11. Circles

Exercise 11A

1. Question

A chord of length 16 cm is drawn in a circle of radius 10 cm . Find the distance of the chord from the center of the circle.

Answer

Let $A B$ be a chord of a circle with center $O . O C \perp A B$, then
$A B=16 \mathrm{~cm}$, and $O A=10 \mathrm{~cm}$.

$O C \perp A B$
Therefore,
$O C$ bisects $A B$ at C
$A C=(1 / 2) A B$
$\Rightarrow A C=(1 / 2) 16$
$\Rightarrow A C=8 \mathrm{~cm}$
In triangle OAC,
$O A^{2}=O C^{2}+A C^{2}$
$\Rightarrow 10^{2}=O C^{2}+8^{2}$
$\Rightarrow 100=O C^{2}+64$
$\Rightarrow O C^{2}=36$
$\Rightarrow \mathrm{OC}=6$

2. Question

Find the length of a chord which is at a distance of 3 cm from the center of a circle of radius 5 cm .

Let distance $O C=3 \mathrm{~cm}$
Radius $=O A=5 \mathrm{~cm}$
Draw $O C \perp A B$
In triangle OCA,
$O A^{2}=O C^{2}+A C^{2}$
$\Rightarrow 5^{2}=3^{2}+A C^{2}$
$\Rightarrow A C^{2}=16$
$\Rightarrow A C=4 \mathrm{~cm}$
Now,
$A B=2 A C$
$\Rightarrow A B=8 \mathrm{~cm}$ [From equation (i)]
Hence, length of a chord $=8 \mathrm{~cm}$.

3. Question

A chord of a length 30 cm is drawn at a distance of 8 cm from the center of a circle. Find out the radius of the circle.

Answer

Let distance $O C=8 \mathrm{~cm}$
Chord $A B=30 \mathrm{~cm}$
Draw $\mathrm{OC} \perp \mathrm{AB}$
Therefore,
OC bisects $A B$ at C
$A C=(1 / 2) A B$
$\Rightarrow A C=(1 / 2) 30$
$\Rightarrow A C=15 \mathrm{~cm}$
In triangle OCA,
$O A^{2}=O C^{2}+A C^{2}$
$\Rightarrow O A^{2}=8^{2}+15^{2}$
$\Rightarrow O A^{2}=64+225$
$\Rightarrow O A^{2}=289$
$\Rightarrow O A=17 \mathrm{~cm}$
Hence, radius of the circle $=17 \mathrm{~cm}$.

4. Question

In a circle of radius $5 \mathrm{~cm}, A B$ and $C D$ are two parallel chords of lengths 8 cm and 6 cm respectively. calculate the distance between the chords if they are
(i) on the same side of the center
(ii) on the opposite sides of the center.

Answer

(i)

Let radius $O B=O D=5 \mathrm{~cm}$
Chord $A B=8 \mathrm{~cm}$
Chord CD $=6 \mathrm{~cm}$
$B P=(1 / 2) A B$
$\Rightarrow B P=(1 / 2) 8=4 \mathrm{~cm}$
$D Q=(1 / 2) C D$
$\Rightarrow D Q=(1 / 2) 6=3 \mathrm{~cm}$
In triangle OPB,
$O P^{2}=O B^{2}-B P^{2}$
$\Rightarrow O P^{2}=5^{2}-4^{2}$
$\Rightarrow O P^{2}=25-16$
$\Rightarrow O P^{2}=9$
$\Rightarrow \mathrm{OP}=3 \mathrm{~cm}$
In triangle OQD,
$O Q^{2}=O D^{2}-D Q^{2}$
$\Rightarrow O Q^{2}=5^{2}-3^{2}$
$\Rightarrow O Q^{2}=25-9$
$\Rightarrow O Q^{2}=16$
$\Rightarrow O Q=4 \mathrm{~cm}$
Now,
$P Q=O Q-O P=4-3=1$
Hence, distance between chords $=1 \mathrm{~cm}$.
(ii)

Let radius $O A=O C=5 \mathrm{~cm}$
Chord $A B=8 \mathrm{~cm}$
Chord CD $=6 \mathrm{~cm}$
$A P=(1 / 2) A B$
$\Rightarrow A P=(1 / 2) 8=4 \mathrm{~cm}$
$C Q=(1 / 2) C D$
$\Rightarrow C Q=(1 / 2) 6=3 \mathrm{~cm}$
In triangle OAP,
$O P^{2}=O A^{2}-A P^{2}$
$\Rightarrow O P^{2}=5^{2}-4^{2}$
$\Rightarrow O P^{2}=25-16$
$\Rightarrow O P^{2}=9$
$\Rightarrow O P=3 \mathrm{~cm}$
In triangle OQD,
$O Q^{2}=O C^{2}-C Q^{2}$
$\Rightarrow O Q^{2}=5^{2}-3^{2}$
$\Rightarrow O Q^{2}=25-9$
$\Rightarrow O Q^{2}=16$
$\Rightarrow O Q=4 \mathrm{~cm}$
Now,
$P Q=O P+O Q=3+4=7$
Hence, distance between chords $=7 \mathrm{~cm}$.

5. Question

Two parallel chords of lengths 30 cm and 16 cm are drawn on the opposite sides of the center of a circle of radius 17 cm . Find the distance between the chords.

Answer

Let radius $O A=O C=17 \mathrm{~cm}$
Chord $A B=30 \mathrm{~cm}$ and $C D=16 \mathrm{~cm}$

Draw OL and OM
Therefore,
$A P=(1 / 2) A B$
$\Rightarrow A P=(1 / 2) 30=15 \mathrm{~cm}$
$C Q=(1 / 2) C D$
$\Rightarrow C Q=(1 / 2) 16=8 \mathrm{~cm}$
In triangle OAP,

$$
\begin{aligned}
& O P^{2}=O A^{2}-A P^{2} \\
& \Rightarrow O P^{2}=17^{2}-15^{2} \\
& \Rightarrow O P^{2}=289-225 \\
& \Rightarrow O P^{2}=64 \\
& \Rightarrow O P=8 \mathrm{~cm}
\end{aligned}
$$

In triangle OQD,
$O Q^{2}=O C^{2}-C Q^{2}$
$\Rightarrow O Q^{2}=17^{2}-8^{2}$
$\Rightarrow \mathrm{OQ}^{2}=289-64$
$\Rightarrow O Q^{2}=225$
$\Rightarrow O Q=15 \mathrm{~cm}$
Now,
$P Q=O P+O Q=8+15=23$
Hence, distance between chords $=23 \mathrm{~cm}$.

6. Question

In the given figure, the diameter $C D$ of a circle with center O is perpendicular to chord $A B$. If $A B=12 \mathrm{~cm}$ and $C E=3 \mathrm{~cm}$, calculate the radius of the circle.

Answer

Let radius $O A=O C=O D=r$
Chord $A B=12 \mathrm{~cm}$
$O E=O C-C E$
$\Rightarrow \mathrm{OE}=\mathrm{r}-3$
$A E=(1 / 2) A B$
$\Rightarrow A E=(1 / 2) 12=6 \mathrm{~cm}$
In triangle AOE,
$O A^{2}=A E^{2}+O E^{2}$
$\Rightarrow r^{2}=6^{2}+(r-3)^{2}$
$\Rightarrow r^{2}=36+r^{2}+9-6 r$
$\Rightarrow 6 \mathrm{r}=45$
$\Rightarrow r=7.5 \mathrm{~cm}$
Hence, radius of circle $=7.5 \mathrm{~cm}$.

7. Question

In the given figure, a circle with center O is given in which a diameter $A B$ bisects the chord $C D$ at a point E such that $C E=E D=8 \mathrm{~cm}$ and $E B=4 \mathrm{~cm}$. Find the radius of the circle.

Answer

Let radius $O A=O B=O D=r$
$D E=8 \mathrm{~cm}$
$O E=O B-B E$
$\Rightarrow O E=r-4$

In triangle ODE,

$$
\begin{aligned}
& O D^{2}=D E^{2}+O E^{2} \\
& \Rightarrow r^{2}=8^{2}+(r-4)^{2} \\
& \Rightarrow r^{2}=64+r^{2}+16-8 r \\
& \Rightarrow 8 r=80 \\
& \Rightarrow r=10 \mathrm{~cm}
\end{aligned}
$$

Hence, radius of circle $=10 \mathrm{~cm}$.

8. Question

In the adjoining figure, $O D$ is perpendicular to the chord $A B$ of a circle with center O. If $B C$ is a diameter, show that $A C \| C D$ and $A C=2 \times O D$.

Answer

Given $O D \perp A B$
In triangle $A B C$,
D is the mid-point of $A B$
$\therefore \mathrm{AD}=\mathrm{DB}$
O is the mid-point of $B C$
$\therefore \mathrm{OC}=\mathrm{OB}$
We say, $A C \| O D$
$(1 / 2) A C=O D$ [Mid-point theorem in triangle $A B C$]
$\Rightarrow A C=2 \times O D$ Proved .

9. Question

In the given figure, O is the center of a circle in which chords $A B$ and $C D$ intersect at P such that $P O$ bisects $\angle B P D$. Prove that $A B=C D$.

Answer

Proof
In \triangle OEP and \triangle OFP,
$\angle O E P=\angle O F P$ [equal to 90°]
$\mathrm{OP}=\mathrm{OP}$ [common]
$\angle O P E=\angle O P F[O P$ bisects $\angle B P D]$
Therefore,
$\triangle \mathrm{OEP}=\triangle \mathrm{OFP}$ [By angle-side-angle]
$\therefore \mathrm{OE}=\mathrm{OF}$
$A B=C D$ [Chords are equidistant from the center]

Hence, $A B=C D$ Proved.

10. Question

Prove that the diameter of a circle perpendicular to one of the two parallel chords of a circle is perpendicular to the other and bisects it.

Answer

$\angle \mathrm{PFD}=\angle \mathrm{PEB}$ [equal to 90°]
$\therefore \mathrm{PF} \perp \mathrm{CD}$ and $\mathrm{OF} \perp \mathrm{CD}$
We know that the perpendicular from the center of a circle to chord, bisect the chord.
Therefore,
CF = FD Proved .

11. Question

Prove that two different circles cannot intersect each other at more than two points.

Answer

Let two different circles intersect at three distinct points A, B and C.
Then, these points are already non-collinear.
A unique circle can be drawn to pass through these points. This is a contradiction.
Hence, two different circles cannot intersect each other at more than two points.

12. Question

Two circles of radii 10 cm and 8 cm intersect each other, and the length of the common chord is 12 cm . Find the distance between their centers.

Answer

Let,

Radius $O A=10 \mathrm{~cm}$ and $O^{\prime} A=8 \mathrm{~cm}$
Chord $A B=12 \mathrm{~cm}$
Now,
$A D=(1 / 2) A B$
$\Rightarrow A D=(1 / 2) 12=6 \mathrm{~cm}$
In triangle OAD,
$O D^{2}=O A^{2}-A D^{2}$
$\Rightarrow O D^{2}=10^{2}-6^{2}$
$\Rightarrow O D^{2}=100-36$
$\Rightarrow O D^{2}=64$
$\Rightarrow O D=8 \mathrm{~cm}$
In triangle O'AD,
$O^{\prime} D^{2}=O^{\prime} A^{2}-A D^{2}$
$\Rightarrow O^{\prime} D^{2}=8^{2}-6^{2}$
$\Rightarrow O^{\prime} D^{2}=64-36$
$\Rightarrow O^{\prime} D^{2}=28$
$\Rightarrow O^{\prime} D=2 \sqrt{ } 7 \mathrm{~cm}$
Now,
$O O^{\prime}=O D+O^{\prime} D=(8+2 \sqrt{7}) \mathrm{cm}$
Hence, distance between their centers $=(8+2 \sqrt{7}) \mathrm{cm}$

13. Question

Two equal circles intersect in P and Q. A straight line through P meets the circles in A and B. Prove that $Q A=Q B$.

Answer

Join PQ,
$P Q$ is the common chord of both the circles.

Thus,
$\operatorname{arc} P C Q=\operatorname{arc} P D Q$
$\therefore \angle \mathrm{QAP}=\angle \mathrm{QBP}$
$\therefore \mathrm{QA}=\mathrm{QB}$ Proved.

14. Question

If a diameter of a circle bisects each of the two chords of a circle then prove that the chords are parallel.

Answer

Let $A B$ and $C D$ are two chords of a circle with center O.
Diameter POQ bisect s them at L and M.

Then,
$\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$
$\therefore \angle \mathrm{ALM}=\angle \mathrm{LMD}$
$\therefore \mathrm{AB} \| \mathrm{CD}$ [Alternate angles]

15. Question

In the adjoining figure, two circles with centers at A and B, and of radii 5 cm and 3 cm touch each other internally. If the perpendicular bisector of meets the bigger circle in P and Q, find the length of $P Q$.

Answer

Join AP.
Let $P Q$ intersect $A B$ at L,
Then, $A B=5-3=2 \mathrm{~cm}$
$P Q$ is the perpendicular bisector of $A B$,
Then,
$A L=(1 / 2) A B$
$\Rightarrow A L=(1 / 2) 2=1 \mathrm{~cm}$
In triangle APL,
$P L^{2}=P A^{2}-A L^{2}$
$\Rightarrow P L^{2}=5^{2}-1^{2}$
$\Rightarrow P L^{2}=25-1$
$\Rightarrow \mathrm{PL}^{2}=24$
$\Rightarrow P L=2 \sqrt{ } 6 \mathrm{~cm}$
Now,
$P Q=2 P L$
$\Rightarrow \mathrm{PQ}=2 \times 2 \sqrt{ } 6$
$\Rightarrow P Q=4 \sqrt{ } 6 \mathrm{~cm}$

16. Question

In the given figure, $A B$ is a chord of a circle with center O and $A B$ is produced to C such that $B C=O B$. Also, is joined and produced to meet the circle in D. If $\angle A C D=y^{\circ}$ and $\angle A O D=x^{\circ}$, prove that $x=3 y$.

Answer

Given, $O B=O C$
Then, $\angle B O C=\angle B C O=y^{\circ}$
External $\angle \mathrm{OBA}=\angle \mathrm{BOC}+\angle \mathrm{BCO}=(2 \mathrm{y})^{\circ}$
Now,
$O A=O B$
Then, $\angle O A B=\angle O B A=(2 y)^{\circ}$
External $\angle A O D=\angle O A C+\angle A C O$
$=\angle O A B+\angle B C O=(3 y)^{\circ}$
$\therefore \mathrm{x}^{\circ}=(3 y)^{\circ}\left[\right.$ Given $\angle A O D=x^{\circ}$,]

17. Question

In the adjoining figure, O is the center of a circle. If $A B$ and $A C$ are chords of the circle such that $A B=A C, O P \perp A B$ and $O Q \perp A C$, prove that $P B=Q C$.

Answer
Given $A B=A C$
$\therefore(1 / 2) \mathrm{AB}=(1 / 2) \mathrm{AC}$
$\mathrm{OP} \perp \mathrm{AB}$ and $\mathrm{OQ} \perp \mathrm{AC}$
$\therefore \mathrm{MB}=\mathrm{NC}$
$\Rightarrow \angle \mathrm{PMB}=\angle \mathrm{QNC}\left[90^{\circ}\right]$
Equal chords are equidistant from the center.
$\Rightarrow \mathrm{OM}=\mathrm{ON}$
$O P=O Q$
$\Rightarrow \mathrm{OP}-\mathrm{OM}=\mathrm{OQ}-\mathrm{ON}$
$\Rightarrow \mathrm{PM}=\mathrm{QN}$
$\therefore \triangle A B C \cong \triangle A B C$ [By side-angle-side criterion of congruence]
$\therefore \mathrm{PB}=\mathrm{QC}$ Proved.

18. Question

In the adjoining figure, $B C$ is a diameter of a circle with center O. If $A B$ and $A C$ are two chord such that $A B \| C D$, prove that $A B=C D$.

Answer

Draw, $\mathrm{OP} \perp \mathrm{AB}$ and $\mathrm{OQ} \perp \mathrm{CD}$
In triangle OBP and triangle OQC,
$\angle \mathrm{OPB}=\angle \mathrm{OQC}\left[\right.$ Angle $\left.=90^{\circ}\right]$
$\angle \mathrm{OBP}=\angle \mathrm{OCD}$ [Alternate angle]
$\mathrm{OB}=\mathrm{OC}$ [Radius]
By side-angle-side criterion of congruence
$\triangle \mathrm{OBP} \cong \triangle \mathrm{OQC}$
$\therefore \mathrm{OP}=\mathrm{OQ}$
The chords equidistant from the center are equal.
$\therefore \mathrm{AB}=\mathrm{CD}$ Proved.

19. Question

An equilateral triangle of side 9 cm is inscribed in a circle. Find the radius of the circle.

Answer

Let ABC be an equilateral triangle of side 9 cm .
And AD be one of its medians.
Then,
$A D \perp B C$
$B D=(1 / 2) B C$
$\Rightarrow B D=(1 / 2) 9=4.5 \mathrm{~cm}$
In triangle ADB,
$A D^{2}=A B^{2}-B D^{2}$
$\Rightarrow A D^{2}=9^{2}-(9 / 2)^{2}$
$\Rightarrow A D^{2}=81-(81 / 4)$
$\Rightarrow A D=(9 \sqrt{ } 3) / 2$
In an equilateral triangle the centroid and circumcenter coincide and $A O$: $O D=2: 1$
\therefore radius $A O=(2 / 3) A D$
$=(2 / 3)(9 \sqrt{ } 3) / 2$
$=3 \sqrt{ } 3 \mathrm{~cm}$
Hence, radius of circle $=3 \sqrt{3} \mathrm{~cm}$.

