18. Area of a Trapezium and a Polygon

Exercise 18A

1. Question

Find the area of a trapezium whose parallel sides are 24 cm and 20 cm and the distance between them is 15 cm.

Answer

Given:
Length of parallel sides is 24 cm and 20 cm
Height (h) $=15 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore, Area of trapezium $=\frac{1}{2} \times(24+20) \times 15=330 \mathrm{~cm}^{2}$.

2. Question

Find the area of a trapezium whose parallel sides are 38.7 cm and 22.3 cm , and the distance between them is 16 cm .

Answer

Given
Length of parallel sides is 38.7 cm and 22.3 cm
Height (h) $=16 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(38.7+22.3) \times 16=488 \mathrm{~cm}^{2}$.

3. Question

The shape of the top surface of a table is trapezium. Its parallel sides are 1 m and 1.4 m and the perpendicular distance between them is 0.9 cm . Find its area.

Answer

Given
Length of parallel sides is 1 m and 1.4 m
Height $(h)=0.9 m$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(1+1.4) \times 0.9$
$=1.08 \mathrm{~m}^{2}$.

4. Question

The area of a trapezium is $1080 \mathrm{~cm}^{2}$. If the lengths of its parallel sides be 55 cm and 35 cm , find the distance
between them.

Answer

Given
Length of parallel sides is 55 cm and 35 cm
Area of trapezium $=1080 \mathrm{~cm}^{2}$
Let Height (h) $=y \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(55+35) \times y=1080 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(90) \times y=1080$
$\Rightarrow 45 \times \mathrm{y}=1080$
$\Rightarrow \mathrm{y}=\frac{1080}{22}=24$
\therefore Distance between the parallel lines is 24 cm .

5. Question

A field is in the form of a trapezium. Its area is $1586 \mathrm{~m}^{2}$ and the distance between its parallel sides is 26 m . If one of the parallel sides is 84 m , find the other.

Answer

Given
Let length of parallel sides be 84 cm and y cm
Area of trapezium $=1586 \mathrm{~cm}^{2}$
Let Height (h) $=26 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(84+y) \times 26=1586 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(84+y) \times 26=1586$
$\Rightarrow(84+y) \times 13=1586$
$\Rightarrow 84+y=\frac{1586}{13}$
$\Rightarrow y=122-84=38$
\therefore Length of the other parallel side is 38 cm .

6. Question

The area of a trapezium is $405 \mathrm{~cm}^{2}$. Its parallel sides are in the ration $4: 5$ and the distance between them is 18 cm . Find the length of each of the parallel sides.

Answer

Given
Lengths of the parallel sides are in the ratio 4:5
Therefore let one of the side length be $4 X$ and other side length be $5 X$

Area of trapezium $=405 \mathrm{~cm}^{2}$
Let Height (h) $=18 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} x(4 X+5 X) \times 18=405 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(4 X+5 X) \times 18=405$
$\Rightarrow(9 X) \times 9=405$
$\Rightarrow 81 X=405$
$\Rightarrow X=\frac{405}{81}=5$
\therefore Length of the parallel sides is $4 X=4 \times 5=20 \mathrm{~cm}$ and $5 X=5 \times 5=25 \mathrm{~cm}$.
Therefore lengths of the parallel sides are $20 \mathrm{~cm}, 25 \mathrm{~cm}$.

7. Question

The area of a trapezium is $180 \mathrm{~cm}^{2}$ and its height is 9 cm . If one of the parallel sides is longer than the other by 6 cm , find the two parallel sides.

Answer

Given
Let length of first parallel side X
Length of other parallel side is $X+6$
Area of trapezium $=180 \mathrm{~cm}^{2}$
Let Height (h) $=9 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(X+6+X) \times 9=180 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(X+6+X) \times 9=180$
$\Rightarrow \frac{1}{2} \times(2 X+6) \times 9=180$
$\Rightarrow 2 X+6=\frac{180}{9} \times 2$
$\Rightarrow 2 X+6=40$
$\Rightarrow 2 X=40-6=34$
$\Rightarrow X=17$
\therefore Length of the parallel sides is $X=17 \mathrm{~cm}$ and $X+6=17+6=23 \mathrm{~cm}$.
Therefore lengths of the parallel sides are $17 \mathrm{~cm}, 23 \mathrm{~cm}$.

8. Question

In a trapezium-shaped field, one of the parallel sides is twice the other. If the area of the field is $9450 \mathrm{~m}^{2}$ and the perpendicular distance between the two parallel sides is 84 m , find the length of the longer of the parallel sides.

Answer

Given

Let length of first parallel side X
Length of other parallel side is 2 X
Area of trapezium $=9450 \mathrm{~m}^{2}$
Let Height (h) $=84 \mathrm{~m}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(X+2 X) \times 84=9450 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(X+2 X) \times 84=9450$
$\Rightarrow(3 X) \times 42=9450$
$\Rightarrow 126 X=9450$
$\Rightarrow 2 X+6=\frac{9450}{126}=75$
$\Rightarrow X=17$
\therefore Length of the parallel sides is $X=75 \mathrm{~m}$ and $2 \mathrm{X}=150 \mathrm{~m}$.
Therefore length of the longest is 150 m .

9. Question

The length of the fence of a trapezium-shaped field $A B C D$ is 130 m and side $A B$ is perpendicular to each of the parallel sides $A D$ and $B C$. If $B C=54 \mathrm{~m}, C D=19 \mathrm{~m}$ and $A D=42 \mathrm{~m}$, find the area of the field.

