10. Area

Exercise 10A

1. Question

In the adjoining figure, show that $A B C D$ is a parallelogram.
Calculate the area of \|gm ABCD.

Answer

In the given figure consider $\triangle A B D$ and $\triangle B C D$
Area of $\triangle A B D=\frac{1}{2} x$ base x height $=\frac{1}{2} \times A B \times B D$
$=\frac{1}{2} \times 5 \times 7=\frac{35}{2}-\cdots-\cdots--1$
Area of $\triangle B C D=\frac{1}{2} \times$ base x height $=\frac{1}{2} \times D C \times D B$
$=\frac{1}{2} \times 5 \times 7=\frac{35}{2}--------2$
From 1 and 2 we can tell that area of two triangle that is $\triangle A B D$ and $\triangle B C D$ are equal
Since the diagonal $B D$ divides $A B C D$ into two triangles of equal area and opp sides $A B=D C$
$\therefore \mathrm{ABCD}$ is a parallelogram
\therefore Area of parallelogram $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=\left(\frac{35}{2}+\frac{35}{2}\right)=\frac{70}{2} \mathrm{~cm}^{2}=35 \mathrm{~cm}^{2}$
\therefore Area of parallelogram $A B C D=35 \mathrm{~cm}^{2}$

2. Question

In a parallelogram $A B C D$, it is being given that $A B=10 \mathrm{~cm}$ and the altitudes corresponding to the sides $A B$ and $A D$ are $D L=6 \mathrm{~cm}$ and $B M=8 \mathrm{~cm}$, respectively. Find $A D$.

Answer
Given
$A B=10 \mathrm{~cm}$
$D L=6 \mathrm{~cm}$
$\mathrm{BM}=8 \mathrm{~cm}$
$A D=?($ To find $)$
Here, Area of parallelogram = base x height
In the given figure if we consider $A B$ as base Area $=A B \times D L$
If we consider DM as base Area $=\mathrm{AD} \times \mathrm{BM}$
\therefore Area $=A B \times D L=A D \times B M$
$\Rightarrow 10 \times 6=A D \times 8$
$\Rightarrow 60=8 \times A D$
$\Rightarrow A D=\frac{60}{8}=7.5 \mathrm{~cm}$

3. Question

Find the area of a rhombus, the lengths of whose diagonals are 16 cm and 24 cm respectively.
Answer

Here, Let ABCD be Rhombus with diagonals AC and BD
Here let $A C=24$ and $B D=16$
We know that, in a Rhombus, diagonals are perpendicular bisectors to each other
\therefore if we consider $\triangle A B C A C$ is base and $O B$ is height
Similarly, in \triangle ADC AC is base and OD is height
$=\frac{1}{2} \times A C \times O B+\frac{1}{2} \times A C \times O D$
$=\frac{1}{2} \times 24 \times \frac{B D}{2}+\frac{1}{2} \times 24 \times \frac{B D}{2}$ (Since $A C$ and $B C$ are perpendicular bisectors $\therefore O B=O D=\frac{B D}{2}$)
$=\frac{1}{2} \times 24 \times \frac{16}{2}+\frac{1}{2} \times 24 \times \frac{16}{2}=96+96=192 \mathrm{~cm}^{2}$
\therefore Area of Rhombus $A B C D$ is $192 \mathrm{~cm}^{2}$

4. Question

Find the area of a trapezium whose parallel sides are 9 cm and 6 cm respectively and the distance between these sides is 8 cm .

Answer

Given
$A B=a=9 \mathrm{~cm}$
$D C=b=6 \mathrm{~cm}$
Height (h) $=8 \mathrm{~cm}$
We know that area of trapezium is $\frac{1}{2} x$ (sum of parallel sides) x height
Therefore, Area of trapezium $A B C D=\frac{1}{2} \times(A B+D C) \times h=\frac{1}{2} \times(9+6) \times 8=60 \mathrm{~cm}^{2}$
\therefore Area of Trapezium ABCD $=60 \mathrm{~cm}^{2}$

5A. Question

Calculate the area of quad. $A B C D$, given in Fig. (i).

(i)

Given
$A D=9 \mathrm{~cm}$
$B C=8 \mathrm{~cm}$
$D C=17 \mathrm{~cm}$
Here Area of Quad $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=\frac{1}{2} \times A B \times A D+\frac{1}{2} \times B C \times B D$
By Pythagoras theorem in $\triangle \mathrm{BCD}$
$D C^{2}=B D^{2}+B C^{2}$
$17^{2}=B D^{2}+8^{2}$
$B D^{2}=17^{2}-8^{2}=289-64=225$
$\therefore B D=15 \mathrm{~cm}$
Similarly in $\triangle A B D$ using Pythagoras theorem
$B D^{2}=A D^{2}+A B^{2}$
$15^{2}=9^{2}+A B^{2}$
$A B^{2}=15^{2}-9^{2}=225-81=144$
$\therefore \mathrm{AB}=12 \mathrm{~cm}$
Now, Area of Quad $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=\frac{1}{2} \times A B \times A D+\frac{1}{2} \times B C \times B D$
$=\frac{1}{2} \times 12 \times 9+\frac{1}{2} \times 8 \times 15=54+60=114 \mathrm{~cm}^{2}$
\therefore Area of Quadrilateral $A B C D=114 \mathrm{~cm}^{2}$

5B. Question

Calculate the area of trap. PQRS, given in Fig. (ii).

(ii)

Answer

(ii)

Given :- Right trapezium
$R S=8 \mathrm{~cm}$
PT $=8 \mathrm{~cm}$
$T Q=8 \mathrm{~cm}$
$R Q=17 \mathrm{~cm}$
Here $P Q=P T+T Q=8+8=16$
We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) x height
That is $\frac{1}{2} \times(A B+D C) \times R T$
Consider Δ TQR
By Pythagoras theorem
$R Q^{2}=T Q^{2}+R T^{2}$
$17^{2}=8^{2}+R T^{2}$
$R T^{2}=17^{2}-8^{2}=289-64=225$
$\therefore \mathrm{RT}=15 \mathrm{~cm}$
\therefore Area of trapezium $=\frac{1}{2} \times(R S+P Q) \times R T$
$=\frac{1}{2} \times(8+16) \times 15=180 \mathrm{~cm}^{2}$
\therefore Area of trapezium PQRS $=180 \mathrm{~cm}^{2}$

6. Question

In the adjoining figure, $A B C D$ is a trapezium in which $A B \| D C ; A B=7 \mathrm{~cm} ; A D=B C=5 \mathrm{~cm}$ and the distance between $A B$ and $D C$ is 4 cm . Find the length of $D C$ and hence, find the area of trap. $A B C D$.

Answer

Given
$A B=7 \mathrm{~cm}$
$A D=B C 5 \mathrm{~cm}$
$\mathrm{AL}=\mathrm{BM}=4 \mathrm{~cm}$ (height)
$D C=?$
Here in the given figure $A B=L M$
$\therefore \mathrm{LM}=7 \mathrm{~cm}$------------1
Now Consider \triangle ALD
By Pythagoras theorem
$A D^{2}=A L^{2}+D L^{2}$
$5^{2}=4^{2}+L^{2}$
$D L^{2}=5^{2}-4^{2}=25-16=9$
$\therefore \mathrm{DL}=3 \mathrm{~cm}$ \qquad

Similarly in $\triangle \mathrm{BMC}$
By Pythagoras theorem
$B C^{2}=B M^{2}+M C^{2}$
$5^{2}=4^{2}+M C^{2}$
$M C^{2}=5^{2}-4^{2}=25-16=9$
$\therefore \mathrm{MC}=3 \mathrm{~cm}--3$
\therefore from 12 and 3
$D C=D L+L M+M C=3+7+3=13 \mathrm{~cm}$

We know that area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) x height
\therefore Area of trapezium $=\frac{1}{2} \times(A B+D C) \times A L$
$=\frac{1}{2} \times(7+13) \times 4=40 \mathrm{~cm}^{2}$
\therefore Area of trapezium $A B C D=180 \mathrm{~cm}^{2}$

7. Question

$B D$ is one of the diagonals of a quad. $A B C D$. If $A L \perp B D$ and $C M \perp B D$, show that $\operatorname{ar}($ quad. $A B C D)=\frac{1}{2}$ $x B D \times(A L+C M)$.

Answer
Given :
$A L \perp B D$ and $C M \perp B D$
To prove : ar (quad. $A B C D)=\frac{1}{2} \times B D \times(A L+C M)$
Proof:
Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times B D \times A M$
Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times \mathrm{BD} \times \mathrm{CM}$
Now area of Quad $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=\frac{1}{2} \times B D \times A L+\frac{1}{2} \times B D \times C M$
$=\frac{1}{2} \times B D \times(A L+C M)$
Hence proved

8. Question

In the adjoining figure, $A B C D$ is a quadrilateral in which diag. $B D=14 \mathrm{~cm}$. If $A L \perp B D$ and $C M \perp B D$ such that $A L=8 \mathrm{~cm}$ and $C M=6 \mathrm{~cm}$, find the area of quad. $A B C D$.

Answer

Given
$A L \perp B D$ and $C M \perp B D$
$B D=14 \mathrm{~cm}$
$A L=8 \mathrm{~cm}$
$C M=6 \mathrm{~cm}$
Here,
Area of $\triangle A B D=\frac{1}{2} \times B D \times A M$
Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times \mathrm{BD} \times \mathrm{CM}$
Now area of Quad $A B C D=$ Area of $\triangle A B D+$ Area of $\triangle B C D$
$=\frac{1}{2} \times B D \times A L+\frac{1}{2} \times B D \times C M$
$=\frac{1}{2} \times B D \times(A L+C M)$
\therefore Area of quad $A B C D=\frac{1}{2} \times B D \times(A L+C M)=\frac{1}{2} \times 14 \times(8+6)=98 \mathrm{~cm}^{2}$
\therefore Area of quad $A B C D=98 \mathrm{~cm}^{2}$

9. Question

In the adjoining figure, $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals $A C$ and $B D$ intersect at O. Prove that $\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$.

Answer

Given

AB || DC
To prove that: $\operatorname{area}(\triangle A O D)=\operatorname{area}(\triangle B O C)$
Here in the given figure Consider $\triangle A B D$ and $\triangle A B C$,
we find that they have same base $A B$ and lie between two parallel lines $A B$ and $C D$
According to the theorem: triangles on the same base and between same parallel lines have equal areas.
\therefore Area of $\triangle A B D=$ Area of $\triangle B C A$
Now,
Area of $\triangle A O D=$ Area of $\triangle A B D-$ Area of $\triangle A O B---1$
Area of $\triangle C O B=$ Area of $\triangle B C A-$ Area of $\triangle A O B---2$
\therefore From 1 and 2
We can conclude that area $(\triangle A O D)=\operatorname{area}(\triangle B O C)$ (Since Area of $\triangle A O B$ is common)
Hence proved

10. Question

In the adjoining figure, $D E \| B C$. Prove that
(i) $\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{ABE})$,
(ii) $\operatorname{ar}(\triangle O C E)=\operatorname{ar}(\triangle O B D)$.

Answer

Given
$A B \| D C$
To prove that : (i) area $(\triangle A C D)=\operatorname{area}(\triangle A B E)$
(ii) $\operatorname{area}(\triangle \mathrm{OCE})=\operatorname{area}(\triangle \mathrm{OBD})$
(i)

Here in the given figure Consider $\triangle \mathrm{BDE}$ and $\triangle \mathrm{ECD}$,
we find that they have same base DE and lie between two parallel lines $B C$ and $D E$
According to the theorem: triangles on the same base and between same parallel lines have equal
areas.
\therefore Area of $\triangle \mathrm{BDE}=$ Area of $\triangle \mathrm{ECD}$
Now,
Area of $\triangle \mathrm{ACD}=$ Area of $\triangle \mathrm{ECD}+$ Area of $\triangle \mathrm{ADE}---1$
Area of $\triangle \mathrm{ABE}=$ Area of $\triangle \mathrm{BDE}+$ Area of $\triangle \mathrm{ADE}---2$
\therefore From 1 and 2
We can conclude that area $(\triangle A O D)=\operatorname{area}(\triangle B O C)$ (Since Area of $\triangle A D E$ is common)
Hence proved
(ii)

Here in the given figure Consider $\triangle \mathrm{BCD}$ and $\triangle \mathrm{BCE}$, we find that they have same base $B C$ and lie between two parallel lines $B C$ and $D E$ According to the theorem : triangles on the same base and between same parallel lines have equal areas.
\therefore Area of $\triangle B C D=$ Area of $\triangle B C E$
Now,
Area of $\triangle \mathrm{OBD}=$ Area of $\triangle \mathrm{BCD}$ - Area of $\triangle \mathrm{BOC}--1$
Area of $\triangle O C E=$ Area of $\triangle B C E-$ Area of $\triangle B O C=-2$
\therefore From 1 and 2
We can conclude that area $(\triangle O C E)=\operatorname{area}(\triangle O B D)$ (Since Area of $\triangle B O C$ is common)
Hence proved

11. Question

In the adjoining figure, D and E are points on the sides $A B$ and $A C$ of $\triangle A B C$ such that $\operatorname{ar}(\triangle B C E)=$ $\operatorname{ar}(\triangle B C D)$.

