19. Three-Dimensional Figures

Exercise 19A

1. Question

Write down the number of faces of each of the following figures:
A. Cuboid
B. Cube
C. Triangular prism
D. Square pyramid
E. Tetrahedron

Answer

A. 6

Face is also known as sides. A Cuboid has six faces.

Book, Matchbox, Brick etc. are examples of Cuboid.
B. 6

A Cube has six faces and all faces are equal in length.

Sugar Cubes, Dice etc. are examples of Cube.
C. 5

A Triangular prism has two triangular faces and three rectangular faces.

A Square pyramid has one square face as a base and four triangular faces as the sides. So, Square pyramid has total five faces.

A Tetrahedron (Triangular Pyramid) has one triangular face as a base and three triangular faces as the sides. So, Tetrahedron has total four faces.

2. Question

Write down the number of edges of each of the following figures:
A. Tetrahedron
B. Rectangular pyramid
C. Cube
D. Triangular prism

Answer

A. 6

A Tetrahedron has six edges.

$O A, O B, O C, A B, A C, B C$ are the 6 edges.
B. 8

A Rectangular Pyramid has eight edges.

$A B, B C, C D, D A, O A, O B, D C, O D$ are the 8 edges.
C. 12

A Cube has twelve edges.

$A B, B C, C D, D A, E F, F G, G H, H E, A E, D H, B F, C G$ are the edges.
D. 9

A Triangular prism has nine edges.

$A B, B C, C A, D E, E F, F D, A D, B E, C F$ are the 9 edges.

3. Question

Write down the number of vertices of each of the following figures:
A. Cuboid
B. Square pyramid
C. Tetrahedron
D. Triangular prism

Answer

A. 8

A Cuboid has eight vertices.

A, B, C, D, E, F, G, H are the 8 vertices.
B. 5

A Square Pyramid has five vertices.

$\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the 5 vertices.
C. 4

A Tetrahedron has four vertices.

O, A, B, C are the vertices.
D. 6

A Triangular prism has six vertices.

A, B, C, D, E, F are the vertices.

4. Question

Fill in the blanks:
A. A cube has \qquad vertices, \qquad edges and \qquad faces.
B. The point at which three faces of a figure meet is known as its.
C. A cuboid is also known as a rectangular.
D. A triangular pyramid is called a. \qquad

Answer

A. $8,12,6$

A Cube has 8 vertices, 12 edges and 6 faces.

A, B, C, D, E, F, G, H are the 8 vertices.
$A B, B C, C D, D A, E F, F G, G H, H E, A E, D H, B F, C G$ are the 12 edges.
ABCD, EFGH, ADHE, BCGF, ABFE and DCGH are the 6 faces
B. vertex

Vertex is the point where faces meets.

A is the vertex for $A B, A D$ and $E A$.
C. Prism

A cuboid is also known as rectangular prism because a rectangular prism has six rectangular shaped sides with all sides at an angle 90° to each other.

Therefore, it can also be called a cuboid.
D. Tetrahedron

The tetrahedron is a polyhedron with a flat polygon base and the triangular faces that connect the base to a common point. Therefore, it is called a triangular pyramid.

Exercise 19B

1. Question

Define Euler's relation between the number of faces, number of edges and number of vertices for various 3-dimensional figures.

Answer

Leonhard Euler has defined the relation between the number of faces, number of edges and number of vertices for various 3-dimensional figures is called as Euler's formula. This formula works with shapes called Polyhedron. A Polyhedron is a closed solid shape which has flat faces and straight edges like cube.

According to him
$F+V-E=2$
Where F denotes the number of face
V denotes the number of vertices
E denotes the number of edges.

Shape	Faces	Vertices	Edges	$\mathrm{F}+\mathrm{V}-\mathrm{E}$
Cube	6	8	12	2
Octahedron	8	6	12	2

2. Question

How many edges are there in a
A. cuboid
B. tetrahedron
C. triangular prism
D. square pyramid?

Answer

A. 12

A Cuboid has twelve edges.

$A B, B C, C D, D A, E F, F G, G H, H E, A E, D H, B F, C G$ are the 12 edges.
B. 6

A Tetrahedron has six edges.

$O A, O B, O C, A B, A C, B C$ are the 6 edges.
C. 9

A Triangular prism has nine edges.

$A B, B C, C A, D E, E F, F D, A D, B E, C F$ are the edges.
D. 8

A Square Pyramid has eight edges.

$A B, B C, C D, D A, O A, O B, D C, O D$ are the edges.

3. Question

How many faces are there in a
A. cube
B. pentagonal prism
C. tetrahedron
D. pentagonal pyramid?

Answer

A. 6

A Cube has six faces.

ABCD, EFGH, ADHE, BCGF, ABFE and DCGH are the 6 faces
B. 7

A pentagonal prism has seven faces.

ABGF, AEJF, EDIJ, CDIH, BCGH, ABCDE and FGHIJ are the faces.
C. 4

A Tetrahedron has four faces

$O A B, O A C, O B C$ and $A B C$ are the faces.
D. 6

A pentagonal pyramid has six faces.

$O A B, O B C, O C D, O A E, O D E$ and $A B C D E$ are the faces.

4. Question

How many vertices are there in a
A. cuboid
B. tetrahedron
C. pentagonal prism
D. square pyramid?

Answer

A. 8

A Cuboid has eight vertices.

A, B, C, D, E, F, G, H are the vertices.
B. 4

A Tetrahedron has four vertices.

O, A, B, C are 4 the vertices.
C. 10

A pentagonal prism has ten vertices.

A, B, C, D, E, F, G, H, I, J are the 10 vertices.
D. 5

A Square Pyramid has five vertices.

$\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the vertices.

5. Question

Verify Euler's relation for each of the following:
A. A cube
B. A tetrahedron
C. A triangular prism
D. A square pyramid

Answer

A.

According to Euler's Formula
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
Where F denotes the number of face
V denotes the number of vertices
E denotes the number of edges.

Shape	Faces	Vertices	Edges	$F+V-E$
Cube	6	8	12	2

B.

According to Euler's Formula
$F+V-E=2$
Where F denotes the number of face
V denotes the number of vertices
E denotes the number of edges.

Shape	Faces	Vertices	Edges	$\mathrm{F}+\mathrm{V}-\mathrm{E}$
Tetrahedron	4	4	8	2

C.

According to Euler's Formula
$\mathrm{F}+\mathrm{V}-\mathrm{E}=2$
Where F denotes the number of face
V denotes the number of vertices
E denotes the number of edges.

Shape	Faces	Vertices	Edges	$\mathrm{F}+\mathrm{V}-\mathrm{E}$
Triangular Prism	5	6	9	2

D.

According to Euler's Formula
$F+V-E=2$
Where F denotes the number of face
V denotes the number of vertices
E denotes the number of edges.

Shape	Faces	Vertices	Edges	$F+V-E$
Square Pyramid	5	5	8	2