Answer

Given
Length of parallel sides
$A D=42 \mathrm{~m}$
$B C=54 m$
Given that total length of fence is 130 m
That is $A B+B C+C D+D A=130$
$A B+54+19+42=130$
Therefore $A B=15$
Height $(A B)=15 \mathrm{~m}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(42+54) \times 15=720 \mathrm{~m}^{2}$

10. Question

In the given figure, $A B C D$ is a trapezium in which $A D \| B C, \angle A B C=90^{\circ}, A D=16 \mathrm{~cm}$, $A C=41 \mathrm{~cm}$ and $B C=40 \mathrm{~cm}$. find the area of the trapezium.

Answer

Given
$A D=16 \mathrm{~cm}$
$B C=40 \mathrm{~cm}$
$A C=41 \mathrm{~cm}$
$\angle A B C=90$
Height $=A B=$?
Here in $\triangle \mathrm{ABC}$ using Pythagoras theorem
$A C^{2}=A B^{2}+B C^{2}$
$41^{2}=A B^{2}+40^{2}$
$A B^{2}=41^{2}-40^{2}$
$A B^{2}=1681-1600=81$
$\therefore A B=9$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(16+40) \times 9=252 \mathrm{~cm}^{2}$.

11. Question

The parallel sides of a trapezium are 20 cm and 10 cm . Its nonparallel sides are both equal, each being 13 cm . Find the area of the trapezium.

Answer

Let $A B C D$ be the given trapezium in which $A B \| D C$,
$A B=20 \mathrm{~cm}, D C=10 \mathrm{~cm}$ and $A D=B C=13 \mathrm{~cm}$
Draw $C L \perp A B$ and $C M|\mid D A$ meeting $A B$ at L and M, respectively.
Clearly, AMCD is a parallelogram.
Now,
$A M=D C=10 \mathrm{~cm}$
$M B=(A B-A m)$
$=(20-10)=10 \mathrm{~cm}$
Also,
$C M=D A=13 \mathrm{~cm}$
Therefore, $\triangle C M B$ is an isosceles triangle and $C L \perp M B$.
And L is midpoint of B.
$\Rightarrow \mathrm{ML}=\mathrm{LB}=\left(\frac{1}{2} \times M B\right)=\left(\frac{1}{2} \times 10\right)=5 \mathrm{~cm}$
From right $\triangle C L M$, we have:
$C L^{2}=\left(C M 2-M L^{2}\right)$
$C L^{2}=\left(132-5^{2}\right)$
$C L^{2}=(169-25)$
$C L^{2}=144$
$C L=12$
Therefore length of CL is 12 cm that is height of trapezium is 12 cm
There fore
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(20+10) \times 12=180 \mathrm{~cm}^{2}$.

12. Question

The parallel sides of a trapezium are 25 cm and 11 cm , while its nonparallel sides are 15 cm and 13 cm . find the area of the trapezium.

Answer

Let $A B C D$ be the given trapezium in which $A B \| D C$,
$A B=25 \mathrm{~cm}, C D=11 \mathrm{~cm}$ and $A D=13 \mathrm{~cm}, B C=15 \mathrm{~cm}$
Draw $C L \perp A B$ and $C M|\mid D A$ meeting $A B$ at L and M, respectively.
Clearly, AMCD is a parallelogram.
Now,
$M C=A D=13 \mathrm{~cm}$
$A M=D C=11 \mathrm{~cm}$
$M B=(A B-A m)$
$=(25-11)=14 \mathrm{~cm}$
Thus, in $\triangle C M B$, we have:
$C M=13 \mathrm{~cm}$
$M B=14 \mathrm{~cm}$
$B C=15 \mathrm{~cm}$
Here let $M L=X$, hence $L B=14-X$ and let $C L=Y c m$

Now in $\triangle C M L$, using Pythagoras theorem
$C L^{2}=\left(C M 2-M L^{2}\right)$
$Y^{2}=\left(132-X^{2}\right) e q-1$
Again in \triangle CLB, using Pythagoras theorem
$\mathrm{CL}^{2}=\left(\mathrm{CB} 2-\mathrm{LB}^{2}\right)$
$Y^{2}=\left(152-(14-X)^{2}\right) e q-2$
Sub eq 1 in 2 , we get
$\left(132-X^{2}\right)=\left(152-(14-X)^{2}\right)$
$169-X^{2}=225-\left(196+X^{2}-28 X\right)$
$169-X^{2}=225-196-X^{2}+28 x$
$28 X=169+196-225+X^{2}-X^{2}$
$28 X=140$
$X=5 \mathrm{~cm}$
Now substitute X value in eq -1
That is $Y^{2}=\left(132-X^{2}\right)$
$Y^{2}=\left(132-5^{2}\right)$
$Y^{2}=(169-25)$
$Y^{2}=144$
$Y=12 \mathrm{~cm}$
Therefore $C L=12 \mathrm{~cm}$ that is height of the trapezium $=12 \mathrm{~cm}$
Therefore
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(25+11) \times 12=216 \mathrm{~cm}^{2}$.

Exercise 18B

1. Question

In the given figure, $A B C D$ is a quadrilateral in which $A C=24 \mathrm{~cm}, B L \perp A C$ and $D M \perp A C$ such that $B L=8 \mathrm{~cm}$ and $D M=7 \mathrm{~cm}$. find the area of quad. $A B C D$.