20. Question

In the adjoining figure, $A B$ and $A C$ are two equal chords of a circle with center O. Show that O lies on the bisector of $\angle B A C$.

Answer

In triangle $O A B$ and triangle $O A C$,
$A B=A C$ [Given]
$\mathrm{OB}=\mathrm{CO}$ [Radius]
$O A=O A$ [Common]
By side-side-side criterion of congruence
$\triangle \mathrm{OAB} \cong \triangle \mathrm{OAC}$
$\therefore \angle O A B=\angle O A C$ Proved.

21. Question

In the adjoining figure, $O P Q R$ is a square. A circle drawn with center O cuts the suare in X and Y. Prove that $Q X=Q Y$.

Answer

In triangle OPX and triangle ORY,
$\mathrm{OX}=\mathrm{OY}$ [Radius]
$\angle O P X=\angle O R Y$ [Common]
$\mathrm{OP}=\mathrm{OR}$ [Sides of square]
By side-angle-side criterion of congruence,
$\Delta O P X \cong \triangle O R Y$
$\therefore \mathrm{PX}=\mathrm{RY}$
$\Rightarrow P Q-P X=Q R-R Y[P Q=Q R]$
\Rightarrow QX = QY Proved.

Exercise 11B

1. Question

(i) In Figure (1), O is the center of the circle. If $\angle O A B=40^{\circ}$ and $\angle O C B=30^{\circ}$, find $\angle A O C$. (ii) In figure (2), A, B and C are three points on the circle with center O such that $\angle A O B=90^{\circ}$ and $\angle A O C=110^{\circ}$.

Find $\angle B A C$.

Answer

(1)
(i) Join OB.
$\angle O A B=\angle O B A=40^{\circ}[$ Because $O B=O A]$
$\angle \mathrm{OCB}=\angle \mathrm{OBC}=30^{\circ}[$ Because $\mathrm{OB}=\mathrm{OC}]$
$\angle A B C=\angle O B A+\angle O B C$
$\Rightarrow \angle \mathrm{ABC}=40^{\circ}+30^{\circ}$
$\Rightarrow \angle A B C=70^{\circ}$
$\angle A O C=2 \times \angle A B C$
$\Rightarrow \angle A O C=2 \times \angle A B C$
$\Rightarrow \angle A O C=2 \times 70^{\circ}$
$\Rightarrow \angle A O C=140^{\circ}$
(ii) $\angle B A C=80^{\circ}$
$\angle B O C=360^{\circ}-(\angle A O B+\angle A O C)$ [Sum of all angles at a point $\left.=360^{\circ}\right]$
$\Rightarrow \angle \mathrm{BOC}=360^{\circ}-\left(90^{\circ}+110^{\circ}\right)$
$\Rightarrow \angle B O C=360^{\circ}-200^{\circ}$
$\Rightarrow \angle B O C=160^{\circ}$
We know that $\angle B O C=2 \times \angle B A C$
$\Rightarrow \angle B A C=(1 / 2) \times \angle B O C$
$\Rightarrow \angle B A C=(1 / 2) \times 160^{\circ}$
$\Rightarrow \angle B A C=80^{\circ}$

2. Question

In the given figure, O is the center of the circle and $\angle A O B=70^{\circ}$.
Calculate the values of (i) $\angle O C A$, (ii) $\angle O A C$.

Answer

(i) $\angle A O C+\angle A O B=180^{\circ}$ [Because $B C$ is a straight line]
$\Rightarrow \angle A O C+70^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C+70^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C=110^{\circ}$
$\mathrm{OA}=\mathrm{OC}$ [Radius]
$\therefore \angle O A C=\angle O C A$
In triangle AOC,
$\angle O A C+\angle O C A+\angle A O C=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 2 \angle O C A+110^{\circ}=180^{\circ}[$ From equation (i)]
$\Rightarrow 2 \angle O C A=70^{\circ}$
$\Rightarrow 2 \angle \mathrm{OCA}=70^{\circ}$
$\Rightarrow \angle O C A=35^{\circ}$
(ii) $\angle O A C=35^{\circ}$
$\angle A O C+\angle A O B=180^{\circ}$ [Because $B C$ is a straight line]
$\Rightarrow \angle A O C+70^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C+70^{\circ}=180^{\circ}$
$\Rightarrow \angle A O C=110^{\circ}$
$\mathrm{OA}=\mathrm{OC}$ [Radius]
$\therefore \angle O A C=\angle O C A$
In triangle AOC,
$\angle O A C+\angle O C A+\angle A O C=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 2 \angle \mathrm{OAC}+110^{\circ}=180^{\circ}[$ From equation (i)]
$\Rightarrow 2 \angle \mathrm{OAC}=70^{\circ}$
$\Rightarrow 2 \angle \mathrm{OAC}=70^{\circ}$
$\Rightarrow \angle O A C=35^{\circ}$

3. Question

In the given figure, O is the center of the circle. If $\angle P B C=25^{\circ}$ and $\angle A P B=110^{\circ}$, find the value of $\angle A D B$.

Answer

$\angle \mathrm{BPC}+\angle \mathrm{APB}=180^{\circ}$ [Because APC is a straight line]
$\Rightarrow \angle B P C+110^{\circ}=180^{\circ}$
$\Rightarrow \angle B P C=70^{\circ}$
In triangle BPC,
$\angle \mathrm{BPC}+\angle \mathrm{PBC}+\angle \mathrm{PCB}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 70^{\circ}+25^{\circ}+\angle \mathrm{PCB}=180^{\circ}$
$\Rightarrow \angle \mathrm{PCB}=85^{\circ}$
$\therefore \angle \mathrm{ADB}=\angle \mathrm{PCB}=85^{\circ}$ [Angles in the same segment of a circle]

4. Question

In the given figure, O is the center of the circle. If $\angle A B D=35^{\circ}$ and $\angle B A C=70^{\circ}$, find $\angle A C B$.

Answer

In triangle $A B D$,
$\angle A B D+\angle B A D+\angle A D B=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 35^{\circ}+90^{\circ}+\angle A D B=180^{\circ}$
$\Rightarrow \angle A D B=55^{\circ}$
$\therefore \angle \mathrm{ACB}=\angle \mathrm{ADB}=55^{\circ}$ [Angles in the same segment of a circle]

5. Question

In the given figure, O is the center of the circle. If $\angle A C B=50^{\circ}$, find $\angle O A B$.

Answer

$\angle A O B=2 \times \angle A C B$
$\Rightarrow \angle A O B=2 \times 50^{\circ}$
$\Rightarrow \angle A O B=100^{\circ}$
$\mathrm{OA}=\mathrm{OB}$ [Radius of the circle]
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OBA}$ \qquad (i)

In triangle AOB,
$\angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 2 \angle \mathrm{OAB}+100^{\circ}=180^{\circ}[$ From equation (i)]
$\Rightarrow 2 \angle \mathrm{OAB}=80^{\circ}$
$\Rightarrow \angle O A B=40^{\circ}$

6. Question

In the given figure, $\angle A B D=54^{\circ}$ and $\angle B C D=43^{\circ}$, calculate
(i) $\angle A C D$
(ii)
$\angle B A D$
(iii) $\angle B D A$

Answer

(i) $\angle A C D=54^{\circ}$
$\angle A B D$ and $\angle A C D$ are in the segment $A D$.
$\therefore \angle A C D=\angle A B D$ [Angles in the same segment of a circle]
$\angle A C D=54^{\circ}$
(ii) $\angle B A D=43^{\circ}$
$\angle B A D$ and $\angle B C D$ are in the segment $B D$.
$\therefore \angle B A D=\angle B C D$ [Angles in the same segment of a circle]
$\angle B A D=43^{\circ}$
(iii) $\angle B D A=83^{\circ}$

In triangle $A B D$,
$\angle A B D+\angle B A D+\angle B A D=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 54^{\circ}+43^{\circ}+\angle B A D=180^{\circ}$
$\Rightarrow 97^{\circ}+\angle B A D=180^{\circ}$
$\Rightarrow \angle B A D=83^{\circ}$

7. Question

In the adjoining figure, $D E$ is a chord parallel to diameter $A C$ of the circle with center O. If $\angle C B D=60^{\circ}$, calculate $\angle C D E$.

Answer

$\angle C A D$ and $\angle C B D$ are in the segment $B D$.
$\therefore \angle C A D=\angle C B D$ [Angles in the same segment of a circle]
$\angle C A D=60^{\circ}$
In triangle ACD,
$\angle C A D+\angle A D C+\angle A C D=180^{\circ}[$ Sum of angles of triangle $]$
$\Rightarrow 60^{\circ}+90^{\circ}+\angle A C D=180^{\circ}$
$\Rightarrow 150^{\circ}+\angle A C D=180^{\circ}$
$\Rightarrow \angle A C D=30^{\circ}$
$\therefore \angle \mathrm{CDE}=\angle \mathrm{ACD}=30^{\circ}$ [Alternate angles]

8. Question

In the adjoining figure, O is the center of a circle. Chord $C D$ is parallel to diameter $A B$. If $\angle A B C=25^{\circ}$, calculate $\angle C E D$.

Answer

Join OC and OD.
$\angle \mathrm{ABC}=\angle \mathrm{BCD}=25^{\circ}$ [Alternate angles]
The angle subtended by an arc of a circle at the center is double the angle subtended by the arc at any point on the circumference.
$\therefore \angle \mathrm{BOD}=2 \times \angle \mathrm{BCD}$
$\Rightarrow \angle B O D=2 \times 25^{\circ}$
$\Rightarrow \angle \mathrm{BOD}=50^{\circ}$
Similarly,
$\angle A O C=2 \times \angle A B C$
$\Rightarrow \angle A O C=2 \times 25^{\circ}$
$\Rightarrow \angle A O C=50^{\circ}$
Now,
$\angle A O B=180^{\circ}[A O B$ is a straight line $]$
$\Rightarrow \angle A O C+\angle C O D+\angle B O D=180^{\circ}$
$\Rightarrow 50^{\circ}+\angle C O D+50^{\circ}=180^{\circ}$
$\Rightarrow 100^{\circ}+\angle C O D=180^{\circ}$
$\Rightarrow \angle \mathrm{COD}=80^{\circ}$
$\therefore \angle C E D=(1 / 2) \angle C O D$
$\Rightarrow \angle C E D=(1 / 2) 80^{\circ}$
$\Rightarrow \angle C E D=40^{\circ}$

9. Question

In the given figure, $A B$ and $C D$ are straight lines through the center O of a circle. If $\angle A O C=80^{\circ}$ and $\angle C D E=40^{\circ}$, find (i) $\angle D C E$, (ii) $\angle A B C$.

Answer
(i) $\angle D C E=50^{\circ}$

In triangle CDE,
$\angle C D E+\angle C E D+\angle D C E=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 40^{\circ}+90^{\circ}+\angle \mathrm{DCE}=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle D C E=180^{\circ}$
$\Rightarrow \angle D C E=50^{\circ}$
(ii) $\angle A B C=30^{\circ}$
$\angle A O C+\angle B O C=180^{\circ}$ [Because $A O B$ is a straight line]
$\Rightarrow 80^{\circ}+\angle B O C=180^{\circ}$
$\Rightarrow \angle B O C=100^{\circ}$
In triangle BOC,
$\angle O C B+\angle B O C+\angle O B C=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 50^{\circ}+100^{\circ}+\angle \mathrm{OBC}=180^{\circ}\left[\angle \mathrm{DCE}=50^{\circ}\right]$
$\Rightarrow 150^{\circ}+\angle O B C=180^{\circ}$
$\Rightarrow \angle O B C=30^{\circ}$
$\therefore \angle \mathrm{ABC}=\angle \mathrm{OBC}=30^{\circ}$

10. Question

In the adjoining figure, O is the center of a circle, $\angle A O B=40^{\circ}$ and $\angle B D C=100^{\circ}$, find $\angle O B C$.

Answer
$\angle D C B=(1 / 2) \angle A O B[\angle D C B=\angle A C B]$
$\Rightarrow \angle \mathrm{DCB}=(1 / 2) 40^{\circ}$
$\Rightarrow \angle \mathrm{DCB}=20^{\circ}$
In triangle $B C D$,
$\angle \mathrm{BDC}+\angle \mathrm{DCB}+\angle \mathrm{DBC}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 100^{\circ}+20^{\circ}+\angle \mathrm{OBC}=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle D B C=180^{\circ}$
$\Rightarrow \angle \mathrm{DBC}=60^{\circ}$
$\therefore \angle \mathrm{OBC}=\angle \mathrm{DBC}=60^{\circ}$

11. Question

In the adjoining figure, chords $A C$ and $B D$ of a circle with center O, intersect at right angles at E. If $\angle O A B=25^{\circ}$, calculate $/ F B C$.

Answer

Join OB,
$\therefore \mathrm{OA}=\mathrm{OB}$ [Radius]
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OBA}=25^{\circ}$
In triangle AOB,
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle A O B+25^{\circ}+25^{\circ}=180^{\circ}$
$\Rightarrow \angle A O B+50^{\circ}=180^{\circ}$
$\Rightarrow \angle A O B=130^{\circ}$
Now,
$\angle A C B=(1 / 2) \angle A O B$
$\Rightarrow \angle A C B=(1 / 2) 130^{\circ}$
$\Rightarrow \angle A C B=65^{\circ}$
In triangle BEC,
$\angle E B C+\angle E C B+\angle B E C=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle E B C+65^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle E B C+155^{\circ}=180^{\circ}$
$\Rightarrow \angle E B C=25^{\circ}$

12. Question

In the given figure, O is the center of a circle in which $\angle O A B=20^{\circ}$ and $\angle O C B=55^{\circ}$. Find (i) $\angle B O C$, (ii) $\angle A O C$.

Answer

(i) $\angle B O C=70^{\circ}$
$\mathrm{OB}=\mathrm{OC}$ [Radius]
$\therefore \angle \mathrm{OBC}=\angle \mathrm{OCB}=55^{\circ}$
In triangle OCB,
$\angle \mathrm{OBC}+\angle \mathrm{OCB}+\angle \mathrm{BOC}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 55^{\circ}+55^{\circ}+\angle B O C=180^{\circ}$
$\Rightarrow 110^{\circ}+\angle B O C=180^{\circ}$
$\Rightarrow \angle B O C=70^{\circ}$
(ii) $\angle A O C=70^{\circ}$
$\mathrm{OA}=\mathrm{OB}$ [Radius]
$\therefore \angle \mathrm{OBA}=\angle \mathrm{OAB}=20^{\circ}$
In triangle $A O B$,
$\angle \mathrm{OBA}+\angle \mathrm{OAB}+\angle \mathrm{AOB}=180^{\circ}[$ Sum of angles of triangle $]$
$\Rightarrow 20^{\circ}+20^{\circ}+\angle A O B=180^{\circ}$
$\Rightarrow 40^{\circ}+\angle A O B=180^{\circ}$
$\Rightarrow \angle A O B=140^{\circ}$
$\therefore \angle A O C=\angle A O B-\angle B O C$
$\Rightarrow \angle A O C=140^{\circ}-70^{\circ}$
$\Rightarrow \angle A O C=70^{\circ}$

13. Question

In the given figure, $\angle B A C=30^{\circ}$. Show that $B C$ is equal to the radius of the circumcircle of $\triangle A B C$ whose center is O .

Answer

$\angle B O C=2 \times \angle B A C$
$\Rightarrow \angle \mathrm{BOC}=2 \times 30^{\circ}$
$\Rightarrow \angle B O C=60^{\circ}$ \qquad
$O B=O C$
$\therefore \angle O B C=\angle O C B$
In triangle AOB,
$\angle \mathrm{OBC}+\angle \mathrm{OCB}+\angle \mathrm{BOC}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 2 \angle O C B+60^{\circ}=180^{\circ}$
$\Rightarrow 2 \angle O C B=120^{\circ}$
$\Rightarrow \angle O C B=60^{\circ}$
$\therefore \angle O B C=60^{\circ}$ [From equation (ii)]
From equation (i) and (ii),
$\angle O B C=\angle O C B=\angle B O C=60^{\circ}$
$\therefore \mathrm{BOC}$ is an equilateral triangle.
$\therefore \mathrm{OB}=\mathrm{OC}=\mathrm{BC}$
Hence, $B C$ is the radius of the circumcircle.

14. Question

In the given figure, $P Q$ is a diameter of a circle with center O. If $\angle P Q R=65^{\circ}, \angle S P R=40^{\circ}$ and $\angle P Q M=50^{\circ}$, find $\angle O P R, \angle O P M$ and $\angle P R S$.

Answer

In triangle $P Q R$,
$\angle \mathrm{QPR}+\angle \mathrm{PQR}+\angle \mathrm{PRQ}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle Q P R+65^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle Q P R+155^{\circ}=180^{\circ}$
$\Rightarrow \angle Q P R=25^{\circ}$ \qquad
In triangle PMQ ,
$\angle \mathrm{QPM}+\angle \mathrm{PMQ}+\angle \mathrm{PQM}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle \mathrm{QPM}+90^{\circ}+50^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{QPM}+140^{\circ}=180^{\circ}$
$\Rightarrow \angle Q P M=40^{\circ}$
Now,
$\angle \mathrm{PRS}=\angle \mathrm{QPR}=25^{\circ}$ [Alternate angles]

Exercise 11C

1. Question

In the given figure, $A R C D$ is a cyclic quadrilateral whose diagonals intersect at P such that $\angle D B C=60^{\circ}$ and $\angle B A C=40^{\circ}$. Find (i) $\angle B C D$, (ii) $\angle C A D$.

