## 23. Scalar, or Dot, Product of Vectors

## Exercise 23

## 1. Question

Find $\vec{a} \cdot \vec{b}$ when
i. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
ii. $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{j}+4 \hat{k}$
iii. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+5 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{k}}$

## Answer

i)
$\vec{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{\imath}}-4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\vec{a} \cdot \vec{b}=(\hat{i}-2 \hat{\jmath}+\hat{k}) \cdot(3 \hat{i}-4 \hat{\jmath}-2 \hat{k})$
$\Rightarrow \vec{a} \cdot \vec{b}=(1 \times 3)+(-2 \times-4)+(1 \times-2)$
$\Rightarrow \vec{a} \cdot \vec{b}=3+8-2=9$
Ans: $\vec{a} \cdot \vec{b}=9$
ii)
$\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overrightarrow{\mathrm{b}}=0 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}}) \cdot(0 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=(1 \times 0)+(2 \times-2)+(3 \times 4)$
$\Rightarrow \vec{a} \cdot \vec{b}=0-4+12=8$
Ans: $\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=8$
iii)
$\vec{a}=\hat{\imath}-\hat{\jmath}+5 \hat{k}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=(\hat{\imath}-\hat{\jmath}+5 \hat{\mathrm{k}}) \cdot(3 \hat{\imath}+0 \hat{\jmath}-2 \hat{\mathrm{k}})$
$\Rightarrow \vec{a} \cdot \vec{b}=(1 \times 3)+(-1 \times 0)+(5 \times-2)$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=3-0-10=-7$
Ans: $\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=-7$

## 2. Question

Find the value of $\lambda$ for which $\vec{a}$ and $\vec{b}$ are perpendicular, where
i. $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
ii. $\vec{a}=3 \hat{i}-\hat{j}+4 \hat{k}$ and $\vec{b}=-\lambda \hat{i}+3 \hat{j}+3 \hat{k}$
iii. $\vec{a}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\lambda \hat{k}$
iv. $\vec{a}=3 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=-5 \hat{j}+\lambda \hat{k}$

## Answer

i)
$\vec{a}=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$
$\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$
Since these two vectors are perpendicular,their dot product is zero.
$\Rightarrow \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=|\vec{a}||\vec{b}| \cos \frac{\pi}{2}=0$
$\Rightarrow \vec{a} \cdot \vec{b}=(2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+3 \hat{k})=0$
$\Rightarrow \vec{a} \cdot \vec{b}=(2 \times 1)+(\lambda \times-2)+(1 \times 3)=0$
$\Rightarrow \vec{a} \cdot \vec{b}=2-2 \lambda+3=0$
$\Rightarrow 5=2 \lambda$
$\Rightarrow \lambda=\frac{5}{2}$
Ans: $\lambda=\frac{5}{2}$
ii)
$\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-\hat{\jmath}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=-\lambda+3 \hat{\jmath}+3 \hat{\mathrm{k}}$
Since these two vectors are perpendicular, their dot product is zero.
$\Rightarrow \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=|\vec{a}||\vec{b}| \cos \frac{\pi}{2}=0$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=(3 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}) \cdot(-\lambda+3 \hat{\mathrm{~h}}+3 \hat{\mathrm{k}})=0$
$\Rightarrow \vec{a} \cdot \vec{b}=(3 \times-\lambda)+(-1 \times 3)+(4 \times 3)=0$
$\Rightarrow \vec{a} \cdot \vec{b}=-3 \lambda-3+12=0$
$\Rightarrow 9=3 \lambda$
$\Rightarrow \lambda=\frac{9}{3}=3$
Ans: $\lambda=3$
iii)
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-\hat{\mathbf{k}}$
$\overrightarrow{\mathbf{b}}=3 \hat{\mathrm{i}}-2 \hat{j}+\lambda \hat{\mathbf{k}}$
Since these two vectors are perpendicular, their dot product is zero.
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \frac{\pi}{2}=0$
$\Rightarrow \vec{a} \cdot \vec{b}=(2 \hat{\imath}+4 \hat{\jmath}-\hat{k}) \cdot(3 \hat{\imath}-2 \hat{\jmath}+\lambda \hat{k})=0$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=(2 \times 3)+(4 \times-2)+(-1 \times \lambda)=0$
$\Rightarrow \vec{a} \cdot \vec{b}=-\lambda+6-8=0$
$\Rightarrow-2=\lambda$
$\Rightarrow \lambda=-2$
Ans: $\lambda=-2$
iv)
$\vec{a}=3 \hat{i}+2 \hat{\jmath}-5 \hat{k}$
$\overrightarrow{\mathrm{b}}=-5 \hat{\jmath}+\lambda \hat{\mathbf{k}}$
Since these two vectors are perpendicular,their dot product is zero.
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \frac{\pi}{2}=0$
$\Rightarrow \vec{a} \cdot \vec{b}=(3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}) \cdot(-5 \hat{\jmath}+\lambda \hat{k})=0$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=(3 \times 0)+(2 \times-5)+(-5 \times \lambda)=0$
$\Rightarrow \vec{a} \cdot \vec{b}=-5 \lambda+0-10=0$
$\Rightarrow-10=5 \lambda$
$\Rightarrow \lambda=\frac{-10}{5}=-2$
Ans: $\lambda=-2$

## 3. Question

i. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$, show that $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$.
ii. If $\vec{a}=(5 \hat{i}-\hat{j}-3 \hat{k})$ and $\vec{b}=(\hat{i}+3 \hat{j}-5 \hat{k})$ then show that $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are orthogonal.

## Answer

i)
$\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathbf{k}}$
$\vec{a}+\vec{b}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}+3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\Rightarrow \vec{a}+\vec{b}=4 \hat{i}+\hat{\jmath}-\hat{k}$
$\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=\hat{\imath}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}-(3 \hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
Now $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(4 \hat{i}+\hat{\jmath}-\hat{k}) \cdot(-2 \hat{i}+3 \hat{\jmath}-5 \hat{k})$
$=(4 \times-2)+(1 \times 3)+(-1 \times-5)=-8+3+5=0$
Since the dot product of these two vectors is 0 , the vector $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$.
Hence, proved.
ii)
$\vec{a}=5 \hat{i}-\hat{\jmath}-3 \hat{k}$
$\overrightarrow{\mathrm{b}}=\hat{\imath}+3 \hat{\mathrm{\jmath}}-5 \hat{\mathrm{k}}$
$\vec{a}+\vec{b}=5 \hat{\imath}-\hat{\jmath}-3 \hat{k}+\hat{\imath}+3 \hat{\jmath}-5 \hat{k}$
$\Rightarrow \vec{a}+\vec{b}=6 \hat{\imath}+2 \hat{\jmath}-8 \hat{k}$
$\vec{a}-\vec{b}=5 \hat{\imath}-\hat{\jmath}-3 \hat{k}-(\hat{\imath}+3 \hat{\jmath}-5 \hat{k})$
$\Rightarrow \vec{a}-\vec{b}=4 \hat{\imath}-4 \hat{\jmath}+2 \hat{k}$
Now $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(6 \hat{\imath}+2 \hat{\jmath}-8 \hat{k}) \cdot(4 \hat{\imath}-4 \hat{\jmath}+2 \hat{k})$
$=(6 \times 4)+(2 \times-4)+(-8 \times 2)=24-8-16=0$
Since the dot product of these two vectors is 0 , the vector $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$.
Hence, proved that $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are orthogonal.

