24. Cross, or Vector, Product of Vectors

Exercise 24

1 A. Question

Find $(\vec{a} \times \vec{b})$ and $|\vec{a} \times \vec{b}|$, when
$\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-4 \hat{k}$

Answer

$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have
$\vec{a}=i-j+2 k$ and $\vec{b}=2 i+3 j-4 k$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=2$ and $\mathrm{b}_{1}=2, \mathrm{~b}_{2}=3, \mathrm{~b}_{3}=-4$
Thus, substituting the values of $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}$ and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=((-1 \times-4)-3 \times 2) i+(2 \times 2-(-4) \times 1) j+(1 \times 3-2 \times(-1)) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-2)^{2}+8^{2}+5^{2}}$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(-2 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$ and $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{93}$

1 B. Question

Find $(\vec{a} \times \vec{b})$ and $|\vec{a} \times \vec{b}|$, when
$\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$

Answer

$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=2 i-j+3 k$ and $\vec{b}=3 i+5 j-2 k$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=3$ and $\mathrm{b}_{1}=3, \mathrm{~b}_{2}=5, \mathrm{~b}_{3}=-2$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=((-1 \times-2)-5 \times 3) \mathrm{i}+(3 \times 3-(-2) \times 2) \mathrm{j}+(2 \times 5-3 \times(-1)) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-17)^{2}+13^{2}+7^{2}}=13 \sqrt{3}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(-17) \mathrm{i}+(13) \mathrm{j}+(7) \mathrm{k}$

1 C. Question

Find $(\vec{a} \times \vec{b})$ and $|\vec{a} \times \vec{b}|$, when
$\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

Answer

$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=i-7 j+7 k$ and $\vec{b}=3 i-2 j+2 k$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=-7, \mathrm{a}_{3}=7$ and $\mathrm{b}_{1}=3, \mathrm{~b}_{2}=-2, \mathrm{~b}_{3}=2$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=((-7 \times 2)-(-2) \times 7) i+(7 \times 3-1 \times 2) \mathrm{j}+((-2) \times 1-3 \times(-7)) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(0)^{2}+19^{2}+19^{2}}=19 \sqrt{2}$
$\Rightarrow \vec{a} \times \vec{b}=(0) \mathrm{i}+(19) \mathrm{j}+(19) \mathrm{k}$

1 D. Question

Find $(\vec{a} \times \vec{b})$ and $|\vec{a} \times \vec{b}|$, when
$\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+\hat{\mathrm{k}}$

Answer

$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=4 i+j-2 k$ and $\vec{b}=3 i+0 j+k$
$\Rightarrow \mathrm{a}_{1}=4, \mathrm{a}_{2}=1, \mathrm{a}_{3}=-2$ and $\mathrm{b}_{1}=3, \mathrm{~b}_{2}=0, \mathrm{~b}_{3}=1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(1 \times 1-(0) \times-2) \mathrm{i}+(-2 \times 3-1 \times 4) \mathrm{j}+(4 \times 0-3 \times 1) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{1^{2}+(-10)^{2}+(-3)^{2}}=\sqrt{110}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\mathrm{i}-10 \mathrm{j}-3 \mathrm{k}$

1 E. Question

Find $(\vec{a} \times \vec{b})$ and $|\vec{a} \times \vec{b}|$, when
$\vec{a}=3 \hat{i}+4 \hat{j}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$

Answer

$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,

We
have $\vec{a}=3 i+4 j+0 k$ and $\vec{b}=i+j+k$
$\Rightarrow a_{1}=3, a_{2}=4, a_{3}=0$ and $b_{1}=1, b_{2}=1, b_{3}=1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(4 \times 1-1 \times 0) i+(0 \times 1-1 \times 3) j+(3 \times 1-1 \times 4) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{4^{2}+(-3)^{2}+(-1)^{2}}=\sqrt{26}$
$\Rightarrow \vec{a} \times \vec{b}=4 \mathrm{i}-3 \mathrm{j}-\mathrm{k}$

2. Question

Find λ if $(2 \hat{i}+6 \hat{j}+14 \hat{k}) \times(\hat{i}-\lambda \hat{j}+7 \hat{k})=\overrightarrow{0}$.

Answer

$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=2 i+6 j+14 k$ and $\vec{b}=i-\lambda j+7 k$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{2}=6, \mathrm{a}_{3}=14$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=\lambda, \mathrm{b}_{3}=7$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(6 \times 7-(-\lambda) \times 14) i+(14 \times 1-2 \times 7) j+(2 \times(-\lambda)-1 \times 6) k$
$\Rightarrow \vec{a} \times \vec{b}=0 i+0 j+0 k$
$\Rightarrow 42+14 \lambda=0$,
$\Rightarrow \lambda=-3$

3. Question

If $\vec{a}=(-3 \hat{i}+4 \hat{j}-7 \hat{k})$ and $\vec{b}=(6 \hat{i}+2 \hat{j}-3 \hat{k})$, find $(\vec{a} \times \vec{b})$.
Verify that (i) $\overrightarrow{\mathrm{a}}$ and $(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$ are perpendicular to each other
and (ii) \vec{b} and $(\vec{a} \times \vec{b})$ are perpendicular to each other.

Answer

$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=-3 i+4 j-7 k$ and $\vec{b}=6 i+2 j-3 k$
$\Rightarrow \mathrm{a}_{1}=-3, \mathrm{a}_{2}=4, \mathrm{a}_{3}=-7$ and $\mathrm{b}_{1}=6, \mathrm{~b}_{2}=2, \mathrm{~b}_{3}=-3$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(4 \times(-3)-2 \times(-7)) i+((-7) \times 6-(-3) \times(-3)) \mathrm{j}+((-3) \times 2-6 \times 4) \mathrm{k}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=2 \mathrm{i}-51 \mathrm{j}-30 \mathrm{k}$
If \vec{a} and $\vec{a} \times \vec{b}$ are perpendicular to each other then,
$\Rightarrow \vec{a} \cdot(\vec{a} \times \vec{b})=0$
i.e.,
$\vec{a} \cdot(\vec{a} \times \vec{b})=(-6)-(204)+(210)=0$
And in the similar way, we have,
$\vec{b} \cdot(\vec{a} \times \vec{b})=(12)-(102)+(90)=0$
Hence proved.