Answer
(i) $\angle B C D=80^{\circ}$
$\angle B A C=\angle B D C=40^{\circ}$ [Angles in the same segment]
In triangle $B C D$,
$\angle \mathrm{BCD}+\angle \mathrm{DBC}+\angle \mathrm{BDC}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle \mathrm{BCD}+60^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle B C D+100^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=80^{\circ}$
(ii) $\angle B C D=80^{\circ}$
$\angle C A D=\angle C B D$ [Angles in the same segment]
$\Rightarrow \angle C A D=40^{\circ}$

2. Question

In the given figure, $P O Q$ is a diameter and $P O R S$ is a cyclic quadrilateral. If $\angle P S R=150^{\circ}$, find $\angle R P O$.

Answer

In cyclic quadrilateral PQRS,
$\angle \mathrm{PSR}+\angle \mathrm{PQR}=180^{\circ}$ [Opposite angles]
$\Rightarrow 150^{\circ}+\angle P Q R=180^{\circ}$
$\Rightarrow \angle P Q R=30^{\circ}$
In triangle $P Q R$,
$\angle \mathrm{RPQ}+\angle \mathrm{PQR}+\angle \mathrm{PRQ}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle \mathrm{RPQ}+30^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{RPQ}+120^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{RPQ}=60^{\circ}$

3. Question

In the given figure, $A B C D$ is a cyclic quadrilateral in which $A B \| D C$.
If $\angle B A D=100^{\circ}$, find
(i) $\angle B C D$ (ii) $\angle A D C$ (iii) $\angle A B C$.

Answer

(i) $\angle B C D=80^{\circ}$
$\angle B A D+\angle B C D=180^{\circ}$ [Opposite angles of a cyclic quadrilateral arc supplementary]
$\Rightarrow 100^{\circ}+\angle B C D=180^{\circ}$
$\Rightarrow \angle \mathrm{BCD}=80^{\circ}$
(ii) $\angle A D C=80^{\circ}$
$\angle B A D+\angle A D C=180^{\circ}$ [Interior angles of same side]
$\Rightarrow 100^{\circ}+\angle A D C=180^{\circ}$
$\Rightarrow \angle A D C=80^{\circ}$
(iii) $\angle A B C=100^{\circ}$
$\angle B C D+\angle A B C=180^{\circ}$ [Interior angles of same side]
$\Rightarrow 80^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=100^{\circ}$

4. Question

In the given figure, O is the center of the circle and arc $A B C$ subtends an angle of 130° at the center. If $A B$ is extended to P find $\angle P B C$.

Answer

Reflex $\angle A O C=360^{\circ}-\angle A O C$
$=360^{\circ}-130^{\circ}$
$=230^{\circ}$
$\therefore \angle A B C=(1 / 2) \angle A O C$
$\Rightarrow \angle A B C=(1 / 2) 230^{\circ}$
$\Rightarrow \angle A B C=115^{\circ}$
Now,
$\angle \mathrm{ABC}+\angle \mathrm{PBC}=180^{\circ}$ [Because ABP is a straight line]
$\Rightarrow 115^{\circ}+\angle \mathrm{PBC}=180^{\circ}$
$\Rightarrow \angle \mathrm{PBC}=65^{\circ}$

5. Question

In the given figure, $A B C D$ is a cyclic quadrilateral in which $A E$ is drawn parallel to $C D$, and $B A$ is produced. If $\angle A B C=97^{\circ}$ and $\angle F A E=20^{\circ}$, find $\angle B C D$.

Answer

$A B C D$ is cyclic quadrilateral.
$\therefore \angle A B C+\angle A D C=180^{\circ}$
$\Rightarrow 92^{\circ}+\angle A D C=180^{\circ}$
$\Rightarrow \angle A D C=88^{\circ}$
AE || CD
$\therefore \angle E A D=\angle A D C=88^{\circ}$
Now,
$\angle \mathrm{BCD}=180^{\circ}-\angle \mathrm{DAB} \Rightarrow \angle \mathrm{BCD}=\angle \mathrm{DAF}=\angle \mathrm{EAD}+\angle \mathrm{EAF}$
$\Rightarrow \angle B C D=88^{\circ}+20^{\circ}$
$\Rightarrow \angle B C D=108^{\circ}$

6. Question

In the given figure, $B D=D C$ and $\angle C B D=30^{\circ}$ find $m(\angle B A C)$.

Answer

$B D=C D$
$\therefore \angle \mathrm{CBD}=\angle \mathrm{BCD}=30^{\circ}$
In triangle $B C D$,
$\angle B D C+\angle B C D+\angle C B D=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle \mathrm{BDC}+30^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle B D C+60^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BDC}=120^{\circ}$
Now,
$\angle B D C+\angle B A C=180^{\circ}[A B C D$ is a cyclic quadrilateral $]$
$\Rightarrow 120^{\circ}+\angle B A C=180^{\circ}$
$\Rightarrow \angle B A C=60^{\circ}$

7. Question

In the given figure, O is the center of the given circle and measure of arc $A B C$ is 100°. Determine $\angle A D C$ and $\angle A B C$.

Answer

$\angle A D C=(1 / 2) \angle A O C$
$\Rightarrow \angle A D C=(1 / 2) 100^{\circ}$
$\Rightarrow \angle A D C=50^{\circ}$
Now,
$\angle A D C+\angle A B C=180^{\circ}[A B C D$ is a cyclic quadrilateral $]$
$\Rightarrow 50^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=130^{\circ}$

8. Question

In the given figure, $\triangle A B C$ is equilateral. Find (i) $\angle B D C$. (ii) $\angle B E C$.

Answer

(i) $\angle B D C=60^{\circ}$
$A B C$ is equilateral triangle.
$\therefore \angle A B C=\angle A C B=\angle B A C=60^{\circ}$ \qquad (i)
$\angle B D C=\angle B A C=60^{\circ}$ [Angles in the same segment of a circle are equal]
(ii) $\angle B E C=120^{\circ}$
$A B C D$ is a cyclic quadrilateral
$\therefore \angle B A C+\angle B E C=180^{\circ}$
$\Rightarrow 60^{\circ}+\angle B E C=180^{\circ}$
$\Rightarrow \angle B E C=120^{\circ}$

9. Question

In the adjoining figure, $A B C D$ is a cyclic quadrilateral in which $\angle B C D=100^{\circ}$ and $\angle A B D=50^{\circ}$. Find $\angle A D B$.

Answer

$A B C D$ is a cyclic quadrilateral
$\therefore \angle B C D+\angle B A D=180^{\circ}$ [Opposite angle of a cyclic quadrilateral are supplementary]
$\Rightarrow 100^{\circ}+\angle B A D=180^{\circ}$
$\Rightarrow \angle B A D=80^{\circ}$
In triangle $A B D$,
$\angle A D B+\angle A B D+\angle B A D=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle A D B+50^{\circ}+80^{\circ}=180^{\circ}$
$\Rightarrow \angle A D B+130^{\circ}=180^{\circ}$
$\Rightarrow \angle A D B=50^{\circ}$

10. Question

In the given figure, O is the center of a circle and $\angle B O D=150^{\circ}$. Find the values of x and y.

Answer

Reflex $\angle \mathrm{BOD}=\left(360^{\circ}-\angle \mathrm{BOD}\right)$
\Rightarrow Reflex $\angle \mathrm{BOD}=\left(360^{\circ}-150^{\circ}\right)$
\Rightarrow Reflex $\angle B O D=210^{\circ}$
Now,
$X=(1 / 2)($ Reflex $\angle B O D)$
$\Rightarrow X=(1 / 2) 210^{\circ}$
$\Rightarrow X=105^{\circ}$
$X+Y=180^{\circ}$
$\Rightarrow 105^{\circ}+Y=180^{\circ}$
$\Rightarrow \mathrm{Y}=75^{\circ}$

11. Question

In the given figure, O is the center of a circle and $\angle D A B=50^{\circ}$. Find the values of x and y.

Answer

$\mathrm{OA}=\mathrm{OB}$ [Radius]
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OBC}=50^{\circ}$
In triangle $A O B$,
$\angle A O B+\angle O A B+\angle O B C=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle A O B+50^{\circ}+50^{\circ}=180^{\circ}$
$\Rightarrow \angle A O B+100^{\circ}=180^{\circ}$
$\Rightarrow \angle A O B=80^{\circ}$
$\therefore \mathrm{x}=180^{\circ}-\angle \mathrm{AOB}$ [AOD is a straight line]
$\Rightarrow \mathrm{x}=180^{\circ}-80^{\circ}$
$\Rightarrow x=100^{\circ}$
$\therefore \mathrm{X}+\mathrm{Y}=180^{\circ}$ [Opposite angle of a cyclic quadrilateral are supplementary]
$\Rightarrow 100^{\circ}+Y=180^{\circ}$
$\Rightarrow \mathrm{Y}=80^{\circ}$

12. Question

In the given figure, sides $A D$ and $A B$ of cyclic quadrilateral $A B C D$ are produced to E and F respectively.

If $\angle C B F=130^{\circ}$ and $\angle C D E=x^{\circ}$, find the value of x.

Answer

$\angle A B C+\angle C B F=180^{\circ}$ [Because ABF is a straight line]
$\Rightarrow \angle A B C+130^{\circ}=180^{\circ}$
$\Rightarrow \angle A B C=50^{\circ}$
$\therefore \mathrm{x}=\angle \mathrm{ABC}=50^{\circ}$ [Exterior angle $=$ interior opposite angle]

13. Question

In the given figure, $A B$ is a diameter of a circle with center O and $D O \| C B$.
If $\angle B C D=120^{\circ}$. calculate
(i) $\angle B A D$ (ii) $\angle A B D$
(iii) $\angle C B D$ (iv) $\angle A D C$.

Also, show that $\triangle A O D$ is an equilateral triangle.

Answer

(i) $\angle B A D=60^{\circ}$
$A B C D$ is a cyclic quadrilateral.
$\therefore \angle B A D+\angle B C D=180^{\circ}$
$\Rightarrow \angle B A D+120^{\circ}=180^{\circ}$
$\Rightarrow \angle B A D=60^{\circ}$
(ii) $\angle A B D=30^{\circ}$
$\angle B D A=90^{\circ}$ [Angle in a semi-circle]
In triangle $A B D$,
$\angle \mathrm{ABD}+\angle \mathrm{BDA}+\angle \mathrm{BAD}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow \angle A B D+90^{\circ}+60^{\circ}=180^{\circ}$
$\Rightarrow \angle A B D+150^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABD}=30^{\circ}$
(iii) $\angle C B D=30^{\circ}$
$\mathrm{OD}=\mathrm{OA}$ [Radius]
$\therefore \angle \mathrm{OAD}=\angle \mathrm{ODA}=\angle \mathrm{BAD}=180^{\circ}$
$\therefore \angle O D B=90^{\circ}-\angle O D A$
$\Rightarrow \angle O D B=90^{\circ}-60^{\circ}$
$\Rightarrow \angle O D B=30^{\circ}$
(iv) $\angle A D C=120^{\circ}$
$\angle A D C=\angle A D B+\angle C D B$
$\Rightarrow \angle A D C=90^{\circ}+30^{\circ}$
$\Rightarrow \angle A D C=120^{\circ}$
In triangle AOD,
$\angle A O D+\angle O A D+\angle O D A=180^{\circ}[$ Sum of angles of triangle]
$\Rightarrow \angle A O D+60^{\circ}+60^{\circ}=180^{\circ}$
$\Rightarrow \angle A O D+120^{\circ}=180^{\circ}$
$\Rightarrow \angle A O D=60^{\circ}$
\therefore Triangle AOD is an equilateral triangle.

14. Question

Two chords $A B$ and $C D$ of a circle intersect each other at P outside the circle. If $A B=6 \mathrm{~cm}, B P=2 \mathrm{~cm}$ and $P D=2.5 \mathrm{~cm}$, find $C D$.

Answer

Two chords $A B$ and $C D$ of a circle intersect each other at P outside the circle.
$\therefore \mathrm{AP} \times \mathrm{BP}=\mathrm{CP} \times \mathrm{PD}$
$\Rightarrow(A B+B P) \times B P=(C D+P D) \times P D$
$\Rightarrow(6+2) \times 2=(C D+2.5) \times 2.5$
$\Rightarrow 16=2.5 C D+6.25$
$\Rightarrow 2.5 \mathrm{CD}=9.75$
$\Rightarrow C D=3.9 \mathrm{~cm}$

15. Question

In the given figure, O is the center of a circle. If $\angle A O D=140^{\circ}$ and $\angle C A B=50^{\circ}$, calculate
(i) $\angle E D B$, (ii) $\angle E B D$.

Answer

(i) $\angle E D B=50^{\circ}$
$\angle B O D+\angle A O D=180^{\circ}[A O B$ is a straight line $]$
$\Rightarrow \angle B O D+140^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BOD}=40^{\circ}$
$O B=O D$
$\therefore \angle \mathrm{OBD}=\angle \mathrm{ODB}$
In triangle AOD,
$\angle \mathrm{BOD}+\angle \mathrm{OBD}+\angle \mathrm{ODB}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 40^{\circ}+2 \angle O B D=180^{\circ}$
$\Rightarrow 2 \angle O B D=140^{\circ}$
$\Rightarrow \angle \mathrm{OBD}=70^{\circ}$
$\therefore \angle \mathrm{OBD}=\angle \mathrm{ODB}=70^{\circ}$
$A B D C$ is a cyclic quadrilateral.
$\therefore \angle C A B+\angle B D C=180^{\circ}$
$\Rightarrow \angle C A B+\angle O D B+\angle O D C=180^{\circ}$
$\Rightarrow 50^{\circ}+70^{\circ}+\angle O D C=180^{\circ}$
$\Rightarrow \angle O D C=60^{\circ}$
Now,
$\angle E D B=180^{\circ}-\angle B D C$ [Because CDE is a straight line]
$\Rightarrow \angle E D B=180^{\circ}-(\angle O D B+\angle O D C)$
$\Rightarrow \angle E D B=180^{\circ}-\left(70^{\circ}+60^{\circ}\right)$
$\Rightarrow \angle E D B=180^{\circ}-130^{\circ}$
$\Rightarrow \angle E D B=50^{\circ}$
(ii) $\angle E B D=110^{\circ}$
$\angle B O D+\angle A O D=180^{\circ}[A O B$ is a straight line $]$
$\Rightarrow \angle B O D+140^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BOD}=40^{\circ}$
$O B=O D$
$\therefore \angle \mathrm{OBD}=\angle \mathrm{ODB}$
In triangle AOD,
$\angle \mathrm{BOD}+\angle \mathrm{OBD}+\angle \mathrm{ODB}=180^{\circ}$ [Sum of angles of triangle]
$\Rightarrow 40^{\circ}+2 \angle O B D=180^{\circ}$
$\Rightarrow 2 \angle O B D=140^{\circ}$
$\Rightarrow \angle O B D=70^{\circ}$
$\therefore \angle \mathrm{OBD}=\angle \mathrm{ODB}=70^{\circ}$
Now,
$\angle E B D+\angle O B D=180^{\circ}$ [Because OBE is a straight line]
$\Rightarrow \angle E B D+70^{\circ}=180^{\circ}$
$\Rightarrow \angle E B D=110^{\circ}$

16. Question

In the given figure, $A B C D$ is a cyclic quadrilateral whose sides $A B$ and $D C$ are produced to meet in E.
Prove that $\triangle E B C-\triangle E D A$.

Answer

In $\triangle E B C$ and $\triangle E D A$,
$\angle E B C=\angle C D A$
$\Rightarrow \angle E B C=\angle C D A$ \qquad (i)
$\angle E C B=\angle B A D$
$\Rightarrow \angle E C B=\angle E A D$ \qquad
$\angle B E C=\angle D E A$ \qquad (iii)

From equation (i), (ii) and (iii),
$\Delta E B C \cong \Delta E D A$ Proved.

17. Question

In the given figure, $\triangle A B C$ is an isosceles triangle in which $A B=A C$ and a circle passing through B and C intersects $A B$ and $A C$ at D and E respectively.

Prove that $D E \| B C$.

Answer

Given $A B=A C$
$\therefore \angle A C B=\angle A B C$
Ext. $\angle A D E=\angle A C B=\angle A B C$
$\therefore \angle A D E=\angle A B C$
$\therefore \mathrm{DE} \| \mathrm{BC}$ Proved.

18. Question

$A B C$ is an isosceles triangle in which $A B=A C$. If D and E are midpoints of $A B$ and $A C$ respectively, prove that the points D, B, C, E are concyclic.

Answer

Given, $A B C$ is an isosceles triangle in which $A B=A C$. D and E are midpoints of $A B$ and $A C$ respectively.
$\therefore D E \| B C$
$\Rightarrow \angle A D E=\angle A B C$ \qquad
$A B=A C$
$\Rightarrow \angle A B C=\angle A C B$ \qquad (ii)

Now,
$\angle A D E+\angle E D B=180^{\circ}[$ Because $A D B$ is a straight line $]$
$\Rightarrow \angle A C B+\angle E D B=180^{\circ}$
The opposite angles are supplementary.
$\therefore \mathrm{D}, \mathrm{B}, \mathrm{C}, \mathrm{E}$ are concyclic.

19. Question

Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.

Answer

Let, $A B C D$ be a cyclic quadrilateral and O be the center of
the circle passing through A, B, C, and D.

Then,
Each of $A B, B C, C D$ and $D A$ being a chord of the
circle, its right bisector must pass through 0 .
Therefore,
The right bisectors of $A B, B C, C D$ and $D A$ pass through and are concurrent.

20. Question

Prove that the circles described with the four sides of a rhombus, as diameters, pass through the point of intersection of its diagonals.

Answer

Let diagonals $B D$ and $A C$ of the rhombus $A B C D$ intersect at O.
We know that the diagonals of a rhombus bisect each other at right angles.