## 4. Question

If $\vec{a}=(\hat{i}-\hat{j}+7 \hat{k})$ and $\vec{b}=(5 \hat{i}-\hat{j}+\lambda \hat{k})$ then find the value of $\lambda$ so that $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are orthogonal vectors.

## Answer

$\vec{a}=\hat{\imath}-\hat{\jmath}+7 \hat{k}$
$\overrightarrow{\mathrm{b}}=5 \hat{\imath}-\hat{\jmath}+\lambda \hat{\mathrm{k}}$
$(\vec{a}+\vec{b})=\hat{\imath}-\hat{\jmath}+7 \hat{k}+5 \hat{\imath}-\hat{\jmath}+\lambda \hat{k}$
$\Rightarrow \vec{a}+\vec{b}=6 \hat{\imath}-2 \hat{\jmath}+(7+\lambda) \hat{k}$
$\vec{a}-\vec{b}=\hat{\imath}-\hat{\jmath}+7 \hat{k}-(5 \hat{\imath}-\hat{\jmath}+\lambda \hat{k})$
$\Rightarrow \vec{a}-\vec{b}=-4 \hat{i}+0 \hat{\jmath}+(7-\lambda) \hat{k}$
Now $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(6 \hat{\imath}-2 \hat{\jmath}+(7+\lambda) \hat{k}) \cdot(-4 \hat{\imath}+0 \hat{\jmath}+(7-\lambda) \hat{k})$
Since these two vectors are orthogonal, their dot product is zero.
$\Rightarrow(6 \times-4)+(-2 \times 0)+((7+\lambda) \times(7-\lambda))=0-24+0+\left(49-\lambda^{2}\right)=0$
$\Rightarrow \lambda^{2}=25$
$\Rightarrow \lambda= \pm 5$
Ans: $\lambda= \pm 5$

## 5. Question

Show that the vectors
$\frac{1}{7}(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}), \frac{1}{7}(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$ and $\frac{1}{7}(6 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})$
are mutually perpendicular unit vectors.

## Answer

Let,
$\overrightarrow{\mathrm{a}}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$
$\vec{b}=\frac{1}{7}(3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k})$
$\vec{c}=\frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k})$
$|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
We have to show that : $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{c}=0$
L.H.S.
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \cdot \frac{1}{7}(3 \hat{\mathrm{\imath}}-6 \hat{\jmath}+2 \hat{k})=\frac{1}{49}(6-18+12)=0$
$\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\frac{1}{7}(3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}) \cdot \frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k})=\frac{1}{49}(18-12-6)=0$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \cdot \frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k})=\frac{1}{49}(12+6-18)=0$
= R.H.S.
Hence,showed that vectors are mutually perpendicular unit vectors.

## 6. Question

Let $\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$.
Find a vector $\vec{d}$ which is perpendicular to both $\vec{a}$ and $\overrightarrow{0}$ and is such that $\vec{d} \cdot \vec{c}=21$.

## Answer

$\vec{a}=(4 \hat{\imath}+5 \hat{\jmath}-\hat{k})$
$\overrightarrow{\mathrm{b}}=(\hat{i}-4 \hat{\jmath}+5 \hat{k})$
$\overrightarrow{\mathrm{c}}=(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
Let $\overrightarrow{\mathrm{d}}=\mathrm{p} \hat{\mathrm{\imath}}+\mathrm{q} \hat{\jmath}+\mathrm{r} \hat{\mathrm{k}}$
the vector $\vec{d}$ which is perpendicular to both $\vec{a}$ and $\vec{b}$,
$\Rightarrow \vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=0$
$(p \hat{\imath}+q \hat{\jmath}+r \hat{k}) \cdot(4 \hat{\imath}+5 \hat{\jmath}-\hat{k})=0$
$\Rightarrow 4 p+5 q-r=0$
$(p \hat{\imath}+q \hat{\jmath}+r \hat{k}) \cdot(\hat{\imath}-4 \hat{\jmath}+5 \hat{k})=0$
$\mathrm{p}-4 \mathrm{q}+5 \mathrm{r}=0 \ldots$ (2)
$\overrightarrow{\mathrm{d}} \cdot \overrightarrow{\mathrm{c}}=21$.
$(p \hat{\imath}+q \hat{\jmath}+r \hat{k}) \cdot(3 \hat{\imath}+\hat{\jmath}-\hat{k})=21$
$\Rightarrow 3 \mathrm{p}+\mathrm{q}-\mathrm{r}=21 \ldots$
Solving equations $1,2,3$ simultaneously we get
$p=7, q=-7, r=-7$
$\therefore \overrightarrow{\mathrm{d}}=\mathrm{p} \hat{\imath}+\mathrm{q} \hat{\jmath}+\mathrm{r} \hat{\mathrm{k}}=7 \hat{\mathrm{\imath}}-7 \hat{\jmath}-7 \hat{\mathrm{k}}=7(\hat{\mathrm{\imath}}-\hat{\jmath}-\hat{\mathrm{k}})$
Ans: $\overrightarrow{\mathrm{d}}=7(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$

## 7. Question

Let $\vec{a}=(2 \hat{i}+3 \hat{j}+2 \hat{k})$ and $\vec{b}=(\hat{i}+2 \hat{j}+\hat{k})$.
Find the projection of (i) $\vec{a}$ on $\vec{b}$ and (ii) $\vec{b}$ on $\vec{a}$.

