cos \theta=\frac{8}{9}$
Hence, $\theta=\cos ^{-1}\left(\frac{8}{9}\right)$
18. Question

Find the coordinates of the foot of the perpendicular drawn from the point $A(1,8,4)$ to the line joining the points $B(0,-1,3)$ and $C(2,-3,-1)$.

Answer

Given: $A(1,8,4)$
Line segment joining $B(0,-1,3)$ and $C(2,-3,-1)$ is
$B C=2 i-2 j-4 k$
Let the foot of the perpendicular be R then,
As R lies on the line having point B and parallel to $B C$,
So, $R=(0,-1,3)+a(2,-2,-4)$
$R(2 a,-1-2 a, 3-4 a)$
The line segment $A R$ is
$A R=(2 a-1) i+(-1-2 a-8) j+(3-4 x-4) k$
As the lines $A R$ and $B C$ are perpendicular thus, (as R is the foot of the perpendicular on $B C$)
$A R \cdot B C=0$
ð $2(2 a-1)+(-2)(-9-2 a)+(-4)(-1-4 a)=0$
ð $24 a+20=0$
才 $\mathrm{a}=-\frac{5}{6}$
Substituting a in R we get,
$\mathrm{R}\left(-\frac{5}{3}, \frac{2}{3}, \frac{19}{3}\right)$