Answer

Given: A quadrilateral $A B C D$
$B L \perp A C$ and $D M \perp A C$
$A C=24 \mathrm{~cm}$
$B L=8 \mathrm{~cm}$
$D M=7 \mathrm{~cm}$
Here,
Area (quad. $A B C D)=$ area $(\triangle A B C)+$ area $(\triangle A D C)$
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
Therefore
Area of quad $A B C D=\frac{1}{2} \times(A C) \times(B L)+\frac{1}{2} \times(A C) \times(D M)$
$=\frac{1}{2} \times(24) \times(8)+\frac{1}{2} \times(24) \times(7)=96+84=180 \mathrm{~cm}^{2}$
Therefore area of the quadrilateral $A B C D$ is $180 \mathrm{~cm}^{2}$

2. Question

In the given figure, $A B C D$ is a quadrilateral-shaped field in which diagonal $B D$ is $36 \mathrm{~m}, \mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$ such that $A L=19 \mathrm{~m}$ and $\mathrm{CM}=11 \mathrm{~m}$. Find the area of the field.

Answer

Given: A quadrilateral $A B C D$
$\mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$
$\mathrm{AL}=19 \mathrm{~cm}$
$B D=36 \mathrm{~cm}$
$C M=11 \mathrm{~cm}$
Here,
Area $($ quad. $A B C D)=$ area $(\triangle A B D)+$ area $(\triangle A C D)$
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
Therefore
Area of quad $A B C D=\frac{1}{2} \times(B D) \times(A L)+\frac{1}{2} \times(B D) \times(C M)$
$=\frac{1}{2} \times(36) \times(19)+\frac{1}{2} \times(36) \times(11)=342+198=540 \mathrm{~cm}^{2}$
Therefore area of the quadrilateral $A B C D$ is $540 \mathrm{~cm}^{2}$.

3. Question

Find the area of pentagon $A B C D E$ in which $B L \perp A C, D M \perp A C$ and $E N \perp A C$ such that $A C=18 \mathrm{~cm}, A M=14 \mathrm{~cm}, A N=6 \mathrm{~cm}$, $B L=4 \mathrm{~cm}, D M=12 \mathrm{~cm}$ and $E N=9 \mathrm{~cm}$.

Answer

Given: A pentagon $A B C D E$
$B L \perp A C, D M \perp A C$ and $E N \perp A C$
$A C=18 \mathrm{~cm}$
$A M=14 \mathrm{~cm}$
$\mathrm{AN}=6 \mathrm{Cm}$
$\mathrm{BL}=4 \mathrm{Cm}$
$D M=12 \mathrm{~cm}$
$\mathrm{EN}=9 \mathrm{~cm}$
$M C=A C-A M=18-14=4 c m$
$M N=A M-A N=14-6=8 \mathrm{~cm}$
Here,
Area $($ Pent. $A B C D E)=\operatorname{area}(\triangle A E N)+\operatorname{area}(\triangle D M C)+\operatorname{area}(\triangle A B C)+$ area (Trap. DMNE)
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
Area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Here,
Area $(\triangle A E N)=\frac{1}{2} \times(A N) \times(E N)=\frac{1}{2} \times(6) \times(9)=27 \mathrm{~cm}^{2}$.
Area $(\triangle D M C)=\frac{1}{2} \times(M C) \times(D M)=\frac{1}{2} \times(4) \times(12)=24 \mathrm{~cm}^{2}$.
Area $(\triangle \mathrm{ABC})=\frac{1}{2} \times(\mathrm{AC}) \times(\mathrm{BL})=\frac{1}{2} \times(18) \times(4)=36 \mathrm{~cm}^{2}$.
Area $($ Trap. $D M N E)=\frac{1}{2} \times(D M+E N) \times M N=\frac{1}{2} \times(12+9) \times 8=84 \mathrm{~cm}^{2}$.
\therefore Area $($ Pent. $A B C D E)=$ area $(\triangle A E N)+$ area $(\triangle D M C)+$ area $(\triangle A B C)+$ area (Trap. DMNE)
$=27+24+36+84=171 \mathrm{~cm}^{2}$.
\therefore Area (Pent. $A B C D E)=171 \mathrm{~cm}^{2}$.

4. Question

Find the area of hexagon $A B C D E F$ in which $B L \perp A D, C M \perp A D, E N \perp A D$ and $F P \perp A D$ such that $A P=6 C m, P L=2 c m$, $\mathrm{LN}=8 \mathrm{~cm}, \mathrm{NM}=2 \mathrm{~cm}, \mathrm{MD}=3 \mathrm{~cm}, \mathrm{FP}=8 \mathrm{~cm}, \mathrm{EN}=12 \mathrm{~cm}, \mathrm{BL}=8 \mathrm{~cm}$ and $\mathrm{CM}=6 \mathrm{~cm}$.