## Answer

$\overrightarrow{\mathrm{a}}=(2 \hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{b}}=(\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})$
$|\vec{a}|=\sqrt{2^{2}+3^{2}+2^{2}}=\sqrt{4+9+4}=\sqrt{17}$
$|\vec{b}|=\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{1+4+1}=\sqrt{6}$
$\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{2 \hat{i}+3 \hat{\jmath}+2 \hat{k}}{\sqrt{17}}$
$\hat{\mathrm{b}}=\frac{\overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=\frac{\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}}}{\sqrt{6}}$
Projection of $\vec{a}$ on $\vec{b}$ is $\vec{a} \hat{b}=(2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}) \cdot \frac{\hat{\hat{1}}+2 \hat{\jmath}+\hat{k}}{\sqrt{6}}=\frac{2+6+2}{\sqrt{6}}=\frac{10}{\sqrt{6}}=\frac{5 \sqrt{6}}{3}$
Projection of $\overrightarrow{\mathrm{b}}$ on $\overrightarrow{\mathrm{a}}$ is $\overrightarrow{\mathrm{b}} \hat{\mathrm{a}}=(\hat{\mathrm{i}}+2 \hat{\jmath}+\hat{\mathrm{k}}) \cdot \frac{2 \hat{\mathrm{i}}+3 \hat{\jmath}+2 \hat{\mathrm{k}}}{\sqrt{17}}=\frac{2+6+2}{\sqrt{17}}=\frac{10}{\sqrt{17}}=\frac{10 \sqrt{17}}{17}$
Ans: i) $\frac{5 \sqrt{6}}{3}$
ii) $\frac{10 \sqrt{17}}{17}$

## 8. Question

Find the projection of $(8 \hat{i}+\hat{j})$ in the direction of $(\hat{i}+2 \hat{j}-2 \hat{k})$.

## Answer

Let,
$\vec{a}=(8 \hat{\imath}+\hat{\jmath})$
$\overrightarrow{\mathrm{b}}=(\hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})$
$|\vec{b}|=\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{1+4+4}=\sqrt{9}=3$
$\hat{\mathrm{b}}=\frac{\overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=\frac{\hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}}}{3}$
$\therefore$ The projection of $(8 \hat{\imath}+\hat{\jmath})$ on $(\hat{\imath}+2 \hat{\mathbf{\jmath}}-2 \hat{\mathbf{k}})$
is: $(8 \hat{\imath}+\hat{\jmath}) \cdot \frac{\hat{1}+2 \hat{\jmath}-2 \hat{k}}{3}=\frac{8+2+0}{3}=\frac{10}{3}$
Ans:10/3

## 9. Question

Write the projection of vector $(\hat{i}+\hat{j}+\hat{k})$ along the vector $\hat{j}$.

## Answer

Let,
$\vec{a}=(\hat{\imath}+\hat{\jmath}+\hat{k})$
$\overrightarrow{\mathrm{b}}=(\hat{\mathrm{j}})$
$|\vec{b}|=\sqrt{0^{2}+1^{2}+0^{2}}=\sqrt{1}=1$
$\hat{b}=\frac{\overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=\frac{(\hat{\mathrm{j}})}{1}$
$\therefore$ The projection of $(\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}})$ on $(\hat{\mathrm{j}})$
is: $(\hat{\imath}+\hat{\jmath}+\hat{k}) \cdot(\hat{\jmath})=1$
Ans:1

## 10. Question

i. Find the projection of $\vec{a}$ on $\vec{b}$ if $\vec{a} \cdot \vec{b}=8$ and $\vec{b}=(2 \hat{i}+6 \hat{j}+3 \hat{k})$.
ii. Write the projection of the vector $(\hat{i}+\hat{j})$ on the vector $(\hat{i}-\hat{j})$.

## Answer

i) $\overrightarrow{\mathrm{b}}=(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
$|\vec{b}|=\sqrt{2^{2}+6^{2}+3^{2}}=\sqrt{4+36+9}=\sqrt{49} \ominus 7$
Projection of $\vec{a}$ on $\vec{b}$
$=\overrightarrow{\mathrm{a}} . \overrightarrow{\vec{b}} \mid$
$=\frac{8}{7}$
ANS:8/7
ii) Sol:

Let,
$\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
$\overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}-\hat{\mathrm{y}})$
$|\vec{b}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{1+1}=\sqrt{2}$
$\hat{\mathrm{b}}=\frac{\overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}=\frac{\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}}{\sqrt{2}}$
$\therefore$ The projection of $\hat{\imath}+\hat{\jmath}$ on $(\hat{\imath}-\hat{\jmath})$
is: $(\hat{\imath}+\hat{\jmath}) \cdot \frac{\hat{i}-\hat{\jmath}}{\sqrt{2}}=\frac{1-1}{\sqrt{2}}=0$
Ans: 0
11. Question

Find the angle between the vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$, when
i. $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$
ii. $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$
iii. $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$.

## Answer

i) $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$
$\vec{a}=(\hat{\imath}-2 \hat{\jmath}+3 \hat{k})$
$\overrightarrow{\mathrm{b}}=(3 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}})$
$|\vec{a}|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$
$|\vec{b}|=\sqrt{3^{2}+(-2)^{2}+1^{2}}=\sqrt{9+4+1}=\sqrt{14}$
We know that,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow(\hat{\mathrm{i}}-2 \hat{\jmath}+3 \hat{\mathrm{k}})(3 \hat{\mathrm{\imath}}-2 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}})=\sqrt{14} \sqrt{14} \cos \theta$
$\Rightarrow(3+4+3)=14 \cos \theta$
$\Rightarrow \cos \theta=10 / 14$
$\Rightarrow \cos \theta=5 / 7$
$\Rightarrow \theta=\cos ^{-1}(5 / 7)$
Ans: $\theta=\cos ^{-1}(5 / 7)$
ii) $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$
$\vec{a}=(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})$
$\vec{b}=(2 \hat{i}-2 \hat{j}+4 \hat{k})$
$|\vec{a}|=\sqrt{3^{2}+(1)^{2}+2^{2}}=\sqrt{9+1+4}=\sqrt{14}$
$|\vec{b}|=\sqrt{2^{2}+(-2)^{2}+4^{2}}=\sqrt{4+4+16}=\sqrt{24}$
We know that,
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})(2 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}})=\sqrt{14} \sqrt{24} \cos \theta$
$\Rightarrow(6-2+8)=\sqrt{ } 336 \cos \theta$
$\Rightarrow \cos \theta=12 / \sqrt{ } 336$
$\Rightarrow \cos \theta=\sqrt{ }(144 / 336)$
$\Rightarrow \theta=\cos ^{-1} \sqrt{ }(3 / 7)$
Ans: $\theta=\cos ^{-1} \sqrt{ }(3 / 7)$
iii. $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$.

