2. Exponents

Exercise 2A

1. Question

Evaluate:
(i) 4^{-3}
(ii) $\left(\frac{1}{2}\right)^{-5}$
(iii) $\left(\frac{4}{3}\right)^{-3}$
(iv) $(-3)^{-4}$
(v) $\left(\frac{-2}{3}\right)^{-5}$

Answer

Some basic formulas are:
$a^{-n}=\frac{1}{a^{n}}$
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
Now,(i)
$4^{-3}=\left(\frac{1}{4}\right)^{3}=\frac{1}{64}$
(ii) $\left(\frac{1}{2}\right)^{-5}=2^{5}=32$
(iii) $\left(\frac{4}{3}\right)^{-3}=\left(\frac{3}{4}\right)^{3}=\frac{3^{3}}{4^{3}}=\frac{27}{64}$
(iv) $(-3)^{-4}=(-3)^{-4}=\left(\frac{1}{-3}\right)^{4}=\left(\frac{-1^{4}}{3^{4}}\right)=\frac{1}{81}$
(v) $\left(\frac{-2}{3}\right)^{-5}=\left(\frac{-3}{2}\right)^{5}=\frac{(-3)^{5}}{2^{5}}=\frac{-243}{32}$

2. Question

Evaluate:
(i) $\left(\frac{5}{3}\right)^{2} \times\left(\frac{5}{3}\right)^{2}$
(ii) $\left(\frac{5}{6}\right)^{6} \times\left(\frac{5}{6}\right)^{-4}$
(iii) $\left(\frac{2}{3}\right)^{-3} \times\left(\frac{2}{3}\right)^{-2}$
(iv) $\left(\frac{9}{8}\right)^{-3} \times\left(\frac{9}{8}\right)^{2}$

Answer

As we know from the rule of exponents that powers of the same base adds up to acquire new power.
(i) $\left(\frac{5}{3}\right)^{2} \times\left(\frac{5}{3}\right)^{2}=\left(\frac{5}{3}\right)^{4}$
$=\frac{5^{4}}{3^{4}}=\frac{625}{81}$
(ii) $\left(\frac{5}{6}\right)^{6} \times\left(\frac{5}{6}\right)^{-4}=\left(\frac{5}{6}\right)^{(6+(-4))}$
$=\left(\frac{5}{6}\right)^{(6-4)}=\left(\frac{5}{6}\right)^{2}=\frac{5^{2}}{6^{2}}=\frac{25}{36}$
(iii) $\left(\frac{2}{3}\right)^{-3} \times\left(\frac{2}{3}\right)^{-2}=\left(\frac{2}{3}\right)^{(-3)+(-2)}$
$=\left(\frac{2}{3}\right)^{-3-2}=\left(\frac{2}{3}\right)^{-5}=\left(\frac{3}{2}\right)^{5}=\frac{3^{5}}{2^{5}}=\frac{243}{32}$
(iv) $\left(\frac{9}{8}\right)^{-3} \times\left(\frac{9}{8}\right)^{2}=\left(\frac{9}{8}\right)^{-3+2}=\left(\frac{9}{8}\right)^{-1}=\frac{8}{9}$

3. Question

Evaluate:
(i) $\left(\frac{5}{9}\right)^{-2} \times\left(\frac{3}{5}\right)^{-3} \times\left(\frac{3}{5}\right)^{0}$
(ii) $\left(\frac{-3}{5}\right)^{-4} \times\left(\frac{-2}{5}\right)^{2}$
(iii) $\left(\frac{-2}{3}\right)^{-3} \times\left(\frac{-2}{3}\right)^{-2}$

Answer

(i) $\left(\frac{5}{9}\right)^{-2} \times\left(\frac{3}{5}\right)^{-3} \times\left(\frac{3}{5}\right)^{0}$

First we add the power of the same base,
$=\left(\frac{5}{9}\right)^{-2} \times\left(\frac{3}{5}\right)^{-3+0}$
Convert the powers in to positive numbers,

$$
\begin{aligned}
& =\left(\frac{5}{9}\right)^{-2} \times\left(\frac{3}{5}\right)^{-3}=\left(\frac{9}{5}\right)^{2} \times\left(\frac{5}{3}\right)^{3} \\
& =\frac{9^{2}}{5^{2}} \times \frac{5^{3}}{3^{3}} \\
& =\frac{\left(3^{2}\right)^{2}}{5^{2}} \times \frac{5^{3}}{3^{3}}
\end{aligned}
$$

By cross multiplying we get,
$=\frac{3^{4}}{5^{2}} \times \frac{5^{3}}{3^{3}}$
$=\left(3^{(4-3)}\right) \times\left(5^{(3-2)}\right)=3 \times 15=15$
(ii) $\left(\frac{-3}{5}\right)^{-4} \times\left(\frac{-2}{5}\right)^{2}=\left(\frac{5}{-3}\right)^{4} \times\left(\frac{-2}{5}\right)^{2}$
$=\frac{5^{4}}{-3^{4}} \times \frac{-2^{2}}{5^{2}}$
$=5^{(4-2)} \times \frac{-2^{2}}{-3^{4}}=5^{2} \times \frac{-2^{2}}{-3^{4}}$
$=25 \times \frac{4}{81}=\frac{100}{81}$
(iii) $\left(\frac{-2}{3}\right)^{-3} \times\left(\frac{-2}{3}\right)^{-2}=\left(\frac{3}{-2}\right)^{3} \times\left(\frac{3}{-2}\right)^{2}$
$=\frac{3^{3}}{-2^{3}} \times \frac{3^{2}}{-2^{2}}$
$=\frac{3^{(3+2)}}{-2^{(3+2)}}=\frac{3^{5}}{-2^{5}}=\frac{-243}{32}$