Answer

Given: A Hexagon ABCDE
$B L \perp A D, C M \perp A D, E N \perp A D$ and $F P \perp A D$
$A P=6 \mathrm{~cm}$
$\mathrm{PL}=2 \mathrm{~cm}$
$\mathrm{LN}=8 \mathrm{~cm}$
$\mathrm{NM}=2 \mathrm{~cm}$
$M D=3 \mathrm{~cm}$
$\mathrm{FP}=8 \mathrm{~cm}$
$\mathrm{EN}=12 \mathrm{~cm}$
$\mathrm{BL}=8 \mathrm{~cm}$
$\mathrm{CM}=6 \mathrm{~cm}$
$A L=A P+P L=6+2=8 \mathrm{~cm}$
$P N=P L+L N=2+8=10 \mathrm{~cm}$
$\mathrm{LM}=\mathrm{LN}+\mathrm{NM}=8+2=10 \mathrm{~cm}$
$N D=N M+M D=2+3=5 \mathrm{~cm}$
Here,
Area $($ Hex. $A B C D E F)=\operatorname{area}(\triangle A P F)+\operatorname{area}(\triangle D E N)+\operatorname{area}(\triangle A B L)+\operatorname{area}(\triangle C M D)$
$+\operatorname{area}$ (Trap. PNEF) + area (Trap. LMCB)
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
Area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Here,
Area $(\triangle \mathrm{APF})=\frac{1}{2} \times(\mathrm{AP}) \times(\mathrm{FP})=\frac{1}{2} \times(6) \times(8)=24 \mathrm{~cm}^{2}$.
Area $(\triangle \mathrm{DEN})=\frac{1}{2} \times(\mathrm{ND}) \times(\mathrm{EN})=\frac{1}{2} \times(5) \times(12)=30 \mathrm{~cm}^{2}$.
Area $(\triangle \mathrm{ABL})=\frac{1}{2} \times(\mathrm{AL}) \times(\mathrm{BL})=\frac{1}{2} \times(8) \times(8)=32 \mathrm{~cm}^{2}$.
Area $(\triangle C M D)=\frac{1}{2} \times(M D) \times(C M)=\frac{1}{2} \times(3) \times(6)=9 \mathrm{~cm}^{2}$.
Area $($ Trap. PNEF $)=\frac{1}{2} \times(F P+E N) \times P N=\frac{1}{2} \times(8+12) \times 10=100 \mathrm{~cm}^{2}$.
Area $($ Trap. $L M C B)=\frac{1}{2} \times(B L+C M) \times L M=\frac{1}{2} \times(8+6) \times 10=70 \mathrm{~cm}^{2}$.
\therefore Area $($ Hex. $A B C D E F)=\operatorname{area}(\triangle A P F)+\operatorname{area}(\triangle D E N)+\operatorname{area}(\triangle A B L)+$ area $(\triangle C M D)$
$+\operatorname{area}($ Trap. PNEF $)+$ area $($ Trap. LMCB$)=24+30+32+9+100+70=265 \mathrm{~cm}^{2}$.
\therefore Area $($ Hex. $A B C D E F)=265 \mathrm{~cm}^{2}$

5. Question

Find the area of pentagon $A B C D E$ in which $B L \perp A C, C M \perp A D$ and $E N \perp A D$ such that $A C=10 \mathrm{~cm}, A D=12 C m, B L=3 \mathrm{Cm}$, $\mathrm{CM}=7 \mathrm{~cm}$ and $\mathrm{EN}=5 \mathrm{~cm}$.

Answer

Given: A pentagon $A B C D E$
$B L \perp A C, C M \perp A D$ and $E N \perp A D$
$A C=10 \mathrm{~cm}$
$A D=12 \mathrm{~cm}$
$B L=3 \mathrm{~cm}$
$\mathrm{CM}=7 \mathrm{~cm}$
$\mathrm{EN}=5 \mathrm{~cm}$
Here,
Area $($ Pent. $A B C D E)=$ area $(\triangle A B C)+$ area $(\triangle A C D)+$ area $(\triangle A D E)$
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
Here,
Area $(\triangle A B C)=\frac{1}{2} \times(A C) \times(B L)=\frac{1}{2} \times(10) \times(3)=15 \mathrm{~cm}^{2}$.
Area $(\triangle A C D)=\frac{1}{2} \times(A D) \times(C D)=\frac{1}{2} \times(12) \times(7)=42 \mathrm{~cm}^{2}$.
Area $(\triangle \mathrm{ADE})=\frac{1}{2} \times(\mathrm{AD}) \times(\mathrm{EN})=\frac{1}{2} \times(12) \times(5)=30 \mathrm{~cm}^{2}$.
\therefore Area $($ Pent. $A B C D E)=\operatorname{area}(\triangle A B C)+\operatorname{area}(\triangle A C D)+\operatorname{area}(\triangle A D E)=15+42+30=87 \mathrm{~cm}^{2}$.
\therefore Area (Pent. $A B C D E)=87 \mathrm{~cm}^{2}$.

6. Question

Find the area enclosed by the given figure $A B C D E F$ as per dimensions given herewith.

Answer

Given: A figure ABCDEF
$A B=20 \mathrm{~cm}$
$B C=20 \mathrm{~cm}$
$E D=6 \mathrm{~cm}$
$A F=20 \mathrm{~cm}$
$A B|\mid F C$
$\mathrm{FC}=20 \mathrm{~cm}$
Let distance between FC and ED be $\mathrm{h}=8 \mathrm{~cm}$
FC || ED
Here,
From the figure we can see that $A B C F$ forms a square and EFCD forms a trapezium.
Area of square $=(\text { side length })^{2}$
Area of trapezium $=\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore,
Area of the figure $A B C D E F=$ Area of square $(A B C F)+$ Area of trapezium (EFCD)
Here,
Area of square $(A B C F)=(A B)^{2}=(20)^{2}=400 \mathrm{~cm}^{2}$
Area of trapezium $(E F C D)=\frac{1}{2} \times(F C+E D) \times h=\frac{1}{2} \times(6+20) \times 8=104 \mathrm{~cm}^{2}$
\therefore Area $(A B C D E F)=$ Area of square $(A B C F)+$ Area of trapezium $(E F C D)=400+104=504 \mathrm{~cm}^{2}$.
\therefore Area $($ Fig.$A B C D E F)=504 \mathrm{~cm}^{2}$.