Ans:
$\vec{a}=(\hat{\imath}-\hat{\jmath})$
$\overrightarrow{\mathrm{b}}=(\hat{\mathrm{\jmath}}+\widehat{\mathrm{k}})$
$|\vec{a}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{1+1}=\sqrt{2}$
$|\overrightarrow{\mathrm{b}}|=\sqrt{(1)^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}$
We know that,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow(\hat{\imath}-\hat{\jmath})(\hat{\jmath}+\hat{\mathrm{k}})=\sqrt{2} \sqrt{2} \cos \theta$
$\Rightarrow(-1)=2 \cos \theta$
$\Rightarrow \cos \theta=-1 / 2$
$\Rightarrow \theta=\cos ^{-1}-1 / 2$
$\Rightarrow \theta=120^{\circ}$
Ans: $\theta=120^{\circ}$

## 12. Question

If $\vec{a}=(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{b}=(3 \hat{i}-\hat{j}+2 \hat{k})$ then calculate the angle between $(2 \vec{a}+\vec{b})$ and $(\vec{a}+2 \vec{b})$.

## Answer

$\overrightarrow{\mathrm{a}}=(\hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{b}}=(3 \hat{\mathrm{i}}-\hat{\jmath}+2 \hat{\mathrm{k}})$
$\vec{a}+2 \vec{b}=(\hat{i}+2 \hat{\jmath}-3 \hat{k})+2(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})=7 \hat{1}+\hat{k}$
$2 \vec{a}+\vec{b}=2(\hat{i}+2 \hat{\jmath}-3 \hat{k})+(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})=5 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$
$|\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}|=\sqrt{7^{2}+(1)^{2}}=\sqrt{49+1}=\sqrt{50}$
$|2 \vec{a}+\vec{b}|=\sqrt{5^{2}+(3)^{2}+(-4)^{2}}=\sqrt{25+9+16}=\sqrt{50}$
We know that,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow(7 \hat{\mathrm{\imath}}+\hat{\mathrm{k}})(5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})=\sqrt{50} \sqrt{50} \cos \theta$
$\Rightarrow(35-4)=50 \cos \theta$
$\Rightarrow \cos \theta=31 / 50$
$\Rightarrow \theta=\cos ^{-1}(31 / 50)$
Ans: $\theta=\cos ^{-1}(31 / 50)$

## 13. Question

If $\vec{a}$ is a unit vector such that $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, find $|\vec{x}|$.

## Answer

If $\vec{a}$ is a unit vector
$\Rightarrow|\vec{a}|=1$
$\Rightarrow(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$
$\Rightarrow|\vec{x}|^{2}-|\vec{a}|^{2}=8$
$\Rightarrow|\vec{x}|^{2}=8+1=9$
$\Rightarrow|\vec{x}|=3$
Ans: $|\vec{x}|=3$

## 14. Question

Find the angles which vector $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ makes with the coordinate axes.

## Answer

If we have a vector $\vec{a}=a_{\hat{i}}+b_{\hat{j}}+c \hat{k}$
then the angle with the x -axis $=\alpha=\cos ^{-1} \frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$
the angle with the $\mathrm{y}-\mathrm{axis}=\beta=\cos ^{-1} \frac{\mathrm{~b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$
the angle with the $z-a x i s=\gamma=\cos ^{-1} \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
Here, $\vec{a}=3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}$
$\sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{3^{2}+(-6)^{2}+2^{2}}=\sqrt{9+36+4}=\sqrt{49}=$
then the angle with the x - axis $=\alpha=\cos ^{-1} \frac{a}{\sqrt{\mathrm{a}^{2}+b^{2}+c^{2}}}=\cos ^{-1} \frac{3}{7}$
the angle with the $y$-axis $=\beta=\cos ^{-1} \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}=\cos ^{-1} \frac{-6}{7}$
the angle with the $z$ - axis $=\gamma=\cos ^{-1} \frac{c}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}=\cos ^{-1} \frac{2}{7}$
Ans:
$\cos ^{-1} \frac{3}{7}, \cos ^{-1} \frac{-6}{7}, \cos ^{-1} \frac{2}{7}$
15. Question

Show that the vector $\vec{a}=(\hat{i}+\hat{j}+\hat{k})$ is equally inclined to the coordinate axes.

## Answer

If we have a vector $\vec{a}=a_{\hat{i}}+b_{\hat{j}}+c \hat{k}$
then the angle with the x -axis $=\alpha=\cos ^{-1} \frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$
the angle with the $y-a x i s=\beta=\cos ^{-1} \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}$
the angle with the $\mathrm{z}-\mathrm{axis}=\gamma=\cos ^{-1} \frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$
Here, $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
$\sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{1^{2}+(1)^{2}+1^{2}}=\sqrt{1+1+1}=\sqrt{3}$
then the angle with the $x-a x i s=\alpha=\cos ^{-1} \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}=\cos ^{-1} \frac{1}{\sqrt{3}}$
the angle with the $y$-axis $=\beta=\cos ^{-1} \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}=\cos ^{-1} \frac{1}{\sqrt{3}}$
the angle with the $z-$ axis $=\gamma=\cos ^{-1} \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}=\cos ^{-1} \frac{1}{\sqrt{3}}$
Now since, $\alpha=\beta=\gamma$
$\therefore$ the vector $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ is equally inclined to coordinate axes.
Hence, proved.

## 16. Question

Find a vector $\vec{a}$ of magnitude $5 \sqrt{2}$, making an angle $\pi / 4$ with $x$-axis, $\pi / 2$ with $y$-axis and an acute angle $\theta$ with $z$ - axis.

## Answer

$|\vec{a}|=5 \sqrt{ } 2$
$I=\cos \alpha=\cos \pi / 4=1 / \sqrt{ } 2$
$\mathrm{m}=\cos \beta=\cos \pi / 2=0$
$\mathrm{n}=\cos \theta$
we know that
$\mathrm{r}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$\Rightarrow \frac{1}{\sqrt{2}}^{2}+0^{2}+\mathrm{n}^{2}=1$
$\Rightarrow \mathrm{n}^{2}=1-\frac{1}{2}$
$\Rightarrow \mathrm{n}^{2}=\frac{1}{2}$
$\Rightarrow \mathrm{n}= \pm \frac{1}{\sqrt{2}}$
since the vector makes an acute angle with the $z$ axis
$\therefore \mathrm{n}=+\frac{1}{\sqrt{2}}$
$\therefore \overrightarrow{\mathrm{a}}=|\overrightarrow{\mathrm{a}}|(\mathrm{l} \hat{\mathrm{\imath}}+\mathrm{m} \hat{\mathrm{\jmath}}+\mathrm{n} \hat{\mathrm{k}})$
$\therefore \overrightarrow{\mathrm{a}}=5 \sqrt{ } 2(1 / \sqrt{ } 2 \hat{\mathrm{i}}+1 / \sqrt{ } 2 \hat{\mathrm{k}})$
$\therefore \overrightarrow{\mathrm{a}}=5(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
Ans: $\overrightarrow{\mathrm{a}}=5(\hat{\mathrm{i}}+\widehat{\mathrm{k}})$

## 17. Question

Find the angle between $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, if $\vec{a}=(2 \hat{i}-\hat{j}+3 \hat{k})$ and $\vec{b}=(3 \hat{i}+\hat{j}+2 \hat{k})$.