4. Question

Evaluate:
(i) $\left\{\left(\frac{-2}{3}\right)^{2}\right\}^{-2}$
(ii) $\left[\left\{\left(\frac{-1}{3}\right)^{2}\right\}^{-2}\right]^{-1}$
(iii) $\left\{\left(\frac{3}{2}\right)^{-2}\right\}^{2}$

Answer

(i) $\left\{\left(\frac{-2}{3}\right)^{2}\right\}^{-2}=\left(\frac{-2}{3}\right)^{-4}=\left(\frac{3}{-2}\right)^{4}$
$=\frac{3^{4}}{(-2)^{4}}=\frac{3^{4}}{2^{4}}=\frac{81}{16}$
(ii) $\left.\left[\left\{\left(\frac{-1}{3}\right)^{2}\right\}^{-2}\right]^{-1}=\left[\left(\frac{1}{3}\right)^{2 \times(-2)}\right]^{-1}=\left[\left(\frac{-1}{3}\right)^{-4}\right]^{-1}\right]$
$=\left(\frac{-1}{3}\right)^{-4 \times-1}=\left(\frac{-1}{3}\right)^{4}$
$=\frac{-1^{4}}{3^{4}}=\frac{1^{4}}{3^{4}}=\frac{1}{81}$
(iii) $\left\{\left(\frac{3}{2}\right)^{-2}\right\}^{2}=\left(\frac{3}{2}\right)^{-2 \times 2}$
$=\left(\frac{3}{2}\right)^{-4}=\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}=\frac{16}{81}$

5. Question

Evaluate $\left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3}$

Answer

Consider $\left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3}$,
As we know,
$a^{-m}=\frac{1}{a^{m}}$
$=\left\{\left(\frac{1}{3}\right)^{-3} \times-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3}$
$=\left\{3^{3}-2^{3}\right\} \div 4^{3}$
$=\{27-8\} \div 64=\frac{19}{64}$

6. Question

Evaluate $\left\{\left(\frac{4}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1}$

Answer

Consider $\left\{\left(\frac{4}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1}$,
As we know,
$a^{-m}=\frac{1}{a^{m}}$
$=\left\{\left(\frac{4}{3}\right)^{-1}-\left(\frac{1}{4}\right)^{-1}\right\}^{-1}=\left\{\left(\frac{3}{4}\right)^{1}-\left(\frac{4}{1}\right)^{1}\right\}^{-1}=\left\{\left(\frac{3}{4}\right)-\left(\frac{4}{1}\right)\right\}^{-1}$
Now take the LCM of 4 and 1 which is 4 .
$\therefore\left\{\left(\frac{3 \times 1}{4 \times 1}\right)-\left(\frac{4 \times 4}{1 \times 4}\right)\right\}^{-1}=\left\{\frac{3}{4}-\frac{16}{4}\right\}^{-1}$
$=\left\{\frac{3-16}{4}\right\}^{-1}=\left\{\frac{-13}{4}\right\}^{-1}$
$=\left\{\frac{4}{-13}\right\}^{1}=\frac{4}{-13}$

7. Question

Evaluate $\left[\left(5^{-1} \times 3^{-1}\right)^{-1} \div 6^{-1}\right]$

Answer

For any number $a \neq 0 a^{-1}=1 / a S o,\left[\left(5^{-1} \times 3^{-1}\right)^{-1} \div 6^{-1}\right]$
$=\left[\left(\frac{1}{5} \times \frac{1}{3}\right)^{-1} \div \frac{1}{6}\right]$
$=\left[\left(\frac{1}{15}\right)^{-1} \div \frac{1}{6}\right]$
$=[15 \times 6]$
$=90$

8. Question

Find the value of:
(i) $\left(2^{0}+3^{-1}\right) \times 3^{2}$
(ii) $\left(2^{-1} \times 3^{-1}\right) \div 2^{-3}$
(iii) $\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2}$

Answer

(i) $\left(2^{0}+3^{-1}\right) \times 3^{2}$

As we know that by the rule $a^{0}=1$
So,
$\left(1+\frac{1}{3}\right) \times 3^{2}$
$=\left(\frac{1 \times 3}{1 \times 3}+\frac{1 \times 1}{3 \times 1}\right) \times 3^{2}$
$=\left(\frac{3}{3}+\frac{1}{3}\right) \times 3^{2}$
$=\left(\frac{4}{3}\right) \times 3^{2}$
$=4 \times 3^{(2-1)}=4 \times 3=12$ Ans. (ii) $\left(2^{-1} \times 3^{-1}\right) \div 2^{-3}$
$=\left(\frac{1}{2} \times \frac{1}{3}\right) \div\left(\frac{1}{2}\right)^{3}$
$=\left(\frac{1}{6}\right) \div \frac{1^{3}}{2^{3}}=\left(\frac{1}{6}\right) \div\left(\frac{1}{8}\right)$
$=\frac{1}{6} \times 8=\frac{8}{6}=\frac{4}{3}$
(iii) $\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2}$
$=\left(\frac{2}{1}\right)^{2}+\left(\frac{3}{1}\right)^{2}+\left(\frac{4}{1}\right)^{2}$
$=2^{2}+3^{2}+4^{2}$
$=4+9+16=29$ Ans.