$\therefore \angle B O C=90^{\circ}$
$\therefore \angle B O C$ lies in a circle.
The circle drawn with BC as diameter will pass through O .

21. Question

$A B C D$ is a rectangle. Prove that the center of the circle through A, B, C, D is the point of intersection of its diagonals.

Answer

Let O be the point of intersection of the diagonals $B D$ and $A C$ of rectangle $A B C D$.
Since, the diagonals of a rectangle are equal and bisect each other.

$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}$
Hence, O is the center of the circle through A, B, C, D.

22. Question

Give a geometrical construction for finding the fourth point lying on a circle passing through three given points, without finding the center of the circle. Justify the construction.

Answer

Let A, B, C, D be the given points.
With B as center and radius equal to $A C$ draw an arc.
With C as center and $A B$ as radius draw another arc.
Which cuts the previous arc at D,
Then, D is the required point $B D$ and $C D$.

In $\triangle A B C$ and $\triangle D C B$,
$A B=D C$
$A C=D B$
$B C=C B$
$\therefore \triangle \mathrm{EBC} \cong \triangle \mathrm{EDA}$
$\Rightarrow \angle B A C=\angle C D B$
Thus, $B C$ subtends equal angles, $\angle B A C$ and $\angle C D B$ on the same side of it.
Therefore, points A, B, C, D are concyclic.

23. Question

In a cyclic quadrilateral $A B C D$, if $(\angle B-\angle D)=60^{\circ}$, show that the smaller of the two is 60°.
Answer

Given, $\angle B-\angle D=60^{\circ}$
$A B C D$ is a cyclic quadrilateral,
$\therefore \angle B+\angle D=180^{\circ}$
From equation (i) and (ii),
$2 \angle B=240^{\circ}$
$\Rightarrow \angle B=120^{\circ}$
From equation (ii),
$\angle B+\angle D=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle D=180^{\circ}[$ From equation (iii)]
$\Rightarrow \angle \mathrm{D}=60^{\circ}$
Hence, the smaller of the two angle $\angle \mathrm{D}=60^{\circ}$.

24. Question

In the given figure, $A B C D$ is a quadrilateral in which $A D=B C$ and $\angle A D C=\angle B C D$. Show that the points A, B, C, D lie on a circle.

Answer

In $\triangle A D E$ and $\triangle B C F$,
$A D=B C$
$\angle A E D=\angle B F C$
$\angle \mathrm{ADE}=\angle \mathrm{BCF}\left[\angle \mathrm{ADC}-90^{\circ}=\angle \mathrm{BCD}-90^{\circ}\right]$
$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$
The Cross ponding parts of the congruent triangles are equal.
$\therefore \angle A=\angle B$
Now,
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\Rightarrow 2 \angle B+2 \angle D=360^{\circ}$
$\Rightarrow \angle B+\angle D=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a cyclic quadrilateral.

25. Question

In the given figure, $\angle B A D=75^{\circ}, \angle D C F=x^{\circ}$ and $\angle D E F=y^{\circ}$.
Find the values of x and y.

Answer
$\angle D C F=\angle D A B$
$\Rightarrow x=75^{\circ}$ [Exterior angle is equal to the interior opposite angle.]
Now,
$\angle D C F+\angle D E F=180^{\circ}$ [Opposite angles of a cyclic quadrilateral]
$\Rightarrow x+y=180^{\circ}$
$\Rightarrow 75^{\circ}+y=180^{\circ}$
$\Rightarrow \mathrm{y}=105^{\circ}$

26. Question

The diagonals of a cyclic quadrilateral are at right angles. Prove that the perpendicular from the point of their intersection on any side when produced backwards, bisects the opposite side.

Answer

Given: Let $A B C D$ be a cyclic quadrilateral, diagonals $A C$ and $B D$ intersect at O at right angles.

$\angle O C N=\angle O B M$ [Angles in the same segment] \qquad
$\angle O B M+\angle B O M=90^{\circ}\left[\right.$ Because $\left.\angle O L B=90^{\circ}\right]$ \qquad
$\angle B O M+\angle C O N=90^{\circ}\left[\mathrm{LOM}\right.$ is a straight line and $\left.\angle B O C=90^{\circ}\right]$ \qquad (iii)

From equation (ii) and (iii),
$\angle O B M+\angle B O M=\angle B O M+\angle C O N$
$\Rightarrow \angle O B M=\angle C O N$

Thus, $\angle O C N=\angle O B M$ and $\angle O B M=\angle C O N$
$\Rightarrow \angle O C N=\angle C O N$
$\therefore \mathrm{ON}=\mathrm{CN}$ \qquad (iv)

Similarly, ON = ND \qquad (v)

From equation (iv) and (v),
CN = ND Proved.

27. Question

In the given figure, chords $A B$ and $C D$ of a circle are produced to meet at E. Prove that $\triangle E D B$ and $\triangle E A C$ are similar.

Answer

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.

Chord $A B$ of a circle is produced to E.
\therefore ext. $\angle \mathrm{BDE}=\angle \mathrm{BAC}=\angle \mathrm{EAC}$ \qquad
Chord CD of a circle is produced to E.
\therefore ext. $\angle D B E=\angle A C D=\angle A C E$ \qquad
In $\triangle \mathrm{EDB}$ and $\triangle \mathrm{EAC}$,
$\angle B D E=\angle C A E[F r o m$ equation (i)]
$\angle D B E=\angle A C E[$ From equation (ii)]
$\angle E=\angle E$ [Common angle]
$\therefore \triangle \mathrm{EDB} \sim \Delta \mathrm{EAC}$ Proved.

28. Question

In the given figure, $A B$ and $C D$ are two parallel chords of a circle. If $B D E$ and $A C E$ are straight lines, intersecting at E, prove that $\triangle A E B$ is isosceles.

Answer

Given: $A B$ and CD are two parallel chords of a circle.
If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.
\therefore ext. $\angle D C E=\angle B$ and ext. $\angle E D C=\angle A$
A || B
$\therefore \angle E D C=\angle B$ and $\angle D C E=\angle A$
$\therefore \angle A=\angle B$
Hence, $\triangle A E B$ is isosceles.

29. Question

In the given figure, $A B$ is a diameter of a circle with center Q. If $A D E$ and $C B E$ are straight lines, meeting at E such that $\angle B A D=35^{\circ}$ and $\angle B E D=25^{\circ}$, find
(i) $\angle D B C$ (ii) $\angle D C B$ (iii) $\angle B D C$.

Answer

(i) $\angle D B C=115^{\circ}$
$\angle \mathrm{BDA}=90^{\circ}=\angle \mathrm{EDB}$ [Semi circle angle]
In triangle EBD,
$\angle D B E+\angle E D B+\angle B E D=180^{\circ}$
$\Rightarrow \angle \mathrm{DBE}+90^{\circ}+25^{\circ}=180^{\circ}$
$\Rightarrow \angle D B E+115^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DBE}=65^{\circ}$
Now,
$\angle D B C+\angle D B E=180^{\circ}[C B E$ is a straight line $]$
$\Rightarrow \angle \mathrm{DBC}+65^{\circ}=180^{\circ}$
$\Rightarrow \angle D B C=115^{\circ}$
(ii) $\angle D C B=35^{\circ}$
$\angle \mathrm{DCB}=\angle \mathrm{BAD}$ [Angle in the same segment]
$\therefore \angle \mathrm{DCB}=35^{\circ}$
(iii) $\angle B D C=30^{\circ}$

In triangle BCD,

$$
\begin{aligned}
& \angle \mathrm{BDC}+\angle \mathrm{DCB}+\angle \mathrm{DBC}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BDC}+35^{\circ}+115^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BDC}+150^{\circ}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BDC}=30^{\circ}
\end{aligned}
$$

CCE Questions

1. Question

The radius of a circle is 13 cm and the length of one of its chords is 10 cm . The distance of the chord from the centre is
A. 11.5 cm
B. 12 cm
C. $\sqrt{69} \mathrm{~cm}$
D. 23 cm

Answer

Given radius $(A O)=13 \mathrm{~cm}$
Length of the chord $(A B)=10 \mathrm{~cm}$
Draw a perpendicular bisector from center to the chord and name it OC.
$\therefore A C=B C=5 \mathrm{~cm}$
Now in $\triangle A O C$,
Using Pythagoras theorem
$A O^{2}=A C^{2}+O C^{2}$
$13^{2}=5^{2}+O C^{2}$
$O C^{2}=13^{2}-5^{2}$
$O C^{2}=169-25$
$O C^{2}=144$
$O C=12 \mathrm{~cm}$
\therefore The distance of the chord from the centre is 12 cm .

2. Question

A chord is at a distance of 8 cm from the centre of a circle of radius 17 cm . The length of the chord is
A. 25 cm
B. 12.5 cm
C. 30 cm
D. 9 cm

Answer

Given radius $(A O)=17 \mathrm{~cm}$
Length of the chord $(A B)=x$
distance of the chord from the centre is 8 cm .
Draw a perpendicular bisector from center to the chord and name it OC.
$\therefore A C=B C$
Now in \triangle AOC
Using Pythagoras theorem
$A O^{2}=A C^{2}+O C^{2}$
$17^{2}=A C^{2}+8^{2}$
$A C^{2}=17^{2}-8^{2}$
$A C^{2}=289-64$
$A C^{2}=225$
$A C=15 \mathrm{~cm}$
$\therefore B C=15 \mathrm{~cm}$
\therefore The length of the chord is $A C+B C=15+15=30 \mathrm{~cm}$.

3. Question

In the given figure, $B O C$ is a diameter of a circle and $A B=A C$. Then, $\angle A B C=$?

A. 30°
B. 45°
C. 60°
D. 90°

Answer

Given: BOC is the diameter of the circle
$A B=A C$
Here, BAC forms a semicircle.
We know that angle in a semicircle is always 90°
$\therefore \angle B A C=90^{\circ}$
Here $\angle A B C=\angle A C B$ (since angles opposite equal sides are equal in a triangle)
We know that sum of all the angles in the triangle is 180°
That is
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$\Rightarrow 2 \times \angle A B C+\angle B A C=180^{\circ}$
$\Rightarrow 2 \times \angle A B C+90=180^{\circ}$
$\Rightarrow 2 \times \angle A B C=180^{\circ}-90^{\circ}$
$\Rightarrow 2 \times \angle A B C=90^{\circ}$
$\Rightarrow \angle A B C=45^{\circ}$

4. Question

In the given figure, O is the centre of a circle and $\angle A C B=30^{\circ}$. Then, $\angle A O B=$?

A. 30°
B. 15°
C. 60°
D. 90°

Answer

Given: $\angle \mathrm{ACB}=30^{\circ}$.
We know that
$2 \times \angle A C B=\angle A O B(\because$ The angle subtended by an arc at the center is twice the angle subtended by the same arc on any point on the remaining part of the circle).
$\therefore 2 \times 30^{\circ}=\angle A O B$
$\angle A O B=60^{\circ}$.
$\therefore \angle \mathrm{AOB}=60^{\circ}$

5. Question

In the given figure, O is a centre of a circle. If $\angle O A B=40^{\circ}$ and C is a point on the circle, then $\angle A C B=$?

A. 40°
B. 50°
C. 80°
D. 100°

Answer

In $\triangle \mathrm{AOB} \mathrm{OA}=\mathrm{OB}$ (radius)
$\angle \mathrm{OAB}=\angle \mathrm{OBA}$ (Angles opposite to equal sides are equal)
$\therefore \angle \mathrm{OBA}=40^{\circ}$
By angle sum property
$\angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ}$
$\angle A O B=180^{\circ}-\angle O A B-\angle O B A$
$\angle A O B=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}$
We know that
$2 \times \angle A C B=\angle A O B(\because$ The angle subtended by an arc at the center is twice the angle subtended by the same arc on any point on the remaining part of the circle).
$\therefore 2 \times \angle A C B=100^{\circ}$
$\angle A C B=\frac{100}{2}$
$\therefore \angle A C B=50^{\circ}$

6. Question

In the given figure, $A O B$ is a diameter of a circle with centre O such that $A B=34 \mathrm{~cm}$ and $C D$ is a chord of length 30 cm . Then, the distance of $C D$ from $A B$ is

A. 8 cm
B. 15 cm
C. 18 cm
D. 6 cm

Answer

Given: AB 34 cm and CD $=30 \mathrm{~cm}$
Here OL is the perpendicular bisector to CD
$\therefore C L=L D=15 \mathrm{~cm}$
Construction: Join OD(radius)
$O D=17 \mathrm{~cm}$
Now in \triangle ODL
By Pythagoras theorem
$O D^{2}=O L^{2}+L D^{2}$
$17^{2}=O L^{2}+15^{2}$
$\mathrm{OL}^{2}=17^{2}+15^{2}$
$\mathrm{OL}^{2}=289-225$
$\mathrm{OL}^{2}=64$
$\mathrm{OL}=8$
\therefore The distance of CD from AB is $=\mathrm{OL}=8 \mathrm{~cm}$

7. Question

$A B$ and $C D$ are two equal chords of a circle with centre O such that $\angle A O B=80^{\circ}$, then $\angle C O D=$?

A. 100°
B. 80°
C. 120°
D. 40°

Answer

Given: $\angle \mathrm{AOB}=80^{\circ}$,
$A B=C D$
We know that angles subtended from equal chords at center are equal.
$\therefore \angle \mathrm{AOB}=\angle \mathrm{COD}$
$\therefore \angle \mathrm{COD}=80^{\circ}$

8. Question

In the given figure, $C D$ is the diameter of a circle with centre O and $C D$ is perpendicular to chord $A B$. If $A B=12 \mathrm{~cm}$ and $C E=3 \mathrm{~cm}$, then radius of the circle is

A. 6 cm
B. 9 cm
C. 7.5 cm
D. 8 cm

Answer

Given: $A B=12 \mathrm{~cm}, C E=3 \mathrm{~cm}$
$A B=A E+E B$
$A E=E B(O C$ is perpendicular bisector to $A B)$
$\therefore \mathrm{AE}=6 \mathrm{~cm}$
Let $C D=2 x$ (diameter)
$A O=O C=x$ (radius)
In $\triangle \mathrm{AOE}$
$A O^{2}=A E^{2}+O E^{2}$
$x^{2}=6^{2}+(O C-E C)^{2}$
$x^{2}=6^{2}+(x-3)^{2}$
$x^{2}=6^{2}+x^{2}+3^{2}-2(x)(3)$
$x^{2}=36+x^{2}+9-6 x$
$6 x=36+9+x^{2}-x^{2}$
$6 x=45$
$x=\frac{45}{6}=7.5$
\therefore Radius $=\mathrm{x}=7.5 \mathrm{~cm}$

9. Question

In the given figure, O is the centre of a circle and diameter $A B$ bisects the chord $C D$ at a point such that $C E=E D=8 \mathrm{~cm}$ and $E B=4 \mathrm{~cm}$. The radius of the circle is

A. 10 cm
B. 12 cm
C. 6 cm
D. 8 cm

Answer

Given: $C E=E D=8 \mathrm{~cm}$ and $E B=4 \mathrm{~cm}$
Construction: Join OC (OC is radius)
Let $A B=2 x$ (diameter)
$\mathrm{OB}=\mathrm{OC}=\mathrm{x}$ (radius)
In \triangle COE
$C O^{2}=C E^{2}+O E^{2}$
$x^{2}=8^{2}+(O B-E B)^{2}$
$x^{2}=8^{2}+(x-4)^{2}$
$x^{2}=8^{2}+x^{2}+4^{2}-2(x)(4)$
$x^{2}=64+x^{2}+16-8 x$
$8 x=64+16+x^{2}-x^{2}$
$8 x=80$
$x=\frac{80}{8}=10$
\therefore Radius $=\mathrm{x}=10 \mathrm{~cm}$

10. Question

In the given figure, $B O C$ is a diameter of a circle with centre O. If $A B$ and $C D$ are two chords such that $A B \| C D$. If $A B=10 \mathrm{~cm}$, then $C D=$?

A. 5 cm
B. 12.5 cm
C. 15 cm
D. 10 cm

Answer

Given: $A B \| C D$ and $A B=10 \mathrm{~cm}$
Construction: Drop perpendiculars $O E$ and $O F$ on to $A B$ and $C D$ respectively.
Now,
Consider $\triangle \mathrm{BOE}$ and $\triangle \mathrm{COF}$
Here,
$O B=O C$ (radius)
$\angle O E B=\angle O F C$ (right angle)
$\angle C O F=\angle B O E$ (vertically opposite angles)
\therefore By AAS congruency $\triangle \mathrm{BOE} \cong \triangle \mathrm{COF}$
$\therefore \mathrm{OE}=\mathrm{OF}$ (by congruent parts of congruent triangles)
Chords equidistant from center are equal in length
That is $C D=A B=10 \mathrm{~cm}$
$\therefore C D=10 \mathrm{~cm}$

11. Question

In the given figure, $A B$ is a chord of a circle with centre O and $A B$ is produced to C such that $B C=O B$. Also, $C O$ is joined and produced to meet the circle in D. If $\angle A O C=25^{\circ} \angle A C D=25^{\circ}$, then $\angle A O D=$?