4. Question

Find the value of:
i. $(\hat{i} \times \hat{j}) \cdot \hat{k}+\hat{i} \cdot \hat{j}$ ii. $(\hat{j} \times \hat{k}) \cdot \hat{i}+\hat{j} \cdot \hat{k}$ iii. $\hat{i} \times(\hat{j}+\hat{k})+\hat{j} \times(\hat{k}+\hat{i})+\hat{k} \times(\hat{i}+\hat{j})$

Answer

i.

The value of $(i \times j) \cdot k+i . j$ is, \ldots. $\mathrm{As} i \times j=k$ and $i . j=0$
$\Rightarrow(\mathrm{k}) \cdot \mathrm{k}+0=1$
ii.

The value of $(\mathrm{j} \times \mathrm{k}) . \mathrm{i}+\mathrm{j} . \mathrm{k}$ is, $\ldots . . \mathrm{As} \mathrm{j} \times \mathrm{k}=\mathrm{i}$ and $\mathrm{j} . \mathrm{k}=0$
\Rightarrow (i). $\mathrm{i}+0=1$
iii.

The value of $\mathrm{i} \times(\mathrm{j}+\mathrm{k})+\mathrm{j} \times(\mathrm{k}+\mathrm{i})+\mathrm{k} \times(\mathrm{i}+\mathrm{j})$ is, $\ldots \ldots \mathrm{As} \mathrm{i} \times \mathrm{k}=-\mathrm{j}, \mathrm{i} \times \mathrm{j}=\mathrm{k}, \mathrm{j} \times \mathrm{k}=\mathrm{i}, \mathrm{j} \times \mathrm{i}=-\mathrm{k}, \mathrm{k} \times \mathrm{i}=\mathrm{j}, \mathrm{k} \times \mathrm{j}=-\mathrm{i}$
$\Rightarrow \mathrm{k}-\mathrm{j}+\mathrm{i}-\mathrm{k}+\mathrm{j}-\mathrm{i}=0$

5 A. Question

Find the unit vectors perpendicular to both \vec{a} and \vec{b} when
$\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

Answer

Let $\overrightarrow{\mathbf{r}}$ be the vector which is perpendicular to $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ then we have,
$\overrightarrow{\mathrm{r}}=\mathrm{k} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \ldots$ where k is a scalor
Thus, we have r is a unit vector,
So,
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,

We
have $\vec{a}=3 i+j-2 k$ and $\vec{b}=2 i+3 j-k$
$\Rightarrow a_{1}=3, a_{2}=1, a_{3}=-2$ and $b_{1}=2, b_{2}=3, b_{3}=-1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(1 \times-1-3 \times-2) i+(-2 \times 2-(-1) \times 3) j+(3 \times 3-2 \times 1) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(5)^{2}+(-1)^{2}+(7)^{2}}=5 \sqrt{3}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\frac{5 \mathrm{i}-1 \mathrm{j}+7 \mathrm{k}}{5 \sqrt{3}}$
$\Rightarrow \overrightarrow{\mathrm{r}}= \pm \frac{5 \mathrm{i}-1 \mathrm{j}+7 \mathrm{k}}{5 \sqrt{3}}$

5 B. Question

Find the unit vectors perpendicular to both \vec{a} and \vec{b} when
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$

Answer

Let $\overrightarrow{\mathrm{r}}$ be the vector which is perpendicular to $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ then we have,
$\overrightarrow{\mathrm{r}}=\mathrm{k} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \ldots$ where k is a scalar
Thus, we have r is a unit vector,
So,
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=i-2 j+3 k$ and $\vec{b}=i+2 j-k$
$\Rightarrow a_{1}=1, a_{2}=-2, a_{3}=3$ and $b_{1}=1, b_{2}=2, b_{3}=-1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(-2 \times-1-2 \times 3) \mathrm{i}+(3 \times 1-(-1) \times 1) \mathrm{j}+(1 \times 2-(-2) \times 1) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-4)^{2}+(4)^{2}+(4)^{2}}=4 \sqrt{3}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\frac{-4 \mathrm{i}+4 \mathrm{j}+4 \mathrm{k}}{4 \sqrt{3}}$
$\Rightarrow \overrightarrow{\mathrm{r}}= \pm \frac{-\mathrm{i}+\mathrm{j}+\mathrm{k}}{\sqrt{3}}$

5 C. Question

Find the unit vectors perpendicular to both \vec{a} and \vec{b} when
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=-\hat{\mathrm{i}}+3 \hat{\mathrm{k}}$

Let $\overrightarrow{\mathbf{r}}$ be the vector which is perpendicular to $\overrightarrow{\mathrm{a}}$ \& $\overrightarrow{\mathrm{b}}$ then we have,
$\overrightarrow{\mathrm{r}}=\mathrm{k} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \ldots$ where k is a scalar
Thus, we have r is a unit vector,
So,
We have,
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{b}_{2} \mathrm{a}_{3}\right) \mathrm{i}+\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{b}_{3} \mathrm{a}_{1}\right) \mathrm{j}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{a}_{2}\right) \mathrm{k}$
Here,
We
have $\vec{a}=i+3 j-2 k$ and $\vec{b}=-i+0 j+3 k$
$\Rightarrow a_{1}=1, a_{2}=3, a_{3}=-2$ and $b_{1}=-1, b_{2}=0, b_{3}=3$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(9-0) \mathrm{i}+(2-3) \mathrm{j}+(0-(-3)) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(9)^{2}+(-1)^{2}+(3)^{2}}=\sqrt{91}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\frac{9 \mathrm{i}-\mathrm{j}+3 \mathrm{k}}{\sqrt{91}}$
$\Rightarrow \overrightarrow{\mathrm{r}}= \pm \frac{9 \mathrm{i}-\mathrm{j}+3 \mathrm{k}}{\sqrt{91}}$

5 D. Question

Find the unit vectors perpendicular to both \vec{a} and \vec{b} when
$\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+4 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