9. Question

Find the value of x for which
$\left(\frac{5}{3}\right)^{-4} \times\left(\frac{5}{3}\right)^{-5}=\left(\frac{5}{3}\right)^{3 x}$
Answer
$\left(\frac{5}{3}\right)^{-4} \times\left(\frac{5}{3}\right)^{-5}=\left(\frac{5}{3}\right)^{3 x}$
Consider the left side;
$\left(\frac{5}{3}\right)^{-4} \times\left(\frac{5}{3}\right)^{-5}=\left(\frac{5}{3}\right)^{(-4+(-5))}=\left(\frac{5}{3}\right)^{-9}$
Given:
$\left(\frac{5}{3}\right)^{-9}=\left(\frac{5}{3}\right)^{3 x}$
Comparing the powers;
$-9=3 x$
$=x=\frac{-9}{3}$
$x=-3$

10. Question

Find the value of x for which
$\left(\frac{4}{9}\right)^{4} \times\left(\frac{4}{9}\right)^{-7}=\left(\frac{4}{9}\right)^{2 x-1}$

Answer

Given,
$\left(\frac{4}{9}\right)^{4} \times\left(\frac{4}{9}\right)^{-7}=\left(\frac{4}{9}\right)^{2 x-1}$
$\therefore\left(\frac{4}{9}\right)^{(4-7)}=\left(\frac{4}{9}\right)^{-3}=\left(\frac{4}{9}\right)^{2 x-1}$
$=2 x-1=-3$
$2 x=-3+1=-2$
$=x=-1$

11. Question

By what number should $(-6)^{-1}$ be multiplied so that the product becomes 9^{-1} ?

Answer

Let take that number be x ;
$(x) \times(-6)^{-1}=9^{-1}$
$x \times \frac{1}{-6}=\frac{1}{9}=\frac{x}{-6}=\frac{1}{9}$ or $x=\frac{-6}{9}$
The greatest common divisor for the numerator and denominator is 3.
$\therefore x=\frac{-6}{9}=\frac{(-6) \div 3}{9 \div 3}=\frac{-2}{3}$

12. Question

By what number should $\left(\frac{-2}{3}\right)^{-3}$ be divided so that the quotient may be $\left(\frac{4}{27}\right)^{-2}$?

Answer

Let the number be x ,
$\therefore\left(\frac{-2}{3}\right)^{-3} \div x=\left(\frac{4}{27}\right)^{-2}$
$\Rightarrow\left(\frac{3}{-2}\right)^{3} \div x=\left(\frac{27}{4}\right)^{2}$
$\Rightarrow\left(\frac{-3}{2}\right)^{3} \div x=\left(\frac{27}{4}\right)^{2}$
$\Rightarrow\left(\frac{-3}{2}\right)^{3} \times \frac{1}{x}=\left(\frac{27}{4}\right)^{2}$
$\Rightarrow \frac{-3^{3}}{2^{3}} \times \frac{1}{x}=\frac{27^{2}}{4^{2}}$
$\Rightarrow \frac{27}{8} \times \frac{1}{x}=\frac{27^{2}}{4^{2}}=\frac{27 \times 27}{4 \times 4}=\frac{27 \times 27}{4 \times 2 \times 2}=\frac{27 \times 27}{8 \times 2}$
$\therefore \frac{1}{x}=\frac{\left(\frac{27 \times 27}{8 \times 2}\right)}{\left(\frac{-27}{8}\right)}$
$\Rightarrow x=\frac{\left(\frac{-27}{8}\right)}{\left(\frac{27 \times 27}{8 \times 2}\right)}=\left(\frac{-27}{8}\right) \times\left(\frac{8 \times 2}{27 \times 27}\right)=\frac{-2}{27}$

13. Question

If $5^{2 x+1} \div 25=125$, find the value of x.

Answer

Given,
$5^{2 x+1} \div 25=125$
We know that,
$25=5 \times 5=5^{2}$
$125=5 \times 5 \times 5=5^{3}$
$\therefore \frac{5^{2 x+1}}{5^{2}}=5^{3}=5^{[(2 x+1)-2]}=5^{3}$
$5^{[(2 x+1)-2]}=5^{[2 x-1]}=5^{3}$
$=2 x-1=3$
$2 x=3+1=4$
$x=\frac{4}{2}=2$
$\therefore \mathrm{x}=2$

Exercise 2B

1. Question

Write each of the following numbers in standard form:
(i) 57.36
(ii) 3500000
(iii) 273000
(iv) 168000000
(v) 4630000000000
(vi) 345×10^{5}

Answer

(i) $57.36=5.736 \times 10$
(ii) $3500000=35 \times 10^{5}=3.5 \times 10^{6}$
(iii) $273000=273 \times 10^{3}=2.73 \times 10^{5}$
(iv) $168000000=168 \times 10^{6}=1.68 \times 10^{8}$
(v) $4630000000000=463 \times 10^{10}=4.63 \times 10^{12}$
(vi) $345 \times 10^{5}=34500000=3.45 \times 10^{7}$