A. 50°
B. 75°
C. 90°
D. 100°

Answer

Given: $B C=O B$ and $\angle A C D=25^{\circ}$
Here in $\triangle \mathrm{OBC}$
$\angle B O C=\angle B C O$ (angles opposite to equal sides are equal)
$\therefore \angle B O C=25^{\circ}$
By angle sum property
$\angle B O C+\angle B C O+\angle O B C=180^{\circ}$
$25^{\circ}+25^{\circ}+\angle O B C=180^{\circ}$
$50^{\circ}+\angle \mathrm{OBC}=180^{\circ}$
$\angle O B C=180^{\circ}-50^{\circ}$
$\therefore \angle \mathrm{OBC}=130^{\circ}$
Here
$\angle A B C=\angle A B O+\angle O B C=180^{\circ}$
$\angle \mathrm{ABO}+130^{\circ}=180^{\circ}$
$\angle A B O=180^{\circ}-130^{\circ}$
$\therefore \angle A B O=50^{\circ}$
Now, in $\triangle A O B$
$O B=O A$ (radius)
$\angle A B O=\angle B A O=50^{\circ}$ (angles opposite to equal sides are equal)
By angle sum property
$\angle A B O+\angle B A O+\angle A O B=180^{\circ}$
$50^{\circ}+50^{\circ}+\angle A O B=180^{\circ}$
$\angle A O B=180^{\circ}-\left(50^{\circ}+50^{\circ}\right)=180^{\circ}-100^{\circ}=80^{\circ}$
$\therefore \angle A O B=80^{\circ}$
Here
$\angle D O C=\angle A O D+\angle A O B+\angle B O C=180^{\circ}$
$\angle A O D+80^{\circ}+25^{\circ}=180^{\circ}$
$\angle A O D+105^{\circ}=180^{\circ}$
$\angle A O D=180^{\circ}-105^{\circ}$
$\angle A O D=75^{\circ}$
$\therefore \angle A O D=75^{\circ}$

12. Question

In the given figure, $A B$ is a chord of a circle with centre O and $B O C$ is a diameter. If $O D \perp A B$ such that $O D=6 \mathrm{~cm}$ then $A C=$?

A. 9 cm
B. 12 cm
C. 15 cm
D. 7.5 cm

Answer

Given: $\mathrm{OD} \perp \mathrm{AB}$ and $\mathrm{OD}=6 \mathrm{~cm}$
Here OB is radius
Let $O B=x \mathrm{~cm}$
In $\triangle B O D$, By Pythagoras theorem
$O B^{2}=B D^{2}+O D^{2}$
$x^{2}=B D^{2}+6^{2}$
$\mathrm{x}^{2}=\mathrm{BD}^{2}+36$
$B D^{2}=x^{2}-36$
Now consider \triangle ABC
Here BC $=2 x$
By Pythagoras theorem
$B C^{2}=A B^{2}+A C^{2}$
$(2 x)^{2}=4\left(x^{2}-36\right)+A C^{2}$
$4 x^{2}=4 x^{2}-144+A C^{2}$
$A C^{2}=144$
$A C=12 \mathrm{~cm}$
$\therefore \mathrm{AC}=12 \mathrm{~cm}$

13. Question

An equilateral triangle of side 9 cm is inscribed in a circle. The radius of the circle is
A. 3 cm
B. $3 \sqrt{2} \mathrm{~cm}$
C. $3 \sqrt{3} \mathrm{~cm}$
D. 6 cm

Answer

Given: Equilateral triangle of side 9 cm is inscribed in a circle.
Construction: Join $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$ and drop a perpendicular bisector from center O to BC .
Here,
Area $(\triangle A B C)=3 \times$ area $(\triangle O B C)$
Area $(\triangle A B C)=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times 9^{2}=\frac{81 \sqrt{3}}{4}$
Now,
Area $(\triangle O B C)=\frac{1}{2} \times A C \times O D=\frac{1}{2} \times 9 \times O D$
We know that,
Area $(\triangle A B C)=3 \times$ area $(\triangle O B C)$
$\frac{81 \sqrt{3}}{4}=\frac{1}{2} \times 9 \times O D$
$O D=\frac{3 \sqrt{3}}{2}$
Now, in $\triangle O D C$

By Pythagoras theorem
$O C^{2}=O D^{2}+D C^{2}$
$O C^{2}=\left(\frac{3 \sqrt{3}}{2}\right)^{2}+\left(\frac{9}{2}\right)^{2}$
$\mathrm{OC}^{2}=\frac{27}{4}+\frac{81}{4}=\frac{109}{4}=27$
$O C=3 \sqrt{3}$
\therefore Radius $=\mathrm{OC}=3 \sqrt{3}$

14. Question

The angle in a semicircle measures
A. 45°
B. 60°
C. 90°
D. 36°

Answer

Angle in a semicircle measures 90°

15. Question

Angles in the same segment of a circle area are
A. equal
B. complementary
C. supplementary
D. none of these

Answer

Angles in the same segment of a circle are always equal.

Proof: As we know angle subtended by an arc is double the angle subtended at any other point.
So,$\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$
$\angle \mathrm{POQ}=2 \angle \mathrm{PBQ} \ldots$ (2)
From (1) and (2),$\angle \mathrm{PAQ}=\angle \mathrm{PBQ}$
Hence proved

16. Question

In the given figure, $\triangle A B C$ and $\triangle D B C$ are inscribed in a circle such that $\angle B A C=60^{\circ}$ and $\angle D B C=50^{\circ}$. Then, $\angle B C D=$?

A. 50°
B. 60°
C. 70°
D. 80°

Answer

Given: Two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BCD}, \angle \mathrm{BAC}=60^{\circ}$ and $\angle \mathrm{DBC}=50^{\circ}$
We know that $\angle B A C=\angle B D C=60^{\circ}(\because$ angles in the same segment drawn from same chord are equal).

Now consider $\triangle B C D$
By angle sum property
$\angle D B C+\angle B D C+\angle B C D=180^{\circ}$
$50^{\circ}+60^{\circ}+\angle B C D=180^{\circ}$
$\angle B C D=180^{\circ}-50^{\circ}-60^{\circ}$
$\angle B C D=70^{\circ}$
$\therefore \angle B C D=70^{\circ}$

17. Question

In the given figure, $B O C$ is a diameter of a circle with centre O. If $\angle B C A=30^{\circ}$, then $\angle C D A=$?

A. 30°
B. 45°
C. 60°
D. 50°

Answer

Given: $\angle \mathrm{BCA}=30^{\circ}$,
Here,
$\angle B A C=90^{\circ}$ (angle in the semicircle)
Now, in $\triangle A B C$
By angle sum property
$\angle B C A+\angle B A C+\angle A B C=180^{\circ}$
$30^{\circ}+90^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\angle A B C=180^{\circ}-30^{\circ}-90^{\circ}$
$\angle A B C=60^{\circ}$
Here,
$\angle A B C=\angle A D C$ (angles in the same segment)
$\therefore \angle C D A=60^{\circ}$

18. Question

In the given figure, O is the centre of a circle. If $\angle \mathrm{OAC}=50^{\circ}$, then $\angle \mathrm{ODB}=$?

A. 40°
B. 50°
C. 60°
D. 75°

Answer

Given: $\angle \mathrm{OAC}=50^{\circ}$
Consider $\triangle A O C$
$\angle O A C=\angle O C A=50^{\circ}(\because O A=O C=$ radius, angles opposite to equal sides are equal $)$
Now, by angle sum property
$\angle O A C+\angle O C A+\angle A O C=180^{\circ}$
$50^{\circ}+50^{\circ}+\angle A O C=180^{\circ}$
$\angle A O C=180^{\circ}-50^{\circ}-50^{\circ}$
$\angle A O C=80^{\circ}$
Now angle $\angle B O D=\angle A O C=80^{\circ}$ (vertically opposite angles)
Now, consider $\triangle B O D$
Here,
$O B=O D$ (radius)
$\angle \mathrm{OBD}=\angle \mathrm{ODB}$ (angles opposite to equal angles are equal)
Let $\angle O D B=x$
By angle sum property
$\angle \mathrm{ODB}+\angle \mathrm{OBD}+\angle \mathrm{BOD}=180^{\circ}$
$x+x+80^{\circ}=180^{\circ}$
$2 \mathrm{x}=180^{\circ}-80^{\circ}$
$2 x=100^{\circ}$
$x=50^{\circ}$
$\therefore \angle \mathrm{ODB}=50^{\circ}$

19. Question

In the given figure, O is the centre of a circle in which $\angle O B A=20^{\circ}$ and $\angle O C A=30^{\circ}$. Then, $\angle B O C=$?

A. 50°
B. 90°
C. 100°
D. 130°

Answer

Given: $\angle \mathrm{OBA}=20^{\circ}$ and $\angle \mathrm{OCA}=30^{\circ}$.
Consider $\triangle O A B$
Here,
$O A=O B$ (radius)
$\angle O B A=\angle O A B=20^{\circ}$ (angles opposite to equal sides are equal)
By angle sum property
$\angle A O B+\angle O B A+\angle O A B=180^{\circ}$
$\angle A O B+20^{\circ}+20^{\circ}=180^{\circ}$
$\angle A O B=180^{\circ}-20^{\circ}-20^{\circ}$
$\angle A O B=140^{\circ}$
Similarly, in $\triangle A O C$
$O A=O C$ (radius)
$\angle O C A=\angle O A C=30^{\circ}$ (angles opposite to equal sides are equal)
By angle sum property

$$
\begin{aligned}
& \angle A O C+\angle O C A+\angle O A C=180^{\circ} \\
& \angle A O C+30^{\circ}+30^{\circ}=180^{\circ} \\
& \angle A O C=180^{\circ}-30^{\circ}-30^{\circ}
\end{aligned}
$$

$\angle A O C=120^{\circ}$
Here,
$\angle \mathrm{CAB}=\angle \mathrm{OAB}+\angle \mathrm{OAC}=50^{\circ}$
Here,
$2 \angle \mathrm{CAB}=\angle \mathrm{BOC}(\because$ The angle subtended by an arc at the center is twice the angle subtended by the same arc on any point on the remaining part of the circle).
$\therefore 2 \angle C A B=\angle B O C$
$\therefore 2 \times 50^{\circ}=\angle B O C$
$\angle B O C=100^{\circ}$.
$\therefore \angle B O C=100^{\circ}$

20. Question

In the given figure, O is the centre of a circle. If $\angle A O B=100^{\circ}$ and $\angle A O C=90^{\circ}$, then $\angle B A C=$?

A. 85°
B. 80°
C. 95°
D. 75°

Answer

Given: $\angle A O B=100^{\circ}$ and $\angle A O C=90^{\circ}$,

Consider $\triangle \mathrm{OAB}$

Here,
$\mathrm{OA}=\mathrm{OB}$ (radius)
Let $\angle \mathrm{OBA}=\angle \mathrm{OAB}=\mathrm{x}$ (angles opposite to equal sides are equal)
By angle sum property

$$
\begin{aligned}
& \angle A O B+\angle O B A+\angle O A B=180^{\circ} \\
& 100^{\circ}+x+x=180^{\circ} \\
& 2 x=180^{\circ}-100^{\circ}
\end{aligned}
$$

$2 x=80^{\circ}$
$x=40^{\circ}$
Similarly, in $\triangle A O C$
$O A=O C$ (radius)
Let $\angle O C A=\angle O A C=y$ (angles opposite to equal sides are equal)
By angle sum property
$\angle A O C+\angle O C A+\angle O A C=180^{\circ}$
$90^{\circ}+y+y=180^{\circ}$
$2 y=180^{\circ}-90^{\circ}$
$2 y=90^{\circ}$
$y=45^{\circ}$
Here,
$\angle B A C=\angle O A B+\angle O A C=x+y=40^{\circ}+45^{\circ}=85^{\circ}$
$\therefore \angle B A C=85^{\circ}$

21. Question

In the given figure, O is the centre of a circle. Then, $\angle O A B=$?

A. 50°
B. 60°
C. 55°
D. 65°

Answer

Given: $\angle \mathrm{AOB}=100^{\circ}$ and $\angle \mathrm{AOC}=90^{\circ}$,
In $\triangle \mathrm{OAB}$
Here,
$O A=O B$ (radius)
Let $\angle \mathrm{OBA}=\angle \mathrm{OAB}=\mathrm{x}$ (angles opposite to equal sides are equal)
By angle sum property
$\angle A O B+\angle O B A+\angle O A B=180^{\circ}$
$50^{\circ}+x+x=180^{\circ}$
$2 x=180^{\circ}-50^{\circ}$
$2 x=130^{\circ}$
$x=60^{\circ}$
$\therefore \angle \mathrm{OAB}=60^{\circ}$

22. Question

In the given figure, O is the centre of a circle and $\angle \mathrm{AOC}=120^{\circ}$. Then, $\angle \mathrm{BDC}=$?

A. 60°
B. 45°
C. 30°
D. 15°

Answer

Given: $\angle A O C=120^{\circ}$

Construction: Join OD

We know that,
$\angle A O C=2 \times \angle A D C$
$120^{\circ}=2 \angle A D C$
$\angle A D C=60^{\circ}$
Here,
$\angle \mathrm{ADB}=90^{\circ}$ (angle in a semicircle)
$\angle A D B=\angle A D C+\angle C D B=90^{\circ}$
$\angle A D C+\angle C D B=90^{\circ}$
$60^{\circ}+\angle C D B=90^{\circ}$
$\angle C D B=90^{\circ}-60^{\circ}$
$\angle \mathrm{CDB}=30^{\circ}$
$\therefore \angle \mathrm{BDC}=30^{\circ}$

23. Question

In the given figure, O is the centre of a circle and $\angle \mathrm{OAB}=50^{\circ}$. Then, $\angle C D A=$?

A. 40°
B. 50°
C. 75°
D. 25°

Answer

Given: $\angle \mathrm{OAB}=50^{\circ}$
Construction: Join AC
Here,
In $\triangle A O B$
$O A=O B$ (radius)
$\angle O A B=\angle O B A$ (angles opposite to equal sides are equal)
$\therefore \angle \mathrm{OBA}=50^{\circ}$
$\angle O B A=\angle C D A$ (angles in the same segment)
$\therefore \angle C D A=50^{\circ}$

24. Question

In the give figure, and are two intersecting chords of a circle. If $\angle C A B=40^{\circ}$ and $\angle B C D=80^{\circ}$, then $\angle C B D=$?

A. 80°
B. 60°
C. 50°
D. 70°

Answer

Given: $\angle \mathrm{CAB}=40^{\circ}$ and $\angle \mathrm{BCD}=80^{\circ}$
Here,
$\angle C A B=\angle C D B=40^{\circ}$ (\because angles in the same segment drawn from same chord are equal) .
Now, in $\triangle B C D$
By angle sum property
$\angle B C D+\angle C D B+\angle C B D=180^{\circ}$
$80^{\circ}+40^{\circ}+\angle C B D=180^{\circ}$
$\angle C B D=180^{\circ}-40^{\circ}-80^{\circ}$
$\angle C B D=60^{\circ}$
$\therefore \angle C B D=60^{\circ}$

25. Question

In the given figure, O is the centre of a circle and chords $A C$ and $B D$ intersect at E. If $\angle A E B=110^{\circ}$ and $\angle \mathrm{CBE}=30^{\circ}$ then $\angle \mathrm{ADB}=$?

A. 70°
B. 60°
C. 80°
D. 90°

Answer

Given: $\angle \mathrm{AEB}=110^{\circ}$ and $\angle \mathrm{CBE}=30^{\circ}$
$\angle A E C=\angle A E B+\angle B E C=180^{\circ}$
$\angle A E B+\angle B E C=180^{\circ}$
$110^{\circ}+\angle \mathrm{BEC}=180^{\circ}$
$\angle B E C=180^{\circ}-110^{\circ}$
$\angle B E C=70^{\circ}$
In $\triangle B E C$
By angle sum property
$\angle C B E+\angle B E C+\angle E C B=180^{\circ}$
$30^{\circ}+70^{\circ}+\angle E C B=180^{\circ}$
$\angle E C B=180^{\circ}-30^{\circ}-70^{\circ}$
$\angle E C B=80^{\circ}$
Here,
$\angle E C B=\angle A D B$ (angles in the same segment)
$\therefore \angle \mathrm{ECB}=\angle \mathrm{ADB}=80^{\circ}$
$\therefore \angle A D B=80^{\circ}$

26. Question

In the given figure, O is the centre of a circle in which $\angle O A B=20^{\circ}$ and $\angle O C B=50^{\circ}$. Then, $\angle A O C=$?

A. 50°
B. 70°
C. 20°
D. 60°

Given: $\angle \mathrm{OAB}=20^{\circ}$ and $\angle \mathrm{OCB}=50^{\circ}$
Here,
In $\triangle A O B$
$O A=O B$ (radius)
$\angle O A B=\angle O B A$ (angles opposite to equal sides are equal)
$\therefore \angle \mathrm{OBA}=20^{\circ}$
Now, by angle sum property
$\angle A O B+\angle O B A+\angle O A B=180^{\circ}$
$\angle A O B+20^{\circ}+20^{\circ}=180^{\circ}$
$\angle A O B=180^{\circ}-20^{\circ}-20^{\circ}$
$\angle A O B=140^{\circ}$
Now, Consider \triangle BOC
$O C=O B$ (radius)
$\angle O C B=\angle O B C$ (angles opposite to equal sides are equal)
$\therefore \angle \mathrm{OBA}=50^{\circ}$
Now, by angle sum property
$\angle \mathrm{COB}+\angle \mathrm{OBC}+\angle \mathrm{OCB}=180^{\circ}$
$\angle \mathrm{COB}+50^{\circ}+50^{\circ}=180^{\circ}$
$\angle C O B=180^{\circ}-50^{\circ}-50^{\circ}$
$\angle C O B=80^{\circ}$
Here,
$\angle A O B=\angle A O C+\angle C O B$
$140^{\circ}=\angle A O C+80^{\circ}$
$\angle A O C=140^{\circ}-80^{\circ}$
$\angle A O C=60^{\circ}$
$\therefore \angle A O C=60^{\circ}$

27. Question

In the given figure, $A O B$ is a diameter and $A B C D$ is a cyclic quadrilateral. If $\angle A D C=120^{\circ}$, then $\angle B A C$ = ?