Show that DE || BC.

Answer

Given

A triangle $A B C$ in which points D and E lie on $A B$ and $A C$ of $\triangle A B C$ such that $\operatorname{ar}(\triangle B C E)=\operatorname{ar}(\triangle B C D)$.
To prove: DE II BC
Proof:
Here, from the figure we know that $\triangle B C E$ and $\triangle B C D$ lie on same base $B C$ and
It is given that area $(\triangle B C E)=\operatorname{area}(\triangle B C D)$
Since two triangle have same base and same area they should equal altitude(height)
That means they lie between two parallel lines
That is $D E \| B C$
$\therefore D E \| B C$
Hence proved

12. Question

In the adjoining figure, O is any point inside a parallelogram $A B C D$. Prove that
(i) $\operatorname{ar}(\triangle \mathrm{OAB})+\operatorname{ar}(\triangle \mathrm{OCD})=\frac{1}{2} \operatorname{ar}(\| g m \mathrm{ABCD})$,
(ii) $\operatorname{ar}(\triangle \mathrm{OAD})+\operatorname{ar}(\triangle \mathrm{OBC})=\frac{1}{2} \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$.

Answer

Given : A parallelogram $A B C D$ with a point ' O ' inside it.
To prove : (i) area $(\triangle \mathrm{OAB})+\operatorname{area}(\triangle \mathrm{OCD})=\frac{1}{2} \operatorname{area}(\| g m \mathrm{ABCD})$,
(ii) area $(\triangle \mathrm{OAD})+\operatorname{area}(\triangle \mathrm{OBC})=\frac{1}{2} \operatorname{area}(\| \mathrm{gm} \mathrm{ABCD})$.

Construction : Draw PQ \| $A B$ and $R S$ || $A D$
Proof:
$\triangle A O B$ and parallelogram $A B Q P$ have same base $A B$ and lie between parallel lines $A B$ and $P Q$.
According to theorem: If a triangle and parallelogram are on the same base and between the same parallel lines, then the area of the triangle is equal to half of the area of the parallelogram.
$\therefore \operatorname{area}(\triangle A O B)=\frac{1}{2}$ area(llgm ABQP) ---1
Similarly, we can prove that area($\triangle C O D)=\frac{1}{2}$ area(llgm PQCD) ---2
\therefore Adding -1 and -2 we get,
$\operatorname{area}(\triangle \mathrm{AOB})+\operatorname{area}(\triangle \mathrm{COD})=\frac{1}{2} \operatorname{area}(\| \mathrm{gm} \mathrm{ABQP})+\frac{1}{2} \operatorname{area}(\| g m$ PQCD $)$
$\operatorname{area}(\triangle \mathrm{AOB})+\operatorname{area}(\triangle \mathrm{COD})=\frac{1}{2}[\operatorname{area}(\| \mathrm{gm} \mathrm{ABQP})+\operatorname{area}(\| \mathrm{gm} \operatorname{PQCD})]=\frac{1}{2} \operatorname{area}(\| g m \mathrm{ABCD})$
$\therefore \operatorname{area}(\triangle A O B)+\operatorname{area}(\triangle C O D)=\frac{1}{2} \operatorname{area}(\| g m \operatorname{ABCD})$
Hence proved
(ii)
$\triangle O A D$ and parallelogram ASRD have same base $A D$ and lie between parallel lines AD and RS.
According to theorem: If a triangle and parallelogram are on the same base and between the same parallel lines, then the area of the triangle is equal to half of the area of the parallelogram.
$\therefore \operatorname{area}(\triangle \mathrm{OAD})=\frac{1}{2} \operatorname{area}(\| \mathrm{gm}$ ASRD $)-1$
Similarly, we can prove that area $(\triangle \mathrm{OBC})=\frac{1}{2}$ area(llgm BCRS) ---2
\therefore Adding -1 and -2 we get,
$\operatorname{area}(\triangle \mathrm{OAD})+\operatorname{area}(\triangle \mathrm{OBC})=\frac{1}{2} \operatorname{area}(\| g m$ ASRD $)+\frac{1}{2} \operatorname{area}(\| g m$ BCRS $)$
$\operatorname{area}(\triangle \mathrm{OAD})+\operatorname{area}(\triangle \mathrm{OBC})=\frac{1}{2}[\operatorname{area}(\| g m \operatorname{ASRD})+\operatorname{area}(\| g m \operatorname{BCRS})]=\frac{1}{2} \operatorname{area}(\| g m \mathrm{ABCD})$
$\therefore \operatorname{area}(\triangle \mathrm{OAD})+\operatorname{area}(\triangle \mathrm{OBC})=\frac{1}{2} \operatorname{area}(\| \mathrm{gm} \mathrm{ABCD})$
Hence proved

13. Question

In the adjoining figure, $A B C D$ is a quadrilateral. A line through D, parallel to $A C$, meets $B C$ produced in P.

Prove that $\operatorname{ar}(\triangle A B P)=($ quad. $A B C D)$.

Answer

Given : $A B C D$ is a quadrilateral in which a line through D drawn parallel to $A C$ which meets $B C$ produced in P.

To prove: area of $(\triangle A B P)=$ area of (quad $A B C D)$
Proof:
Here, in the given figure
$\triangle A C D$ and $\triangle A C P$ have same base and lie between same parallel line AC and DP.
According to the theorem : triangles on the same base and between same parallel lines have equal areas.
\therefore area of $(\triangle A C D)=$ area of $(\triangle A C P)$ \qquad
Now, add area of ($\triangle \mathrm{ABC}$) on both side of (1)
\therefore area of $(\triangle A C D)+(\triangle A B C)=$ area of $(\triangle A C P)+(\triangle A B C)$
Area of (quad $A B C D)=$ area of $(\triangle A B P)$
\therefore area of $(\triangle A B P)=$ Area of (quad $A B C D)$
Hence proved

14. Question

In the adjoining figure, $\triangle A B C$ and $\triangle D B C$ are on the same base $B C$ with A and D on opposite sides of $B C$ such that $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle D B C)$.

Show that BC bisects AD.

Answer

Given : $\triangle A B C$ and $\triangle D B C$ having same base $B C$ and area $(\triangle A B C)=\operatorname{area}(\triangle D B C)$.
To prove: $O A=O D$
Construction : Draw $\mathrm{AP} \perp \mathrm{BC}$ and $\mathrm{DQ} \perp \mathrm{BC}$
Proof :
Here area of $\triangle A B C=\frac{1}{2} \times B C \times A P$ and area of $\triangle A B C=\frac{1}{2} \times B C \times D Q$
since, $\operatorname{area}(\triangle A B C)=\operatorname{area}(\triangle D B C)$
$\therefore \frac{1}{2} \times B C \times A P=\frac{1}{2} \times B C \times D Q$
$\therefore A P=D Q$-------------- 1
Now in $\triangle A O P$ and $\triangle Q O D$, we have
$\angle \mathrm{APO}=\angle \mathrm{DQO}=90^{\circ}$ and
$\angle A O P=\angle D O Q$ [Vertically opposite angles]
$A P=D Q[$ from 1]
Thus by AAS congruency
$\triangle \mathrm{AOP} \cong \triangle \mathrm{QOD}$ [AAS]
Thus By corresponding parts of congryent triangles law [C.P.C.T]
$\therefore \mathrm{OA}=\mathrm{OD}$ [C.P.C.T]
Hence BC bisects AD
Hence proved

15. Question

In the adjoining figure, $A D$ is one of the medians of a $\triangle A B C$ and P is a point on $A D$.
Prove that
(i) $\operatorname{ar}(\triangle B D P)=\operatorname{ar}(\triangle C D P)$
(ii) $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C P)$

Answer

Given : $A \triangle A B C$ in which $A D$ is the median and P is a point on $A D$
To prove: (i) $\operatorname{ar}(\Delta \mathrm{BDP})=\operatorname{ar}(\Delta \mathrm{CDP})$,
(ii) $\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACP})$.
(i)

In $\triangle \mathrm{BPC}, \mathrm{PD}$ is the median. Since median of a triangle divides the triangles into two equal areas So, area $(\triangle \mathrm{BDP})=\operatorname{area}(\triangle \mathrm{CDP})----1$

Hence proved
(ii)

In $\triangle A B C A D$ is the median
So, area $(\triangle A B D)=\operatorname{area}(\triangle A D C)----2$ and
$\operatorname{area}(\triangle \mathrm{BDP})=\operatorname{area}(\triangle \mathrm{CDP})[$ from 1]
Now subtracting area($\triangle B D P$) from ---2, we have
$\operatorname{area}(\triangle \mathrm{ABD})-\operatorname{area}(\triangle \mathrm{BDP})=\operatorname{area}(\triangle \mathrm{ADC})-\operatorname{area}(\triangle B D P)$
$\operatorname{area}(\triangle \mathrm{ABD})-\operatorname{area}(\triangle \mathrm{BDP})=\operatorname{area}(\triangle \mathrm{ADC})-\operatorname{area}(\triangle \mathrm{CDP})[$ since area $(\triangle \mathrm{BDP})=\operatorname{area}(\triangle \mathrm{CDP})$ from -1$]$
$\therefore \operatorname{area}(\triangle A B P)=\operatorname{area}(\triangle A C P)$
Hence proved.

16. Question

In the adjoining figure, the diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O.
If $B O=O D$, prove that
$\operatorname{Ar}(\triangle A B C)=\operatorname{ar}(\triangle A D C)$.

Answer

Given : A quadrilateral $A B C D$ with diagonals $A C$ and $B D$ and $B O=O D$

To prove: Area of $(\triangle A B C)=$ area of $(\triangle A D C)$
Proof : BO = OD [given]
Here $A O$ is the median of $\triangle A B D$
\therefore Area of $(\triangle A O D)=$ Area of $(\triangle A O B)$---------------- 1
And OC is the median of $\triangle B C D$
\therefore Area of $(\triangle C O D)=$ Area of $(\triangle B O C)$---------------- 2
Now by adding -1 and -2 we get
Area of $(\triangle A O D)+$ Area of $(\triangle C O D)=$ Area of $(\triangle A O B)+$ Area of $(\triangle B O C)$
\therefore Area of $(\triangle A B C)=$ Area of $(\square \# x 2206 ; A D C)$
Hence proved

17. Question

$A B C$ is a triangle in which D is the midpoint of $B C$ and E is the midpoint of $A D$. Prove that $\operatorname{ar}(\triangle B E D)=$ $\frac{1}{4} \operatorname{ar}(\triangle A B C)$.

Answer

Given : $A \triangle A B C$ in which $A D$ is the median and E is the midpoint on line $A D$
To prove: $\operatorname{area}(\triangle B E D)=\frac{1}{4} \operatorname{area}(\triangle A B C)$
Proof : here in $\triangle A B C A D$ is the midpoint
\therefore Area of $(\triangle A B D)=$ Area of $(\triangle A D E)$
Hence Area of $(\triangle A B D)=\frac{1}{2}[$ Area of $(\triangle A B C)]$ \qquad

No in $\triangle A B D E$ is the midpoint of $A D$ and $B E$ is the median
\therefore Area of $(\triangle B D E)=$ Area of $(\triangle A B E)$
Hence Area of $(\triangle B E D)=\frac{1}{2}$ [Area of $\left.(\triangle A B D)\right]$-------------- 2
Substituting (1) in (2), we get

Hence Area of $(\triangle B E D)=\frac{1}{2}\left[\frac{1}{2}\right.$ Area of $\left.(\triangle A B C)\right]$
$\therefore \operatorname{area}(\triangle B E D)=\frac{1}{4} \operatorname{area}(\triangle A B C)$
Hence proved

18. Question

The vertex A of $\triangle A B C$ is joined to a point D on the side $B C$. The midpoint of $A D$ is E. Prove that $\operatorname{ar}(\triangle \mathrm{BEC})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$.

Answer

Given: $A \triangle A B C$ in which $A D$ is a line where D is a point on $B C$ and E is the midpoint of $A D$
To prove: $\operatorname{ar}(\triangle B E C)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
Proof: In $\triangle A B D E$ is the midpoint of side $A D$
\therefore Area of $(\triangle B D E)=$ Area of $(\triangle A B E)$
Hence Area of $(\triangle \mathrm{BDE})=\frac{1}{2}[$ Area of $(\triangle \mathrm{ABD})]-1$
Now, consider $\triangle A C D$ in which E is the midpoint of side $A D$
\therefore Area of $(\triangle E C D)=$ Area of $(\triangle A E C)$
Hence Area of $(\triangle E C D)=\frac{1}{2}[$ Area of $(\triangle A C D)]-2$
Now, adding -1 and -2 , we get
Area of $(\triangle \mathrm{BDE})+$ Area of $(\triangle \mathrm{ECD})=\frac{1}{2}[$ Area of $(\triangle \mathrm{ABD})]+\frac{1}{2}[$ Area of $(\triangle \mathrm{ACD})]$
$\therefore \operatorname{area}(\triangle \mathrm{BEC})=\frac{1}{2}[\operatorname{area}(\triangle \mathrm{ABD})+\operatorname{area}(\triangle \mathrm{ACD})]$
$\therefore \operatorname{Area}(\triangle \mathrm{BEC})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})$
Hence proved

19. Question

D is the midpoint of side $B C$ of $\triangle A B C$ and E is the midpoint of $B D$. If O is the midpoint of $A E$, prove that $\operatorname{ar}(\triangle \mathrm{BOE})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})$.

