25. Graphs

Exercise 25A

1. Question

On a graph paper draw the coordinate axes $\mathrm{X}^{\prime} \mathrm{OX}$ and YOY^{\prime}, and plot each of the following points:
(i) $\mathrm{A}(4,3)$ (ii) $\mathrm{B}(2,6)$
(iii) $C(-3,5)$ (iv) $D(-5,2)$
(v) $E(-2,-3)(v i) F(-5,-3)$
(vii) $G(5,-4)$ (viii) $H(3,-3)$

Answer

Let $X^{\prime} O X$ and $Y O Y^{\prime}$ be the coordinate axes.

(i) On the x-axis, take 4 units to the right of the y axis; and then on the y-axis, take 3 units above the x-axis. Thus, we obtain the point $A(4,3)$
(ii) On the x-axis, take 2 units to the right of the y-axis; and then on the y-axis, take 6 units above the x-axis. Thus, we obtain the point $\mathrm{B}(2,6)$
(iii) On the x-axis, take 3 units to the left of the y-axis; and then on the y-axis, take 5 units above the x-axis. Thus, we obtain the point $C(-3,5)$
(iv) On the x-axis, take 5 units to the left of the y-axis; and then on the y-axis, take 2 units above the x-axis. Thus, we obtain the point $D(-5,2)$
(v) On the x-axis, take 2 units to the left of the y-axis; and then on the y-axis, take 3 units below the x-axis. Thus, we obtain the point $E(-2,-3)$
(vi) On the x -axis, take 5 units to the left of the y -axis; and then on the y -axis, take 3 units below the x-axis. Thus, we obtain the point $F(-5,-3)$
(vii) On the x -axis, take 5 units to the right of the y -axis; and then on the y -axis, take 4 units below the x-axis. Thus, we obtain the point $G(5,-4)$
(viii) On the x-axis, take 3 units to the right of the y-axis; and then on the y-axis, take 3 units below the x-axis. Thus, we obtain the point $H(3,-3)$

1 A. Question

Draw the graph of the function $\mathrm{y}=3 \mathrm{x}$.

Answer

The given function is $y=3 x$. For some different values of x, the corresponding values of y are given below:

Now, let us plot the points $\mathrm{O}(0,0), \mathrm{A}(1,3)$ and $\mathrm{B}(2,6)$.

\therefore Now, we obtain our required graph.

1 B. Question

From the graph, find the value of y, when
(i) $\mathrm{x}=3$ (ii) $\mathrm{x}=5$ (iii) $\mathrm{x}=6$

Answer

(i) Our point C to be plotted lies on function $\mathrm{y}=3 \mathrm{x}$.

Here, first plotting $\mathrm{y}=3 \mathrm{x}$.
Here, $x=3$.
\therefore Now for abscissa equal to 3 , we plot the point on $\mathrm{y}=3 \mathrm{x}$, ie $\mathrm{y}=3 \times 3=9$

Hence, the value of y is 9
(ii) Our point to be plotted lies on function $y=3 x$.

Here, first plotting $y=3 x$.
Here, $x=5$.
\therefore Now for abscissa equal to 5 , we plot the point on $y=3 x$, ie $y=3 \times 5=15$
Hence, the value of y is 15
(iii) Our point to be plotted lies on function $y=3 x$.
\therefore Here, first plotting $\mathrm{y}=3 \mathrm{x}$.
Here, $x=6$.
\therefore Now for abscissa equal to 6 , we plot the point on $y=3 x$, ie $y=3 \times 6=18$
Hence, the value of y is 18

2 A. Question

Draw the graph of the function $P=4 x$.