Answer

Let $\overrightarrow{\mathbf{r}}$ be the vector which is perpendicular to $\vec{a} \& \overrightarrow{\mathrm{~b}}$ then we have,
$\overrightarrow{\mathrm{r}}=\mathrm{k} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \ldots$ where k is a scalar
Thus, we have r is a unit vector,
So,
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=4 \mathrm{i}+2 \mathrm{j}-\mathrm{k}$ and $\overrightarrow{\mathrm{b}}=\mathrm{i}+4 \mathrm{j}-\mathrm{k}$
$\Rightarrow a_{1}=4, a_{2}=2, a_{3}=-1$ and $b_{1}=1, b_{2}=4, b_{3}=-1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(2 \times-1-(-1) \times 4) i+(-1 \times 1-(-1) \times 4) j+(4 \times 4-1 \times 2) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(2)^{2}+(3)^{2}+(14)^{2}}=\sqrt{209}$
$\Rightarrow \vec{a} \times \vec{b}=\frac{2 i+3 j+14 k}{\sqrt{209}}$
$\Rightarrow \overrightarrow{\mathrm{r}}= \pm \frac{2 \mathrm{i}+3 \mathrm{j}+14 \mathrm{k}}{\sqrt{209}}$

6. Question

Find the unit vectors perpendicular to the plane of the vectors
$\vec{a}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\vec{b}=4 \hat{i}+3 \hat{j}-\hat{k}$

Answer

Let \vec{r} be the vector which is perpendicular to $\vec{a} \& \vec{b}$ then we have,
$\overrightarrow{\mathrm{r}}=\mathrm{k} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \ldots$ where k is a scalar
Thus, we have r is a unit vector,
So,
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=2 i-6 j-3 k$ and $\vec{b}=4 i+3 j-k$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{2}=-6, \mathrm{a}_{3}=-3$ and $\mathrm{b}_{1}=4, \mathrm{~b}_{2}=3, \mathrm{~b}_{3}=-1$
Thus, substituting the values of $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}$ and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(-6 \times(-1)-3 \times(-3)) \mathrm{i}+(-3 \times 4-(-1) \times 2) \mathrm{i}+(2) \times 3-4 \times(-6)) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(15)^{2}+(-10)^{2}+(30)^{2}}=\sqrt{1225}$
$\Rightarrow \vec{a} \times \vec{b}=\frac{3 i-2 j+6 k}{7}$
$\overrightarrow{\mathrm{r}}= \pm \frac{3 \mathrm{i}-2 \mathrm{j}+6 \mathrm{k}}{7}$

7. Question

Find a vector of magnitude 6 which is perpendicular to both the vectors
$\vec{a}=4 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}$.

Answer

Let \vec{r} be the vector which is perpendicular to $\overrightarrow{\mathrm{a}} \& \overrightarrow{\mathrm{~b}}$ then we have,
$\overrightarrow{\mathrm{r}}=\mathrm{k} .(\hat{\mathrm{a}} \times \hat{\mathrm{b}}) \ldots$ where k is a scalar
Thus, we have r is vector of magnitude 6 ,
So,
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,

We
have $\vec{a}=4 i-j+3 k$ and $\vec{b}=-2 i+j-2 k$
$\Rightarrow \mathrm{a}_{1}=4, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=3$ and $\mathrm{b}_{1}=-2, \mathrm{~b}_{2}=1, \mathrm{~b}_{3}=-2$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(-1 \times(-2)-1 \times(3)) \mathrm{i}+(3 \times(-2)-(-2) \times 4) \mathrm{j}+(4 \times 1-(-2) \times(-1)) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-1)^{2}+(2)^{2}+(2)^{2}}=3$
$\Rightarrow \hat{a} \times \hat{\mathrm{b}}=\frac{-\mathrm{i}+2 \mathrm{j}+2 \mathrm{k}}{3}$
$\overrightarrow{\mathrm{r}}= \pm \mathrm{k} \cdot \frac{-\mathrm{i}+2 \mathrm{j}+2 \mathrm{k}}{3}$
Here, as r is of magnitude 6 thus,
$k=6$,
Thus, $\overrightarrow{\mathrm{r}}= \pm 2(-\mathrm{i}+2 \mathrm{j}+2 \mathrm{k})$

8. Question

Find a vector of magnitude 5 units, perpendicular to each of the vectors
$(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where $\vec{a}=(\hat{i}+\hat{j}+\hat{k})$ and $\vec{b}=(\hat{i}+2 \hat{j}+3 \hat{k})$

Answer

$\vec{a}+\vec{b}=2 i+3 j+4 k=\overrightarrow{1}$
$\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=0 \mathrm{i}-\mathrm{i}-2 \mathrm{k}=\overrightarrow{\mathrm{m}}$
Let $\overrightarrow{\mathbf{r}}$ be the vector which is perpendicular to $\overrightarrow{1} \& \vec{m}$ then we have,
$\overrightarrow{\mathrm{r}}=\mathrm{k} .(\hat{\mathrm{l}} \times \hat{\mathrm{m}}) \ldots$ where k is a scalar
Thus, we have r is vector of magnitude 5 ,
So,
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{\mathrm{l}}=2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}$ and $\overrightarrow{\mathrm{m}}=0 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{2}=3, \mathrm{a}_{3}=4$ and $\mathrm{b}_{1}=0, \mathrm{~b}_{2}=-1, \mathrm{~b}_{3}=-2$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{I}} \times \overrightarrow{\mathrm{m}}=(-2) \mathrm{i}+(4) \mathrm{j}+(-2) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-2)^{2}+(4)^{2}+(-2)^{2}}=\sqrt{24}$
$\Rightarrow \hat{\mathrm{a}} \times \hat{\mathrm{b}}=\frac{-\mathrm{i}+2 \mathrm{j}-\mathrm{k}}{\sqrt{6}}$
$\overrightarrow{\mathrm{r}}= \pm \mathrm{k} \cdot \frac{-\mathrm{i}+2 \mathrm{j}-\mathrm{k}}{\sqrt{6}}$
Here, as r is of magnitude 5 thus,
$k=5$,
Thus, $\overrightarrow{\mathrm{r}}= \pm 5\left(\frac{-\mathrm{i}+2 \mathrm{j}-\mathrm{k}}{\sqrt{6}}\right)$

9. Question

Find an angle between two vectors \vec{a} and $\overrightarrow{\mathrm{b}}$ with magnitudes 1 and 2 respectively and $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{3}$.