Answer

Given : D is the midpoint of side $B C$ of $\triangle A B C$ and E is the midpoint of $B D$ and O is the midpoint of $A E$
To prove : $\operatorname{ar}(\triangle \mathrm{BOE})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})$
Proof : Consider $\triangle A B C$ here D is the midpoint of $B C$
\therefore Area of $(\triangle A B D)=$ Area of $(\triangle A C D)$
$\therefore \operatorname{Area}(\triangle A B D)=\frac{1}{2} \operatorname{Area}(\triangle A B C)-1$
Now, consider $\triangle A B D$ here E is the midpoint of $B D$
\therefore Area of $(\triangle A B E)=$ Area of $(\triangle A E D)$
$\therefore \operatorname{Area}(\triangle A B E)=\frac{1}{2} \operatorname{Area}(\triangle A B D)-2$
Substituting -1 in -2 , we get
$\therefore \operatorname{Area}(\triangle A B E)=\frac{1}{2}\left(\frac{1}{2} \operatorname{Area}(\triangle A B C)\right)$
$\operatorname{Area}(\triangle \mathrm{ABE})=\frac{1}{4} \operatorname{Area}(\triangle \mathrm{ABC})-3$
Now consider $\triangle A B E$ here O is the midpoint of $A E$
\therefore Area of $(\triangle B O E)=$ Area of $(\triangle A O B)$
\therefore Area $(\triangle \mathrm{BOE})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABE})-4$
Now, substitute -3 in -4 , we get
$\operatorname{Area}(\triangle \mathrm{BOE})=\frac{1}{2}\left(\frac{1}{4} \operatorname{Area}(\triangle \mathrm{ABC})\right)$
$\therefore \operatorname{area}(\triangle B O E)=\frac{1}{8} \operatorname{area}(\triangle A B C)$

Hence proved

20. Question

In the adjoining figure, $A B C D$ is a parallelogram and O is any point on the diagonal $A C$.
Show that $\operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle A O D)$.

Answer

Given : A parallelogram $A B C D$ in which $A C$ is the diagonal and O is some point on the diagonal $A C$
To prove: $\operatorname{area}(\triangle A O B)=\operatorname{area}(\triangle A O D)$
Construction : Draw a diagonal BD and mark the intersection as P
Proof:
We know that in a parallelogram diagonals bisect each other, hence P is the midpoint of $\triangle A B D$
\therefore Area of $(\triangle A P B)=$ Area of $(\triangle A P D)-1$
Now consider $\triangle B O D$ here $O P$ is the median, since P is the midpoint of $B D$
\therefore Area of $(\triangle O P B)=$ Area of $(\triangle O P D)-2$
Adding -1 and -2 we get
Area of $(\triangle \mathrm{APB})+$ Area of $(\triangle \mathrm{OPB})=$ Area of $(\triangle A P D)+$ Area of $(\triangle \mathrm{OPD})$
\therefore Area of $(\triangle A O B)=$ Area of $(\triangle A O D)$
Hence proved

21. Question

P.Q.R.S are respectively the midpoints of the sides $A B, B C, C D$ and $D A$ of $\| \mathrm{gm} A B C D$. Show that PQRS is a parallelogram and also show that
$\operatorname{Ar}(\| g m$ PQRS $)=\frac{1}{2} \times \operatorname{ar}(\| g m A B C D)$.

Answer

Given : $A B C D$ is a parallelogram and P, Q, R, S are the midpoints of $A B, B C, C D, A D$ respectively
To prove: (i) PQRS is a parallelogram
(ii) $\operatorname{Area}\left(\| g m\right.$ PQRS) $=\frac{1}{2} \times$ area(llgm ABCD)

Construction : Join AC ,BD,SQ
Proof:
(i)

As S and R are midpoints of $A D$ and $C D$ respectively, in $\triangle A C D$
SR || AC [By midpoint theorem]
Similarly in $\triangle A B C, P$ and Q are midpoints of $A B$ and $B C$ respectively PQ || AC [By midpoint theorem]

From (1) and (2)
$S R\|A C\| P Q$
$\therefore \mathrm{SR} \| \mathrm{PQ}$
Again in $\triangle A C D$ as S and P are midpoints of $A D$ and $C B$ respectively
SP || BD [By midpoint theorem]
Similarly in $\triangle A B C, R$ and Q are midpoints of $C D$ and $B C$ respectively
RQ || BD [By midpoint theorem]
From (4) and (5)
$S P$ || $B D|\mid R Q$
$\therefore \mathrm{SP} \| \mathrm{RQ}$
From (3) and (6)
We can say that opposite sides are Parallel in PQRS
Hence we can conclude that PQRS is a parallelogram.
(ii)

Here $A B C D$ is a parallelogram
S and Q are midpoints of $A D$ and $B C$ respectively
$\therefore \mathrm{SQ} \| \mathrm{AB}$
\therefore SQAB is a parallelogram
Now, area $(\triangle \mathrm{SQP})=\frac{1}{2} \times$ area of (SQAB) \qquad 1
[Since \triangle SQP and \|gm SQAB have same base and lie between same parallel lines]
Similarly
S and Q are midpoints of $A D$ and $B C$ respectively
$\therefore S Q \| C D$
\therefore SQCD is a parallelogram
Now, $\operatorname{area}(\triangle \mathrm{SQR})=\frac{1}{2} \times$ area of (SQCD) \qquad 2
[Since $\triangle S Q R$ and $\|^{g m}$ SQCD have same base and lie between same parallel lines]
Adding (1) and (2) we get
$\operatorname{area}(\triangle \mathrm{SQP})+\operatorname{area}(\triangle \mathrm{SQR})=\frac{1}{2} \times$ area of $(\mathrm{SQAB})+\frac{1}{2} \times$ area of (SQCD)
\therefore area $(P Q R S)=\frac{1}{2}($ area of $(S Q A B)+$ area of $(S Q C D))$
\therefore Area(llgm PQRS) $=\frac{1}{2} \times$ area $(\| g m A B C D)$
Hence proved

22. Question

The given figure shows a pentagon $A B C D E$, $E G$, drawn parallel to $D A$, meets $B A$ produced at G, and $C F$, drawn parallel to $D B$, meets $A B$ produced at F.

Show that ar(pentagon $A B C D E)=\operatorname{ar}(\triangle \mathrm{DGF})$.

Answer

Given : ABCDE is a pentagon EG is drawn parallel to DA which meets BA produced at G and $C F$ is drawn parallel to $D B$ which meets $A B$ produced at F

To prove: area(pentagon $A B C D E)=\operatorname{area}(\triangle \mathrm{DGF})$

Proof:
Consider quadrilateral ADEG. Here,
$\operatorname{area}(\triangle \mathrm{AED})=\operatorname{area}(\triangle \mathrm{ADG})$
[since two triangles are on same base AD and lie between parallel line i.e, AD||EG] Similarly now, Consider quadrilateral BDCF. Here,
$\operatorname{area}(\triangle B C D)=\operatorname{area}(\triangle B D F)$
[since two triangles are on same base AD and lie between parallel line i.e, AD||EG]
Adding Eq (1) and (2) we get
$\operatorname{area}(\triangle \mathrm{AED})+\operatorname{area}(\triangle \mathrm{BCD})=\operatorname{area}(\triangle \mathrm{ADG})+\operatorname{area}(\triangle \mathrm{BDF})$
Now add area($\triangle \mathrm{ABD}$) on both sides of Eq (3), we get
$\therefore \operatorname{area}(\triangle A E D)+\operatorname{area}(\triangle B C D)+\operatorname{area}(\triangle A B D)=\operatorname{area}(\triangle A D G)+\operatorname{area}(\triangle B D F)+\operatorname{area}(\triangle A B D)$
\therefore area(pentagon $A B C D E)=\operatorname{area}(\triangle D G F)$
Hence proved

23. Question

Prove that a median divides a triangle into two triangles of equal area.

Answer

Given : $A \triangle A B C$ with D as median
To prove : Median D divides a triangle into two triangles of equal areas.
Constructions: Drop a perpendicular AE onto BC
Proof: Consider $\triangle A B D$
$\operatorname{area}(\triangle \mathrm{ABD})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{AE}$
Now, Consider $\triangle A C D$
$\operatorname{area}(\triangle \mathrm{ACD})=\frac{1}{2} \times \mathrm{CD} \times \mathrm{AE}$
since D is the median
$B D=C D$
$\therefore \frac{1}{2} \times \mathrm{BD} \times \mathrm{AE}=\frac{1}{2} \times \mathrm{CD} \times \mathrm{AE}$
Hence, area $(\triangle A B D)=\operatorname{area}(\triangle A C D)$
\therefore we can say that Median D divides a triangle into two triangles of equal areas.
Hence proved

24. Question

Show that a diagonal divides a parallelogram into two triangles of equal area.

Answer

Given: A parallelogram ABCD with a diagonal BD
To prove: area $(\triangle A B D)=\operatorname{area}(\triangle B C D)$
Proof:
We know that in a parallelogram opposite sides are equal, that is
$A D=B C$ and $A B=C D$
Now, consider $\triangle A B D$ and $\triangle B C D$
Here AD $=B C$
$A B=C D$
$B D=B D$ (common)
Hence by SSS congruency
$\triangle \mathrm{ABD} \cong \triangle \mathrm{BCD}$
By this we can conclude that both the triangles are equal
$\therefore \operatorname{area}(\triangle A B D)=\operatorname{area}(\triangle B C D)$
Hence proved

25. Question

The base $B C$ of $\triangle A B C$ is divided at D such $B D=\frac{1}{2} D C$. Prove that $\operatorname{ar}(\triangle A B D)=\frac{1}{3} \times \operatorname{ar}(\triangle A B C)$.

Answer

Given: $A \triangle A B C$ with a point D on $B C$ such that $B D=\frac{1}{2} D C$
To prove: $\operatorname{area}(\triangle A B D)=\frac{1}{3} \times \operatorname{area}(\triangle A B C)$
Construction: Drop a perpendicular onto BC
Proof: $\operatorname{area}(\triangle A B C)=\frac{1}{2} \times B C \times A E$
and, $\operatorname{area}(\triangle A B D)=\frac{1}{2} \times B D \times A E$
given that $B D=\frac{1}{2} D C$
so, $B C=B D+D C=B D+2 B D=3 B D[f r o m ~ 2]$
$\therefore B D=\frac{1}{3}(B C)$
Sub BD in (1), we get
$\operatorname{area}(\triangle A B D)=\frac{1}{2} \times\left(\frac{1}{3}(B C) \times A E\right)$
$\operatorname{area}(\triangle \mathrm{ABD})=\frac{1}{3} \times\left(\frac{1}{2} \mathrm{BC} \times \mathrm{AE}\right)$
$\therefore \operatorname{area}(\triangle A B D)=\frac{1}{3} \times \operatorname{area}(\triangle A B C)[$ from 1]
Hence proved

26. Question

In the adjoining figure, the points D divides the
Side $B C$ of $\triangle A B C$ in the ratio $m: n$. prove that area $(\triangle A B D)$: area $(\triangle A B C)=m: n$

Answer

Given : A $\triangle A B C$ in which a point D divides the Side $B C$ in the ratio $m: n$.
To prove: area $(\triangle A B D): \operatorname{area}(\triangle A B C)=m: n$
Construction : Drop a perpendicular AL on BC
Proof:
$\operatorname{area}(\triangle A B D)=\frac{1}{2} \times B D \times A L$
and, area $(\triangle A D C)=\frac{1}{2} \times D C \times A L$
$B D: D C=m: n$
$\frac{B D}{D C}=\frac{m}{n}$
$\therefore B D=\frac{m}{n} \times D C$
sub Eq (3) in eq (1)
$\operatorname{area}(\triangle \mathrm{ABD})=\frac{1}{2} \times\left(\frac{m}{n} \times \mathrm{DC}\right) \times \mathrm{AL}$
$\operatorname{area}(\triangle \mathrm{ABD})=\frac{m}{n} \times\left(\frac{1}{2} \times \mathrm{DC} \times \mathrm{AL}\right)$
$\operatorname{area}(\triangle \mathrm{ABD})=\frac{m}{n} \times \operatorname{area}(\triangle \mathrm{ADC})$
$\therefore \frac{\operatorname{area}(\triangle \mathrm{ABD})}{\operatorname{area}(\triangle \mathrm{ADC})}=\frac{m}{n}$
\therefore Area $(\triangle A B D): \operatorname{Area}(\triangle A B C)=m: n$
Hence proved

CCE Questions

1. Question

Out of the following given figures which are on the same base but not between the same parallels?
A.

B.

C.

D.

Answer

Here, $\triangle P Q R$ and $\triangle S Q R$ are on the same base $Q R$ but there is no parallel line to $Q R$.
\therefore Here, Figure in option B is on the same base but not between the same parallels.

2. Question

In which of the following figures, you find polynomials on the same base and between the same parallels?
A.

B.

C.

D.