A. 60°
B. 30°
C. 20°
D. 45°

Answer

Given: $A B C D$ is cyclic quadrilateral and $\angle A D C=120^{\circ}$
Here,
$\angle A D C+\angle A B C=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplementary)
$120^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=180^{\circ}-120^{\circ}$
$\angle A B C=60^{\circ}$
Here,
$\angle \mathrm{ACB}=90^{\circ}$ (angle in semicircle)
Now, consider $\triangle A B C$
By angle sum property
$\angle B A C+\angle A B C+\angle A C B=180^{\circ}$
$\angle B A C+60^{\circ}+90^{\circ}=180^{\circ}$
$\angle B A C=180^{\circ}-60^{\circ}-90^{\circ}$
$\angle B A C=30^{\circ}$

28. Question

In the given figure, $A B C D$ is a cyclic quadrilateral in which $A B \| D C$ and $\angle B A D=100^{\circ}$. Then $\angle A B C=$?

A. 80°
B. 100°
C. 50°
D. 40°

Answer

Given: $A B C D$ is a cyclic quadrilateral, $A B \| D C$ and $\angle B A D=100^{\circ}$
Here,
$\angle B A D+\angle B C D=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplementary)
$100^{\circ}+\angle B C D=180^{\circ}$
$\angle B C D=180^{\circ}-100^{\circ}$
$\angle B C D=80^{\circ}$
Here, $A B \| D C$ and $B C$ is the transversal
$\angle A B C+\angle B C D=180^{\circ}$ (interior angles along the transversal are supplementary)
$\angle A B C+80^{\circ}=180^{\circ}$
$\angle A B C=180^{\circ}-80^{\circ}=100^{\circ}$
$\therefore \angle A B C=100^{\circ}$

29. Question

In the given figure, O is the centre of a circle and $\angle A O C=130^{\circ}$. Then, $\angle A B C=$?

A. 50°
B. 65°
C. 115°
D. 130°

Answer

Given: $\angle A O C=130^{\circ}$
Here,
$($ Exterior $\angle A O C)=360^{\circ}-($ interior $\angle A O C)$
$($ Exterior $\angle A O C)=360^{\circ}-130^{\circ}$
$($ Exterior $\angle A O C)=230^{\circ}$
We know that,
(Exterior $\angle A O C)=2 \times \angle A B C$
$230^{\circ}=2 \times \angle A B C$
$\angle \mathrm{ABC}=\frac{230}{2}=115^{\circ}$
$\therefore \angle A B C=115^{\circ}$
30. Question

In the given figure, $A O B$ is a diameter of a circle and $C D \| A B$. If $\angle B A D=30^{\circ}$, then $\angle C A D=$?

A. 30°
B. 60°
C. 45°
D. 50°

Answer

Given: $C D \| A B$ and $\angle B A D=30^{\circ}$

Consider $\triangle A B D$

$\angle A D B=90^{\circ}$ (angle in semicircle)
Now, by angle sum property
$\angle A B D+\angle B A D+\angle A D B=180^{\circ}$
$\angle \mathrm{ABD}+30^{\circ}+90^{\circ}=180^{\circ}$
$\angle A B D=180^{\circ}-30^{\circ}-90^{\circ}$
$\angle A B D=60^{\circ}$
Here,
$\angle A B D+\angle A C D=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplementary)
$60^{\circ}+\angle A C D=180^{\circ}$
$\angle B C D=180^{\circ}-60^{\circ}$
$\angle B C D=120^{\circ}$
Here, $C D \| A B$ and $A C$ is the transversal
$\angle C A B+\angle A C D=180^{\circ}$ (interior angles along the transversal are supplementary)
$\angle C A B+120^{\circ}=180^{\circ}$
$\angle A B C=180^{\circ}-120^{\circ}=60^{\circ}$
$\angle A B C=60^{\circ}$
$\angle A B C=\angle C A D+\angle D A B$
$60^{\circ}=\angle C A D+30^{\circ}$
$\angle C A D=60^{\circ}-30^{\circ}=30^{\circ}$
$\therefore \angle C A D=30^{\circ}$

31. Question

In the given figure, O is the centre of a circle in which $\angle A O C=100^{\circ}$. Side $A B$ of quad. $O A B C$ has been produced to D . Then, $\angle \mathrm{CBD}=$?

A. 50°
B. 40°
C. 25°
D. 80°

Answer

Given: $\angle A O C=100^{\circ}$
Here,
$($ Exterior $\angle A O C)=360^{\circ}-($ interior $\angle A O C)$
$($ Exterior $\angle A O C)=360^{\circ}-100^{\circ}$
$($ Exterior $\angle A O C)=260^{\circ}$

We know that,
(Exterior $\angle A O C)=2 \times \angle A D C$
$260^{\circ}=2 \times \angle A B C$
$\angle A B C=\frac{260}{2}=130^{\circ}$
$\therefore \angle \mathrm{ABC}=130^{\circ}$
Here,
$\angle A B D=\angle A B C+\angle C B D$
$180^{\circ}=130^{\circ}+\angle C B D$
$\angle C B D=180^{\circ}-130^{\circ}=50^{\circ}$
$\therefore \angle \mathrm{CBD}=50^{\circ}$

32. Question

In the given figure, O is the centre of a circle and $\angle=50^{\circ}$. Then, $\angle \mathrm{BOD}=$?

A. 130°
B. 50°
C. 100°
D. 80°

Answer

Given: $\angle O A B=50^{\circ}$
Consider $\triangle A O B$
Here,
$O A=O B$ (radius)
$\angle \mathrm{OAB}=\angle \mathrm{OBA}=50^{\circ}$ (In a triangle, angles opposite to equal sides are equal)
By angle sum property
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$
$\angle A O B+50^{\circ}+50^{\circ}=180^{\circ}$
$\angle A O B=180^{\circ}-50^{\circ}-50^{\circ}$
$\angle A O B=80^{\circ}$
Here,
$\angle A O D=\angle A O B+\angle B O D$
$180^{\circ}=80^{\circ}+\angle B O D$
$\angle B O D=180^{\circ}-80^{\circ}=100^{\circ}$
$\therefore \angle \mathrm{BOD}=100^{\circ}$

33. Question

In the given figure, ABCD is a cyclic quadrilateral in which $\mathrm{BC}=\mathrm{CD}$ and $\angle \mathrm{CBD}=35^{\circ}$. Then, $\angle \mathrm{BAD}=$?

A. 65°
B. 70°
C. 110°
D. 90°

Answer

Given: $\mathrm{CB}=\mathrm{CD}$ and $\angle \mathrm{CBD}=35^{\circ}$
Consider $\triangle B C D$
Here,
$C B=C D$ (given)
$\angle C B D=\angle C D B=35^{\circ}$ (In a triangle, angles opposite to equal sides are equal)
By angle sum property
$\angle B C D+\angle C B D+\angle C D B=180^{\circ}$
$\angle B C D+35^{\circ}+35^{\circ}=180^{\circ}$
$\angle B C D=180^{\circ}-35^{\circ}-35^{\circ}=110^{\circ}$
We know that,
In a cyclic quadrilateral opposite angles are supplementary
$\therefore \angle B C D+\angle B A D=180^{\circ}$
$110^{\circ}+\angle B A D=180^{\circ}$
$\angle B A D=180^{\circ}-110^{\circ}=70^{\circ}$
$\therefore \angle B A D=70^{\circ}$

34. Question

In the given figure, equilateral $\triangle A B C$ is inscribed in a circle and $A B D C$ is a quadrilateral, as shown. Then, $\angle B D C=$?

A. 90°
B. 60°
C. 120°
D. 150°

Answer

Given: $\triangle A B S$ is equilateral
In $\triangle A B C$
$\angle B A C=60^{\circ}$ (All angles in equilateral triangle are equal to 60°)
We know that,
In a cyclic quadrilateral opposite angles are supplementary
$\therefore \angle B A C+\angle B D C=180^{\circ}$
$60^{\circ}+\angle B D C=180^{\circ}$
$\angle \mathrm{BDC}=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \angle \mathrm{BDC}=120^{\circ}$

35. Question

In the given figure, sides $A B$ and $A D$ of quad. $A B C D$ are produced to E and F respectively. If $\angle C B E=$ 100°, then $\angle C D F=$?

A. 100°
B. 80°
C. 130°
D. 90°

Answer

Given: $\angle C B E=100^{\circ}$
Here,
$\angle A B E=\angle A B C+\angle C B E$
$180^{\circ}=\angle A B C+100^{\circ}$
$\angle A B C=180^{\circ}-100^{\circ}=80^{\circ}$
We know that,
In a cyclic quadrilateral opposite angles are supplementary
$\therefore \angle A B C+\angle A D C=180^{\circ}$
$80^{\circ}+\angle A D C=180^{\circ}$
$\angle A D C=180^{\circ}-80^{\circ}=100^{\circ}$
Here,
$\angle A D F=\angle A D C+\angle C D F$
$180^{\circ}=100^{\circ}+\angle C D F$
$\angle C D F=180^{\circ}-100^{\circ}=80^{\circ}$
$\therefore \angle C D F=80^{\circ}$
36. Question

In the given figure, O is the centre of a circle and $\angle A O B=140^{\circ}$. Then, $\angle A C B=$?

A. 70°
B. 80°
C. 110°
D. 40°

Answer

Given: $\angle A O B=140^{\circ}$
Here,
$($ Exterior $\angle A O B)=360^{\circ}-($ interior $\angle A O B)$
$($ Exterior $\angle A O B)=360^{\circ}-140^{\circ}$
$($ Exterior $\angle A O B)=220^{\circ}$
We know that,
$($ Exterior $\angle A O B)=2 \times \angle A C B$
$220^{\circ}=2 \times \angle A C B$
$\angle \mathrm{ACB}=\frac{220}{2}=110^{\circ}$
$\therefore \angle \mathrm{ACB}=110^{\circ}$

37. Question

In the given figure, O is the centre of a circle and $\angle A O B=130^{\circ}$. Then, $\angle A C B=$?

A. 50°
B. 65°
C. 115°
D. 155°

Answer

Given: $\angle A O B=130^{\circ}$
Here,
$($ Exterior $\angle A O B)=360^{\circ}-($ interior $\angle A O B)$
$($ Exterior $\angle A O B)=360^{\circ}-130^{\circ}$
$($ Exterior $\angle A O B)=230^{\circ}$
We know that,
$($ Exterior $\angle A O B)=2 \times \angle A C B$
$230^{\circ}=2 \times \angle A C B$
$\angle A C B=\frac{230}{2}=115^{\circ}$
$\therefore \angle A C B=115^{\circ}$

38. Question

In the given figure, $A B C D$ and $A B E F$ are two cyclic quadrilaterals. If $\angle B C D=110^{\circ}$, then $\angle B E F=$?

A. 55°
B. 70°
C. 90°
D. 110°

Answer

Given: $A B C D, A B E F$ are two cyclic quadrilaterals and $\angle B C D=110^{\circ}$
In Quadrilateral $A B C D$
We know that,
In a cyclic quadrilateral opposite angles are supplementary
$\therefore \angle B C D+\angle B A D=180^{\circ}$
$110^{\circ}+\angle B A D=180^{\circ}$
$\angle B A D=180^{\circ}-110^{\circ}=70^{\circ}$
Similarly in Quadrilateral ABEF
$\therefore \angle B A D+\angle B E F=180^{\circ}$
$70^{\circ}+\angle B E F=180^{\circ}$
$\angle B E F=180^{\circ}-70^{\circ}=110^{\circ}$
$\therefore \angle B E F=110^{\circ}$

39. Question

In the given figure, $A B C D$ is a cyclic quadrilateral in which $D C$ is produced to E and $C F$ is drawn parallel to $A B$ such that $\angle A D C=90^{\circ}$ and $\angle E C F=20^{\circ}$. Then, $\angle B A D=$?

A. 95°
B. 85°
C. 105°
D. 75°

Answer

Given: ABCD is a cyclic quadrilateral, $\mathrm{CF} \| \mathrm{AB}, \angle \mathrm{ADC}=95^{\circ}$ and $\angle \mathrm{ECF}=20^{\circ}$.
Here, CF|| AB
Hence $B C$ is transversal
$\therefore \angle \mathrm{ABC}=\angle \mathrm{BCF}=85^{\circ}$ (Alternate interior angles)
Here,
$\angle D C B+\angle B C F+\angle E C F=\angle D C E$
$\angle D C B+85^{\circ}+20^{\circ}=180^{\circ}$
$\angle D C B=180^{\circ}-85^{\circ}-20^{\circ}=75^{\circ}$
We know that,
In a cyclic quadrilateral opposite angles are supplementary
$\therefore \angle \mathrm{DCB}+\angle \mathrm{BAD}=180^{\circ}$
$75^{\circ}+\angle B A D=180^{\circ}$
$\angle B A D=180^{\circ}-75^{\circ}=105^{\circ}$
$\therefore \angle B A D=105^{\circ}$

40. Question

Two chords $A B$ and $C D$ of a circle intersect each other at a point E outside the circle. If $A B=11 \mathrm{~cm}$, $B E=3 \mathrm{~cm}$ and $\mathrm{DE}=3.5 \mathrm{~cm}$, then $\mathrm{CD}=$?

A. 10.5 cm
B. 9.5 cm
C. 8.5 cm
D. 7.5 cm

Answer

Given: $A B=11 \mathrm{~cm}, \mathrm{BE}=3 \mathrm{~cm}$ and $\mathrm{DE}=3.5 \mathrm{~cm}$
Construction: Join AC
Here,
AE: CE = DE: BE
$A E \times B E=D E \times C E$
$(A B+B E) \times B E=D E \times(C D+D E)$
$(11+3) \times 3=3.5 \times(C D+3.5)$
$14 \times 3=3.5 \times(C D+3.5)$
$3.5 \times(C D+3.5)=42$
$(C D+3.5)=\frac{42}{3.5}=12$
$C D=12-3.5=8.5$
$\therefore \mathrm{CD}=8.5$

41. Question

In the given figure, A and B are the centers of two circles having radii 5 cm and 3 cm respectively and intersecting at points P and Q respectively. If $A B=4 \mathrm{~cm}$, then the length of common chord $P Q$ is

A. 3 cm
B. 6 cm
C. 7.5 cm
D. 9 cm

Answer

Given: $A B=4 \mathrm{~cm}$, two circles having radii 6 cm and 3 cm Construction: join AP

Consider $\triangle A B P$
Here,
$A P^{2}=A B^{2}+B P^{2}$
$5^{2}=4^{2}+3^{2}$
$25=16+9$
$25=25$
$\therefore \triangle A B P$ is right angled triangle
$P Q=2 \times B P$
$P Q=2 \times 3=6 \mathrm{~cm}$
$\therefore \mathrm{PQ}=6 \mathrm{~cm}$

42. Question

In the given figure, $\angle A O B=90^{\circ}$ and $\angle A B C=30^{\circ}$. Then, $\angle C A O=$?

A. 30°
B. 45°
C. 60°
D. 90°

Answer

Given: $\angle \mathrm{AOB}=90^{\circ}$ and $\angle \mathrm{ABC}=30^{\circ}$.
Construction: join CD
We know that,
$\angle A O B=2 \times \angle A C B$
$90^{\circ}=2 \times \angle A C B$
$\angle A C B=\frac{90}{2}=45^{\circ}$
Similarly,
$\angle C O A=2 \times \angle C B A$
$\angle C O A=2 \times 30$
$\angle C O A=60^{\circ}$
Here,
$\angle C O D+\angle C O A=\angle A O D$
$\angle C O D+60^{\circ}=180^{\circ}$
$\angle C O D=180^{\circ}-60^{\circ}=120^{\circ}$
Again
$\angle C O D=2 \times \angle C A O$
$\angle C A O=\frac{120}{2}=60^{\circ}$
$\therefore \angle C A O=60^{\circ}$

43. Question

Three statements are given below:
I. If a diameter of a circle bisects each of the two chords of a circle, then the chords are parallel.
II. Two circles of radii 10 cm and 17 cm intersect each other and the length of the common chord is 16 cm . Then, the distance between their centres is 23 cm .
III. \angle is the line intersecting two concentric circles with centre O at points A, B, C and D as shown. Then, $A C=D B$.

Which is true?

A. I and II
B. I and III
C. II and III
D. II only

Answer

Here, Clearly I and III are correct.
Let us check for II statement

Construction: Let B and C be the centers of two circles having radii 10 cm and 17 cm respectively and let AD be the common chord cutting BC at E.

Here,
$A E=E D=8 \mathrm{~cm}$
Now, in $\triangle A B E$
$B E^{2}=A B^{2}-A E^{2}$
$B E^{2}=(10)^{2}-(8)^{2}$
$B E^{2}=100-64=36$
$B E=6 \mathrm{~cm}$
Now, in $\triangle A E C$
$E C^{2}=A C^{2}-A E^{2}$
$E C^{2}=(17)^{2}-(8)^{2}$
$E C^{2}=289-64=225$
$E C=25 \mathrm{~cm}$
Here,
$B C=B E+E C=6+15=21 \mathrm{~cm}$
But, it is given $B C=23 \mathrm{~cm}$
\therefore Statement II is false

44. Question

Two statements I and II are given and a question is given. The correct answer is Is $A B C D$ a cyclic quadrilateral?
I. Points A, B, C and D lie on a circle.
II. $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$.

A. if the given question can be answered by any one of the statements but not the other;
B. if the given question can be answered by using either statement alone;
C. if the given question can be answered by using both the statements together but cannot be answered by using either statement;
D. if the given question cannot be answered by using both the statements together.