2. Question

Write each of the following numbers in usual form:
(i) 3.74×10^{5}
(ii) 6.912×10^{8}
(iii) 4.1253×10^{7}
(iv) 2.5×10^{4}
(v) 5.17×10^{8}
(vi) 1.679×10^{9}

Answer

(i) $3.74 \times 10^{5}=\frac{374}{100} \times 10^{5}=\frac{374 \times 10^{5}}{10^{2}}=374 \times 10^{(5-2)}=374 \times 10^{3}=374000$
(ii) $6.912 \times 10^{8}=\frac{6912}{1000} \times 10^{8}=\frac{6912 \times 10^{8}}{10^{3}}=6912 \times 10^{(8-3)}=6912 \times 10^{5}=691200000$
(iii) $4.1253 \times 10^{7}=\frac{41253}{10000} \times 10^{7}=\frac{41253 \times 10^{7}}{10^{4}}=41253 \times 10^{(7-4)}=41253 \times 10^{3}=41253000$
(iv) $2.5 \times 10^{4}=\frac{25}{10} \times 10^{4}=\frac{25 \times 10^{4}}{10}=25 \times 10^{(4-1)}=25 \times 10^{3}=25000$
(v) $5.17 \times 10^{6}=\frac{517}{100} \times 10^{6}=\frac{517 \times 10^{6}}{10^{2}}=517 \times 10^{(6-2)}=517 \times 10^{4}=5170000$
(vi) $1.679 \times 10^{9}=\frac{1679}{1000} \times 10^{9}=\frac{1679 \times 10^{9}}{10^{3}}=1679 \times 10^{(9-3)}=1679 \times 10^{6}=1679000000$

3 A. Question

The height of Mount Everest is 8848 m . Write it in standard form.

Answer

Height of the Mount Everest $=8848 \mathrm{~m}$
If we wrights it in standard form we have,
$8848=8.848 \times 1000 \mathrm{~m}=8.848 \times 10^{3} \mathrm{~m}$.

3 B. Question

The speed of light is $300000000 \mathrm{~m} / \mathrm{sec}$. express it in standard form.

Answer

Speed of the light $=300000000 \mathrm{~m} / \mathrm{sec}$
In standard for we will get,
$300000000=3 \times 100000000 \mathrm{~m} / \mathrm{sec}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

3 C. Question

The distance from the earth to the sun is 149600000000 m . Write it in standard form.

Answer

Distance from earth to sun $=149600000000 \mathrm{~m}$
In standard form we have,
$149600000000=1496 \times 100000000$
$=1.496 \times 1000 \times 100000000$
$=1.496 \times 10^{3} \times 10^{8}=1.496 \times 10^{11} \mathrm{~m}$.

4. Question

Mass of earth is $\left(5.97 \times 10^{24}\right) \mathrm{kg}$ and mass of moon is $\left(7.35 \times 10^{22}\right) \mathrm{kg}$. What is the total mass of the two?

Answer

Given,
Mass of the earth $=5.97 \times 10^{24} \mathrm{~kg}$
Mass of the moon $=7.35 \times 10^{22} \mathrm{~kg}$
Now,
Mass of the earth $=5.97 \times 10^{24}=5.97 \times 10^{(2+22)}=5.97 \times 10^{2} \times 10^{22}=597 \times 10^{22}$
So,
We can also Wright the mass of the earth as $597 \times 10^{22} \mathrm{~kg}$
Sum of the masses of the earth and the moon;
$=\left(597 \times 10^{22}\right)+\left(7.35 \times 10^{22}\right)=(597+7.35) \times 10^{22}=604.35 \times 10^{22} \mathrm{~kg}$
$=6.0435 \times 100 \times 10^{22}=6.0435 \times 10^{2} \times 10^{22}=6.0435 \times 10^{(2+22)}=6.0435 \times 10^{24} \mathrm{~kg}$

5. Question

Write each of the following numbers in standard form:
(i) 0.0006
(ii) 0.00000083
(iii) 0.0000000534
(iv) 0.0027
(v) 0.00000165
(vi) 0.00000000689

Answer

(i) $0.0006=\frac{6}{10^{4}}=6 \times 10^{-4}$
(ii) $0.00000083=\frac{83}{10^{8}}=\frac{8.3 \times 10}{10^{8}}=8.3 \times 10^{(1-8)}=8.3 \times 10^{-7}$
(iii) $0.0000000534=\frac{534}{10^{10}}=\frac{5.34 \times 10^{2}}{10^{10}}=5.34 \times 10^{(2-10)}=5.34 \times 10^{-8}$
(iv) $0.0027=\frac{27}{10^{4}}=\frac{27 \times 10}{10^{4}}=2.7 \times 10^{(1-4)}=2.7 \times 10^{-3}$
(v) $0.00000165=\frac{165}{10^{8}}=\frac{1.65 \times 10^{2}}{10^{8}}=1.65 \times 10^{(2-8)}=1.65 \times 10^{-6}$
(vi) $0.00000000689=\frac{689}{10^{11}}=\frac{6.89 \times 10^{2}}{10^{11}}=6.89 \times 10^{(2-11)}=6.89 \times 10^{-9}$

6 A. Question

1 micron $=\frac{1}{1000000} \mathrm{~m}$. Express it in standard form.