Answer
Here parallelogram $A B C D$ and parallelogram $A B Q P$ lie on the same base $A B$ and lie between the parallel line $A B$ and $D P$.
\therefore Here, Figure in option C is on the same base and between the same parallels.

3. Question

The median of a triangle divides it into two
A. Triangles of equal area
B. Congruent triangles
C. Isosceles triangles
D. Right triangles

Answer

In $\triangle A B C, A D$ is the median
Hence $B D=$ DCDraw $A E \perp B C$
Area of $\triangle A B D=$ Area of $\triangle A D C$
Thus median of a triangle divides it into two triangles of equal area.

4. Question

The area of quadrilateral $A B C D$ in the given figure is

A. $57 \mathrm{~cm}^{2}$
B. $108 \mathrm{~cm}^{2}$
C. $114 \mathrm{~cm}^{2}$
D. $195 \mathrm{~cm}^{2}$

Answer

Given:
$\angle A B C=90^{\circ}$
$\angle A C D=90^{\circ}$
$C D=8 \mathrm{~cm}$
$A B=9 \mathrm{~cm}$
$A D=17 \mathrm{~cm}$
Consider $\triangle \mathrm{ACD}$
Here, By Pythagoras theorem : $A D^{2}=C D^{2}+A C^{2}$
$17^{2}=8^{2}+A C^{2}$
$\Rightarrow A C^{2}=17^{2}-8^{2}$
$\Rightarrow A C^{2}=289-64=225$
$\Rightarrow A C=15$
Now, Consider $\triangle A B C$
Here, By Pythagoras theorem : $A C^{2}=A B^{2}+B C^{2}$
$15^{2}=9^{2}+A C^{2}$
$\Rightarrow B C^{2}=15^{2}-9^{2}$
$\Rightarrow B C^{2}=225-81=144$
$\Rightarrow B C=12$
Here,
Area $($ quad. $A B C D)=$ Area $(\triangle A B C)+$ Area $(\triangle A C D)$
Area $($ quad. $A B C D)=1 / 2 \times A B \times B C+1 / 2 \times A C \times C D$
Area $($ quad. $A B C D)=1 / 2 \times 9 \times 12+1 / 2 \times 15 \times 8=54+60=104 \mathrm{~cm}^{2}$
\therefore Area (quad. $A B C D$) $=114 \mathrm{~cm}^{2}$

5. Question

The area of trapezium $A B C D$ in the given figure is

A. $62 \mathrm{~cm}^{2}$
B. $93 \mathrm{~cm}^{2}$
C. $124 \mathrm{~cm}^{2}$
D. $155 \mathrm{~cm}^{2}$

Answer

Given:
$\angle B E C=90^{\circ}$
$\angle D A E=90^{\circ}$
$C D=A E=8 \mathrm{~cm}$
$B E=15 \mathrm{~cm}$
$B C=17 \mathrm{~cm}$
Consider \triangle CEB
Here, By Pythagoras theorem
$B C^{2}=C E^{2}+E B^{2}$
$17^{2}=C E^{2}+15^{2}$
$C E^{2}=17^{2}-15^{2}$
$C E^{2}=289-225=64$
$C E=8$
Here,
$\angle A E C=90^{\circ}$
$C D=C E=8 \mathrm{~cm}$
$\therefore \mathrm{AECD}$ is a Square.
\therefore Area (Trap. ABCD) $=$ Area (Sq. AECD) + Area (\triangle CEB)
Area $($ Trap. $A B C D)=A E \times E C+1 / 2 \times C E \times E B$
Area $($ Trap. $A B C D)=8 \times 8+1 / 2 \times 8 \times 15=64+60=104 \mathrm{~cm}^{2}$
\therefore Area (Trap. ABCD) $=124 \mathrm{~cm}^{2}$

6. Question

In the given figure, $A B C D$ is a $\| g m$ in which $A B=C D=5 \mathrm{~cm}$ and $B D \perp D C$ such that $B D=6.8 \mathrm{~cm}$. Then, the area of $\| \mathrm{gm}$ ABCD $=$?

A. $17 \mathrm{~cm}^{2}$
B. $25 \mathrm{~cm}^{2}$
C. $34 \mathrm{~cm}^{2}$
D. $68 \mathrm{~cm}^{2}$

Answer

Given:
$A B=C D=5 \mathrm{~cm}$
BD \perp DC
$B D=6.8 \mathrm{~cm}$
Now, consider the parallelogram ABCD
Here, let DC be the base of the parallelogram then BD becomes its altitude (height).
Area of the parallelogram is given by: Base \times Height
\therefore area of $\| \mathrm{gm}$ ABCD $=C D \times B D=5 \times 6.8=34 \mathrm{~cm}^{2}$
\therefore area of $\| \mathrm{gm} A B C D=34 \mathrm{~cm}^{2}$.

7. Question

In the given figure, $A B C D$ is a $\| g m$ in which diagonals $A C$ and $B D$ intersect at O. If $\operatorname{ar}(\| g m A B C D)$ is $52 \mathrm{~cm}^{2}$, then the $\operatorname{ar}(\triangle \mathrm{OAB})=$?

A. $26 \mathrm{~cm}^{2}$
B. $18.5 \mathrm{~cm}^{2}$
C. $39 \mathrm{~cm}^{2}$
D. $13 \mathrm{~cm}^{2}$

Answer

Given: $A B C D$ is a $\| g m$ in which diagonals $A C$ and $B D$ intersect at O and $\operatorname{ar}(\| g m A B C D)$ is $52 \mathrm{~cm}^{2}$.
Here,
$\operatorname{Ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ABC})$
($\because \triangle A B D$ and $\triangle A B C$ on same base $A B$ and between same parallel lines $A B$ and $C D$)
Here,
$\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A B C)=1 / 2 \times \operatorname{ar}(\mid \operatorname{lgm} A B C D)$
($\because \triangle A B D$ and $\triangle A B C$ on same base $A B$ and between same parallel lines $A B$ and $C D$ are half the area of the parallelogram)
$\therefore \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A B C)=1 / 2 \times 52=26 \mathrm{~cm}^{2}$
Now, consider $\triangle A B C$
Here $O B$ is the median of $A C$
(\because diagonals bisect each other in parallelogram)
$\therefore \operatorname{ar}(\triangle \mathrm{AOB})=\operatorname{ar}(\triangle \mathrm{BOC})$
(\because median of a triangle divides it into two triangles of equal area)
$\operatorname{ar}(\triangle A O B)=1 / 2 \times \operatorname{ar}(\triangle A B C)$
$\operatorname{ar}(\triangle A O B)=1 / 2 \times 26=13 \mathrm{~cm}^{2}$
$\therefore \operatorname{ar}(\triangle A O B)=13 \mathrm{~cm}^{2}$

8. Question

In the given figure, $A B C D$ is a $\| g m$ in which $D L \perp A B$. If $A B=10 \mathrm{~cm}$ and $D L=4 \mathrm{~cm}$, then the $\operatorname{ar}(\| \mathrm{gm}$ $A B C D)=$?

A. $40 \mathrm{~cm}^{2}$
B. $80 \mathrm{~cm}^{2}$
C. $20 \mathrm{~cm}^{2}$
D. $196 \mathrm{~cm}^{2}$

Answer

Area of parallelogram is: base \times height

Here,
Base $=A B=10 \mathrm{~cm}$
Height $=\mathrm{DL}=4 \mathrm{~cm}$
$\therefore \operatorname{ar}(\| \mathrm{gm} A B C D)=A B \times D L=10 \times 4=40 \mathrm{~cm}^{2}$
$\therefore \operatorname{ar}(\| g m \quad A B C D)=40 \mathrm{~cm}^{2}$

9. Question

In llgm $A B C D$, it is given that $A B=10 \mathrm{~cm}, D L \perp A B$ and $B M \perp A D$ such that $D L=6 \mathrm{~cm}$ and $B M=8 \mathrm{~cm}$. Then, $A D=$?

A. 7.5 cm
B. 8 cm
C. 12 cm
D. 14 cm

Answer

Given:
$A B=10 \mathrm{~cm}$
$D L \perp A B$
$B M \perp A D$
$D L=6 \mathrm{~cm}$
$B M=8 \mathrm{~cm}$
Now, consider the parallelogram $A B C D$
Here, let $A B$ be the base of the parallelogram then DL becomes its altitude (height).
Area of the parallelogram is given by: Base \times Height
\therefore area of $\| \mathrm{gm}$ ABCD $=A B \times D L=10 \times 6=60 \mathrm{~cm}^{2}$
Now,
Consider AD as base of the parallelogram then BM becomes its altitude (height)
\therefore area of $\| g m \quad A B C D=A D \times B M=60 \mathrm{~cm}^{2}$
$A D \times 8=60 \mathrm{~cm}^{2}$
$A D=60 / 8=7.5 \mathrm{~cm}$
\therefore length of $A D=7.5 \mathrm{~cm}$.

10. Question

The lengths of the diagonals of a rhombus are 12 cm and 16 cm . The area of the rhombus is
A. $192 \mathrm{~cm}^{2}$
B. $96 \mathrm{~cm}^{2}$
C. $64 \mathrm{~cm}^{2}$
D. $80 \mathrm{~cm}^{2}$

Answer

Given:
Length of diagonals of rhombus: 12 cm and 16 cm .
Area of the rhombus is given by: $\frac{\text { product of diagonals }}{2}$
\therefore Area of the rhombus $=\frac{12 \times 16}{2}=96 \mathrm{~cm}^{2}$

11. Question

Two parallel sides of a trapezium are 12 cm and 8 cm long and the distance between them 6.5 cm . The area of the trapezium is
A. $74 \mathrm{~cm}^{2}$
B. $32.5 \mathrm{~cm}^{2}$
C. $65 \mathrm{~cm}^{2}$
D. $130 \mathrm{~cm}^{2}$

Answer

Given:
Lengths of parallel sides of trapezium: 12 cm and 8 cm
Distance between two parallel lines (height): 6.5 cm
Area of the trapezium is given by: $\frac{\text { (sum of parallel sides) } \times \text { height }}{2}$
\therefore Area of the trapezium $=\frac{(12+8) \times 6.5}{2}=65 \mathrm{~cm}^{2}$

12. Question

In the given figure $A B C D$ is a trapezium such that $A L \perp D C$ and $B M \perp D C$. If $A B=7 \mathrm{~cm}, B C=A D=$ 5 cm and $A L=B M=4 \mathrm{~cm}$, then ar(trap. $A B C D)=$?

A. $24 \mathrm{~cm}^{2}$
B. $40 \mathrm{~cm}^{2}$
C. $55 \mathrm{~cm}^{2}$
D. $27.5 \mathrm{~cm}^{2}$

Answer

Given:
$A L \perp D C$
$B M \perp D C$
$A B=7 \mathrm{~cm}$
$B C=A D=5 \mathrm{~cm}$
$A L=B M=4 \mathrm{~cm}$
Here,
$M C=D L$ and $A B=L M=7 \mathrm{~cm}$
Consider the $\triangle \mathrm{BMC}$
Here, by Pythagoras theorem
$B C^{2}=B M^{2}+M C^{2}$
$5^{2}=4^{2}+M C^{2}$
$M C^{2}=25-16$
$M C^{2}=9$
$M C=3 \mathrm{~cm}$
$\therefore M C=D L=3 \mathrm{~cm}$
$C D=D L+L M+M C=3+7+3=13 \mathrm{~cm}$
Now,
Area of the trapezium is given by: $\frac{\text { (sum of parallel sides) } \times \text { height }}{2}$
\therefore Area of the rhombus $=\frac{(13+7) \times 4}{2}=40 \mathrm{~cm}^{2}$

13. Question

In a quadrilateral $A B C D$, it is given that $B D=16 \mathrm{~cm}$. If $A L \perp B D$ and $C M \perp B D$ such that $A L=9 \mathrm{~cm}$ and $C M=7 \mathrm{~cm}$, then $\operatorname{ar}($ quad. $A B C D)=$?

A. $256 \mathrm{~cm}^{2}$
B. $128 \mathrm{~cm}^{2}$
C. $64 \mathrm{~cm}^{2}$
D. $96 \mathrm{~cm}^{2}$

Answer

Given:
$B D=16 \mathrm{~cm}$
$A L \perp B D$
$C M \perp B D$
$A L=9 \mathrm{~cm}$
$C M=7 \mathrm{~cm}$
Here,
Area of quadrilateral $A B C D=\operatorname{area}(\triangle A B D)+\operatorname{area}(\triangle B C D)$
Area of triangle $=1 / 2 \times$ base \times height
$\operatorname{area}(\triangle A B D)=1 / 2 \times$ base \times height $=1 / 2 \times B D \times C M=1 / 2 \times 16 \times 7=56 \mathrm{~cm}^{2}$
area $(\triangle B C D)=1 / 2 \times$ base \times height $=1 / 2 \times B D \times A L=1 / 2 \times 16 \times 9=64 \mathrm{~cm}^{2}$
\therefore Area of quadrilateral $A B C D=\operatorname{area}(\triangle A B D)+\operatorname{area}(\triangle B C D)=56+64=120 \mathrm{~cm}^{2}$

14. Question

$A B C D$ is a rhombus in which $\angle C=60^{\circ}$. Then, $A C: B D=$?