## Answer

$\overrightarrow{\mathrm{a}}=(2 \hat{\imath}-\hat{\jmath}+3 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{b}}=(3 \hat{\mathrm{i}}+\hat{\jmath}+2 \hat{\mathrm{k}})$
$\vec{a}+\vec{b}=(2 \hat{\imath}-\hat{\jmath}+3 \hat{k})+(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})=5 \hat{\imath}+5 \hat{k}$
$\vec{a}-\vec{b}=(2 \hat{\imath}-\hat{\jmath}+3 \hat{k})-(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})=-\hat{\imath}-2 \hat{\jmath}+\hat{k}$
$|\vec{a}+\vec{b}|=\sqrt{5^{2}+(5)^{2}}=\sqrt{25+25}=\sqrt{50}$
$|\vec{a}-\vec{b}|=\sqrt{(-1)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{1+4+1}=\sqrt{6}$
We know that ,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow(5 \hat{\imath}+5 \hat{\mathrm{k}})(-\hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}})=\sqrt{50} \sqrt{6} \cos \theta$
$\Rightarrow(-5+5)=\sqrt{300} \cos \theta$
$\Rightarrow \cos \theta=0$
$\Rightarrow \theta=\cos ^{-1}(0)=\pi / 2$
Ans: $\theta=\pi / 2$

## 18. Question

Express the vector $\overrightarrow{\mathrm{a}}=(6 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}})$ as sum of two vectors such that one is parallel to the vector $\overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ and the other is perpendicular to $\overrightarrow{\mathrm{b}}$.

## Answer

$\vec{a}=(6 \hat{i}-3 \hat{\jmath}-6 \hat{k})$
$\vec{b}=(\hat{\imath}+\hat{\jmath}+\hat{k})$
$\Rightarrow \vec{c} \| \vec{b} \& \vec{d} \perp \vec{b}$
$\therefore \vec{a}=\vec{c}+\vec{d}$
$\vec{c}=\lambda \vec{b} \& \vec{b} \cdot \vec{d}=0$
$\Rightarrow \vec{b} \cdot \vec{a}=\vec{b} \cdot(\vec{c}+\vec{d})$
$\Rightarrow(\hat{\imath}+\hat{\jmath}+\hat{k}) \cdot(6 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})=\overrightarrow{\mathrm{b}} \cdot \lambda \overrightarrow{\mathrm{b}}+0$
$\Rightarrow 6-3-6=\lambda\left(|\vec{b}|^{2}\right)=3 \lambda$
$\Rightarrow \lambda=-1$
$\vec{c}=\lambda \vec{b}=-1(\hat{\imath}+\hat{\jmath}+\hat{k})=-(\hat{\imath}+\hat{\jmath}+\hat{k})$
$\therefore \vec{a}=\vec{c}+\vec{d}$
$\Rightarrow(6 \hat{\imath}-3 \hat{\jmath}-6 \hat{k})=-(\hat{\imath}+\hat{\jmath}+\hat{k})+\vec{d}$
$\Rightarrow \overrightarrow{\mathrm{d}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
$\Rightarrow \vec{a}=\vec{c}+\vec{d}$
$\Rightarrow \overrightarrow{\mathrm{a}}=-(\hat{\mathrm{i}}+\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})+(7 \hat{\mathrm{\imath}}-2 \hat{\jmath}-5 \hat{\mathrm{k}})$
Ans: $\overrightarrow{\mathrm{a}}=-(\hat{i}+\hat{\jmath}+\hat{\mathrm{k}})+(7 \hat{\imath}-2 \hat{\jmath}-5 \hat{\mathrm{k}})$

## 19. Question

Prove that $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2} \Leftrightarrow \vec{a} \perp \vec{b}$, where $\vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq \overrightarrow{0}$.

## Answer

$$
\begin{aligned}
& (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2} \\
& \Rightarrow|\vec{a}|^{2}-|\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2} \\
& \Rightarrow|\vec{b}|=0
\end{aligned}
$$

Which is not possible hence
(a) $\perp(\vec{b})$

## 20. Question

If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$, find the angle between $\vec{a}$ and $\vec{b}$.

## Answer

$\vec{a}+\vec{b}+\vec{c}=0$
$\Rightarrow \vec{a}+\vec{b}=-\vec{c}$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=-\vec{c} \cdot-\vec{c}$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta=|\vec{c}|^{2}$
$\Rightarrow 3^{2}+5^{2}+2 \times 3 \times 5 \cos \theta=7^{2}$
$\Rightarrow 2 \times 3 \times 5 \cos \theta=49-9-25$
$\Rightarrow 30 \cos \theta=15$
$\Rightarrow \cos \theta=\frac{15}{30}=\frac{1}{2}$
$\Rightarrow \theta=\cos ^{-1} \frac{1}{2}=60^{\circ}$
Ans: $\theta=60^{\circ}=\frac{\pi}{3}$

## 21. Question

Find the angle between $\vec{a}$ and $\vec{b}$. when
i. $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=\sqrt{3}$
ii. $|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}}|=\sqrt{2}$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=-1$

## Answer

i)

We know that,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow \sqrt{3}=2 \times 1 \cos \theta$
$\Rightarrow \sqrt{3}=2 \cos \theta$
$\Rightarrow \cos \theta=\sqrt{ } 3 / 2$
$\Rightarrow \theta=\cos ^{-1}(\sqrt{ } 3 / 2)=30^{\circ}=\frac{\pi}{6}$

Ans: $\theta=\cos ^{-1}(\sqrt{ } 3 / 2)=30^{\circ}=\frac{\pi}{6}$
ii)

We know that,
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow-1=\sqrt{2} \times \sqrt{2} \cos \theta$
$\Rightarrow-1=2 \cos \theta$
$\Rightarrow \cos \theta=-1 / 2$
$\Rightarrow \theta=\cos ^{-1}(-1 / 2)=120^{\circ}=\frac{2 \pi}{3}$
Ans: $\theta=\cos ^{-1}(-1 / 2)=120^{\circ}=\frac{2 \pi}{3}$

## 22. Question

If $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$, find $|\vec{a}-\vec{b}|$.