Answer

The given function is $P=4 x$. For some different values of x, the corresponding values of P are given below:

Now let us plot the points, $O(0,0), A(1,4)$ and $B(2,8)$

\therefore Now, we obtain our required graph.
2 B. Question

From the graph, find the value of P, when
(i) $\mathrm{x}=3$
(ii) $x=4$
(iii) $x=6$

Answer

(i) Our point C to be plotted lies on function $P=4 x$.
\therefore Here, first plotting $\mathrm{P}=4 \mathrm{x}$.
Here, $x=3$.
\therefore Now for abscissa equal to 3 , we plot the point on $P=4 x$, ie $P=4 \times 3=12$
Hence, the value of P is 12
(ii) Our point D to be plotted lies on function $P=4 x$.
\therefore Here, first plotting $P=4 x$.
Here, $x=4$.
\therefore Now for abscissa equal to 4 , we plot the point on $P=4 x$, ie $P=4 \times 4=16$
Hence, the value of P is 16
(iii) Our point E to be plotted lies on function $P=4 x$.
\therefore Here, first plotting $P=4 x$.
Here, $x=6$.
\therefore Now for abscissa equal to 6 , we plot the point on $P=4 x$, ie $P=4 \times 6=24$
Hence, the value of P is 24

3 A. Question

Draw the graph of the function $A=x^{2}$.

Answer

The given function is $A=x^{2}$.
For some different values of x, the corresponding values of A are given below:

Now let us plot the points, $\mathrm{O}(0,0), \mathrm{S}(1,1)$ and $\mathrm{P}(2,4)$.

\therefore Now we obtain the required graph.

3 B. Question

From the graph, find the value of A, When
(i) $\mathrm{x}=2$ (ii) $\mathrm{x}=3$ (iii) $\mathrm{x}=4$

Answer

(i) Our point B to be plotted lies on function $A=x^{2}$.
\therefore Here, first plotting $\mathrm{A}=\mathrm{x}^{2}$.
Here, $x=2$.
\therefore Now for abscissa equal to 2 , we plot the point on $A=x^{2}$., ie $A=2^{2}=4$ Hence, the value of A is 4
(ii) Our point C to be plotted lies on function $A=x^{2}$.
\therefore Here, first plotting $A=x^{2}$.
Here, $x=3$.
\therefore Now for abscissa equal to 3 , we plot the point on $A=x^{2}$., ie $A=3^{2}=9$
Hence, the value of A is 9
(iii) Our point to be plotted lies on function $A=x^{2}$.
\therefore Here, first plotting $\mathrm{A}=\mathrm{x}^{2}$.

Here, $x=4$.
\therefore Now for abscissa equal to 4 , we plot the point on $A=x^{2}$., ie $A=4^{2}=16$
Hence, the value of A is 16

Exercise 25C

1. Question

In which of the following quadrants does the point $P(3,6)$ lie?
A. I
B. II
C. III
D. IV

Answer
Here, given point is $\mathrm{P}(3,6)$.
Both the coordinates are positive.
Hence, point P lies in first quadrant.

2. Question

In which of the following quadrants does the point $(-7,-1)$ lie?
A. I
B. II
C. III
D. IV

Answer
Here, given point is $(-7,-1)$.
Both the coordinates are negative.
Hence, given point lies in third quadrant.

3. Question

In which of the following quadrants does the point $A(2,-3)$ lie?
A. I
B. II
C. III
D. IV

Answer
Here, given point is $A(2,-3)$.
Here, abscissa of a point is positive and ordinate is negative.
Hence, given point lies in fourth quadrant.

4. Question

In which of the following quadrants does the point $Q(-4,1)$ lie?
A. I
B. II
C. III
D. IV

Answer

Here, given point is $Q(-4,1)$
Here, abscissa of a point is negative and ordinate is positive.
Hence, given point lies in second quadrant.

5. Question

The abscissa of a point is its distance from the
A. origin
B. x-axis
C. y-axis
D. none of these

Answer

We know that the abscissa of a point is its distance from the y-axis.

6. Question

The graph of $\mathrm{y}=\mathrm{a}$ is
A. the x-axis
B. the y-axis
C. a line parallel to the y-axis
D. a line parallel to the x-axis

Answer

Here, the line $y=a$ is parallel x-axis.

7. Question

The equation representing the y-axis is
A. $x=0$
B. $y=0$
C. $x=a$
D. $y=a$

Answer

We know that the graph $x=a$ is a line parallel to the y-axis.
Hence, for $\mathrm{x}=0$, line represents y axis.