Answer

Here,
ABCD is said to be cyclic quadrilateral
If either of any point is satisfied
i)Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D lie on a circle.
ii) $\angle B+\angle C=180^{\circ}$

45. Question

Two statements I and II are given and a question is given. The correct answer is
Is $\triangle A B C$ right - angled at B ?
I. $A B C D$ is a cyclic quadrilateral.
II. $\angle \mathrm{D}=90^{\circ}$.

A. if the given question can be answered by any one of the statements but not the other;
B. if the given question can be answered by using either statement alone;
C. if the given question can be answered by using both the statements together but cannot be answered by using either statement;
D. if the given question cannot be answered by using both the statements together.

Answer

Here,
$\triangle \mathrm{ABC}$ right - angled at B
If both the conditions satisfy
i) ABCD is a cyclic quadrilateral
ii) $\angle \mathrm{D}=90^{\circ}$.

46. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer:

Assertion (A)	Reason (R)
The circle drawn taking any one of the equal sides of an isosceles right triangle as diameter bisects the base.	The angle in a semicircle is 1 right angle.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Assertion (A):
Construction: Draw a $\triangle A B C$ in which $A B=A C$, Let O be the midpoint of $A B$ and with O as centre and $O A$ as radius draw a circle, meeting $B C$ at D

Now, In $\triangle \mathrm{ABD}$
$\angle \mathrm{ADB}=90^{\circ}$ (angle in semicircle)
Also, $\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$
$90^{\circ}+\angle A D C=180^{\circ}$
$\angle \mathrm{ADC}=180^{\circ}-90^{\circ}$
$\angle \mathrm{ADC}=90^{\circ}$
Consider \triangle ADB and \triangle ADC
Here,
$A B=A C$ (given)
$A D=A D$ (common)
$\angle \mathrm{ADB}=\angle \mathrm{ADC}\left(90^{\circ}\right)$
\therefore By SAS congruency, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
So, BD = DC(C.P.C.T)
Thus, the given circle bisects the base. So, Assertion (A) is true
Reason (R) :
Let $\angle B A C$ be an angle in a semicircle with centre O and diameter BOC
Now, the angle subtended by arc BOC at the centre is $\angle B O C=2 \times 90^{\circ}$
$\angle B O C=2 \times \angle B A C=2 \times 90^{\circ}$
So, $\angle B A C=90^{\circ}$ (right angle)
So, reason (R) is true
Clearly, reason (R) gives assertion (A)
Hence, correct choice is A

47. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer:

Assertion (A)	Reason (R)
The radius of a circle is 10 cm and the length of one of its chords is 16 cm. Then, the distance of the chord from the centre is 6 cm.	The perpendicular from the centre of a circle to a chord (other than the diameter) bisects the chord.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Assertion (A) :
Let O be the centre of the circle and $A B$ be the chord
Construction: Draw, L is the midpoint of $A B$
Here,
$O A=10 \mathrm{~cm}$
$A L=\frac{1}{2} A B=8 \mathrm{~cm}$
In $\triangle O A L$,
$O L^{2}=O A^{2}-A L^{2}$
$O L^{2}=(10)^{2}-(8)^{2}$
$O L^{2}=100-64$
$\mathrm{OL}=\sqrt{36}=6 \mathrm{~cm}$
Thus, Assertion (A) is true.
Clearly, reason (R) given Assertion (A).
Hence, the correct choice is A .

48. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer:

	Reason (R)
Assertion (A)	
	Aruniquescircle can be In a circle of radius 13 cm, there is a chord of length 10 cm at a distance of 12 cm from the centre of the circle.
drawn to pass through three give non - collinear	

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Clearly, reason (R) is true.
Assertion (A) :
$O A=13 \mathrm{~cm}$
$\mathrm{OL}=12 \mathrm{~cm}$
In $\triangle \mathrm{OAL}$,
$A L^{2}=O A^{2}-O L^{2}$
$A L^{2}=(13)^{2}-(12)^{2}$
$A L^{2}=169-144$
$\mathrm{OL}=\sqrt{25}=5 \mathrm{~cm}$
Now, $A B=2 \times A L=2 \times 5=10 \mathrm{~cm}$
Thus, Assertion (A) is true
\therefore Reason (R) and Assertion (A) are both true but reason (R) does not gives Assertion (A).
Hence, correct choice is B

49. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer:

Assertion (A)	Reason (R)
In the given figure, $\angle \mathrm{ABC}$	
$=70^{\circ}$ and $\angle \mathrm{ACB}=30^{\circ}$.	
Then, $\angle \mathrm{BDC}=70^{\circ}$.	

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Assertion (A) :
Here, in $\triangle A B C$
By angle sum property
$\angle A B C+\angle B C A+\angle C A B=180^{\circ}$
$70^{\circ}+30^{\circ}+\angle C A B=180^{\circ}$
$\angle C A B=180^{\circ}-70^{\circ}-30^{\circ}=80^{\circ}$
$\angle C A B=\angle B D C=80^{\circ}$ (angles in same segment)
But given that $\angle B D C=70^{\circ}$
\therefore Assertion (A) is wrong.
Reason (R) :
$\angle \mathrm{ADC}=\frac{1}{2} \angle \mathrm{AOC}=\frac{1}{2} \times 130^{\circ}=65^{\circ}$
$\angle A B C+\angle A D C=180^{\circ}$
$\angle A B C+65^{\circ}=180^{\circ}$
$\angle A B C=180^{\circ}-65^{\circ}=115^{\circ}$
Reason (R) is true
Assertion (A) :
$\angle A B C+\angle B C A+\angle B A C=180^{\circ}$
$70^{\circ}+30^{\circ}+\angle B A C=180^{\circ}$
$\angle B A C=180^{\circ}-70^{\circ}-30^{\circ}$
$\angle B A C=80^{\circ}$
$\therefore \angle \mathrm{BDC}=\angle \mathrm{BAC}=80^{\circ}$ (angles in the same segment)
This is false.
Thus, Assertion (A) is false and Reason (R) is true.
Hence, correct choice is D

50. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer:

Assertion (A)	Reason (R)
A cyclic parallelogram is a square.	Diameter is the largest chord in a circle.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Clearly, Assertion (A) is false and Reason (R) is true.

51. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer:

Assertion (A)	Reason (R)
If two circles intersect at two points, then the line joining their centres is perpendicular to the common chord.	The perpendicular bisectors of two chords of a circle intersect at its centre.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Clearly, Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).

52. Question

Write T for true and F for false
(i) The degree measures of a semicircle is 180°.
(ii) The perimeter of a circle is called its circumference.
(iii) A circle divides the plane into three parts.
(iv) Let O be the centre of a circle with radius r. Then a point P such that $O P<r$ is called an interior point of the circle.
(v) A circle can have only a finite number of equal chords.

Answer

(i) T
(ii) T
(iii) T (The region inside the circle, region outside the circle and region on the circle).
(iv) T (because point P lies inside the circle)
(v) F (A circle can have infinite number of chords)
53. Question

Match the following columns:

(d) In cyclic quadrilateral	(s) 60°
ABCD, it is given that $\angle \mathrm{ADC}$	
$=130^{\circ}$ and AOB is a	
diameter of the circle	
through A, B, C and D. Then,	
$\angle \mathrm{BAC}=$?	

The correct answer is:
(a) - \qquad (b) - \qquad
(c) - \qquad (d) - \qquad

Answer

(a) Angle in a semicircle measures -90° (r)
(b) In the given figure, O is the centre of a circle. If $\angle A O B=120^{\circ}$, then $\angle A C B=$?

$\frac{1}{2} \angle A O B=\angle A C B$
$\angle A C B=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
$\angle A C B=60^{\circ}$ (s)
(c) In the given figure, O is the centre of a circle. If $\angle \mathrm{POR}=90^{\circ}$ and $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{QPR}=$?

Here, $O P=O R=O Q$ (radius)
In $\triangle \mathrm{POR}$
$\angle O P R=\angle O R P$ (angles opposite to equal sides are equal)
By angle sum property
$\angle P O R+\angle O P R+\angle O R P=180^{\circ}$
$90^{\circ}+2 \times \angle O P R=180^{\circ}$
$2 \times \angle O P R=180^{\circ}-90^{\circ}$
$2 \times \angle \mathrm{OPR}=90^{\circ}$
$\angle O P R=45^{\circ}$
Similarly in $\triangle \mathrm{POQ}$
$\angle O P Q=\angle O Q P$ (angles opposite to equal sides are equal)
By angle sum property
$\angle \mathrm{POQ}+\angle \mathrm{OPQ}+\angle \mathrm{OQP}=180^{\circ}$
$110^{\circ}+2 \times \angle \mathrm{OQP}=180^{\circ}$
$2 \times \angle O Q P=180^{\circ}-110^{\circ}$
$2 \times \angle O Q P=70^{\circ}$
$\angle O Q P=35^{\circ}$
$\angle \mathrm{QPR}=\angle \mathrm{QPO}+\angle \mathrm{OPR}=45^{\circ}+35^{\circ}=80^{\circ}$
$\therefore \angle \mathrm{QPR}=80^{\circ}$ (q)
(d) In cyclic quadrilateral ABCD , it is given that $\angle \mathrm{ADC}=130^{\circ}$ and AOB is a diameter of the circle
through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . Then, $\angle \mathrm{BAC}=$?

Here,
$\angle A D C+\angle A B C=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplymentary)
$130^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=180^{\circ}-130^{\circ}=50^{\circ}$
In $\triangle A B C$
By angle sum property
$\angle B A C+\angle A B C+\angle A C B=180^{\circ}$
$\angle B A C+50^{\circ}+90^{\circ}=180^{\circ}$
$\angle B A C=180^{\circ}-50^{\circ}-90^{\circ}=40^{\circ}$
$\therefore \angle B A C=40^{\circ}(\mathrm{p})$
\therefore Answers are: (a) - (r), (b) - (s), (c) - (q), (d) - (p)

54. Question

Fill in the blanks
(i) Two circles having the same centre and different radii are called \qquad circles.
(ii) Diameter is the \qquad chord of a circle.
(iii) A continuous piece of a circle is called the \qquad of the circle.
(iv) An arc of a circle is called a \qquad if the ends of the arc are the ends of a diameter.
(v) A segment of a circle is the region between an arc and a \qquad of the circle.
(vi) A line segment joining the centre to any point on the circle is called its \qquad .

Answer

(i) Two circles having the same centre and different radii are called concentric cricles.
(ii) Diameter is the longest chord of a circle.
(iii) A continuous piece of a circle is called the arc of the circle.
(iv) An arc of a circle is called a semicircle if the ends of the arc are the ends of a diameter.
(v) A segment of a circle is the region between an arc and a chord of the circle.
(vi) A line segment joining the centre to any point on the circle is called its radius.

Formative Assessment (Unit Test)

1. Question

In the given figure, $\angle E C B=40^{\circ}$ and $\angle C E B=105^{\circ}$. Then, $\angle E A D=$?

A. 50°
B. 35°
C. 20°
D. 40°

Answer

Given: $\angle \mathrm{ECB}=40^{\circ}$ and $\angle \mathrm{CEB}=105^{\circ}$.
Here,
$\angle A C B=\angle A D B=40^{\circ}$ (angles in same segment)
$\angle B E C=\angle A E D=105^{\circ}$ (vertically opposite angles)
In $\triangle A E D$
By angle sum property
$\angle A D E+\angle A E D+\angle E A D=180^{\circ}$
$40^{\circ}+105^{\circ}+\angle E A D=180^{\circ}$
$\angle E A D=180^{\circ}-40^{\circ}-105^{\circ}=35^{\circ}$
$\therefore \angle E A D=35^{\circ}$

2. Question

In the given figure, O is the centre of a circle, $\angle \mathrm{AOB}=90^{\circ}$ and $\angle \mathrm{ABC}=30^{\circ}$. Then, $\angle \mathrm{CAO}=$?

A. 30°
B. 45°
C. 60°
D. 90°

Answer

Given: $\angle \mathrm{AOB}=90^{\circ}$ and $\angle \mathrm{ABC}=30^{\circ}$.
We know that,
$\angle A O B=2 \times \angle A C B$
$\frac{1}{2} \angle A O B=\angle A C B$
$\frac{1}{2} \times 90^{\circ}=\angle A C B$
$\angle A C B=45^{\circ}$
Now, consider $\triangle A B C$
By angle sum property
$\angle A C B+\angle A B C+\angle C A B=180^{\circ}$
$45^{\circ}+30^{\circ}+\angle C A B=180^{\circ}$
$\angle C A B=180^{\circ}-45^{\circ}-30^{\circ}=105^{\circ}$
Consider $\triangle A O B$
Here,
$O A=O B$ (radius)
Let $O A=O B=x$
By angle sum property
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$
$90^{\circ}+x+x=180^{\circ}$
$2 x=180^{\circ}-90^{\circ}=90^{\circ}$
$x=45^{\circ}$
Now,
$\angle C A B=\angle B A O+\angle C A O=105^{\circ}$
$\angle C A O=105^{\circ}-45^{\circ}=60^{\circ}$
$\therefore \angle C A O=60^{\circ}$

3. Question

In the given figure, O is the centre of a circle. If $\angle O A B=40^{\circ}$, then $\angle A C B=$?

A. 40°
B. 50°
C. 60°
D. 70°

Answer

Given: $\angle O A B=40^{\circ}$
Consider $\triangle A O B$
Here,
$O A=O B$ (radius)
$\angle O B A=\angle O A B=40^{\circ}$ (angles opposite to equal sides are equal)
By angle sum property
$\angle O B A+\angle O A B+\angle A O B=180^{\circ}$
$40^{\circ}+40^{\circ}+\angle A O B=180^{\circ}$
$\angle A O B=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}$
We know that,
$\angle A O B=2 \times \angle A C B$
$\frac{1}{2} \angle A O B=\angle A C B$
$\frac{1}{2} \times 100^{\circ}=\angle \mathrm{ACB}$
$\angle A C B=50^{\circ}$
$\therefore \angle \mathrm{ACB}=50^{\circ}$

4. Question

In the given figure, $\angle \mathrm{DAB}=60^{\circ}$ and $\angle \mathrm{ABD}=50^{\circ}$, then $\angle \mathrm{ACB}=$?

A. 50°
B. 60°
C. 70°
D. 80°

Answer

Given: $\angle D A B=60^{\circ}$ and $\angle A B D=50^{\circ}$
In $\triangle A B D$
By angle sum property
$\angle \mathrm{DAB}+\angle \mathrm{ABD}+\angle \mathrm{ADB}=180^{\circ}$
$60^{\circ}+50^{\circ}+\angle A D B=180^{\circ}$
$110^{\circ}+\angle A D B=180^{\circ}$
$\angle A D B=180^{\circ}-110^{\circ}=70^{\circ}$
Here,
$\angle A D B=\angle A C B=70^{\circ}$ (angles in same segment)
$\therefore \angle A C B=70^{\circ}$

5. Question

In the given figure, O is the centre of a circle, BC is a diameter and $\angle B A O=60^{\circ}$. Then, $\angle A D C=$?

A. 30°
B. 45°
C. 60°
D. 120°

Answer

Given: $\angle \mathrm{BAO}=60^{\circ}$.
Consider $\triangle \mathrm{AOB}$
Here,
$O A=O B$ (radius)
$\angle O B A=\angle O A B=60^{\circ}$ (angles opposite to equal sides are equal)
By angle sum property
$\angle O B A+\angle O A B+\angle A O B=180^{\circ}$
$60^{\circ}+60^{\circ}+\angle A O B=180^{\circ}$
$\angle A O B=180^{\circ}-60^{\circ}-60^{\circ}=60^{\circ}$
Here,
$\angle B O C=\angle B O A+\angle A O C=180^{\circ}$
$60^{\circ}+\angle A O C=180^{\circ}$
$\angle A O C=180^{\circ}-60^{\circ}=120^{\circ}$
We know that,
$\angle A O C=2 \times \angle A D C$
$\frac{1}{2} \angle A O C=\angle A D C$
$\frac{1}{2} \times 120^{\circ}=\angle A D C$
$\angle A D C=60^{\circ}$
$\therefore \angle A D C=60^{\circ}$

6. Question

Find the length of a chord which is at a distance of 9 cm from the centre of a circle of radius 15 cm .
Answer

Given radius $(A O)=15 \mathrm{~cm}$
Length of the chord $(A B)=x$
distance of the chord from the centre is 9 cm .
Draw a perpendicular bisector from center to the chord and name it OC.
$\therefore \mathrm{AC}=\mathrm{BC}$
Now in \triangle AOC
Using Pythagoras theorem
$A O^{2}=A C^{2}+O C^{2}$
$15^{2}=A C^{2}+9^{2}$
$A C^{2}=15^{2}-9^{2}$
$A C^{2}=225-81$
$A C^{2}=144$
$A C=12 \mathrm{~cm}$
$\therefore B C=12 \mathrm{~cm}$
\therefore The length of the chord is $A C+B C=12+12=24 \mathrm{~cm}$.

7. Question

Prove that equal chords of a circle are equidistant from the centre.

Answer

Given: $A B=C D$
Construction: Drop perpendiculars $O X$ and $O Y$ on to $A B$ and $C D$ respectively and join $O A$ and $O D$.
Here, $\mathrm{OX} \perp \mathrm{AB}$ (perpendicular from center to chord divides it into two equal halves)
$\mathrm{AX}=\mathrm{BX}=\frac{A B}{2}--(1)$
OY $\perp C D$ (perpendicular from center to chords divides it into equal halves
$C Y=D Y=\frac{C D}{2}--(2)$
Now, given that
$A B=C D$
$\therefore \frac{A B}{2}=\frac{C D}{2}$
$A X=D Y($ from -1 and -2$)--(3)$
In $\triangle A O X$ and $\triangle D O Y$
$\angle O X A=\angle O Y D$ (right angle)
$O A=O D$ (radius)
$A X=D Y($ from -3$)$
\therefore BY RHS congruency
$\triangle \mathrm{AOX} \cong \triangle \mathrm{DOY}$
OX = OY (by C.P.C.T)
Hence proved.