## Answer

We know that,
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow 4=2 \times 3 \cos \theta$
$\Rightarrow 4=6 \cos \theta$
$\Rightarrow \cos \theta=4 / 6$
$\Rightarrow \cos \theta=2 / 3$
$\Rightarrow \vec{a}-\left.\vec{b}\right|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=2^{2}+3^{2}-(2 \times 2 \times 3) \times \frac{2}{3}$
$\Rightarrow|\vec{a}-\vec{b}|^{2}=4+9-8=5$
$\Rightarrow \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b} \mid}=\sqrt{5}$
Ans: $\sqrt{ } 5$

## 23. Question

If $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$, find $|\vec{a}|$ and $|\vec{b}|$.

## Answer

$(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$
$\Rightarrow|\vec{a}|^{2}-|\vec{b}|^{2}=8$
$\Rightarrow(8|\vec{b}|)^{2}-|\vec{b}|^{2}=8$
$\Rightarrow 64|\overrightarrow{\mathrm{~b}}|^{2}-|\overrightarrow{\mathrm{b}}|^{2}=8$
$\Rightarrow 63|\vec{b}|^{2}=8$
$\Rightarrow|\overrightarrow{\mathrm{b}}|=\sqrt{\frac{8}{63}}$
$\Rightarrow|\vec{a}|=8|\vec{b}|=8 \sqrt{\frac{8}{63}}$
Ans: $|\overrightarrow{\mathrm{a}}|=8 \sqrt{\frac{8}{63}},|\overrightarrow{\mathrm{~b}}|=\sqrt{\frac{8}{63}}$

## 24. Question

If $\hat{a}$ and $\hat{b}$ are unit vectors inclined at an angle $\theta$ then prove that:
i. $\cos \frac{\theta}{2}=\frac{1}{2}|\hat{a}+\hat{b}|$
ii. $\tan \frac{\theta}{2}=\frac{|\hat{a}-\hat{b}|}{|\hat{a}+\hat{b}|}$

## Answer

R.H.S:
$\left(\frac{1}{2}\right)(|\hat{a}+\hat{b}|)=\frac{1}{2}\left(\sqrt{|\hat{a}|^{2}+|\hat{b}|^{2}+2|\hat{a}||\hat{b}| \cos \theta}\right)$
$\Rightarrow \frac{1}{2}\left(\sqrt{1^{2}+1^{2}+2 \times 1 \times 1 \cos \theta}\right.$
$\Rightarrow \frac{1}{2}(\sqrt{1+1+2 \cos \theta}$
$\Rightarrow \sqrt{\frac{2+2 \cos \theta}{4}}$
$\Rightarrow \sqrt{\frac{2(1+\cos \theta)}{4}}$
$\Rightarrow \sqrt{\frac{(1+\cos \theta)}{2}}$
$\Rightarrow \sqrt{\cos ^{2} \frac{\theta}{2}}$
$\Rightarrow \cos \frac{\theta}{2}=$ L.H.S
Hence, proved
ii)
R.H.S. $=\frac{(|\hat{a}-\widehat{-}|)}{(|\hat{a}+\widehat{b}|)}$
$\Rightarrow \frac{\sqrt{|\hat{a}|^{2}+|\hat{b}|^{2}-2|\hat{a}||\hat{b}| \cos \theta}}{\sqrt{|\hat{a}|^{2}+|\hat{b}|^{2}+2|\hat{a}||\hat{b}| \cos \theta}}$
$\Rightarrow \frac{\sqrt{1^{2}+1^{2}-2 \times 1 \times 1 \cos \theta}}{\sqrt{1^{2}+1^{2}+2 \times 1 \times 1 \cos \theta}}$
$\Rightarrow \frac{\sqrt{1+1-2 \cos \theta}}{\sqrt{1+1+2 \cos \theta}}$
$\Rightarrow \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}$
$\Rightarrow \sqrt{\frac{\sin ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}}}$
$\Rightarrow \sqrt{\tan ^{2} \frac{\theta}{2}}$
$\Rightarrow \tan \theta / 2=$ L.H.S
Hence, proved.

## 25. Question

The dot products of a vector with the vector $(\hat{i}+\hat{j}-3 \hat{k}),(\hat{i}+3 \hat{j}-2 \hat{k})$ and $(2 \hat{i}+\hat{j}+4 \hat{k})$ are 0,5 and 8 respectively. Find the vector.

## Answer

Let the unknown vector $b e: \vec{a}=a \hat{1}+b \hat{\jmath}+c \hat{k}$
$\therefore(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \cdot(\hat{\imath}+\hat{\jmath}-3 \hat{k})=0$
$\Rightarrow \mathrm{a}+\mathrm{b}-3 \mathrm{c}=0$
$\therefore(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \cdot(\hat{\imath}+3 \hat{\jmath}-2 \hat{k})=5$
$\Rightarrow a+3 b-2 c=5$
$\therefore(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \cdot(2 \hat{\imath}+\hat{\jmath}+4 \hat{\mathrm{k}})=8$
$\Rightarrow 2 a+b+4 c=8 \ldots$ (3)
Solving equations $1,2,3$, simultaneously we get:
$a=1, b=2, c=1$
$\therefore \overrightarrow{\mathrm{a}}=\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$
Ans: $\overrightarrow{\mathrm{a}}=\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}$

## 26. Question

If $\overrightarrow{\mathrm{AB}}=(3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$ and the coordinates of $A$ are $(0,-2,-1)$, find the coordinates of $B$.

## Answer

$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}=3 \hat{\mathrm{\imath}}-\hat{\jmath}+2 \hat{\mathrm{k}}$
$\Rightarrow \vec{B}-(0 \hat{\imath}-2 \hat{\jmath}-\hat{k})=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\Rightarrow \vec{B}=(0 \hat{\imath}-2 \hat{\jmath}-\hat{k})+3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\Rightarrow \overrightarrow{\mathrm{B}}=3 \hat{\mathrm{\imath}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\therefore \mathrm{B}(3,-3,1)$
Ans: $B(3,-3,1)$

## 27. Question

If $A(2,3,4), B(5,4,-1), C(3,6,2)$ and $D(1,2,0)$ be four points, show that $\overrightarrow{A B}$ is perpendicular to $\overrightarrow{C D}$.