Answer

We are given that $\overrightarrow{|a|}=1$ and $\overrightarrow{|\vec{b}|}=2$.
And $|\vec{a} \times \vec{b}|=\sqrt{3}$,
So we have,
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\overrightarrow{\mathrm{a} \mid} \cdot|\overrightarrow{\mathrm{b}}| \sin \theta=\sqrt{3}$
$\Rightarrow|\mathrm{a}| \cdot|\overrightarrow{\mathrm{b}}| \sin \theta=1 \times 2 \times \sin \theta$
$\Rightarrow 2 \sin \theta=\sqrt{3}$
$\Rightarrow \theta=\sin ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{3}$

10. Question

If $\vec{a}=(\hat{i}-\hat{j}), \vec{b}=(3 \hat{j}-\hat{k})$ and $\vec{c}=(7 \hat{i}-\hat{k})$, find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and for which $\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}}=1$.

Answer

Given that
Let \vec{d} be the vector which is perpendicular to a \& $\overrightarrow{\mathrm{b}}$ then we have,
$\vec{d}=k .(\hat{a} \times \hat{b}) \ldots$ where k is a scalar
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=i-j$ and $\vec{b}=0 i+3 j-k$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=0$ and $\mathrm{b}_{1}=0, \mathrm{~b}_{2}=3, \mathrm{~b}_{3}=-1$
Thus, substituting the values of $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}$ and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(1) i+(1) j+(3) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(1)^{2}+(1)^{2}+(3)^{2}}=\sqrt{11}$
$\Rightarrow \hat{a} \times \hat{b}=\frac{i+j+3 k}{\sqrt{11}}$
$\overrightarrow{\mathrm{d}}= \pm \mathrm{k} \cdot \frac{\mathrm{i}+\mathrm{j}+3 \mathrm{k}}{\sqrt{11}}$
Given that $\vec{c} . \vec{d}=1$
$\vec{c}=7 i-k$
$\Rightarrow \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}}=\frac{7 \mathrm{k}-3 \mathrm{k}}{\sqrt{11}}=1$,
$\Rightarrow k=\frac{\sqrt{11}}{4}$
$\Rightarrow \overrightarrow{\mathrm{d}}=\frac{\mathrm{i}+\mathrm{j}+3 \mathrm{k}}{4}$

11. Question

If $\vec{a}=(4 \hat{i}+5 \hat{j}-\hat{k}), \vec{b}=(\hat{i}-4 \hat{j}+\hat{k})$ and $\vec{c}=(3 \hat{i}+\hat{j}-\hat{k})$, find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and for which $\vec{c} \cdot \vec{d}=21$.

Answer

Given that

Let $\overrightarrow{\mathrm{d}}$ be the vector which is perpendicular to $\mathrm{a} \& \overrightarrow{\mathrm{~b}}$ then we have,
$\overrightarrow{\mathrm{d}}=\mathrm{k} .(\hat{a} \times \hat{\mathrm{b}}) \ldots$ where k is a scalar
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=4 i+5 j-k$ and $\vec{b}=i-4 j+k$
$\Rightarrow a_{1}=4, a_{2}=5, a_{3}=-1$ and $b_{1}=1, b_{2}=-4, b_{3}=1$
Thus, substituting the values of $\mathrm{a}_{1}, \mathrm{a}_{2}, a_{3}$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}$ and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(1) i+(-5) j+(-21) k$
$\Rightarrow|a \times b|=\sqrt{(1)^{2}+(-5)^{2}+(-21)^{2}}=\sqrt{467}$
$\Rightarrow a \hat{a} \hat{b}=\frac{i-5 j-21 k}{\sqrt{467}}$
$\overrightarrow{\mathrm{d}}= \pm \mathrm{k} \cdot \frac{\mathrm{i}-5 \mathrm{j}-21 \mathrm{k}}{\sqrt{467}}$
Given that $\vec{c} . \overrightarrow{\mathrm{d}}=21$
$\vec{c}=3 i+j-k$
$\Rightarrow \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}}=\frac{19 \mathrm{k}}{\sqrt{467}}=21$,
$\Rightarrow \mathrm{k}=\frac{\sqrt{467}}{19 \times 21}$
$\overrightarrow{\mathrm{d}}=\frac{\mathrm{i}-5 \mathrm{j}-21 \mathrm{k}}{319} \times \sqrt{467}$

12. Question

Prove that $|\vec{a} \times \vec{b}|=(\vec{a} \cdot \vec{b}) \tan \theta$, where θ is the angle between \vec{a} and \vec{b}.

Answer

We know that $\overrightarrow{\mid a} \cdot \vec{b}|=|\vec{a}|| \vec{b}|\cos \theta|$
And $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \mid$
So,
$\tan \theta=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} \mid}{\overrightarrow{\mid \mathrm{a}} \cdot \overrightarrow{\mathrm{b} \mid}}$
Hence, proved.

13. Question

Write the value of p for which $\vec{a}=(3 \hat{i}+2 \hat{j}+9 \hat{k})$ and $\vec{b}=(\hat{i}+p \hat{j}+3 \hat{k})$ are parallel vectors.

Answer

As the vectors are parallel vectors so, $\vec{a} \times \vec{b}=0$
Thus,
We have,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=3 i+2 j+9 k$ and $\vec{b}=i+p j+3 k$
$\Rightarrow \mathrm{a}_{1}=3, \mathrm{a}_{2}=2, \mathrm{a}_{3}=9$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=\mathrm{p}, \mathrm{b}_{3}=3$
Thus, substituting the values of $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}$ and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(6-9 p) i+(0) j+(3 p-2) k=0$
$\Rightarrow 6-9 \mathrm{p}=0$
\Rightarrow Thus, $\mathrm{p}=\frac{2}{3}$.