A. $3: 1$
B. $3: 2$
C. $3: 1$
D. $3: 2$

Answer

Given: $\angle \mathrm{DCB}=60^{\circ}$
Let the length of the side be x
Here, consider $\triangle B C D$
$B C=D C$ (all sides of rhombus are equal)
$\therefore \angle C D B=\angle C B D$ (angles opposite to equal sides are equal)
Now, by angle sum property
$\angle C D B+\angle C B D+\angle B C D=180^{\circ}$
$2 \times \angle \mathrm{CBD}=180^{\circ}-60^{\circ}$
$2 \times \angle \mathrm{CBD}=180^{\circ}-60^{\circ}$
$\therefore 2 \times \angle \mathrm{CBD}=120^{\circ}$
$\angle \mathrm{CBD}=\frac{120}{2}=60^{\circ}$
$\therefore \angle C D B=\angle C B D=60^{\circ}$
$\therefore \triangle \mathrm{ADC}$ is equilateral triangle
$\therefore B C=C D=B D=x \mathrm{~cm}$
In Rhombus diagonals bisect each other.
Consider \triangle COD
By Pythagoras theorem
$C D^{2}=O D^{2}+O C^{2}$
$\mathrm{x}^{2}=\left[\frac{\mathrm{x}}{2}\right]^{2}+\mathrm{OC}^{2}$
$O C^{2}=x^{2}-\left[\frac{x}{2}\right]^{2}$
$\mathrm{OC}=\left[\frac{\sqrt{4 \mathrm{x}^{2}-\mathrm{x}^{2}}}{2}\right]$
$O C=\frac{\sqrt{3} \times x}{2} \mathrm{~cm}$
$\therefore A C=2 \times O C=2 \times \frac{\sqrt{3} \times x}{2}=\sqrt{3} x$
$A C: B D=\sqrt{3} x: x=\sqrt{3}: 1$
$\therefore \mathrm{AC}: \mathrm{BD}=\sqrt{3}: 1$

15. Question

In the given figure $A B C D$ and $A B F E$ are parallelograms such that ar(quad. $E A B C)=17 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\| g m$ $A B C D)=25 \mathrm{~cm}^{2}$. Than, $\operatorname{ar}(\triangle B C F)=$?

A. $4 \mathrm{~cm}^{2}$
B. $4.8 \mathrm{~cm}^{2}$
C. $6 \mathrm{~cm}^{2}$
D. $8 \mathrm{~cm}^{2}$

Answer

Given: $\operatorname{ar}($ quad. $E A B C)=17 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\| g m \quad A B C D)=25 \mathrm{~cm}^{2}$
We know that any two or parallelogram having the same base and lying between the same parallel lines are equal in area.
\therefore Area $(\| g m$ ABCD $)=$ Area $\left(|\mid g m A B F E)=25 \mathrm{~cm}^{2}\right.$
Here,
Area $(\|$ gm ABFE $)=$ Area (quad. EABC$)+$ Area $(\triangle B C F)$
$25 \mathrm{~cm}^{2}=17 \mathrm{~cm}^{2}+\operatorname{Area}(\triangle \mathrm{BCF})$
Area $(\triangle B C F)=25-17=8 \mathrm{~cm}^{2}$
\therefore Area $(\triangle B C F)=8 \mathrm{~cm}^{2}$

16. Question

$\triangle A B C$ and $\triangle B D E$ are two equilateral triangles such that D is the midpoint of $B C$. Then, $\operatorname{ar}(\triangle \mathrm{BDE}): \operatorname{ar}(\triangle \mathrm{ABC})=$?

A. $1: 2$
B. $1: 4$
C. $3: 2$
D. $3: 4$

Answer

Given: $\triangle A B C$ and $\triangle B D E$ are two equilateral triangles, D is the midpoint of $B C$.

Consider $\triangle A B C$

Here, let $A B=B C=A C=x \mathrm{~cm}$ (equilateral triangle)
Now, consider \triangle BED
Here,
$B D=1 / 2 B C$
$\therefore \mathrm{BD}=\mathrm{ED}=\mathrm{EB}=1 / 2 \mathrm{BC}=\mathrm{x} / 2$ (equilateral triangle)
Area of the equilateral triangle is given by: $\frac{\sqrt{3}}{4} \mathrm{a}^{2}$ (a is side length)
$\therefore \operatorname{ar}(\triangle \mathrm{BDE}): \operatorname{ar}(\triangle \mathrm{ABC})=\frac{\sqrt{3}}{4} \times\left(\frac{\mathrm{x}}{2}\right)^{2}: \frac{\sqrt{3}}{4} \mathrm{x}^{2}=\frac{1}{4}: 1=1: 4$

17. Question

In a \|gm $A B C D$, if Point P and Q are midpoints of $A B$ and $C D$ respectively and $\operatorname{ar}(\| g m A B C D)=16 \mathrm{~cm}^{2}$, then $\operatorname{ar}(\| g m A P Q D)=$?

A. $8 \mathrm{~cm}^{2}$
B. $12 \mathrm{~cm}^{2}$
C. $6 \mathrm{~cm}^{2}$
D. $9 \mathrm{~cm}^{2}$

Answer

Given:
P and Q are midpoints of $A B$ and $C D$ respectively
$\operatorname{ar}(\| g m \quad A B C D)=16 \mathrm{~cm}^{2}$
Now, consider the (llgm ABCD)
Here,
Q is the midpoint of $D C$ and P is the midpoint of $A B$.
\therefore By joining P and Q (llgm ABCD) is divided into two equal parallelograms.
That is, $\operatorname{ar}(\| g m$ ABCD $)=\operatorname{ar}(\| g m A P Q D)+\operatorname{ar}(\| g m P Q C B)$
$\operatorname{ar}(\| g m \quad A B C D)=2 \times \operatorname{ar}(\| g m A P Q D)(\because \operatorname{ar}(\| g m A P Q D)=\operatorname{ar}(\| g m P Q C B))$
$2 \times \operatorname{ar}(\| g m A P Q D)=16 \mathrm{~cm}^{2}\left(\because \operatorname{ar}(\| g m \quad A B C D)=16 \mathrm{~cm}^{2}\right)$
$\operatorname{ar}(\| g m A P Q D)=16 / 2=8 \mathrm{~cm}^{2}$
$\therefore \operatorname{ar}(\| g m A P Q D)=8 \mathrm{~cm}^{2}$

18. Question

The figure formed by joining the midpoints of the adjacent sides of a rectangle of sides 8 cm and 6 cm is a

A. Rectangle of area $24 \mathrm{~cm}^{2}$
B. Square of area $24 \mathrm{~cm}^{2}$
C. Trapezium of area $24 \mathrm{~cm}^{2}$
D. Rhombus of area $24 \mathrm{~cm}^{2}$

Answer

Given: A rectangle with sides 8 cm and 6 cm .
Consider the Rectangle ABCD
Here $D R=R D=A P=P B=8 / 2=4 \mathrm{~cm}(\because P$ and R are the midpoints of $D C$ and $A B$ respectively $)$
and $A S=S D=B Q=Q C=6 / 2=3 \mathrm{~cm}(\because S$ and Q are the midpoints of $A D$ and $B C$ respectively $)$
Now, consider the \triangle RSD
By Pythagoras theorem
$S R^{2}=S D^{2}+D R^{2}$
$S R^{2}=3^{2}+4^{2}$
$S R^{2}=9+16$
$S R^{2}=25$
$S R=5 \mathrm{~cm}$
Similarly using Pythagoras theorem in $\triangle Q R C, \triangle P B Q$ and $\triangle A P S$
We get $R Q=Q P=P S=5 \mathrm{~cm}$
$\therefore \mathrm{SR}=\mathrm{RQ}=\mathrm{QP}=\mathrm{PS}=5 \mathrm{~cm}$
$\therefore \mathrm{PQSR}$ is Rhombus of side length 5 cm
Area of the rhombus is given by: $\frac{\text { product of diagonals }}{2}$
\therefore Area of the rhombus $=\frac{\mathrm{PR} \times \mathrm{SQ}}{2}=\frac{8 \times 6}{2}=24 \mathrm{~cm}^{2}$
\therefore Area(PQRS $)=24 \mathrm{~cm}^{2}$

19. Question

In $\triangle A B C$, if D is the midpoint of $B C$ and E is the midpoint of $A D$, then $\operatorname{ar}(\triangle B E D)=$?

A. $\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
B. $\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
C. $\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
D. $\frac{2}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

Answer

Given: D is the midpoint of $B C$ and E is the midpoint of $A D$
Here,
D is the midpoint of $B C$ and $A D$ is the median of $\triangle A B C$
Area $(\triangle A B D)=$ Area $(\triangle A D C)(\because$ median divides the triangle into two triangles of equal areas $)$
\therefore Area $(\triangle A B D)=$ Area $(\triangle A D C)=\frac{1}{2}$ Area $(\triangle A B C)$
Now, consider \triangle ABD
Here, $B E$ is the median
Area $(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{BED})$
\therefore Area $(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{BED})=\frac{1}{2}$ Area $(\triangle \mathrm{ABD})$
Area $(\triangle \mathrm{BED})=\frac{1}{2}$ Area $(\triangle \mathrm{ABD})$
Area $(\triangle B E D)=\frac{1}{2} \times\left[\frac{1}{2}\right.$ Area $\left.(\triangle A B C)\right]\left(\because\right.$ Area $(\triangle A B D)=\frac{1}{2}$ Area $\left.(\triangle A B C)\right)$
Area $(\triangle \mathrm{BED})=\frac{1}{4}$ Area $(\triangle \mathrm{ABC})$
\therefore Area $(\triangle \mathrm{BED})=\frac{1}{4}$ Area $(\triangle \mathrm{ABC})$

20. Question

The vertex A of $\triangle A B C$ is joined to a point D on $B C$. If E is the midpoint of $A D$, then $\operatorname{ar}(\triangle B E C)=$?

A. $\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
B. $\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
c. $\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
D. $\frac{1}{6} \operatorname{ar}(\triangle \mathrm{ABC})$

Answer

Given:
Here,
D is the midpoint of $B C$ and $A D$ is the median of $\triangle A B C$
Area $(\triangle \mathrm{ABD})=$ Area $(\triangle \mathrm{ADC})(\because$ median divides the triangle into two triangles of equal areas $)$
\therefore Area $(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ADC})=\frac{1}{2}$ Area $(\triangle \mathrm{ABC})$
Now, consider $\triangle A B D$
Here, $B E$ is the median
Area $(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{BED})$
\therefore Area $(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{BED})=\frac{1}{2}$ Area $(\triangle \mathrm{ABD})$
Area $(\triangle \mathrm{BED})=\frac{1}{2}$ Area $(\triangle \mathrm{ABD})$
Area $(\triangle \mathrm{BED})=\frac{1}{2} \times\left[\frac{1}{2}\right.$ Area $\left.(\triangle \mathrm{ABC})\right]\left(\because\right.$ Area $(\triangle \mathrm{ABD})=\frac{1}{2}$ Area $\left.(\triangle \mathrm{ABC})\right)-1$
Area $(\triangle \mathrm{BED})=\frac{1}{4}$ Area $(\triangle \mathrm{ABC})$
Similarly,
Area $(\triangle \mathrm{EDC})=\frac{1}{4} \operatorname{Area}(\triangle \mathrm{ABC})-2$
Add -1 and -2

Area $(\triangle \mathrm{BED})+\operatorname{Area}(\triangle \mathrm{EDC})=\frac{1}{4} \operatorname{Area}(\triangle \mathrm{ABC})+\frac{1}{4} \operatorname{Area}(\triangle \mathrm{ABC})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})$
\therefore Area $(\triangle \mathrm{BEC})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})$

21. Question

In $\triangle A B C$, it given that D is the midpoint of $B C ; E$ is the midpoint of $B D$ and O is the midpoint of $A E$. Then $\operatorname{ar}(\triangle \mathrm{BOE})=$?