Answer

1 micron $=\frac{1}{1000000} m=1 \times 10^{-6} \mathrm{~m}$.

6 B. Question

Size of a bacteria $=0.0000004 \mathrm{~m}$. Express it in standard form.

Answer

Size of the bacteria $=0.0000004 \mathrm{~m}=\frac{4}{10^{7}} \mathrm{~m}=\left(4 \times 10^{-7}\right) \mathrm{m}$

6 C. Question

Thickness of a paper $=0.03 \mathrm{~mm}$. Express it in standard form.

Answer

Thickness of paper $=0.03 \mathrm{~mm}=\frac{1}{10^{2}} \mathrm{~mm}=\left(3 \times 10^{-2}\right) \mathrm{mm}$

7. Question

Write each of the following numbers in usual form:
(i) 2.06×10^{-5}
(ii) 5×10^{-7}
(iii) 6.82×10^{-6}
(iv) 5.673×10^{-4}
(v) 1.8×10^{-2}
(vi) 4.129×10^{-3}

Answer
(i) $2.06 \times 10^{-5}=\frac{206}{100} \times \frac{1}{10^{5}}$
$=\frac{206}{10^{2} \times 10^{5}}$
$=\frac{206}{10^{(5+2)}}$
$=\frac{206}{10^{7}}$
$=\frac{206}{10000000}=0.0000206$
(ii) $5 \times 10^{-7}=\frac{5}{10^{7}}$
$=\frac{5}{1000000 \mathrm{a}}=0.0000005$
(iii) $6.82 \times 10^{-6}=\frac{682}{100} \times \frac{1}{10^{6}}$
$=\frac{682}{10^{2} \times 10^{6}}$
$=\frac{682}{10^{(2+6)}}=\frac{682}{10^{8}}$
$=\frac{682}{100000000}=0.00000682$
(iv) $5.673 \times 10^{-4}=\frac{5673}{1000} \times \frac{1}{10^{4}}$
$=\frac{5673}{10^{3} \times 10^{4}}=\frac{5673}{10^{(3+4)}}$
$=\frac{5673}{10^{7}}=\frac{5673}{10000000}=0.0005673$
(v) $1.8 \times 10^{-2}=\frac{18}{10} \times \frac{1}{10^{2}}$
$=\frac{18}{10 \times 10^{2}}=\frac{18}{10^{(1+2)}}$
$=\frac{18}{10^{3}}=\frac{18}{1000}=0.018$
(vi) $4.129 \times 10^{-3}=\frac{4129}{1000} \times \frac{1}{10^{3}}$
$=\frac{4129}{10^{3} \times 10^{3}}=\frac{4129}{10^{(3+3)}}$
$=\frac{4129}{10^{6}}=\frac{4129}{1000000}=0.004129$

Exercise 2C

1. Question

The value of $\left(\frac{2}{5}\right)^{-3}$ is
A. $-\frac{8}{125}$
B. $\frac{25}{4}$
C. $\frac{125}{8}$
D. $-\frac{2}{5}$

Answer

$\left(\frac{2}{5}\right)^{-3}=\left(\frac{5}{2}\right)^{3}=\frac{5^{3}}{2^{3}}=\frac{125}{8}$

2. Question

The value of $(-3)^{-4}$ is
A. 12
B. 81
C. $-\frac{1}{12}$
D. $\frac{1}{81}$

Answer
$(-3)^{-4}=\frac{1}{(-3)^{4}}=\frac{1}{(-1)^{4} \times(3)^{4}}=\frac{1}{(3)^{4}}=\frac{1}{81}$

3. Question

The value of $(-2)^{-5}$ is
A. -32
B. $\frac{-1}{32}$
C. 32
D. $\frac{1}{32}$

Answer

$(-2)^{-5}=\frac{1}{(-2)^{5}}=\frac{1}{-32}=\frac{1 \times(-1)}{-32 \times(-1)}=$

4. Question

The value of $\left(2^{-5} \div 2^{-2}\right)$ is
A. $\frac{1}{128}$
B. $\frac{-1}{128}$
C. $-\frac{1}{8}$
D. $\frac{1}{8}$

Answer

Consider $\left(2^{-5} \div 2^{-2}\right)$,

We know,For any non zero number "a"
$a^{-1}=\frac{1}{a}$
So,
$\left(2^{-5} \div 2^{-2}\right)=\left(\frac{1}{2^{5}} \div \frac{1}{2^{2}}\right)=\left(\frac{1}{32} \div \frac{1}{4}\right)=\left(\frac{1}{32} \times 4\right)=\frac{4}{32}=\frac{1}{8}$

5. Question

The value of $\left(3^{-1}+4^{-1}\right) \div 5^{-1}$ is
A. $\frac{7}{10}$
B. $\frac{60}{7}$
C. $\frac{7}{5}$
D. $\frac{7}{15}$

Answer
$\left(3^{-1}+4^{-1}\right)^{-1} \div 5^{-1}=\left(\frac{1}{3}+\frac{1}{4}\right)^{-1} \div \frac{1}{5}$
$=\left(\frac{4+3}{12}\right)^{-1} \div \frac{1}{5}=\left(\frac{7}{12}\right)^{-1} \div \frac{1}{5}$
$=\left(\frac{12}{7}\right) \div \frac{1}{5}=\frac{12}{7} \times 5=\frac{60}{7}$