## Answer

$$
\overrightarrow{\mathrm{A}}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}
$$

$\vec{B}=5 \hat{\imath}+4 \hat{\jmath}-\hat{k}$
$\overrightarrow{\mathrm{C}}=3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+2 \hat{\mathbf{k}}$
$\overrightarrow{\mathrm{D}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}=5 \hat{\imath}+4 \hat{\jmath}-\hat{\mathrm{k}}-(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})=3 \hat{\imath}+\hat{\jmath}-5 \hat{\mathrm{k}}$
$\overrightarrow{C D}=\vec{D}-\vec{C}=\hat{\imath}+2 \hat{\jmath}+0 \hat{k}-(3 \hat{\imath}+6 \hat{\jmath}+2 \hat{k})=-2 \hat{\imath}-4 \hat{\jmath}-2 \hat{k}$
$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CD}}=(3 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-5 \hat{\mathrm{k}}) \cdot(-2 \hat{\imath}-4 \hat{\jmath}-2 \hat{\mathrm{k}})=-6-4+10=0$
Hence, $\overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{CD}}$

## 28. Question

Find the value of $\lambda$ for which the vectors $(2 \hat{i}+\lambda \hat{j}+3 \hat{k})$ and $(3 \hat{i}+2 \hat{j}-4 \hat{k})$ are perpendicular to each other.

## Answer

$\vec{a}=2 \hat{\imath}+\lambda \hat{\jmath}+3 \hat{k}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
Since these two vectors are perpendicular, their dot product is zero.
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \frac{\pi}{2}=0$
$\Rightarrow \vec{a} \cdot \vec{b}=(2 \hat{\imath}+\lambda \hat{\jmath}+3 \hat{k}) \cdot(3 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})=0$
$\Rightarrow \vec{a} \cdot \vec{b}=(2 \times 3)+(\lambda \times 2)+(3 \times-4)=0$
$\Rightarrow \vec{a} \cdot \vec{b}=6+2 \lambda-12=0$
$\Rightarrow 6=2 \lambda$
$\Rightarrow \lambda=\frac{6}{2}=3$
Ans: $\lambda=3$

## 29. Question

Show that the vectors $\vec{a}=(3 \hat{i}-2 \hat{j}+\hat{k}), \vec{b}=(\hat{i}-3 \hat{j}+5 \hat{k})$ and $\vec{c}=(2 \hat{i}+\hat{j}-4 \hat{k})$ form a right - angled triangle.

## Answer

$\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}-3 \hat{\mathrm{\jmath}}+5 \hat{\mathrm{k}}$
$\vec{c}=2 \hat{i}+\hat{j}-4 \hat{k}$
$|\vec{a}|=\sqrt{9+4+1}=\sqrt{14}$
$|\vec{c}|=\sqrt{4+1+16}=\sqrt{21}$
$\cos \theta=\frac{\vec{a} \cdot \vec{c}}{|\vec{a}||\vec{c}|}=\frac{(3 \hat{i}-2 \hat{\jmath}+\hat{k}) \cdot(2 \hat{i}+\hat{\jmath}-4 \hat{k})}{\sqrt{14} \sqrt{21}}=\frac{6-2-4}{\sqrt{14} \sqrt{21}}=0$
$\Rightarrow \theta=\cos ^{-1} 0=\frac{\pi}{2}$

Hence, the triangle is a right angled triangle at c

## 30. Question

Three vertices of a triangle are $A(0,-1,-2), B(3,1,4)$ and $C(5,7,1)$. Show that it is a right - angled triangle. Also, find its other two angles.

## Answer

$\overrightarrow{\mathrm{a}}=0 \hat{\mathrm{i}}-\hat{\jmath}-2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+\hat{\jmath}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{c}}=5 \hat{\imath}+7 \hat{\jmath}+\widehat{\mathrm{k}}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{9+4+36}=\sqrt{49}=7$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{4+36+9}=\sqrt{49}=7$
$|\overrightarrow{\mathrm{CA}}|=\sqrt{25+64+9}=\sqrt{98}=7 \sqrt{2}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}=3 \hat{\imath}+\hat{\jmath}+4 \hat{\mathrm{k}}-(0 \hat{\imath}-\hat{\jmath}-2 \hat{\mathrm{k}})=3 \hat{\imath}+2 \hat{\jmath}+6 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{B}}=5 \hat{\imath}+7 \hat{\jmath}+\hat{\mathrm{k}}-(3 \hat{\imath}+\hat{\jmath}+4 \hat{\mathrm{k}})=2 \hat{\imath}+6 \hat{\jmath}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{C}}=0 \hat{\mathrm{\imath}}-\hat{\jmath}-2 \hat{\mathrm{k}}-(5 \hat{\imath}+7 \hat{\jmath}+\hat{\mathrm{k}})=-5 \hat{\imath}-8 \hat{\jmath}-3 \hat{\mathrm{k}}$
$\cos \theta=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{BC}}|}=\frac{(3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}) \cdot(2 \hat{\imath}+6 \hat{\jmath}-3 \hat{k})}{7 \times 7}=\frac{6+12-18}{49}=0$
$\therefore \theta=\frac{\pi}{2}$
$\cos \alpha=\frac{\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{CA}}||\overrightarrow{\mathrm{BC}}|}=\frac{(-5 \hat{\imath}-8 \hat{\jmath}-3 \hat{\mathrm{k}}) \cdot(2 \hat{\imath}+6 \hat{\jmath}-3 \hat{\mathrm{k}})}{7 \sqrt{2} \times 7} \leqslant \frac{-10-48+9}{49 \sqrt{2}}$

$$
=\left|\frac{-1}{\sqrt{2}}\right|
$$

$\therefore \theta=\frac{\pi}{4}=45^{\circ}$
$\cos \alpha=\frac{\overrightarrow{\mathrm{CA}} \cdot \overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{CA}}||\overrightarrow{\mathrm{AB}}|}=\frac{(-5 \hat{\imath}-8 \hat{\jmath}-3 \hat{\mathrm{k}}) \cdot(3 \hat{\jmath}+2 \hat{\jmath}+6 \hat{\mathrm{k}})}{7 \sqrt{2} \times 7}=\frac{-15-16+18}{49 \sqrt{2}}$

$$
=\left|\frac{-1}{\sqrt{2}}\right|
$$

$\therefore \theta=\frac{\pi}{4}=45^{\circ}$
Ans: $45^{\circ}, 90^{\circ}, 45^{\circ}$

## 31. Question

If the position vectors of the verticesA, $B$ and $C$ of a $\triangle A B C$ be $(1,2,3),(-1,0,0)$ and $(0,1,2)$ respectively then find $\angle A B C$.