8. Question

Prove that an angle in a semicircle is a right angle.

Answer

We know that,
$\angle P O Q=2 \angle P A Q$
$\frac{\angle P O Q}{2}=\angle \mathrm{PAQ}$
$\frac{180^{\circ}}{2}=\angle \mathrm{PAQ}$
$90^{\circ}=\angle \mathrm{PAQ}$
$\angle \mathrm{PAQ}=90^{\circ}$
Hence proved

9. Question

Prove that a diameter is the largest chord in a circle.

Answer

We know that,
A chord nearer to the center is longer than the chord which is far from the center
\therefore Diameter is the longest chord in the circle (because it passes through the center and other chords are far from the center)

10. Question

A circle with centre O is given in which $\angle \mathrm{OBA}=30^{\circ}$ and $\angle \mathrm{OCA}=40^{\circ}$. Find $\angle \mathrm{BOC}$.

Answer

Given: $\angle \mathrm{OBA}=30^{\circ}$ and $\angle \mathrm{OCA}=40^{\circ}$.
Consider $\triangle \mathrm{OAB}$
Here,
$O A=O B$ (radius)
$\angle \mathrm{OBA}=\angle \mathrm{OAB}=30^{\circ}$ (angles opposite to equal sides are equal)
Similarly, in $\triangle A O C$
$O A=O C$ (radius)
$\angle O C A=\angle O A C=40^{\circ}$ (angles opposite to equal sides are equal)
Here,
$\angle \mathrm{CAB}=\angle \mathrm{OAB}+\angle \mathrm{OAC}=30^{\circ}+40^{\circ}=70^{\circ}$
Here,
$2 \times \angle \mathrm{CAB}=\angle \mathrm{BOC}(\because$ The angle subtended by an arc at the center is twice the angle subtended by the same arc on any point on the remaining part of the circle).
$\therefore 2 \times \angle C A B=\angle B O C$
$\therefore 2 \times 70^{\circ}=\angle B O C$
$\angle B O C=140^{\circ}$.
$\therefore \angle B O C=140^{\circ}$

11. Question

In the given figure, $A O C$ is a diameter of a circle with centre O and arc $A X B=\frac{1}{2}$ arc $B Y C$. Find $\angle B O C$.

Answer
Given: $\mathrm{AXB}=\frac{1}{2}$ arc BYC .
Here,
$2 \times A X B=B Y C$
$\therefore 2 \times \angle A O B=\angle B O C$
$\angle \mathrm{AOB}=\frac{1}{2} \angle \mathrm{BOC}-1$
Here,
$\angle A O C=\angle A O B+\angle B O C=180^{\circ}$
$\frac{1}{2} \angle B O C+\angle B O C=180^{\circ}($ from -1$)$
$\frac{3}{2} \angle \mathrm{BOC}=180^{\circ}$
$\angle B O C=\frac{2}{3} \times 180^{\circ}=120^{\circ}$
$\therefore \angle \mathrm{BOC}=120^{\circ}$

12. Question

In the given figure, O is the centre of a circle and $\angle A B C=45^{\circ}$. Prove that $O A \perp O C$.

Answer

Given: $\angle A B C=45^{\circ}$
We know that,
$\angle A O C=2 \times \angle A B C$
$\angle A O C=2 \times 45=90^{\circ}$
$\therefore \angle A O C=90^{\circ}$
Therefore $\mathrm{OA} \perp \mathrm{OC}$.
Hence proved.

13. Question

In the given figure, O is the centre of a circle, $\angle \mathrm{ADC}=130^{\circ}$ and chord $\mathrm{BC}=$ chord BE . Find $\angle \mathrm{CBE}$.

Answer

Given: $\angle A D C=130^{\circ}, B C=B E$
We know that,
(exterior $\angle A F C)=(2 \times \angle A D C)$
(exterior $\angle \mathrm{AFC})=(2 \times 130)$
(exterior $\angle A F C)=260$
$\angle A F C=360^{\circ}-($ exterior $\angle A F C)=360^{\circ}-260^{\circ}=100^{\circ}$
$\angle \mathrm{AFB}=\angle \mathrm{AFC}+\angle \mathrm{CFB}=180^{\circ}$
$\angle A F C+\angle C F B=180^{\circ}$
$100^{\circ}+\angle C F B=180^{\circ}$
$\angle C F B=180^{\circ}-100^{\circ}=80^{\circ}$
In quadrilateral $A B C D$
$\angle A D C+\angle A B C=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplementary)
$130^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=180^{\circ}-130^{\circ}=50^{\circ}$
In $\triangle \mathrm{BCF}$
By angle sum property
$\angle C B F+\angle C F B+\angle B C F=180^{\circ}$
$50^{\circ}+80^{\circ}+\angle B C F=180^{\circ}$
$\angle B C F=180^{\circ}-50^{\circ}-80^{\circ}=50^{\circ}$
Now,
$\angle \mathrm{CFE}=\angle \mathrm{CFB}+\angle \mathrm{BFE}=180^{\circ}$
$\angle C F B+\angle B F E=180^{\circ}$
$80^{\circ}+\angle B F E=180^{\circ}$
$\angle B F E=180^{\circ}-80^{\circ}=100^{\circ}$
Here,
In $\triangle B C E$
$B C=B E$ (given)
$\angle B C E=\angle B E C=50^{\circ}$ (angles opposite to equal sides are equal)
By angle sum property
$\angle B C E+\angle B E C+\angle C B E=180^{\circ}$
$50^{\circ}+50^{\circ}+\angle C B E=180^{\circ}$
$\angle C B E=180^{\circ}-50^{\circ}-50^{\circ}=100^{\circ}$
$\therefore \angle \mathrm{CBE}=100^{\circ}$

14. Question

In the given figure, O is the centre of a circle, $\angle A C B=40^{\circ}$. Find $\angle O A B$.

Answer
Given: $\angle A C B=40^{\circ}$
We know that,
$\angle A O B=2 \times \angle A C B$
$\angle \mathrm{AOB}=2 \times 40=80^{\circ}$
$\therefore \angle A O B=80^{\circ}$
In $\triangle \mathrm{AOB}$
$O A=O B$ (radius)
$\angle O A B=\angle O B A$ (angles opposite to equal sides are equal)
Let $\angle O A B=\angle O B A=x$
By angle sum property
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$
$80+x+x=180^{\circ}$
$80+2 x=180^{\circ}$
$2 x=180^{\circ}-80^{\circ}=100^{\circ}$
$x=\frac{100}{2}=50^{\circ}$
$\therefore \angle \mathrm{OAB}=50^{\circ}$

15. Question

In the given figure, O is the centre of a circle, $\angle O A B=30^{\circ}$ and $\angle O C B=55^{\circ}$. Find $\angle B O C$ and $\angle A O C$.

Answer

Given: $\angle \mathrm{OAB}=30^{\circ}$ and $\angle \mathrm{OCB}=55^{\circ}$.
Here,
In $\triangle \mathrm{AOB}$
$\mathrm{OA}=\mathrm{OB}$ (radius)
$\angle O A B=\angle O B A$ (angles opposite to equal sides are equal)
$\therefore \angle \mathrm{OBA}=30^{\circ}$
Now, by angle sum property
$\angle A O B+\angle O B A+\angle O A B=180^{\circ}$
$\angle \mathrm{AOB}+30^{\circ}+30^{\circ}=180^{\circ}$
$\angle A O B=180^{\circ}-30^{\circ}-30^{\circ}$
$\angle A O B=120^{\circ}$
Now, Consider \triangle BOC
$O C=O B$ (radius)
$\angle O C B=\angle O B C$ (angles opposite to equal sides are equal)
$\therefore \angle \mathrm{OBA}=55^{\circ}$
Now, by angle sum property
$\angle B O C+\angle O B C+\angle O C B=180^{\circ}$
$\angle B O C+55^{\circ}+55^{\circ}=180^{\circ}$
$\angle B O C=180^{\circ}-55^{\circ}-55^{\circ}=70^{\circ}$
$\therefore \angle B O C=70^{\circ}$
Here,
$\angle A O B=\angle A O C+\angle B O C$
$120^{\circ}=\angle A O C+70^{\circ}$
$\angle A O C=120^{\circ}-70^{\circ}$
$\angle A O C=50^{\circ}$
$\therefore \angle A O C=50^{\circ}$
$\therefore \angle \mathrm{BOC}=70^{\circ}, \angle \mathrm{AOC}=50^{\circ}$

16. Question

In the given figure, O is the centre of the circle, $B D=O D$ and $C D \perp A B$. Find $\angle C A B$.

Answer

Given: $\mathrm{BD}=\mathrm{OD}$ and $\mathrm{CD} \perp \mathrm{AB}$.
In $\triangle O B D$
$O B=O D=D B$
$\therefore \triangle$ OBD is equilateral
$\therefore \angle \mathrm{ODB}=\angle \mathrm{DBO}=\angle \mathrm{BOD}=60^{\circ}$
Consider $\triangle \mathrm{DEB}$ and $\angle \mathrm{BEC}$
Here,
$B E=B E$ (common)
$\angle C E B=\angle D E B$ (right angle)
$C E=D E$ ($O E$ is perpendicular bisector)
\therefore By SAS congruency
$\angle \mathrm{CAB}=30^{\circ}$
$\triangle \mathrm{DEB} \cong \angle \mathrm{BEC}$
$\therefore \angle D E B=\angle E B C$ (C.P.C.T)
$\therefore \angle E B C=60^{\circ}$
Now, in $\triangle A B C$
$\angle E B C=60^{\circ}$
$\angle A C B=90^{\circ}$ (angle in semicircle)
By angle sum property
$\angle E B C+\angle A C B+\angle C A B=180^{\circ}$
$60^{\circ}+90^{\circ}+\angle C A B=180^{\circ}$
$\angle C A B=180^{\circ}-60^{\circ}-90^{\circ}=30^{\circ}$
$\therefore \angle \mathrm{CAB}=30^{\circ}$

17. Question

In the given figure, $A B C D$ is a cyclic quadrilateral. A circle passing through A and B meets $A D$ and $B C$ in the points E and F respectively. Prove that $E F \| D C$.

Answer

Here,
In cyclic Quadrilateral ABFE
$\angle A B F+\angle A E F=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplementary) -1
In cyclic Quadrilateral ABCD
$\angle A B C+\angle A D C=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplementary) -2
From -1 and -2
$\angle A B F+\angle A E F=\angle A B C+\angle A D C$
$\angle A E F=\angle A D C(\angle A B F=\angle A B C)$
Since these are corresponding angles
We can say that EF || DC
$\therefore \mathrm{EF} \| \mathrm{DC}$
Hence proved.

18. Question

In the given figure, $A O B$ is a diameter of the circle and C, D, E are any three points on the semicircle. Find the value of $\angle A C D+\angle B E D$.

Answer

Construction: Join AE
Consider cyclic quadrilateral ACDEA
Here,
$\angle A C D+\angle D E A=180^{\circ}$ (opposite angles in cyclic quadrilateral are supplementary)
Also,
$\angle A E B=90^{\circ}$ (angle in semicircle)
$\therefore \angle A C D+\angle D E A+\angle A E B=180^{\circ}+90^{\circ}$
$\angle \mathrm{ACD}+\angle \mathrm{BED}=270^{\circ}(\angle \mathrm{DEA}+\angle \mathrm{AEB}=\angle \mathrm{BED})$
$\therefore \angle A C D+\angle B E D=270^{\circ}$
Hence proved.

19. Question

In the given figure, O is the centre of a circle and $\angle B C O=30^{\circ}$. Find x and y.

Answer

Given: $\angle \mathrm{BCO}=30^{\circ}$.
In $\triangle E O C$
By angle sum property
$\angle E O C+\angle O E C+\angle O C E=180^{\circ}$
$\angle E O C+90^{\circ}+30^{\circ}=180^{\circ}$
$\angle E O C=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}$
$\angle E O C=60^{\circ}$
Here,
$\angle E O D=\angle E O C+\angle C O D=90^{\circ}$
$\angle E O C+\angle C O D=90^{\circ}$
$60^{\circ}+\angle C O D=90^{\circ}$
$\angle C O D=90^{\circ}-60^{\circ}=30^{\circ}$
Now,
$\angle A O C=\angle A O D+\angle C O D=90^{\circ}+30^{\circ}=120^{\circ}$
We know that,
$\angle \mathrm{COD}=2 \times \angle \mathrm{CBD}$
$\frac{1}{2} \angle \mathrm{COD}=\angle \mathrm{CBD}$
$\angle \mathrm{CBD}=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
Consider $\triangle A B E$
By angle sum property
$\angle A E B+\angle A B E+\angle B A E=180^{\circ}$
$90^{\circ}+60^{\circ}+\angle B A E=180^{\circ}$
$\angle B A E=180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$
$\therefore \mathrm{x}=30^{\circ}$

We know that,
$\angle A O C=2 \times \angle A B C$
$\frac{1}{2} \angle A O C=\angle A B C$
$\angle A B C=\frac{1}{2} \times 30^{\circ}=15^{\circ}$
$\therefore \mathrm{y}=15^{\circ}$
$\therefore \mathrm{x}=30, \mathrm{y}=15$

20. Question

PQ and RQ are the chords of a circle equidistant from the centre. Prove that the diameter passing through Q bisects $\angle P Q R$ and $\angle P S R$.

Answer

Given: chords $P Q$ and $R Q$ are equidistant from center.
Here consider $\triangle \mathrm{PQS}$ and $\triangle \mathrm{RQS}$
Here,
$\mathrm{QS}=\mathrm{QS}$ (common)
$\angle \mathrm{QPS}=\angle \mathrm{QRS}$ (right angle)
$P Q=Q S$ (chords equidistant from center are equal in length)
\therefore By RHS congruency $\triangle \mathrm{PQS} \cong \triangle \mathrm{RQS}$
$\therefore \angle \mathrm{RQS}=\angle \mathrm{SQP}$ and $\angle \mathrm{RSQ}=\angle \mathrm{QSP}$ (by C.P.C. T)
Therefore we can say that diameter passing through Q bisects $\angle \mathrm{PQR}$ and $\angle \mathrm{PSR}$.

21. Question

Prove that there is one and only one circle passing through three non - collinear points.

Answer

Given: Three non collinear points P, Q and R
Construction: Join PQ and QR.
Draw perpendicular bisectors $A B$ of $P Q$ and $C D$ of $Q R$. Let the perpendicular bisectors intersect at the point 0 .

Now join OP, OQ and OR.
A circle is obtained passing through the points P, Q and R.

Proof:

We know that,
Every point on the perpendicular bisector of a line segment is equidistant from its ends points.

Thus, OP = OQ (Since, O lies on the perpendicular bisector of PQ)
and $O Q=O R$. (Since, O lies on the perpendicular bisector of QR)
So, $O P=O Q=O R$.
Let $\mathrm{OP}=\mathrm{OQ}=\mathrm{OR}=r$.
Now, draw a circle $\mathrm{C}(\mathrm{O}, r)$ with O as centre and r as radius.
Then, circle $C(O, r)$ passes through the points P, Q and R.
Next, we prove this circle is the only circle passing through the points P, Q and R.
If possible, suppose there is a another circle $C\left(O^{\prime}, t\right)$ which passes through the points P, Q, R.
Then, O^{\prime} will lie on the perpendicular bisectors $A B$ and $C D$.
But O was the intersection point of the perpendicular bisectors $A B$ and $C D$.
So, O^{\prime} must coincide with the point O. (Since, two lines cannot intersect at more than one point)

As, $\mathrm{O}^{\prime} \mathrm{P}=t$ and $\mathrm{OP}=r$; and O^{\prime} coincides with O , we get $t=r$.
Therefore, $\mathrm{C}(\mathrm{O}, r)$ and $\mathrm{C}(\mathrm{O}, t)$ are congruent.

Thus, there is one and only one circle passing through three the given non - collinear points.

22. Question

In the give figure, $O P Q R$ is a square. A circle drawn with centre O cuts the square in x and y. Prove that $\mathrm{QX}=\mathrm{XY}$.

Answer

Construction: Join OX and OY
In \triangle OPX and $\triangle O R Y$,
OX = OY (radii of the same circle)
$\mathrm{OP}=\mathrm{OR}$ (sides of the square)
$\therefore \triangle \mathrm{OPX} \cong \triangle$ ORY (RHS rule)
$\therefore \mathrm{PX}=\mathrm{RY}(\mathrm{CPCT})-1$
OPQR is a square
$\therefore P Q=R Q$
$\therefore \mathrm{PX}+\mathrm{QX}=\mathrm{RY}+\mathrm{QY}$
QX = QY (from -1)
Hence proved

23. Question

In the given figure, $A B$ and $A C$ we two equal chords of a circle with centre O. Show that O lies on the bisectors of $\angle B A C$.

Answer
Given: $A B=A C$
Construction: join OA, OB and OC

Proof:

Consider $\triangle A O B$ and $\triangle A O C$
Here,
$O C=O B$ (radius)
$\mathrm{OA}=\mathrm{OA}$ (common)
$A B=A C$ (given)
\therefore By SSS congruency
$\triangle A O B \cong \triangle A O C$
$\therefore \angle \mathrm{OAC}=\angle \mathrm{OAB}$ (by C.P.C.T)
Hence, we can say that $O A$ is the bisector of $\angle B A C$, that is O lies on the bisector of $\angle B A C$.