7. Question

Find the area of given figure ABCDEFGH as per dimensions given in it.

Answer

Given: A figure ABCDEFGH
$B C=F G=4 \mathrm{~cm}$
$A B=H G=5 \mathrm{~cm}$
$C D=E F=4 \mathrm{~cm}$
$E D=8 \mathrm{~cm}$
ED || AH
$\mathrm{AH}=8 \mathrm{~cm}$

Here
$\triangle A B C$ and GHF are equal and right angled
$A C=A H=$?
In $\triangle A B C$ using Pythagoras theorem
$A B^{2}=B C^{2}+A C^{2}$
$5^{2}=4^{2}+A C^{2}$
$25=16+A C^{2}$
$A C^{2}=25-16=9$
$A C=3$
$\mathrm{AH}=3$
$\operatorname{Area}(\mathrm{ABCDEFGH})=\operatorname{area}($ Rect. ADEH$)+2 \mathrm{X}$ area $(\triangle \mathrm{ABC})$
Area of rectangle $=($ length \times breadth $)$
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
$\operatorname{Area}($ Rect. $A D E H)=(D E \times A D)=(D E \times(A C+A D))=(8 \times(3+4))=56 \mathrm{~cm}^{2}$
$\operatorname{Area}(\triangle A B C)=\frac{1}{2} \times(B C) \times(A C)=\frac{1}{2} \times(4) \times(3)=6 \mathrm{~cm}^{2}$
\therefore Area $(A B C D E F G H)=\operatorname{area}($ Rect. $A D E H)+2 \times$ area $(\triangle A B C)=56+(2 \times 6)=68 \mathrm{~cm}^{2}$
\therefore Area $($ ABCDEFGH $)=68 \mathrm{~cm}^{2}$.

8. Question

Find the area of a regular hexagon $A B C D E F$ in which each side measures 13 cm and whose height is 23 cm , as shown in the given figure.

Answer

Given: a regular hexagon $A B C D E F$
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DE}=\mathrm{EF}=\mathrm{FA}=13 \mathrm{~cm}$
$A D=23 \mathrm{~cm}$
Here $A L=M D$
Therefore Let $A L=M D=x$
Here $A D=A L+L M+M D$
$23=13+2 x$
$2 x=23-13=10$
$x=5$

Now,
In $\triangle A B L$ using Pythagoras theorem
$A B^{2}=A L^{2}+L B^{2}$
$13^{2}=x^{2}+L B^{2}$
$13^{2}=5^{2}+L B^{2}$
$169=25+L B^{2}$
$\mathrm{LB}^{2}=169-25=144$
$\mathrm{LB}=12$
Here area (Trap. ABCD) $=$ area (Trap. AFED)
Therefore,
Area (Hex. ABCDEF) $=2 \times$ area (Trap. $A B C D$)
Area of trapezium $=\frac{1}{2} \times$ (sum of parallel sides) \times height
Area $($ Trap. $A B C D)=\frac{1}{2} \times(B C+A D) \times L B=\frac{1}{2} \times(13+23) \times 12=216 \mathrm{~cm}^{2}$.
\therefore Area $(\mathrm{ABCDEFGH})=2 \times$ area $($ Trap. $A B C D)=2 \times 216=432 \mathrm{~cm}^{2}$
\therefore Area $($ ABCDEFGH $)=432 \mathrm{~cm}^{2}$.

Exercise 18C

1. Question

The parallel sides of a trapezium measure 14 cm and 18 cm and the distance between them is 9 cm . The area of the trapezium is
A. $96 \mathrm{~cm}^{2}$
B. $144 \mathrm{~cm}^{2}$
C. $189 \mathrm{~cm}^{2}$
D. $207 \mathrm{~cm}^{2}$

Answer

Given
Length of parallel sides is 14 cm and 18 cm
Height (h) $=9 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(14+18) \times 9=144 \mathrm{~cm}^{2}$.

2. Question

The length of the parallel sides of a trapezium are 19 cm and 13 cm and its area is $128 \mathrm{~cm}^{2}$. The distance between the parallel sides is
A. 9 cm
B. 7 cm
C. 8 cm

Answer

Given

Length of parallel sides is 19 cm and 13 cm
Area of trapezium $=128 \mathrm{~cm}^{2}$
Let Height (h) $=\mathrm{y} \mathrm{cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(19+13) \times y=128 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(19+13) \times y=128$
$\Rightarrow \frac{1}{2} \times(32) \times y=128$
$\Rightarrow 16 \times y=128$
$\Rightarrow y=\frac{129}{16}=8 \mathrm{~cm}$
\therefore Distance between the parallel lines is 8 cm .

3. Question

The parallel sides of a trapezium are in the ration 3:4 and the perpendicular distance between them is 12 cm . If the area of the trapezium is $630 \mathrm{~cm}^{2}$, then its shorter length of the parallel sides is
A. 45 cm
B. 42 cm
C. 60 cm
D. 36 cm

Answer

Given
Lengths of the parallel sides are in the ratio 3:4
Therefore let one of the side length be $3 X$ and other side length be $4 X$
Area of trapezium $=630 \mathrm{~cm}^{2}$
Let Height (h) $=12 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(3 X+4 X) \times 12=630 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(3 X+4 X) \times 12=630$
$\Rightarrow(7 X) \times 6=630$
$\Rightarrow 42 \mathrm{X}=630$
$\Rightarrow X=\frac{630}{42}=15$
\therefore length of the parallel sides is $3 X=3 \times 15=45 \mathrm{~cm}$ and $4 X=4 \times 15=60 \mathrm{~cm}$.
Therefore shortest length of the parallel sides is 45 cm .