## Answer

$\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overrightarrow{\mathrm{b}}=-\hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{c}}=0 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{4+4+9}=\sqrt{17}$
$|\overrightarrow{B C}|=\sqrt{1+1+4}=\sqrt{6}$
$|\overrightarrow{\mathrm{CA}}|=\sqrt{1+1+1}=\sqrt{3}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}=-\hat{\mathrm{i}}+0 \hat{\jmath}+0 \hat{\mathrm{k}}-(\hat{\mathrm{i}}+2 \hat{\jmath}+3 \hat{\mathrm{k}})=-2 \hat{\mathrm{i}}-2 \hat{\jmath}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{B}}=0 \hat{\imath}+1 \hat{\jmath}+2 \hat{\mathrm{k}}-(-\hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}})=\hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}}$
$\overrightarrow{C A}=\vec{A}-\vec{C}=\hat{i}+2 \hat{\jmath}+3 \hat{k}-(0 \hat{i}+1 \hat{\jmath}+2 \hat{k})=\hat{i}+\hat{\jmath}+\hat{k}$
$\cos \theta=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{BC}}|}=\frac{(-2 \hat{\mathrm{i}}-2 \hat{\jmath}-3 \hat{\mathrm{k}}) \cdot(\hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}})}{\sqrt{17} \times \sqrt{6}}=\frac{-2-2-6}{\sqrt{102}}=\left|\frac{-10}{\sqrt{102}}\right|$
$\therefore \theta=\cos ^{-1} \frac{10}{\sqrt{102}}$
Ans: $\theta=\cos ^{-1} \frac{10}{\sqrt{102}}=\angle A B C$

## 32. Question

If $\vec{a}$ and $\vec{b}$ are two unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$, find $(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})$.

## Answer

$|\vec{a}|=|\vec{b}|=1$
$|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow 3=1+1+2 \cos \theta$
$\Rightarrow \cos \theta=1 / 2$
$\therefore(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})=6|\vec{a}|^{2}-5|\vec{b}|^{2}-13 \vec{a} \cdot \vec{b}$
$\Rightarrow(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})=6-5-13|\vec{a}||\vec{b}| \cos \theta=1-13 \times 1 \times 1 \times(1 / 2) \mid$
$\Rightarrow(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})=1-\frac{13}{2}=\frac{-11}{2}$
Ans: $(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})=\frac{-11}{2}$

## 33. Question

If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$ then prove that vector $(2 \vec{a}+\vec{b})$ is perpendicular to the vector $\vec{b}$.

## Answer

$|\vec{a}+\vec{b}|=|\vec{a}|$
$\Rightarrow|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta=|\vec{a}|^{2}$
$\Rightarrow|\overrightarrow{\mathrm{b}}|=-2|\overrightarrow{\mathrm{a}}| \cos \theta$
NOW,
$(2 \vec{a}+\vec{b}) \cdot(\vec{b})=2 \vec{a} \cdot \vec{b}+|\vec{b}|^{2}$
$\Rightarrow(2 \vec{a}+\vec{b}) \cdot(\vec{b})=2|\vec{a}||\vec{b}| \cos \theta+\left((2|\vec{a}| \cos \theta)^{2}\right)$
$\Rightarrow(2 \vec{a}+\vec{b}) \cdot(\vec{b})=2|\vec{a}|(-2|\vec{a}| \cos \theta) \cos \theta+\left((2|\vec{a}| \cos \theta)^{2}\right)=0$
Hence, $(2 \vec{a}+\vec{b}) \perp(\vec{b})$

## 34. Question

If $\vec{a}=(3 \hat{i}-\hat{j})$ and $\vec{b}=(2 \hat{i}+\hat{j}-3 \hat{k})$ then express $\vec{b}$ in the form $\vec{b}=\left(\vec{b}_{1}+\vec{b}_{2}\right)$, where $\vec{b}_{1} \| \vec{a}$ and $\vec{b}_{2} \perp \vec{a}$.

## Answer

Let $\mathrm{b}_{1}=\mathrm{c}$ and $\mathrm{b}_{2}=\mathrm{d}$
$\vec{a}=(3 \hat{\imath}-\hat{\jmath})$
$\overrightarrow{\mathrm{b}}=(2 \hat{\imath}+\hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}})$
$\Rightarrow \vec{c} \| \vec{a} \& \vec{d} \perp \vec{a}$
$\therefore \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{d}}$
$\vec{c}=\lambda \vec{a} \& \vec{a} \cdot \vec{d}=0$
$\Rightarrow \vec{a} \cdot \vec{b}=\vec{a} \cdot(\vec{c}+\vec{d})$
$\Rightarrow(3 \hat{\imath}-\hat{\jmath}) \cdot(2 \hat{\imath}+\hat{\jmath}-3 \hat{k})=\vec{a} \cdot \lambda \vec{a}+0$
$\Rightarrow 6-1=\lambda\left(|\vec{a}|^{2}\right)=10 \lambda$
$\Rightarrow \lambda=5 / 10=1 / 2$
$\vec{c}=\lambda \vec{a}=(1 / 2)(3 \hat{\imath}-\hat{\jmath})=\left(\frac{3}{2} \hat{\imath}-\frac{1}{2} \hat{\jmath}\right)$
$\therefore \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{d}}$
$\Rightarrow(2 \hat{\imath}+\hat{\jmath}-3 \hat{k})=\left(\frac{3}{2} \hat{\imath}-\frac{1}{2} \hat{\jmath}\right)+\vec{d}$
$\Rightarrow \overrightarrow{\mathrm{d}}=\left(\frac{1}{2} \hat{\mathrm{i}}+\frac{3}{2} \hat{\mathrm{\jmath}}\right)-3 \hat{\mathrm{k}}$
$\Rightarrow \overrightarrow{\mathrm{b}}=\mathrm{b}_{1}+\mathrm{b}_{2}$
$\Rightarrow \overrightarrow{\mathrm{b}}=\left(\frac{3}{2} \hat{\mathrm{\imath}}-\frac{1}{2} \hat{\mathrm{\jmath}}\right)+\left(\left(\frac{1}{2} \hat{\mathrm{\imath}}+\frac{3}{2} \hat{\mathrm{\jmath}}\right)-3 \hat{\mathrm{k}}\right)$
Ans: $\overrightarrow{\mathrm{b}}=\left(\frac{3}{2} \hat{\imath}-\frac{1}{2} \hat{\jmath}\right)+\left(\left(\frac{1}{2} \hat{\imath}+\frac{3}{2} \hat{\jmath}\right)-3 \hat{\mathrm{k}}\right)$