14 A. Question

Verify that $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+(\vec{a} \times \vec{c})$, when
$\vec{a}=\hat{i}-\hat{j}-3 \hat{k}, \vec{b}=4 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$

Answer

To verify $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})$
We need to prove L.H.S = R.H.S
L.H.S we have,

Given, $\vec{a}=\hat{i}-\hat{j}-3 \hat{k} \quad \vec{b}=4 \hat{i}-3 \hat{j}+\hat{k} \vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$
$\vec{a} \times(\vec{b}+\vec{c})=(i-j-3 k) \times(6 i-4 j+3 k)$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=i-j-3 k$ and $\vec{b}+\vec{c}=6 i-4 j+3 k$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=-3$ and $\mathrm{b}_{1}=6, \mathrm{~b}_{2}=-4, \mathrm{~b}_{3}=3$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \overrightarrow{(b}+\vec{c})=(-3-12) i+(3+18) j+(-4+6) k$
$\Rightarrow(-15) \mathrm{i}+(21) \mathrm{j}+(2) \mathrm{k}$
RHS is
$(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})=(-10 i+13 j+k)+(-5 i+8 j+k)$
$\Rightarrow(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})=(-15) i+(21) j+(2) k$
Thus, LHS $=$ RHS .

14 B. Question

Verify that $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+(\vec{a} \times \vec{c})$, when
$\vec{a}=4 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$.

Answer

To verify $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})$
We need to prove L.H.S = R.H.S
L.H.S we have,

Given, $\vec{a}=4 \hat{i}-\hat{j}+\hat{k} \vec{b}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{i}-\hat{j}+\hat{k}$
$\vec{a} \times(\vec{b}+\vec{c})=(4 i-j+k) \times(2 i+0 j+2 k)$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=4 i-j+k$ and $\vec{b}+\vec{c}=2 i+0 j+2 k$
$\Rightarrow \mathrm{a}_{1}=4, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=1$ and $\mathrm{b}_{1}=2, \mathrm{~b}_{2}=0, \mathrm{~b}_{3}=2$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \overrightarrow{(b}+\vec{c})=(-2) i+(-2) j+(2) k$
$\Rightarrow(-2) \mathrm{i}+(-2) \mathrm{j}+(2) \mathrm{k}$
RHS is
$(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})=(-2 i-3 j+5 k)+(0 i+j-3 k)$
$\Rightarrow(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})=(-2) i+(-2) j+(2) k$

Thus, LHS = RHS.

15 A. Question

Find the area of the parallelogram whose adjacent sides are represented by the vectors:
$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=-3 \hat{i}-2 \hat{j}+\hat{k}$

Answer

The area of the parallelogram $=|\vec{a} \times \vec{b}|$, where a and b are vectors of it's adjacent sides.
Area $=|\vec{a} \times \vec{b}|$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=i+2 j+3 k$ and $\vec{b}=-3 i-2 j+k$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=2, \mathrm{a}_{3}=3$ and $\mathrm{b}_{1}=-3, \mathrm{~b}_{2}=-2, \mathrm{~b}_{3}=1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(8) i+(-10) j+(4) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(8)^{2}+(-10)^{2}+(4)^{2}}=\sqrt{180}$
\Rightarrow area $=6 \sqrt{5}$ sq units

15 B. Question

Find the area of the parallelogram whose adjacent sides are represented by the vectors:
$\overrightarrow{\mathrm{a}}=(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}-\hat{j}+\hat{\mathrm{k}})$

Answer

The area of the parallelogram $=|\vec{a} \times \vec{b}|$, where a and b are vectors of it's adjacent sides.
Area $=|\vec{a} \times \overrightarrow{\mathrm{b}}|$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=3 i+j+4 k$ and $\vec{b}=i-j+k$
$\Rightarrow a_{1}=3, a_{2}=1, a_{3}=4$ and $b_{1}=1, b_{2}=-1, b_{3}=1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(5) i+(-1) j+(-4) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(5)^{2}+(-1)^{2}+(-4)^{2}}=\sqrt{42}$
\Rightarrow area $=\sqrt{42}$ sq units

15 C. Question

Find the area of the parallelogram whose adjacent sides are represented by the vectors:
$\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}$

Answer

The area of the parallelogram $=|\vec{a} \times \vec{b}|$, where a and b are vectors of it's adjacent sides.
Area $=|\vec{a} \times \vec{b}|$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=2 i+j+3 k$ and $\vec{b}=i-j+0 k$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{2}=1, \mathrm{a}_{3}=3$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=-1, \mathrm{~b}_{3}=0$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(3) \mathrm{i}+(3) \mathrm{j}+(-3) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(3)^{2}+(3)^{2}+(-3)^{2}}=3 \sqrt{3}$
\Rightarrow area $=3 \sqrt{3}$ sq units

15 D. Question

Find the area of the parallelogram whose adjacent sides are represented by the vectors:
$\vec{a}=2 \hat{i}$ and $\vec{b}=3 \hat{j}$

Answer

The area of the parallelogram $=|\vec{a} \times \vec{b}|$, where a and b are vectors of it's adjacent sides.
Area $=|\vec{a} \times \vec{b}|$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=2 i+0 j+0 k$ and $\vec{b}=0 i+3 j+0 k$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{2}=0, \mathrm{a}_{3}=0$ and $\mathrm{b}_{1}=0, \mathrm{~b}_{2}=3, \mathrm{~b}_{3}=0$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(6) k$
$\Rightarrow|a \times b|=6$
\Rightarrow area $=6$ Sq units

16 A. Question

Find the area of the parallelogram whose diagonal are represented by the vectors
$\overrightarrow{\mathrm{d}}_{1}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}_{2}=\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