6. Question

Choose the correct answer: $\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2}=$?
A. $\frac{61}{144}$
B. $\frac{144}{61}$
C. 29
D. $\frac{1}{29}$

Answer
$\left(\frac{1}{2}\right)^{-2}+\left(\frac{1}{3}\right)^{-2}+\left(\frac{1}{4}\right)^{-2}=\left(\frac{2}{1}\right)^{2}+\left(\frac{3}{1}\right)^{2}+\left(\frac{4}{1}\right)^{2}$
$=2^{2}+3^{2}+4^{2}$
$=4+9+16$
$=29$

7. Question

Choose the correct answer: $\left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3}=$?
A. $\frac{19}{64}$
B. $\frac{27}{16}$
C. $\frac{64}{19}$
D. $\frac{16}{25}$

Answer

$\left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3}$
$=\left\{3^{3}-2^{3}\right\} \div 4^{3}$
$=\{27-8\} \div 64$
$=19 \div 64=\frac{19}{64}$

8. Question

Choose the correct answer: $\left[\left\{\left(\frac{-1}{3}\right)^{2}\right\}^{-2}\right]^{-1}=$?
A. $\frac{1}{16}$
B. 16
C. $-\frac{1}{16}$
D. -16

Answer

$$
\left[\left\{\left(-\frac{1}{2}\right)^{2}\right\}^{-2}\right]^{-1}
$$

$$
=\left[\left\{-\frac{1}{2}\right\}^{-4}\right]^{-1}
$$

$$
=\left(-\frac{1}{2}\right)^{(-4 \times-1)}
$$

$$
=\left(-\frac{1}{2}\right)^{4}=\frac{1}{16}
$$

9. Question

The value of x for which $\left(\frac{7}{12}\right)^{-4} \times\left(\frac{7}{12}\right)^{3 x}=\left(\frac{7}{12}\right)^{5}$ is
A. -1
B. 1
C. 2
D. 3

Answer

$\left(\frac{7}{12}\right)^{-4} \times\left(\frac{7}{12}\right)^{3 x}=\left(\frac{7}{12}\right)^{5}$
$\Longrightarrow\left(\frac{7}{12}\right)^{-4+3 x}=\left(\frac{7}{12}\right)^{5}$
$\Rightarrow 3 x-4=5$
$3 x=9$
$x=\frac{9}{3}=3$
10. Question

If $\left(2^{3 x+1}+10\right) \div 7=6$, then x is equal to
A. -2
B. 0
C. 1
D. 2

Answer

$\left(2^{3 x-1}+10\right) \div 7=6$
$=\frac{\left(2^{3 x-1}+10\right)}{7}=\frac{6}{1}$
Now by cross multiplying,
$\left(2^{3 x-1}+10\right) \times 1=6 \times 7=42$
$2^{3 x-1}=42-10$
$2^{3 x-1}=32$
$2^{3 x-1}=2^{5}$
$3 x-1=5$
$3 x=6$
$x=\frac{6}{3}=2$
Therefore $\mathrm{x}=2$

11. Question

Choose the correct answer: $\left(\frac{2}{3}\right)^{0}=$?
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. 1
D. 0

Answer

By using the law of exponents $\left(\frac{a}{b}\right)^{0}=1$
$\therefore\left(\frac{2}{3}\right)^{0}=1$

12. Question

Choose the correct answer: $\left(\frac{-5}{3}\right)^{-1}=$?
A. $\frac{5}{3}$
B. $\frac{3}{5}$
C. $\frac{-3}{5}$
D. None of these

Answer

$\left(-\frac{5}{3}\right)^{-1}=\frac{1}{-\frac{5}{3}}=-\frac{3}{5}$

13. Question

Choose the correct answer: $\left(-\frac{1}{2}\right)^{3}=$?
A. $\frac{-1}{6}$
B. $\frac{1}{6}$
C. $\frac{1}{8}$
D. $\frac{-1}{8}$

Answer
$\left(-\frac{1}{2}\right)^{3}=-\frac{1}{2} \times-\frac{1}{2} \times-\frac{1}{2}=-\frac{1}{8}$

14. Question

Choose the correct answer: $\left(-\frac{3}{4}\right)^{2}=$?
A. $\frac{-9}{16}$
B. $\frac{9}{16}$
C. $\frac{16}{9}$
D. $\frac{-16}{9}$

Answer
$\left(-\frac{3}{4}\right)^{2}=-\frac{3}{4} \times-\frac{3}{4}=\frac{9}{16}$

15. Question

3670000 in standard form is
A. 367×10^{4}
B. 36.7×10^{5}
C. 3.67×10^{6}
D. None of these

Answer

$3670000=367 \times 10^{4}$
The standard form is written as one decimal number with any integer power.Therefore, $3670000=$ 367×10^{4}
$=36.7 \times 10^{5}$
$=3.67 \times 10^{6}$
Thus, 3.67×10^{6} is the standard form.