4. Question

The area of a trapezium is $180 \mathrm{~cm}^{2}$ and its height is 9 cm . If one of the parallel sides is longer than the other by 6 cm , the length of the longer parallel sides is
A. 17 cm
B. 23 cm
C. 18 cm
D. 24 cm

Answer

Given
Let length of first parallel side X
Length of other parallel side is $X+6$
Area of trapezium $=180 \mathrm{~cm}^{2}$
Let Height (h) $=9 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(X+6+X) \times 9=180 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(X+6+X) \times 26=180$
$\Rightarrow \frac{1}{2} \times(2 X+6) \times 9=180$
$\Rightarrow 2 X+6=\frac{180}{9} \times 2$
$\Rightarrow 2 X+6=40$
$\Rightarrow 2 X=40-6=34$
$\Rightarrow X=17$
\therefore length of the parallel sides is $X=17 \mathrm{~cm}$ and $X+6=17+6=23 \mathrm{~cm}$.
Therefore length of the longer parallel side is 23 cm .

5. Question

In the given figure, $A B \| D C$ and $D A \perp A B$ If $D C=7 \mathrm{~cm}, B C=10 \mathrm{~cm}, A B=13 \mathrm{~cm}$ and $C L \perp A B$ the area of trap. $A B C D$ is

A. $84 \mathrm{~cm}^{2}$
B. $72 \mathrm{~cm}^{2}$
C. $80 \mathrm{~cm}^{2}$
D. $91 \mathrm{~cm}^{2}$

Answer

Given:
$A B \| D C, D A \perp A B$ and $C L \perp A B$
$D C=7 \mathrm{~cm}$
$B C=10 \mathrm{~cm}$
$A B=13 \mathrm{~cm}$
Therefore here $A L=D C$
That is $A L=7 \mathrm{~cm}$
Hence $L B=A B-A L=13-7=6 \mathrm{~cm}$
In Δ LCB using Pythagoras theorem
$B C^{2}=B L^{2}+C L^{2}$
$10^{2}=6^{2}+\mathrm{CL}^{2}$
$100=36+C L^{2}$
$C L^{2}=100-36$
$C L^{2}=64$
$C L=8$
Here $C L=A D=$ height of the trapezium
Therefore height $=8 \mathrm{~cm}$
Now,
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(7+13) \times 8=80 \mathrm{~cm}^{2}$

CCE Test Paper-18

1. Question

The base of a triangular field is three times its height and its area is $1350 \mathrm{~m}^{2}$. Find the base and height of the field.

Answer

Given
Area of triangle $=1350 \mathrm{~m}^{2}$
Let the length of the height of triangle be Y cm
Therefore its base is 3 Y cm
Area of the triangle $=\frac{1}{2} \times$ base \times height $=1350$
$\frac{1}{2} \times(3 Y) \times(Y)=1350$
$3 Y^{2}=1350 \times 2=2700$
$Y^{2}=\frac{2700}{3}=900$
$Y=30 \mathrm{~cm}$
Therefore height of triangle is 30 cm and base is $3 \times 30=90 \mathrm{~cm}$

That is
Base $=90 \mathrm{~m}$, Height $=30 \mathrm{~m}$.

2. Question

Find the area of an equilateral triangle of side 6 cm .

Answer

Given
Side length of equilateral triangle is 6 cm
We know that area of the equilateral triangle is given by $\frac{\sqrt{3}}{4} \mathrm{a}^{2}$, where a is side length
Therefore area of the triangle is
$\Rightarrow \frac{\sqrt{3}}{4} \times 6^{2}=\frac{\sqrt{3}}{4} \times 36=\sqrt{3} \times 9=9 \sqrt{3} \mathrm{~cm}^{2}$.

3. Question

The perimeter of a rhombus is 180 cm and one of its diagonals is 72 cm . Find the length of the other diagonal and the area of the rhombus.

Answer

Given: A rhombus
Diagonal $A C=72 \mathrm{~cm}$
Perimeter $=180 \mathrm{~cm}$
Perimeter of the rhombus $=4 x$
Therefore $4 \mathrm{x}=180$
$x=45$
hence, the side length of the rhombus is 45 cm
We know that diagonals of the rhombus bisect each other right angles.
$\therefore A O=\frac{1}{2} A C$
$\Rightarrow \mathrm{AO}=\left(\frac{1}{2} \times 72\right) \mathrm{cm}$
$\Rightarrow A O=36 \mathrm{~cm}$
From right $\triangle \mathrm{AOB}$, we have :
$B O^{2}=A B^{2}-A O^{2}$
$\Rightarrow \mathrm{BO}^{2}=A B^{2}-\mathrm{AO}^{2}$
$\Rightarrow \mathrm{BO}^{2}=45^{2}-36^{2}$
$\Rightarrow \mathrm{BO}^{2}=2025-1296$
$\Rightarrow \mathrm{BO}^{2}=729$
$B O=27 \mathrm{~cm}$
$\therefore \mathrm{BD}=2 \times \mathrm{BO}$
$B D=2 \times 27=54 \mathrm{~cm}$
Hence, the length of the other diagonal is 54 cm .
Area of the rhombus $=\frac{1}{2} \times 72 \times 54=1944 \mathrm{~cm}^{2}$

4. Question

The area of a trapezium is $216 \mathrm{~m}^{2}$ and its height is 12 m . If one of the parallel sides is 14 m less than the other, find the length of each of the parallel sides.