Answer

The diagonals are $\vec{a}+\vec{b}=3 i+j-2 k \& \vec{a}-\vec{b}=i-3 j+4 k$
Thus, $\vec{a}=2 i-j+k, \vec{b}=i+2 j-3 k$
The area of the parallelogram $=|\vec{a} \times \vec{b}|$, where a and b are vectors of it's adjacent sides.
Area $=|\vec{a} \times \vec{b}|$
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{b}_{2} \mathrm{a}_{3}\right) \mathrm{i}+\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{b}_{3} \mathrm{a}_{1}\right) \mathrm{j}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{a}_{2}\right) \mathrm{k}$
Here,
We
have $\vec{a}=2 i-j+k$ and $\vec{b}=i+2 j-3 k$
$\Rightarrow \mathrm{a}_{1}=2, \mathrm{a}_{2}=-1, \mathrm{a}_{3}=1$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=2, \mathrm{~b}_{3}=-3$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(3-2) i+7 j+(5) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(1)^{2}+(7)^{2}+(5)^{2}}=5 \sqrt{3}$
\Rightarrow
\Rightarrow area $=5 \sqrt{3}$ sq units

16 B. Question

Find the area of the parallelogram whose diagonal are represented by the vectors
$\overrightarrow{\mathrm{d}}_{1}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}_{2}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

Answer

The diagonals are $\vec{a}+\vec{b}=2 i-j+k \& \vec{a}-\vec{b}=3 i+4 j-k$
Thus, $\overrightarrow{\mathrm{a}}=\frac{5}{2} \mathrm{i}+\frac{3}{2} \mathrm{j}, \overrightarrow{\mathrm{b}}=-\frac{1}{2} \mathrm{i}-\frac{5}{2} \mathrm{j}+\mathrm{k}$
The area of the parallelogram $=|\vec{a} \times \vec{b}|$, where a and b are vectors of it's adjacent sides.
Area $=|\vec{a} \times \vec{b}|$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have, $\overrightarrow{\mathrm{a}}=\frac{5}{2} \mathrm{i}+\frac{3}{2} \mathrm{j}, \overrightarrow{\mathrm{b}}=-\frac{1}{2} \mathrm{i}-\frac{5}{2} \mathrm{j}+\mathrm{k}$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left(\frac{3}{2}\right) \mathrm{i}-\frac{5}{2} \mathrm{j}+\left(-\frac{11}{2}\right) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(-\frac{5}{2}\right)^{2}+\left(-\frac{11}{2}\right)^{2}}=\frac{1}{2} \sqrt{155}$
\Rightarrow area $=\frac{1}{2} \sqrt{155}$ sq units

16 C. Question

Find the area of the parallelogram whose diagonal are represented by the vectors
$\overrightarrow{\mathrm{d}}_{1}=\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}_{2}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}$.

Answer

The diagonals are $\vec{a}+\vec{b}=i-3 j+2 k \& \vec{a}-\vec{b}=-i+2 j+0 k$
Thus, $\vec{a}=0 i-\frac{1}{2} j+k, \vec{b}=i-\frac{5}{2} j+k$
The area of the parallelogram $=|\vec{a} \times \vec{b}|$, where a and b are vectors of it's adjacent sides.
Area $=|\vec{a} \times \vec{b}|$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=0 i-\frac{1}{2} j+k$ and $\vec{b}=i-\frac{5}{2} j+k$
$\Rightarrow \mathrm{a}_{1}=0, \mathrm{a}_{2}=-\frac{1}{2}, \mathrm{a}_{3}=1$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=-\frac{5}{2}, \mathrm{~b}_{3}=1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(2) \mathrm{i}+1 \mathrm{j}+\left(\frac{1}{2}\right) \mathrm{k}$
$\Rightarrow|a \times b|=\sqrt{(2)^{2}+(1)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{1}{2} \sqrt{21}$
\Rightarrow
\Rightarrow area $=\frac{\sqrt{21}}{2}$ sq units

17 A. Question

Find the area of the triangle whose two adjacent sides are determined by the vectors
$\vec{a}=-2 \hat{i}-5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-\hat{k}$

Answer

The area of the triangle $=\frac{|\vec{a} \times \vec{b}|}{2}$, where a and b are it's adjacent sides vectors.
Area $=\frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=-2 i+0 j-5 k$ and $\vec{b}=i-2 j-k$
$\Rightarrow \mathrm{a}_{1}=-2, \mathrm{a}_{2}=0, \mathrm{a}_{3}=-5$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=-2, \mathrm{~b}_{3}=-1$

Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(8) \mathrm{i}+(-10) \mathrm{j}+(4) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-10)^{2}+(-7)^{2}+(4)^{2}}=\sqrt{165}$
\Rightarrow area $=\frac{\sqrt{165}}{2}$ sq units

17 B. Question

Find the area of the triangle whose two adjacent sides are determined by the vectors
$\vec{a}=3 \hat{i}+4 \hat{j}$ and $\vec{b}=-5 \hat{i}+7 \hat{j}$.

Answer

The area of the triangle $=\frac{|\vec{a} \times \vec{b}|}{2}$, where a and b are it's adjacent sides vectors.
Area $=\frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=3 i+4 j+0 k$ and $\vec{b}=-5 i+7 j+0 k$
$\Rightarrow \mathrm{a}_{1}=3, \mathrm{a}_{2}=4, \mathrm{a}_{3}=0$ and $\mathrm{b}_{1}=-5, \mathrm{~b}_{2}=7, \mathrm{~b}_{3}=0$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3}.
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(41) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=41$
\Rightarrow area $=\frac{41}{2}$ sq units

18 A. Question

Using vectors, find the area of $\triangle A B C$ whose vertices are
$A(1,1,2), B(2,3,5)$ and $C(1,5,5)$

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{\mathrm{AB}}=i+2 j+3 k$ and $\overrightarrow{\mathrm{AC}}=4 j+3 k$
The area of the triangle $=\frac{|\vec{a} \times \vec{b}|}{2}$, where a and b are it's adjacent sides vectors.
Area $=\frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{\mathrm{AB}}=\mathrm{i}+2 \mathrm{j}+3 \mathrm{k}$ and $\overrightarrow{\mathrm{AC}}=4 \mathrm{j}+3 \mathrm{k}$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=2, \mathrm{a}_{3}=3$ and $\mathrm{b}_{1}=0, \mathrm{~b}_{2}=4, \mathrm{~b}_{3}=3$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3}, in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(-6) \mathrm{i}+(-3) \mathrm{j}+(4) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-6)^{2}+(-3)^{2}+(4)^{2}}=\sqrt{61}$
\Rightarrow area $=\frac{\sqrt{61}}{2}$ sq units