A. $\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
B. $\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
c. $\frac{1}{6} \operatorname{ar}(\triangle \mathrm{ABC})$
D. $\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})$

Answer

Given: D is the midpoint of $B C ; E$ is the midpoint of $B D$ and O is the midpoint of $A E$.
Here,
D is the midpoint of $B C$ and $A D$ is the median of $\triangle A B C$
Area $(\triangle \mathrm{ABD})=$ Area $(\triangle \mathrm{ADC})(\because$ median divides the triangle into two triangles of equal areas $)$
\therefore Area $(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ADC})=\frac{1}{2}$ Area $(\triangle \mathrm{ABC})$
Now, consider \triangle ABD
Here, AE is the median
Area $(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{BED})$
\therefore Area $(\triangle \mathrm{ABE})=\operatorname{Area}(\triangle \mathrm{BED})=\frac{1}{2}$ Area $(\triangle \mathrm{ABD})$
Area $(\triangle \mathrm{ABE})=\frac{1}{2}$ Area $(\triangle \mathrm{ABD})$
Area $(\triangle \mathrm{ABE})=\frac{1}{2} \times\left[\frac{1}{2}\right.$ Area $\left.(\triangle \mathrm{ABC})\right]\left(\because\right.$ Area $(\triangle \mathrm{ABD})=\frac{1}{2}$ Area $\left.(\triangle \mathrm{ABC})\right)-1$
Area $(\triangle \mathrm{ABE})=\frac{1}{4}$ Area $(\triangle \mathrm{ABC})$
Consider $\triangle \mathrm{ABE}$
Here, BO is the median
Area $(\triangle \mathrm{BOE})=\operatorname{Area}(\triangle \mathrm{BOA})$
\therefore Area $(\triangle \mathrm{BOE})=\operatorname{Area}(\triangle \mathrm{BOA})=\frac{1}{2}$ Area $(\triangle \mathrm{ABE})$
Area $(\triangle \mathrm{BOE})=\frac{1}{2} \times\left[\frac{1}{4}\right.$ Area $\left.(\triangle \mathrm{ABC})\right]\left(\because\right.$ Area $(\triangle \mathrm{ABE})=\frac{1}{4}$ Area $\left.(\triangle \mathrm{ABC})\right)$
Area $(\triangle \mathrm{BOE})=\frac{1}{8}$ Area $(\triangle \mathrm{ABC})$
\therefore Area $(\triangle \mathrm{BOE})=\frac{1}{8}$ Area $(\triangle \mathrm{ABC})$

22. Question

If a triangle and a parallelogram are on the same base and between the same parallels, then the ratio of the area of the triangle to the parallelogram is
A. $1: 2$
B. $1: 3$
C. 1:4
D. $3: 4$

Answer

Given:

We know that when a parallelogram and a triangle lie on same base and between same parallel lines then, area of the triangle is half the area of the parallelogram.

Area $(\triangle A B F)=1 / 2$ Area $(\mid$ gm $A B C D)-1$
Area $(\triangle A B F)$: Area $(\| g m A B C D)=1 / 2$ Area (||gm $A B C D)$: Area(\mid ggm $A B C D)($ from -1$)$
Area $(\triangle A B F)$: Area $(|\mid g m \quad A B C D)=1 / 2: 1=1: 2$
\therefore Area $(\triangle A B F)$: Area $(I \mid g m ~ A B C D)=1: 2$

23. Question

In the given figure $A B C D$ is a trapezium in which $A B \| D C$ such that $A B=a c m$ and $D C=b c m$. If E and F are the midpoints of $A D$ and $B C$ respectively. Then, $\operatorname{ar}(A B F E): \operatorname{ar}(E F C D)=$?

A. A:b
B. $(a+3 b):(3 a+b)$
C. $(3 a+b):(a+3 b)$
D. $(2 a+b):(3 a+b)$

Answer

Given: $A B C D$ is a trapezium, $A B \| D C, A B=a \mathrm{~cm}$ and $D C=b \mathrm{~cm}, E$ and F are the midpoints of $A D$ and BC.

Since E and F are midpoints of $A D$ and $B C$, $E F$ will be parallel to both $A B$ and $C D$.
$E F=\frac{a+b}{2}$
Height between EF and DC and height between EF and $A B$ are equal, because E and F are midpoints $O F A D$ and $B C$ and $E F \| A B| | D C$.

Let height between EF and DC and height between EF and $A B$ be $h \mathrm{~cm}$.
Area of trapezium $=1 / 2 \times($ sum of parallel lines $) \times$ height
Now,
Area $($ Trap.ABFE $)=1 / 2 \times\left(a+\frac{a+b}{2}\right) \times h$.
and
Area $($ Trap.ABFE $)=1 / 2 \times\left(b+\frac{a+b}{2}\right) \times h$.
Area (Trap.ABFE) : Area (Trap.ABFE) $=1 / 2 \times\left(a+\frac{a+b}{2}\right) \times h: 1 / 2 \times\left(b+\frac{a+b}{2}\right) \times h$
Area (Trap.ABFE) : Area (Trap.ABFE) $=\frac{2 a+a+b}{2}: \frac{2 b+a+b}{2}=3 a+b: a+3 b$
\therefore Area (Trap.ABFE) : Area (Trap.ABFE) $=3 \mathrm{a}+\mathrm{b}: \mathrm{a}+3 \mathrm{~b}$

24. Question

$A B C D$ is a quadrilateral whose diagonal $A C$ divides it into two parts, equal in area, then $A B C D$ is
A. a rectangle
B. allgm
C. a rhombus
D. all of these

Answer

Given: a quadrilateral whose diagonal AC divides it into two parts, equal in area.
Here,
A quadrilateral is any shape having four sides, it is given that diagonal $A C$ of the quadrilateral divides it into two equal parts.

We know that the rectangle, parallelogram and rhombus are all quadrilaterals, in these quadrilaterals if a diagonal is drawn say AC it divides it into equal areas.
\because This diagonal divide the quadrilateral into two equal or congruent triangles.

25. Question

In the given figure, a \|gm $A B C D$ and a rectangle $A B E F$ are of equal area. Then,

A. Perimeter of $A B C D=$ perimeter of $A B E F$
B. Perimeter of $A B C D$ < perimeter of $A B E F$
C. Perimeter of $A B C D>$ perimeter of $A B E F$
D. Perimeter of $A B C D=\frac{1}{2}$ (perimeter of $A B E F$)

Answer

Given: Area (llgm ABCD) = Area (rectangle ABEF)
Consider \triangle AFD
Clearly AD is the hypotenuse
$\therefore \mathrm{AD}>\mathrm{AF}$

Perimeter of Rectangle $A B E F=2 \times(A B+A F)-1$
Perimeter of Parallelogram $A B C D=2 \times(A B+A D)-2$
On comparing -1 and -2 , we can see that
Perimeter of $A B C D>$ perimeter of $A B E F(\because A D>A F)$

26. Question

In the given figure, $A B C D$ is a rectangle inscribed in a quadrant of a circle of radius 10 cm . If $A D=$ 25 cm , then area of the rectangle is

A. $32 \mathrm{~cm}^{2}$
B. $40 \mathrm{~cm}^{2}$
C. $44 \mathrm{~cm}^{2}$
D. $48 \mathrm{~cm}^{2}$

Answer

Given: $A B C D$ is a rectangle inscribed in a quadrant of a circle of radius 10 cm and $A D=25 \mathrm{~cm}$ Consider \triangle ADC

By Pythagoras theorem
$A C^{2}=A D^{2}+D C^{2}$
$10^{2}=(25)^{2}+\mathrm{AC}^{2}$
$A C^{2}=10^{2}-(25)^{2}$
$A C^{2}=100-20=80$
$A C=45$
Area of rectangle $=$ length \times breadth $=D C \times A D$
Area of rectangle $=45 \times 25=40 \mathrm{~cm}^{2}$
\therefore Area of rectangle $=40 \mathrm{~cm}^{2}$

27. Question

Look at the statements given below:
(I) A parallelogram and a rectangle on the same base and between the same parallels are equal in area.
(II) In a $\| \mathrm{gm} A B C D$, it is given that $A B=10 \mathrm{~cm}$. The altitudes $D E$ on $A B$ and $B F$ on $A D$ being 6 cm and 8 cm respectively, then $A D=7.5 \mathrm{~cm}$.
(III) Area of a $\| g m=\frac{1}{2} x$ base x altitude.

Which is true?

A. I only
B. II only
C. I and II
D. II and III

Answer

Consider Statement (I) :
Two or more parallelograms on the same base and between the same parallels are equal in area. Rectangle is also a parallelogram.
\therefore It is true.
Consider Statement (II) :
Here, let $A B$ be the base of the parallelogram then DE becomes its altitude (height).
Area of the parallelogram is given by: Base \times Height
\therefore Area of $\| \mathrm{gm} A B C D=A B \times D E=10 \times 6=60 \mathrm{~cm}^{2}$
Now,
Consider AD as base of the parallelogram then BF becomes its altitude (height)
\therefore area of $\| \mathrm{gm} A B C D=A D \times B F=60 \mathrm{~cm}^{2}$
$A D \times 8=60 \mathrm{~cm}^{2}$
$A D=\frac{60}{8}=7.5 \mathrm{~cm}$
\therefore length of AD $=7.5 \mathrm{~cm}$.
\therefore Statement (II) is correct.

Area of parallelogram is base \times height
\therefore Statement (III) is false
\therefore Statement (I) and (II) are true and statement (III) is false

28. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct answer.

Assertion (A)	Reason (R)	
In a trapezium ABCD we have $\mathrm{AB} \\|$ DC and the diagonals AC and BD intersect at O.	Triangles on the same base and between the same parallels are equal in areas.	

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) but Reason (R) are true and Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Assertion:
Here, Area $(\triangle A B D)=\operatorname{Area}(\triangle A B C)(\because$ Triangles on same base and between same parallel lines $)-1$ Subtract Area ($\triangle \mathrm{AOB}$) on both sides of -1

Area $(\triangle \mathrm{ABD})-\operatorname{Area}(\triangle \mathrm{AOB})=\operatorname{Area}(\triangle \mathrm{ABC})-\operatorname{Area}(\triangle \mathrm{AOB})$

Area $(\triangle A O D)=$ Area $(\triangle B O C)$
\therefore Both Assertion and Reason are true and Reason is a correct explanation of Assertion.

29. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct answer.

Assertion (A)	Reason (R)
	Median of a triangle If ABCD is a rhombus whose one angle is 60°, then the ratio of the into two lengths of its diagonals is $3: 1$.

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) but Reason (R) are true and Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Given: $\angle \mathrm{DCB}=60^{\circ}$
Let the length of the side be x
Here, consider $\triangle B C D$
$B C=D C$ (all sides of rhombus are equal)
$\therefore \angle C D B=\angle C B D$ (angles opposite to equal sides are equal)
Now, by angle sum property
$\angle C D B+\angle C B D+\angle B C D=180^{\circ}$
$2 \times \angle \mathrm{CBD}=180^{\circ}-60^{\circ}$
$2 \times \angle \mathrm{CBD}=180^{\circ}-60^{\circ}$
$\therefore 2 \times \angle C B D=120^{\circ}$
$\angle \mathrm{CBD}=\frac{120}{2}=60^{\circ}$
$\therefore \angle C D B=\angle C B D=60^{\circ}$
$\therefore \triangle \mathrm{ADC}$ is equilateral triangle
$\therefore B C=C D=B D=x \mathrm{~cm}$
In Rhombus diagonals bisect each other.
Consider \triangle COD
By Pythagoras theorem
$C D^{2}=O D^{2}+O C^{2}$
$x^{2}=\left[\frac{x}{2}\right]^{2}+O C^{2}$
$O C^{2}=x^{2}-\left[\frac{x}{2}\right]^{2}$
$O C=\left[\frac{\sqrt{4 x^{2}-x^{2}}}{2}\right]$
$O C=\frac{\sqrt{3} \times x}{2} \mathrm{~cm}$
$\therefore A C=2 \times O C=2 \times \frac{\sqrt{3} \times x}{2}=\sqrt{3} x$
$A C: B D=\sqrt{3} x: x=\sqrt{3}: 1$
$\therefore \mathrm{AC}: \mathrm{BD}=\sqrt{3}: 1$
\therefore Both Assertion but Reason are true and Reason is not a correct explanation of Assertion.
30. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct answer.

Assertion (A)	Reason (R)	
	The diagonals of a $\\|$ gm divide it into four triangles of equal area. it into two triangles of equal area.	

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) but Reason (R) are true and Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Consider \triangle ABD

We know that diagonals in a parallelogram bisect each other
$\therefore \mathrm{E}$ is the midpoint of BD, AE is median of $\triangle \mathrm{ABD}$
\therefore Area $(\triangle \mathrm{ADE})=$ Area $(\triangle \mathrm{AEB})(\because$ Median divides the triangle into two triangles of equal areas $)$
Similarly we can prove
Area $(\triangle \mathrm{ADE})=\operatorname{Area}(\triangle \mathrm{DEC})$
Area $(\triangle \mathrm{DEC})=\operatorname{Area}(\triangle \mathrm{CEB})$
Area $(\triangle$ CEB $)=\operatorname{Area}(\triangle$ AEB $)$
\therefore Diagonals of a $\| \mathrm{gm}$ divide into four triangles of equal area.
\therefore Both Assertion and Reason are true and Reason is a correct explanation of Assertion.

31. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct answer.

Assertion (A)	Reason (R)
	The area of an whose parallel sides measure 25 cm and 15 cm respectively and the distance between them is 6 cm , is $120 \mathrm{~cm}^{2}$.
equilateral triangle of side 8 cm is $163 \mathrm{~cm}^{2}$.	

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) but Reason (R) are true and Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Area of trapezium $=1 / 2 \times($ sum of parallel sides $) \times$ height $=1 / 2 \times(25+15) \times 6=120 \mathrm{~cm}^{2}$
\therefore Area of trapezium $=120 \mathrm{~cm}^{2}$
\therefore Assertion is correct.
Area of an equilateral triangle is given by: $\frac{\sqrt{3}}{4} \times a^{2}$ (here ' a ' is length of the side)
\therefore Area of an equilateral triangle with side length $8 \mathrm{~cm}=\frac{\sqrt{3}}{4} \times 8^{2}=16 \sqrt{3}$
\therefore Reason is correct
\therefore Both Assertion but Reason are true and Reason is not a correct explanation of Assertion.

32. Question

The question consists of two statements, namely, Assertion (A) and Reason (R). Choose the correct answer.