16. Question

0.0000463 in standard form is
A. 463×10^{-7}
B. 4.63×10^{-5}
C. 4.63×10^{-9}
D. 46.3×10^{-6}

Answer

0.0000463 in standard form is written as:
0.0000463
$=0.463 \times 10^{-4}$
$=4.63 \times 10^{-5}$

17. Question

0.000367×10^{4} in usual form is
A. 3.67
B. 36.7
C. 0.367
D. 0.0367

Answer

The usual form of 0.000367×10^{4} is written as:
0.000367×10^{4}
$=0.00367 \times 10^{3}$
$=0.0367 \times 10^{2}$
$=0.367 \times 10^{1}$
$=3.67$

CCE Test Paper-2

1. Question

Evaluate
(i) 3^{-4}
(ii) $(-4)^{3}$
(iii) $\left(\frac{3}{4}\right)^{-2}$
(iv) $\left(\frac{5}{7}\right)^{0}$

Answer

(i) $3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}$
(ii) $(-4)^{3}=(-1)^{3} \times(4)^{3}=-1 \times 64=-64$
(iii) $\left(\frac{3}{4}\right)^{-2}=\left(\frac{4}{3}\right)^{2}=\frac{4^{2}}{3^{3}}=\frac{16}{9}$
(iv) $\left(\frac{-2}{3}\right)^{-5}=\left(\frac{3}{-2}\right)^{5}=\frac{3^{5}}{-2^{5}}=\frac{243}{-32}=\frac{243 \times-1}{-32 \times-1}=\frac{-243}{32}$
(v) Using the property $\left(\frac{a}{b}\right)^{0}=1$ we will get,
$\left(\frac{5}{7}\right)^{0}=1$

2. Question

Evaluate: $\left\{\left(\frac{-2}{3}\right)^{3}\right\}^{-2}$

Answer

Consider $\left\{\left(\frac{-2}{3}\right)^{3}\right\}^{-2}$
As we know $\left(a^{m}\right)^{n}=a^{m n}$
$\left\{\left(\frac{-2}{3}\right)^{3}\right\}^{-2}=\left(\frac{-2}{3}\right)^{-6}=\left(\frac{3}{-2}\right)^{6}=\frac{3^{6}}{2^{6}}=\frac{729}{64}$

3. Question

Simplify: $\left(3^{-1}+6^{-1}\right) \div\left(\frac{3}{4}\right)^{-1}$

Answer

$$
\left(3^{-1}+6^{-1}\right) \div\left(\frac{3}{4}\right)^{-1}=\left(\frac{1}{3}+\frac{1}{6}\right) \div\left(\frac{4}{3}\right)^{1}
$$

$$
=\left(\left[\frac{1 \times 2}{3 \times 2}\right]+\left[\frac{1 \times 1}{6 \times 1}\right]\right) \div\left(\frac{4}{3}\right)
$$

$$
=\left(\frac{2+1}{6}\right) \div\left(\frac{4}{3}\right)
$$

$$
=\left(\frac{3}{6}\right) \div\left(\frac{4}{3}\right)
$$

$$
=\left(\frac{1}{2}\right) \div\left(\frac{4}{3}\right)
$$

$$
=\left(\frac{1}{2}\right) \times\left(\frac{3}{4}\right)=\frac{3}{8}
$$

4. Question

By what number should $\left(\frac{-2}{3}\right)^{-3}$ be divided so that the quotient is $\left(\frac{4}{9}\right)^{-2}$?

Answer

Suppose the number is x
So we have,
$\left(\frac{-2}{3}\right)^{-3} \div x=\left(\frac{4}{9}\right)^{-2}$
$\Rightarrow\left(\frac{3}{-2}\right)^{3} \div x=\left(\frac{9}{4}\right)^{2}$
$\Rightarrow \frac{\left(\frac{3}{-2}\right)^{3}}{x}=\left(\frac{9}{4}\right)^{2}$
$\Rightarrow \frac{\frac{3^{3}}{-2^{3}}}{x}=\frac{9^{2}}{4^{2}}$
$\Rightarrow x=\frac{\left(\frac{3^{3}}{-2^{3}}\right)}{\left(\frac{9^{2}}{4^{2}}\right)}$
$=\frac{\left(\frac{3^{3}}{-2^{3}}\right)}{\left(\frac{\left(3^{2}\right)^{2}}{\left(2^{2}\right)^{2}}\right)}$
$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{\left(2^{2}\right)^{2}}{\left(3^{2}\right)^{2}}\right)$
$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{2^{4}}{3^{4}}\right)$
$=\left(\frac{3^{3}}{-2^{3}}\right) \times\left(\frac{2^{3}}{3^{3}}\right) \times\left(\frac{2^{1}}{3^{1}}\right)$
$\Rightarrow\left(\frac{1}{-1}\right) \times\left(\frac{2^{1}}{3^{1}}\right)=\frac{2}{-3}$
$=\frac{2 \times-1}{-3 \times-1}=\frac{-2}{3}$

5. Question

By what number should $(-3)^{-1}$ be multiplied so that the quotient is 6^{-1} ?