18 B. Question

Using vectors, find the area of $\triangle A B C$ whose vertices are
$A(1,2,3), B(2,-1,4)$ and $C(4,5, \Delta 1)$ ((considering $\Delta 1$ as 1$))$

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{\mathrm{AB}}=\mathrm{i}-3 \mathrm{j}+1 \mathrm{k}$ and $\overrightarrow{\mathrm{AC}}=3 \mathrm{i}+3 \mathrm{j}-2 \mathrm{k}$
The area of the triangle $=\frac{|\vec{a} \times \vec{b}|}{2}$, where a and b are it's adjacent sides vectors.
Area $=\frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{A B}=i-3 j+k$ and $\overrightarrow{A C}=3 i+3 j-2 k$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=-3, \mathrm{a}_{3}=1$ and $\mathrm{b}_{1}=3, \mathrm{~b}_{2}=3, \mathrm{~b}_{3}=-2$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(3) \mathrm{i}+(5) \mathrm{j}+(12) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(3)^{2}+(5)^{2}+(12)^{2}}=\sqrt{178}$
\Rightarrow area $=\frac{\sqrt{178}}{2}$ sq units

18 C. Question

Using vectors, find the area of $\triangle A B C$ whose vertices are
$A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{\mathrm{AB}}=-2 \mathrm{i}+0 \mathrm{j}-5 \mathrm{k}$ and $\overrightarrow{\mathrm{AC}}=\mathrm{i}-2 \mathrm{j}-\mathrm{k}$
The area of the triangle $=\frac{|\vec{a} \times \vec{b}|}{2}$, where a and b are it's adjacent sides vectors.
Area $=\frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{A B}=-2 i-5 k$ and $\overrightarrow{A C}=i-2 j-k$
$\Rightarrow \mathrm{a}_{1}=-2, \mathrm{a}_{2}=0, \mathrm{a}_{3}=-5$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=-2, \mathrm{~b}_{3}=-1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3}, in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(-10) \mathrm{i}+(-7) \mathrm{j}+(4) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-10)^{2}+(-7)^{2}+(4)^{2}}=\sqrt{165}$
\Rightarrow area $=\frac{\sqrt{165}}{2}$ sq units

18 D. Question

Using vectors, find the area of $\triangle A B C$ whose vertices are $A(1,-1,2), B(2,1,-1)$ and $C(3,-1,2)$.

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{\mathrm{AB}}=i+2 j-3 \mathrm{k}$ and $\overrightarrow{\mathrm{AC}}=2 \mathrm{i}$
The area of the triangle $=\frac{|\vec{a} \times \vec{b}|}{2}$, where a and b are it's adjacent sides vectors.
Area $=\frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{A B}=i+2 j-3 k$ and $\overrightarrow{A C}=2 i$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=2, \mathrm{a}_{3}=3$ and $\mathrm{b}_{1}=0, \mathrm{~b}_{2}=4, \mathrm{~b}_{3}=3$
Thus, substituting the values of $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}$ and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(-6)+(-4) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-6)^{2}+(-4)^{2}}=\sqrt{52}$
\Rightarrow area $=\frac{\sqrt{52}}{2}$ sq units

19 A. Question

Using vector method, show that the given points A, B, C are collinear:
$A(3,-5,1), B(-1,0,8)$ and $C(7,-10,-6)$

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{A B}=-4 i+5 j+7 k$ and $\overrightarrow{A C}=4 i-5 j-7 k$
To prove that A, B, C are collinear we need to prove that
$\vec{a} \times \vec{b}=0$.
So,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{A B}=i+2 j+3 k$ and $\overrightarrow{A C}=4 j+3 k$
$\Rightarrow \mathrm{a}_{1}=-4, \mathrm{a}_{2}=5, \mathrm{a}_{3}=7$ and $\mathrm{b}_{1}=4, \mathrm{~b}_{2}=-5, \mathrm{~b}_{3}=-7$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(0) i+(0) j+(0) k$
$\Rightarrow|a \times b|=0$

19 B. Question

Using vector method, show that the given points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear:
$A(6,-7,-1), B(2,-3,1)$ and $C(4,-5,0)$.

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{\mathrm{AB}}=-4 i+4 j+2 k$ and $\overrightarrow{\mathrm{AC}}=-2 i+2 j+k$
To prove that A, B, C are collinear we need to prove that
$\vec{a} \times \vec{b}=0$.
So,
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) i+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{A B}=-4 i+4 j+2 k$ and $\overrightarrow{A C}=-2 i+2 j+k$
$\Rightarrow a_{1}=-4, a_{2}=4, a_{3}=2$ and $b_{1}=-2, b_{2}=2, b_{3}=1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(0) \mathrm{i}+(0) \mathrm{j}+(0) \mathrm{k}$
$\Rightarrow|a \times b|=0$
Thus, A, B and C are collinear.

20. Question

Show that the point A, B, C with position vectors $(3 \hat{i}-2 \hat{j}+4 \hat{k}),(\hat{i}+\hat{j}+\hat{k})$ and $(-\hat{i}+4 \hat{j}-2 \hat{k})$ respectively are collinear.

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{\mathrm{AB}}=-2 \mathrm{i}+3 j-3 \mathrm{k}$ and $\overrightarrow{\mathrm{AC}}=-4 \mathrm{i}+6 j-6 k$
To prove that A, B, C are collinear we need to prove that
$\vec{a} \times \vec{b}=0$.
So,
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{b}_{2} \mathrm{a}_{3}\right) \mathrm{i}+\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{b}_{3} \mathrm{a}_{1}\right) \mathrm{j}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{a}_{2}\right) \mathrm{k}$
Here,
We
have $\overrightarrow{A B}=-2 i+3 j-3 k$ and $\overrightarrow{A C}=-4 i+6 j-6 k$
$\Rightarrow \mathrm{a}_{1}=-2, \mathrm{a}_{2}=3, \mathrm{a}_{3}=-3$ and $\mathrm{b}_{1}=-4, \mathrm{~b}_{2}=6, \mathrm{~b}_{3}=-6$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(0) \mathrm{i}+(0) \mathrm{j}+(0) \mathrm{k}$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=0$
Thus, A, B and C are collinear.