Assertion (A)	Reason (R)		
In the given figure, ABCD is a $\\|$ gm in which $\mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{BF} ~$ AD. If $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{DE}=8 \mathrm{~cm}$ and $\mathrm{BF}=10 \mathrm{~cm}$, then AD is 12 cm.	Area of a $\\| \mathrm{gm}=$ base x height.		

A. Both Assertion (A) and Reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
B. Both Assertion (A) but Reason (R) are true and Reason (R) is not a correct explanation of Assertion (A).
C. Assertion (A) is true and Reason (R) is false.
D. Assertion (A) is false and Reason (R) is true.

Answer

Here, let $A B$ be the base of the parallelogram then DE becomes its altitude (height).
Area of the parallelogram is given by: Base \times Height
\therefore Area of $\| \mathrm{gm} A B C D=A B \times D E=16 \times 8=128 \mathrm{~cm}^{2}$
Now,
Consider AD as base of the parallelogram then BF becomes its altitude (height)
\therefore area of $\| \mathrm{gm}$ ABCD $=\mathrm{AD} \times \mathrm{BF}=128 \mathrm{~cm}^{2}$
$A D \times 10=128 \mathrm{~cm}^{2}$
$\mathrm{AD}=\frac{12 \mathrm{~g}}{10}=12.8 \mathrm{~cm}$
\therefore length of $A D=12.8 \mathrm{~cm}$
\therefore Assertion is false and Reason is true

33. Question

Which of the following is a false statement?
(A) A median of a triangle divides it into two triangles of equal areas.
(B) The diagonals of a llgm divide it into four triangles of equal areas.
(C) In a $\triangle A B C$, if E is the midpoint of median $A D$, then $\operatorname{ar}(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$.

(D) In a trap. $A B C D$, it is given that $A B \| D C$ and the diagonals $A C$ and $B D$ intersect at O. Then, $\operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle C O D)$.

Answer

The correct answer is Option (D)
$\triangle A B C$ and $\triangle B C D$ does not lie between parallel lines and also $\triangle A O B$ and $\triangle C O D$ are not congruent.

34. Question

Which of the following is a false statement?
A) If the diagonals of a rhombus are 18 cm and 14 cm , then its area is $126 \mathrm{~cm}^{2}$.
B) Area of a ॥gm $=\frac{1}{2} x$ base x corresponding height.
C) A parallelogram and a rectangle on the same base and between the same parallels are equal in area.
D) If the area of a \| gm with one side 24 cm and corresponding height h cm is $192 \mathrm{~cm}^{2}$, then $\mathrm{h}=8 \mathrm{~cm}$.

Answer

The correct answer is Option (B)
Area of parallelogram $=$ base \times corresponding height.

Formative Assessment (Unit Test)

1. Question

The area of $\| \mathrm{gm}$ ABCD is

A. $A B \times B M$
B. $\mathrm{BC} \times \mathrm{BN}$
C. $\mathrm{DC} \times \mathrm{DL}$
D. $A D \times D L$

Answer

Area of the \|gm is Base \times Height
Here, height is distance between the Base and its corresponding parallel side.
\therefore Area $(\| g m A B C D)=$ Base \times Height $=D C \times D L$
(\because Here DC is taken as length and DL is the distance between DC and its corresponding parallel side $A B)$.

2. Question

Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is
A. $1: 2$
B. $1: 1$
C. $2: 1$
D. $3: 1$

Answer

We know that any two or parallelogram having the same base and lying between the same parallel lines are equal in area.

Consider two \|gms ABCD and PQRS which are on same base and lie between same parallel lines.
$\therefore \operatorname{ar}(\| g m A B C D)=\operatorname{ar}(\| g m$ PQRS $)-1$
$\therefore \operatorname{ar}(\mid \mathrm{lgm} \operatorname{ABCD}): \operatorname{ar}(\| \mathrm{gm} \operatorname{PQRS})=1: 1(\because \mathrm{eq}-1)$

3. Question

$A B C D$ is a quadrilateral whose diagonal $A C$ divides it into two parts, equal in area. Then, $A B C D$
A. Is a rectangle
B. is a rhombus
C. is a parallelogram
D. need not be any of (A), (B), (C)

Answer

Quadrilateral is any closed figure which has four sides.
Rhombus, Rectangle, Parallelograms are few Quadrilaterals.
When a Diagonal AC of a quadrilateral divides it into two parts of equal areas, it is not necessary for the figure to be a Rhombus or a Rectangle or a Parallelogram, it can be any Quadrilateral.

4. Question

In the given figure, $A B C D$ and $A B P Q$ are two parallelograms and M is a point on $A Q$ and $B M P$ is a triangle.

Then, $\operatorname{ar}(\triangle \mathrm{BMP})=\frac{1}{2} \operatorname{ar}(\| g m \operatorname{ABCD})$.

A. True
B. False

Answer

We know that any two or parallelogram having the same base and lying between the same parallel lines are equal in area.
$\therefore \operatorname{ar}(\| g m A B C D)=\operatorname{ar}(\| g m A B P Q)-1$
We also know that when a parallelogram and a triangle lie on same base and between same parallel lines then, area of the triangle is half the area of the parallelogram.
$\therefore \operatorname{ar}(\triangle \mathrm{BMP})=\frac{1}{2} \operatorname{ar}(\| g m$ ABPQ $)$
But, from -1

$$
\operatorname{ar}(\| g m A B C D)=\operatorname{ar}(\| g m A B P Q)
$$

$\therefore \operatorname{ar}(\triangle \mathrm{BMP})=\frac{1}{2} \operatorname{ar}(\| g m \mathrm{ABCD})$

5. Question

The midpoints of the sides of a triangle along with any of the vertices as the fourth point makes a parallelogram of area equal to

A. $1 / 2(\operatorname{ar} \triangle \mathrm{ABC})$
B. $1 / 3(\operatorname{ar} \triangle \mathrm{ABC})$
C. $1 / 4(\operatorname{ar} \triangle \mathrm{ABC})$
D. $\operatorname{ar}(\triangle A B C)$

Answer

Join EF
Here Area $(\triangle \mathrm{AEF})=\operatorname{Area}(\triangle \mathrm{BDF})=\operatorname{Area}(\triangle \mathrm{DEF})=\operatorname{Area}(\triangle \mathrm{DEC})=\frac{1}{4}$ Area $(\triangle \mathrm{ABC})-1$
Consider any vertex of the triangle.
Let us consider Vertex B
Here, BDEF form a parallelogram.
Area $(\|$ gm $B D E F)=\operatorname{Area}(\triangle B D F)+\operatorname{Area}(\triangle D E F)$
Area $(\|$ gm BDEF $)=\frac{1}{4} \operatorname{Area}(\triangle A B C)+\frac{1}{4} \operatorname{Area}(\triangle A B C)=\frac{1}{2} \operatorname{Area}(\triangle A B C)($ from -1$)$
\therefore Area $(\|$ gm $B D E F)=\frac{1}{2}$ Area $(\triangle A B C)$
Similarly, we can prove for other vertices.

6. Question

Let $A B C D$ be a $\| \mathrm{gm}$ in which $D L \perp A B$ and $B M \perp A D$ such that $A D=6 \mathrm{~cm}, B M=10$ and $D L=8 \mathrm{~cm}$. Find $A B$.

Answer

Given:
$A D=6 \mathrm{~cm}$
$D L \perp A B$
$B M \perp A D$
$D L=8 \mathrm{~cm}$
$B M=10 \mathrm{~cm}$
Now, consider the parallelogram $A B C D$
Here, let AD be the base of the parallelogram then BM becomes its altitude (height).
Area of the parallelogram is given by: Base \times Height
\therefore area of $\| g m$ ABCD $=A D \times B M=6 \times 10=60 \mathrm{~cm}^{2}$
Now,
Consider $A B$ as base of the parallelogram then DL becomes its altitude (height)
\therefore area of $\| \mathrm{gm} A B C D=A B \times D L=60 \mathrm{~cm}^{2}$
$A B \times 8=60 \mathrm{~cm}^{2}$
$A B=\frac{60}{8}=7.5 \mathrm{~cm}$
\therefore length of $A B=7.5 \mathrm{~cm}$.

7. Question

Find the area of the trapezium whose parallel sides are 14 cm and 10 cm and whose height is 6 cm .

Answer

Given: Length of parallel sides 14 cm and 10 cm , height is 6 cm
We know that area of trapezium is given by: $1 / 2$ (sum of parallel sides) \times height
\therefore Area of trapezium $=1 / 2(14+10) \times 6=72 \mathrm{~cm}^{2}$
\therefore Area of trapezium $=72 \mathrm{~cm}^{2}$

8. Question

Show that the median of a triangle divides it into two triangles of equal area.
Answer

Consider the Figure

Here,

In $\triangle A B C, A D$ is the medianHence $B D=D C D r a w A E \perp B C A r e a$ of $\triangle A B D=$ Area of $\triangle A D C T h u s$ median of a triangle divides it into two triangles of equal area.

9. Question

Prove that area of a triangle $=\frac{1}{2} \mathrm{X}$ base X altitude.

Answer

We know that when a parallelogram and a triangle lie on same base and between same parallel lines then, area of the triangle is half the area of the parallelogram.

Consider the figure,
Here,
Area $(\triangle A B F)=1 / 2$ Area(\mid gm $A B C D)$ (From above statement) -1
Area $(\|$ gm $A B C D)=$ Base \times Height -2
Sub -2 in -1
Area $(\triangle A B F)=1 / 2 \times$ Base \times Height

10. Question

In the adjoining figure, $A B C D$ is a quadrilateral in which diagonal $B D=14 \mathrm{~cm}$. If $A L \perp B D$ and $C M \perp B D$ such that $A L=8 \mathrm{~cm}$ and $C M=6 \mathrm{~cm}$, find the area of quad. $A B C D$.

Answer

Given: $\mathrm{BD}=14 \mathrm{~cm}, \mathrm{AL}=8 \mathrm{~cm}, \mathrm{CM}=6 \mathrm{~cm}$ and also, $\mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$.
Here,
Area $($ Quad. $A B C D)=$ Area $(\triangle A B D)+$ Area $(\triangle A B C)$

Area $(\triangle A B D)=1 / 2$ base \times height $=1 / 2 \times B D \times A L=1 / 2 \times 14 \times 8=56 \mathrm{~cm}^{2}$
Area $(\triangle A B C)=1 / 2$ base \times height $=1 / 2 \times B D \times C M=1 / 2 \times 14 \times 6=42 \mathrm{~cm}^{2}$
\therefore Area (Quad. $A B C D)=$ Area $(\triangle A B D)+$ Area $(\triangle A B C)=56+42=98 \mathrm{~cm}^{2}$
\therefore Area (Quad.ABCD) $=98 \mathrm{~cm}^{2}$

11. Question

In the adjoining figure, $A B C D$ is a quadrilateral. A line through D, parallel to $A C$, meets $B C$ produced in P. Prove that $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(q u a d . ~ A B C D)$.

Answer

Given: AC ||DP
We know that any two or Triangles having the same base and lying between the same parallel lines are equal in area.
\therefore Area $(\triangle \mathrm{ACD})=$ Area $(\triangle \mathrm{ACP})-1$
Add Area ($\triangle \mathrm{ABC}$) on both sides of eq -1
We get,
Area $(\triangle \mathrm{ACD})+\operatorname{Area}(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{ACP})+\operatorname{Area}(\triangle \mathrm{ABC})$
That is,
Area (quad. $A B C D)=$ Area $(\triangle A B P)$

12. Question

In the given figure, $A B C D$ is a quadrilateral and $B E \| A C$ and also $B E$ meets $D C$ produced at E. Show that the area of $\triangle A D E$ is equal to the area of quad. $A B C D$.

Answer

Given: BE ||AC

We know that any two or more Triangles having the same base and lying between the same parallel lines are equal in area.
\therefore Area $(\triangle \mathrm{ACE})=\operatorname{Area}(\triangle \mathrm{ACB})-1$
Add Area (\triangle ADC) on both sides of eq -1
We get,
Area $(\triangle \mathrm{ACE})+\operatorname{Area}(\triangle \mathrm{ADC})=\operatorname{Area}(\triangle \mathrm{ACB})+\operatorname{Area}(\triangle \mathrm{ADC})$
That is,
Area $(\triangle A D E)=$ Area (quad. $A B C D)$

13. Question

In the given figure, area of $\| \mathrm{gm} A B C D$ is $80 \mathrm{~cm}^{2}$.
Find (i) $\operatorname{ar}(\| g m$ ABEF)
(ii) $\operatorname{ar}(\triangle \mathrm{ABD})$ and (iii) $\operatorname{ar}(\triangle \mathrm{BEF})$.