Answer

Given
Let length of first parallel side X
Length of other parallel side is $X-14$
Area of trapezium $=216 \mathrm{~m}^{2}$
Let Height $(h)=12 \mathrm{~m}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(X-14+X) \times 12=216 \mathrm{~m}^{2}$.
$\therefore \frac{1}{2} \times(X-14+X) \times 12=216$
$\Rightarrow \frac{1}{2} \times(2 X-14) \times 12=216$
$\Rightarrow 2 X-14=\frac{216}{12} \times 2$
$\Rightarrow 2 X-14=36$
$\Rightarrow 2 X=36+14=50$
$\Rightarrow X=25$
\therefore length of the parallel sides is $X=25 \mathrm{~cm}$ and $X-14=25-14=\mathrm{m}$.
Therefore lengths of the parallel sides are $25 \mathrm{~m}, 11 \mathrm{~m}$.

5. Question

Find the area of a quadrilateral one of whose diagonals is 40 cm and the lengths of the perpendiculars drawn from the opposite vertices on the diagonal are 16 cm and 12 cm .

Answer

Given: A quadrilateral
Diagonal $A C=40 \mathrm{~cm}$
Perpendiculars to diagonal $A C$ are: $B L=16 \mathrm{~cm}$ and $D M=12 \mathrm{~cm}$

Now,
Area $($ quad. $A B C D)=\operatorname{area}(\triangle A B C)+\operatorname{area}(\triangle A D C)$
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
Therefore
Area of quad $A B C D=\frac{1}{2} \times(A C) \times(B L)+\frac{1}{2} \times(A C) \times(D M)$
$=\frac{1}{2} \times(40) \times(16)+\frac{1}{2} \times(40) \times(12)=320+240=560 \mathrm{~cm}^{2}$
Therefore area of the quadrilateral ABCD is $560 \mathrm{~cm}^{2}$.

6. Question

A field is in the form of a right triangle with hypotenuse 50 m and one side 30 m . Find the area of the field.

Answer

Given
A right angled triangle with hypotenuse $=50 \mathrm{~cm}$ and one of the side $=30 \mathrm{~cm}$
Let base $=30 \mathrm{~cm}$
Height $=\mathrm{Ycm}$
Area $=$?
By using hypotenuse theorem
Hypotenuse $^{2}=$ base $^{2}+$ height 2
$50^{2}=30^{2}+Y^{2}$
$Y^{2}=50^{2}-30^{2}=2500-900=1600$
Therefore $X^{2}=1600$
$Y=40 \mathrm{~cm}$
Area of the triangle $=\frac{1}{2} \times$ base \times height
Area $=\frac{1}{2} \times 30 \times Y$
$=\frac{1}{2} \times 30 \times 40=600 \mathrm{~m}^{2}$.

7. Question

The base of a triangle is 14 cm and its height is 8 cm . The area of the triangle is
A. $112 \mathrm{~cm}^{2}$
B. $56 \mathrm{~cm}^{2}$
C. $122 \mathrm{~cm}^{2}$
D. $66 \mathrm{~cm}^{2}$

Answer

Given
Length of the base of the triangle $=14 \mathrm{~cm}$
Length of the heigth of the triangle $=8 \mathrm{~cm}$

Area of the triangle $=\frac{1}{2} \times$ base \times height
Therefore area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 14 \times 8=7 \times 8=56 \mathrm{~cm}$

8. Question

The base of a triangle is four times its height and its area is $50 \mathrm{~m}^{2}$. The length of its base is
A. 10 m
B. 15 m
C. 20 m
D. 25 m

Answer

Given
Area of triangle $=50 \mathrm{~m}^{2}$
Let the length of the height of triangle be Y cm
Therefore its base is 4 Y cm
Area of the triangle $=\frac{1}{2} \times$ base \times height $=50$
$\frac{1}{2} \times(4 Y) \times(Y)=50$
$4 Y^{2}=50 \times 2=100$
$Y^{2}=\frac{100}{4}=25$
$Y=5 \mathrm{~cm}$
Therefore length of base is $4 \times 5=20 \mathrm{~cm}$

9. Question

The diagonal of a quadrilateral is 20 cm in length and the lengths of perpendiculars on it from the opposite vertices are 8.5 cm and 11.5 cm . The area of the quadrilateral is
A. $400 \mathrm{~cm}^{2}$
B. $200 \mathrm{~cm}^{2}$
C. $300 \mathrm{~cm}^{2}$
D. $240 \mathrm{~cm}^{2}$

Answer

Given: A quadrilateral
Diagonal $A C=20 \mathrm{~cm}$

Perpendiculars to diagonal AC are: $\mathrm{BL}=11.5 \mathrm{~cm}$ and $\mathrm{DM}=8.5 \mathrm{~cm}$
Now,
Area (quad. $A B C D)=\operatorname{area}(\triangle A B C)+\operatorname{area}(\triangle A D C)$
Area of triangle $=\frac{1}{2} \times($ base $) \times($ height $)$.
Therefore
Area of quad $A B C D=\frac{1}{2} \times(A C) \times(B L)+\frac{1}{2} \times(A C) \times(D M)$
$=\frac{1}{2} \times(20) \times(11.5)+\frac{1}{2} \times(20) \times(8.5)=115+85=200 \mathrm{~cm}^{2}$
Therefore area of the quadrilateral $A B C D$ is $200 \mathrm{~cm}^{2}$.