21. Question

Show that the points having position vectors $\vec{a}, \vec{b},(\vec{c}=3 \vec{a}-2 \vec{b})$ are collinear, whatever be $\vec{a}, \vec{b}, \vec{c}$.

Answer

Through the vertices we get the adjacent vectors as,
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{AC}}=\vec{c}-\vec{a}=2 \vec{a}+2 \vec{b}$
To prove that A, B, C are collinear we need to prove that
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=0$.
So,
Here,
We
have $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}$ - $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\overrightarrow{(\mathrm{b}}-\overrightarrow{\mathrm{a}}) \times(2 \overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}})$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{2 \mathrm{a}}+0-0-\overrightarrow{\mathrm{a}} \times \overrightarrow{2 \mathrm{~b}}=0$
Thus, A, B and C are collinear.

22. Question

Show that the points having position vector $(-2 \vec{a}+3 \vec{b}+5 \vec{c}),(\vec{a}+2 \vec{b}+3 \vec{c})$ and $(7 \vec{a}-\vec{c})$ are collinear, whatever be $\vec{a}, \vec{b}, \vec{c}$.

Answer

We have, $A=-2 \vec{a}+3 \vec{b}+5 \vec{c}, B=\vec{a}+2 \vec{b}+3 \vec{c}, C=7 \vec{a}-\vec{c}$
Through the vertices we get the adjacent vectors as,
$\overrightarrow{A B}=3 \vec{a}-\vec{b}-2 \vec{c}$ and $\overrightarrow{A C}=9 \vec{a}-3 \vec{b}-6 \vec{c}$
To prove that A, B, C are collinear we need to prove that
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=0$.
So,
Here,
We
have
$\overrightarrow{A B}=3 \vec{a}-\vec{b}-2 \vec{c}$ and $\overrightarrow{A C}=9 \vec{a}-3 \vec{b}-6 \vec{c}$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=(3 \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}-2 \overrightarrow{\mathrm{c}}) \times(9 \overrightarrow{\mathrm{a}}-3 \overrightarrow{\mathrm{~b}}-6 \overrightarrow{\mathrm{c}})$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=0$
Thus, A, B and C are collinear.

23. Question

Find a unit vector perpendicular to the plane $A B C$, where the points A, B, C, are $(3,-1,2),(1,-1,-3)$ and $(4,-3,1)$ respectively.

Answer

A unit vector perpendicular to the plane $A B C$ will be,
$\pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Through the vertices we get the adjacent vectors as,
$\overrightarrow{A B}=-2 i+0 j-5 k$ and $\overrightarrow{A C}=i-2 j-k$
$\vec{a} \times \vec{b}=\left(a_{2} b_{3}-b_{2} a_{3}\right) i+\left(a_{3} b_{1}-b_{3} a_{1}\right) j+\left(a_{1} b_{2}-b_{1} a_{2}\right) k$
Here,
We
have $\overrightarrow{A B}=-2 i+0 j-5 k$ and $\overrightarrow{A C}=i-2 j-k$
$\Rightarrow \mathrm{a}_{1}=-2, \mathrm{a}_{2}=0, \mathrm{a}_{3}=-5$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=-2, \mathrm{~b}_{3}=-1$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(-10) i+(-7) j+(4) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-10)^{2}+(-7)^{2}+(4)^{2}}=\sqrt{165}$
\Rightarrow unit vector $=\frac{-10 \mathrm{i}-7 \mathrm{j}+4 \mathrm{k}}{\sqrt{165}}$
24. Question

If $\vec{a}=(\hat{i}+2 \hat{j}+3 \hat{k})$ and $\vec{b}=(\hat{i}-3 \hat{k})$ then find $|\vec{b} \times 2 \vec{a}|$.

Answer

$\vec{a}=i+2 j+3 k$ and $\vec{b}=i-3 k$
Then, $|\vec{b} \times \overrightarrow{2 a}|$,
We have, $\vec{b} \times \vec{a}=\left(-2 a_{2} \cdot b_{3}+2 b_{2} \cdot a_{3}\right) i-\left(a_{3} \cdot 2 b_{1}-2 b_{3} \cdot a_{1}\right) j-\left(a_{1} \cdot 2 b_{2}-2 b_{1} a_{2}\right) k$
Here,
We
have $\vec{a}=i+2 j+3 k$ and $\vec{b}=i-3 k$
$\Rightarrow \mathrm{a}_{1}=1, \mathrm{a}_{2}=2, \mathrm{a}_{3}=3$ and $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=0, \mathrm{~b}_{3}=-3$
Thus, substituting the values of a_{1}, a_{2}, a_{3} and b_{1}, b_{2} and b_{3},
in equation (i) we get
$\Rightarrow \vec{a} \times \vec{b}=(-12) i+(12) j+(-4) k$
$\Rightarrow|\mathrm{a} \times \mathrm{b}|=\sqrt{(-12)^{2}+(12)^{2}+(-4)^{2}}=4 \sqrt{19}$

25. Question

If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, find $\vec{a} \cdot \vec{b}$.

Answer

We have, $|\vec{a}|^{2}|\vec{b}|^{2}=|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}$
So, $|\vec{a} \cdot \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-|\vec{a} \times \vec{b}|^{2}$
$\Rightarrow|\vec{a} \cdot \vec{b}|^{2}=10^{2}-8^{2}=6^{2}$
$\Rightarrow|\vec{a} \cdot \vec{b}|=6$

26. Question

If $|\vec{a}|=2,|\vec{b}|=7$ and $(\vec{a} \times \vec{b})=(3 \hat{i}+2 \hat{j}+6 \hat{k})$, find the angle between \vec{a} and \vec{b}.

Answer

We have, $|\vec{a}|^{2}|\vec{b}|^{2}=|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{3^{2}+2^{2}+6^{2}}=7$
$\Rightarrow 7=7 \times 2 \sin \theta$
$\Rightarrow \sin \theta=\frac{1}{2}$
$\Rightarrow \theta=\sin ^{-1} \frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{6}$