Answer

Let's suppose the number is x
$(-3)^{-1} \times(x)=(6)^{-1}$
$\Rightarrow \frac{1}{-3} \times x=\frac{1}{6}$
$\Rightarrow \frac{1 \times-1}{-3 \times-1} \times x=\frac{1}{6}$
$\therefore \frac{x}{3}=\frac{1}{6}$
On cross multiplying:
$(-x) \times 6=1 \times 3$
$-6 x=3$
$6 x=-3$
$\therefore x=\frac{-3}{6}=\frac{-1}{2}$

6. Question

Express each of the following in standard form:
(i) 345
(ii) 180000
(iii) 0.000003
(iv) 0.000027

Answer

(i) $345=3.45 \times 100=3.45 \times 10^{2}$
(ii) $180000=18 \times 1000=18 \times 10^{4}=1.8 \times 10 \times 10^{4}=1.8 \times 10^{(1+4)}=1.8 \times 10^{5}$
(iii) $0.000003=\frac{3}{1000000}=3 \times 10^{-6}$
(iv) $0.000027=\frac{27}{1000000}=\frac{27}{10^{6}}=\frac{2.7 \times 10}{10^{6}}=2.7 \times 10^{(1-6)}=2.7 \times 10^{-5}$

7. Question

The value of $(-3)^{-3}$ is
A. -27
B. 9
C. $\frac{-1}{27}$
D. $\frac{1}{27}$

Answer

$(-3)^{-3}=\left(\frac{1}{-3}\right)^{3}=\frac{1^{3}}{-3^{3}}=\frac{1}{-27}=\frac{1 \times-1}{-27 \times-1}=\frac{-1}{27}$

8. Question

The value of $\left(\frac{3}{4}\right)^{-3}$ is
A. $\frac{-27}{64}$
B. $\frac{64}{27}$
C. $\frac{-9}{4}$
D. $\frac{27}{64}$

Answer

$\left(\frac{3}{4}\right)^{-3}=\left(\frac{4}{3}\right)^{3}=\frac{4^{3}}{3^{3}}=\frac{64}{27}$

9. Question

Choose the corret answer: $\left(3^{-6} \div 3^{4}\right)=$?
A. 3^{-2}
B. 3^{2}
C. 3^{-10}
D. 3^{10}

Answer

$3^{-6} \div 3^{4}=\left(\frac{1}{3^{6}} \div 3^{4}\right)$
$=\frac{1}{3^{6}} \times \frac{1}{3^{4}}=\frac{1}{3^{(6+4)}}$
$=\frac{1}{3^{10}}=3^{-10}$
10. Question

If $\left(\frac{5}{12}\right)^{-4} \times\left(\frac{5}{12}\right)^{3 x}=\left(\frac{5}{12}\right)^{5}$, then $x=$?
A. -1
B. 1
C. 2
D. 3

Answer

$\left(\frac{5}{12}\right)^{-4} \times\left(\frac{5}{12}\right)^{3 x}=\left(\frac{5}{12}\right)^{5}$
$\Rightarrow\left(\frac{5}{12}\right)^{-4+3 x}=\left(\frac{5}{12}\right)^{5}$
$\Rightarrow-4+3 x=5$
$\Rightarrow 3 x=5+4=9$
$\Rightarrow x=\frac{9}{3}=3$

11. Question

Choose the correct answer: $\left(\frac{3}{5}\right)^{0}=$?
A. $\frac{5}{3}$
B. $\frac{3}{5}$
C. 1
D. 0

Answer

By the law of exponents $\left(\frac{a}{b}\right)^{0}=1$
We will get,
$\left(\frac{3}{5}\right)^{0}=1$

12. Question

Choose the correct answer: $\left(\frac{-6}{5}\right)^{-1}=$?
A. $\frac{6}{5}$
B. $\frac{-6}{5}$
C. $\frac{5}{6}$
D. $\frac{-5}{6}$

Answer

$\left(\frac{-6}{5}\right)^{-1}=\left(\frac{5}{-6}\right)^{1}=\frac{5}{-6}=\frac{5 \times-1}{-6 \times-1}=\frac{-5}{6}$

13. Question

Choose the correct answer: $\left(\frac{-1}{5}\right)^{3}=$?
A. $\frac{-1}{9}$
B. $\frac{1}{9}$
C. $\frac{-1}{27}$
D. $\frac{1}{27}$

Answer
$\left(\frac{-1}{3}\right)^{3}=\frac{-1^{3}}{3^{3}}=\frac{-1}{27}$

14. Question

Fill in the blanks.
(i) 360000 written in standard form is.....
(ii) 0.0000123 written in standard form is.....
(iii) $\left(\frac{-2}{3}\right)^{-2}=$
(iv) 3×10^{-3} in usual form is.....
(v) 5.32×10^{-4} in usual form is.....

Answer

(i) 360000 written in standard form is 3.6×10^{5}
$360000=36 \times 10^{4}=3.6 \times 10 \times 10^{4}=3.6 \times 10^{(1+4)}=3.6 \times 10^{5}$
(ii) 0.0000123 written in standard form is 1.23×10^{-5}
$0.0000123=\frac{123}{10000000}=\frac{123}{10^{7}}$
$=\frac{1.23 \times 100}{10^{7}}=\frac{1.23 \times 10^{2}}{10^{7}}$
$=1.23 \times 10^{(2-7)}=1.23 \times 10^{-5}$
(iii) $\left(\frac{-2}{3}\right)^{-2}=\frac{9}{4}$
$\left(\frac{-2}{3}\right)^{-2}=\left(\frac{3}{-2}\right)^{2}=\frac{3^{2}}{-2^{2}}=\frac{9}{4}$
(iv) 3×10^{-3} in usual form is 0.003
$3 \times 10^{-3}=\frac{3}{10^{3}}=\frac{3}{1000}=0.003$
(v) 5.32×10^{-4} in usual form is 0.000532
$5.32 \times 10^{-4}=\frac{5.32}{10^{4}}=\frac{5.32}{10000}=0.000532$