Answer

Given: area of $\| \mathrm{gm} \mathrm{ABCD}$ is $80 \mathrm{~cm}^{2}$
We know that any two or parallelogram having the same base and lying between the same parallel lines are equal in area.
$\therefore \operatorname{ar}(\| g m A B C D)=\operatorname{ar}(\| g m A B E F)-1$
We also know that when a parallelogram and a triangle lie on same base and between same parallel lines then, area of the triangle is half the area of the parallelogram.
$\therefore \operatorname{ar}(\triangle A B D)=1 / 2 \times \operatorname{ar}(\| g m A B C D)$ and,
$\operatorname{ar}(\triangle B E F)=1 / 2 \times \operatorname{ar}(\| g m A B E F)$
(i)
$\operatorname{ar}(\| g m A B C D)=\operatorname{ar}(\| g m A B E F)$
$\therefore \operatorname{ar}(\| g m$ ABEF $)=80 \mathrm{~cm}^{2}\left(\because \operatorname{ar}(\| g m ~ A B C D)=80 \mathrm{~cm}^{2}\right)$
(ii)
$\operatorname{ar}(\triangle \mathrm{ABD})=1 / 2 \times \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})$
$\operatorname{ar}(\triangle A B D)=1 / 2 \times 80=40 \mathrm{~cm}^{2}\left(\because \operatorname{ar}(1 \mid \mathrm{gm} A B C D)=80 \mathrm{~cm}^{2}\right)$
$\therefore \operatorname{ar}(\triangle A B D)=40 \mathrm{~cm}^{2}$
(iii)
$\operatorname{ar}(\triangle \mathrm{BEF})=1 / 2 \times \operatorname{ar}(\mid \mathrm{lgm} \mathrm{ABEF})$
$\operatorname{ar}(\triangle B E F)=1 / 2 \times 80=40 \mathrm{~cm}^{2}\left(\because \operatorname{ar}(| | \mathrm{gm} A B E F)=80 \mathrm{~cm}^{2}\right)$
$\therefore \operatorname{ar}(\triangle B E F)=40 \mathrm{~cm}^{2}$

14. Question

In trapezium $A B C D, A B \| D C$ and L is the midpoint of $B C$. Through L, a line $P Q \| A D$ has been drawn which meets $A B$ in Point P and $D C$ produced in Q.

Prove that $\operatorname{ar}($ trap. $A B C D)=\operatorname{ar}(\| g m$ APQD $)$.

Answer

Given: $A B \| D C$ and L is the midpoint of $B C, P Q \| A D$
Construction: Drop a perpendicular DM from D onto AP
Consider $\triangle \mathrm{PBL}$ and $\triangle C Q L$
Here,
$\angle \mathrm{LPB}=\angle \mathrm{LQC}$ (Alternate interior angles, $\mathrm{AB} \| \mathrm{DQ}$)
$B L=L C(L$ is midpoint of $B C)$
$\angle P L B=\angle Q L C$ (vertically opposite angles)
\therefore By AAS congruency
$\Delta \mathrm{PBL} \cong \triangle \mathrm{CQL}$
$\therefore \mathrm{PB}=\mathrm{CQ}$ (C.P.C.T)
Area $(1 / g m$ APQD $)=$ base \times height $=A P \times D M-1$
Area $($ Trap. $A B C D)=1 / 2 \times($ sum of parallel sides $) \times$ height $=1 / 2 \times(A B+D C) \times D M$
Area $($ Trap. $A B C D)=1 / 2 \times(A B+D C) \times D M=1 / 2 \times(A P+P B+D C) \times D M(\because A B=A P+P B)$
Area $($ Trap. $A B C D)=1 / 2 \times(A P+C Q+D C) \times D M(\because P B=C Q)$
Area $($ Trap. $A B C D)=1 / 2 \times(A P+D Q) \times D M(\because D C+C Q=D Q)$
Area $($ Trap. $A B C D)=1 / 2 \times(2 \times A P) \times D M(\because A P=D Q)$
Area $($ Trap. $A B C D)=A P \times D M-2$

From -1 and -2
Area $($ Trap.$A B C D)=$ Area $(\| g m ~ A P Q D)$

15. Question

In the adjoining figure, $A B C D$ is a $\|$ gm and O is a point on the diagonal $A C$. Prove that $\operatorname{ar}(\triangle A O B)=$ $\operatorname{ar}(\triangle \mathrm{AOD})$.

Answer

Given: $A B C D$ is a $\| \mathrm{gm}$ and O is a point on the diagonal $A C$.
Construction: Drop perpendiculars DM and BN onto diagonal AC.
Here,
$\mathrm{DM}=\mathrm{BN}$ (perpendiculars drawn from opposite vertices of a \|gm to the diagonal are equal)
Now,
Area $(\triangle A O B)=1 / 2 \times$ base \times height $=1 / 2 \times A O \times B N-1$
Area $(\triangle A O D)=1 / 2 \times$ base \times height $=1 / 2 \times A O \times D M-2$
From -1 and -2
Area $(\triangle A O B)=\operatorname{Area}(\triangle A O D)(\because B N=D M)$

16. Question

$\triangle A B C$ and $\triangle B D E$ are two equilateral triangles such that $D(E)$ is the midpoint of $B C$. Then, prove that $\operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.

Answer

Given: $\triangle A B C$ and $\triangle B D E$ are two equilateral triangles, D is the midpoint of $B C$.
Consider $\triangle A B C$
Here, let $A B=B C=A C=x \mathrm{~cm}$ (equilateral triangle)
Now, consider \triangle BED

Here,
$B D=1 / 2 B C$
$\therefore \mathrm{BD}=\mathrm{ED}=\mathrm{EB}=1 / 2 \mathrm{BC}=\mathrm{x} / 2$ (equilateral triangle)
Area of the equilateral triangle is given by: $\frac{\sqrt{3}}{4} a^{2}$ (a is side length)
$\therefore \operatorname{ar}(\triangle \mathrm{BDE}): \operatorname{ar}(\triangle \mathrm{ABC})=\frac{\sqrt{3}}{4} \times\left(\frac{\mathrm{x}}{2}\right)^{2}: \frac{\sqrt{3}}{4} \mathrm{x}^{2}=\frac{1}{4}: 1=1: 4$
That is $\frac{\operatorname{ar}(\triangle \mathrm{BDE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{4}$
$\therefore \operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
Hence Proved

17. Question

In $\triangle A B C, D$ is the midpoint of $A B$ and P Point is any point on $B C$. If $C Q \| P D$, meets $A B$ in Q, then prove that $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$.

Answer

Given: D is the midpoint of $A B$ and P Point is any point on $B C, C Q \| P D$
In Quadrilateral DPQC
Area $(\triangle \mathrm{DPQ})=$ Area $(\triangle \mathrm{DPC})$
Add Area (\triangle BDP) on both sides
We get,
Area $(\triangle \mathrm{DPQ})+\operatorname{Area}(\triangle \mathrm{BDP})=\operatorname{Area}(\triangle \mathrm{DPC})+\operatorname{Area}(\triangle \mathrm{BDP})$
Area $(\triangle \mathrm{BPQ})=\operatorname{Area}(\triangle \mathrm{BCD})-1$
D is the midpoint $B C$, and $C D$ is the median
\therefore Area $(\triangle \mathrm{BCD})=\operatorname{Area}(\triangle \mathrm{ACD})=1 / 2 \times$ Area $(\triangle \mathrm{ABC})-2$
Sub -2 in -1
Area $(\triangle \mathrm{BPQ})=1 / 2 \times \operatorname{Area}(\triangle \mathrm{ABC})(\because \operatorname{Area}(\triangle \mathrm{BCD})=1 / 2 \times$ Area $(\triangle \mathrm{ABC}))$

18. Question

Show that the diagonals of a \|l gm divide into four triangles of equal area.

Answer

Consider \triangle ABD
We know that diagonals in a parallelogram bisect each other
$\therefore \mathrm{E}$ is the midpoint of BD, AE is median of $\triangle \mathrm{ABD}$
\therefore Area $(\triangle \mathrm{ADE})=$ Area $(\triangle \mathrm{AEB})(\because$ Median divides the triangle into two triangles of equal areas)
Similarly we can prove
Area $(\triangle \mathrm{ADE})=$ Area $(\triangle \mathrm{DEC})$
Area $(\triangle \mathrm{DEC})=\operatorname{Area}(\triangle \mathrm{CEB})$
Area $(\triangle \mathrm{CEB})=\operatorname{Area}(\triangle \mathrm{AEB})$
\therefore Diagonals of a \|l gm divide into four triangles of equal area.

19. Question

In the given figure, $B D \| C A, E$ is the midpoint of $C A$ and $B D=\frac{1}{2} C A$.
Prove that $\operatorname{ar}(\triangle A B C)=2 \times \operatorname{ar}(\triangle D B C)$.

Answer

Given: $B D \| C A, E$ is the midpoint of $C A$ and $B D=\frac{1}{2} C A$
Consider $\triangle B C D$ and \triangle DEC
Here,
$B D=E C\left(\because E\right.$ is the midpoint of $A C$ that is $\left.C E=\frac{1}{2} C A, B D=\frac{1}{2} C A\right)$
$C D=C D$ (common)
$\angle B D C=\angle E C D$ (alternate interior angles, $\mathrm{DB} \| \mathrm{AC}$)
\therefore By SAS congruency
$\Delta B C D \cong \triangle D E C$
\therefore Area $(\triangle B C D)=\operatorname{Area}(\triangle D E C)-1$
Here,
Area ($\triangle B C E$) $=$ Area ($\triangle \mathrm{DEC}$) (triangles on same base CE and between same parallel lines) -2
E is the midpoint of $A C, B E$ is the median of $\triangle A B C$
\therefore Area $(\triangle B C E)=\operatorname{Area}(\triangle A B E)=1 / 2 \times \operatorname{Area}(\triangle A B C)$
\therefore Area $(\triangle \mathrm{DEC})=1 / 2 \times \operatorname{Area}(\triangle \mathrm{ABC})(\because \operatorname{Area}(\triangle \mathrm{BCE})=\operatorname{Area}(\triangle \mathrm{DEC}))$
\therefore Area $(\triangle B C D)=1 / 2 \times \operatorname{Area}(\triangle A B C)(: A r e a(\triangle D E C)=\operatorname{Area}(\triangle B C D))$

20. Question

The given figure shows a pentagon $A B C D E$ in which $E G$, drawn parallel to $D A$, meets $B A$ produced at G and CF drawn parallel to DB meets $A B$ produced at F.

Show that ar(pentagon $A B C D E)=\operatorname{ar}(\triangle D G F)$.

Answer

Given: EG||DA, CF||DB
Here, in Quadrilateral ADEG
Area $(\triangle$ AED $)=$ Area $(\triangle$ ADG $)-1$
In Quadrilateral CFBD
Area $(\triangle \mathrm{CBD})=$ Area $(\triangle \mathrm{BCF})-2$
Add -1 and -2
Area $(\triangle \mathrm{AED})+\operatorname{Area}(\triangle \mathrm{CBD})=\operatorname{Area}(\triangle \mathrm{ADG})+\operatorname{Area}(\triangle \mathrm{BCF})-3$
Add Area ($\triangle \mathrm{ABD}$) to -3

Area $(\triangle$ AED $)+\operatorname{Area}(\triangle \mathrm{CBD})+\operatorname{Area}(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ADG})+\operatorname{Area}(\triangle \mathrm{BCF})+\operatorname{Area}(\triangle \mathrm{ABD})$
Area $($ pentagon $A B C D E)=$ Area $(\triangle D G F)$

21. Question

In the adjoining figure, the point D divides the side $B C$ of $\triangle A B C$ in the ratio $m: n$. Prove that $\operatorname{ar}(\triangle A B D): \operatorname{ar}(\triangle A D C)=m: n$.

Answer

Given: D divides the side $B C$ of $\triangle A B C$ in the ratio m:n
Area $(\triangle \mathrm{ABD})=1 / 2 \times \mathrm{BD} \times \mathrm{AL}$
Area $(\triangle \mathrm{ADC})=1 / 2 \times \mathrm{CD} \times \mathrm{AL}$
Area $(\triangle A B D)$: Area $(\triangle A D C)=1 / 2 \times B D \times A L: 1 / 2 \times C D \times A L$
Area $(\triangle A B D)$: Area $(\triangle A D C)=B D: C D$
Area $(\triangle A B D):$ Area $(\triangle A D C)=m: n(\because B D: C D=m: n)$

22. Question

In the give figure, X and Y are the midpoints of $A C$ and $A B$ respectively, QP \|| BC and CYQ and BXP are straight lines. Prove that $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$.

Answer

Given: X and Y are the midpoints of $A C$ and $A B$ respectively, $Q P \| B C$ and $C Y Q$ and $B X P$ are straight lines.

Construction: Join QB and PC
In Quadrilateral BCQP
Area $(\triangle \mathrm{QBC})=$ Area $(\triangle \mathrm{BCP})$ (Triangles on same base $B C$ and between same parallel lines are equal in area) -1 and,

Area $(\| \mathrm{gm} A C B Q)=$ Area $(\| \mathrm{gm} \mathrm{ABCP})$ (parallelograms on same base $B C$ and between same parallel lines are equal in area) -2

Subtract -1 from -2
Area $(\| g m ~ A C B Q)-\operatorname{Area}(\triangle \mathrm{QBC})=$ Area $(\| g m \mathrm{ABCP})-$ Area $(\triangle \mathrm{BCP})$
Area $(\triangle A C Q)=$ Area $(\triangle A B P)$
$\therefore \operatorname{Area}(\triangle A B P)=\operatorname{Area}(\triangle A C Q)$