10. Question

Each side of a rhombus is 15 cm and the length of one of its diagonals is 24 cm . The area of the rhombus is
A. $432 \mathrm{~cm}^{2}$
B. $216 \mathrm{~cm}^{2}$
C. $180 \mathrm{~cm}^{2}$
D. $144 \mathrm{~cm}^{2}$

Answer

Given: A rhombus ABCD
Diagonal $A C=24 \mathrm{~cm}$
Side length : $A B=B C=C D=D A=15 \mathrm{~cm}$
We know that diagonals of the rhombus bisect each other right angles.
$\therefore A O=\frac{1}{2} A C$
$\Rightarrow A O=\left(\frac{1}{2} \times 24\right) \mathrm{cm}$
$\Rightarrow A O=12 \mathrm{~cm}$
From right $\triangle \mathrm{AOB}$, we have :
$B O^{2}=A B^{2}-A O^{2}$
$\Rightarrow \mathrm{BO}^{2}=A \mathrm{~B}^{2}-\mathrm{AO}^{2}$
$\Rightarrow \mathrm{BO}^{2}=15^{2}-12^{2}$
$\Rightarrow \mathrm{BO}^{2}=225-144$
$\Rightarrow \mathrm{BO}^{2}=81$
$\Rightarrow \mathrm{BO}=9 \mathrm{~cm}$
$\therefore \mathrm{BD}=2 \times \mathrm{BO}$
$B D=2 \times 9=18 \mathrm{~cm}$
Hence, the length of the other diagonal is 18 cm .
Area of the rhombus $=\frac{1}{2} \times 24 \times 18=216 \mathrm{~cm}^{2}$

11. Question

The area of a rhombus is $120 \mathrm{~cm}^{2}$ and one of its diagonals is 24 cm . Each side of the rhombus is
A. 10 cm
B. 13 cm
C. 12 cm
D. 15 cm

Answer

Given: A rhombus ABCD
Diagonal $A C=24 \mathrm{~cm}$
Area $=120 \mathrm{~cm}^{2}$
Area of the rhombus $=\frac{1}{2} \times A C \times B D$
Therefore,
$\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD}=\frac{1}{2} \times 24 \times \mathrm{BD}=120$
$24 \times B D=120 \times 2$
$\mathrm{BD}=\frac{240}{24}=10 \mathrm{~cm}$
$\mathrm{OB}=\frac{B D}{2}=\frac{10}{2}=5 \mathrm{~cm}$
$\mathrm{OA}=\frac{A C}{2}=\frac{24}{2}=12 \mathrm{~cm}$
Now,
In \triangle AOB using Pythagoras theorem
$A B^{2}=O A^{2}+O B^{2}$
$A B^{2}=12^{2}+5^{2}$
$A B^{2}=144+25$
$A B^{2}=169$
$A B=13$
Therefore length of each side of the rhombus $=13 \mathrm{~cm}$

12. Question

The parallel sides of a trapezium are 54 cm and 26 cm and the distance between them is 15 cm . The area of the trapezium is
A. $702 \mathrm{~cm}^{2}$
B. $810 \mathrm{~cm}^{2}$
C. $405 \mathrm{~cm}^{2}$
D. $600 \mathrm{~cm}^{2}$

Answer

Given
Length of parallel sides is 54 cm and 26 cm
Height (h) $=15 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(54+26) \times 15=600 \mathrm{~cm}^{2}$.

13. Question

The area of a trapezium is $384 \mathrm{~cm}^{2}$. Its parallel sides are in the ratio $5: 3$ and the distance between them is 12 cm . the longer of the parallel sides is
A. 24 cm
B. 40 cm
C. 32 cm
D. 36 cm

Answer

Given
Lengths of the parallel sides are in the ratio 5:3
Therefore let one of the side length be $5 X$ and other side length be $3 X$
Area of trapezium $=384 \mathrm{~cm}^{2}$
Let Height (h) $=12 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium is $\frac{1}{2} \times(5 X+3 X) \times 12=384 \mathrm{~cm}^{2}$.
$\therefore \frac{1}{2} \times(5 X+3 X) \times 12=384$
$\Rightarrow(8 X) \times 6=384$
$\Rightarrow 48 \mathrm{X}=384$
$\Rightarrow X=\frac{384}{48}=8$
\therefore length of the parallel sides is $5 X=5 \times 8=40 \mathrm{~cm}$ and $3 X=3 \times 8=24 \mathrm{~cm}$.
Therefore length of the longest side is 40 cm .

14. Question

Fill in the blanks.
(i) Area of triangle $=\frac{1}{2} \times(\ldots \ldots) \times(\ldots \ldots)$.
(ii) Area of a l|gm = \qquad) $\times($ \qquad ..)
(iii) Area of a trapezium $=\frac{1}{2} \times(\ldots \ldots) \times(\ldots \ldots)$.
(iv) The parallel sides of a trapezium are 14 cm and 18 cm and the distance between them is 8 cm . The area of the trapezium is \qquad cm^{2}.

Answer

(i) Area of triangle $=\frac{1}{2} \times($ base $) \times$ (height) .
(ii) Area of || gm = (base) \times (height).
(iii) Area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times (height)
(iv) Given

Length of parallel sides is 14 cm and 18 cm
Height (h) $=8 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) \times height
Therefore Area of trapezium $=\frac{1}{2} \times(14+18) \times 8=128 \mathrm{~cm}^{2}$.

