Chapter 4. The Language of Chemistry

Exercise 4

Solution 1.

(a) \bigcirc
(b) gram
(c) molecular formula
(d) basic, acidic
(e) $4,3,2,1$
(f) 2,3
(g) $\mathrm{Fe}_{2}\left[\mathrm{CO}_{3}\right]_{3}$

Solution 2.

Acid Racticals \rightarrow Basic Racticals \downarrow	Chloride	Nitrate	Sulphate	Carbonate	Hydroxide	Phosphate
Magnesium	MgCl_{2}	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgSO_{4}	Mg	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Sodium	NaCl	NaNO_{3}	$\mathrm{Na}_{2} \mathrm{SO}_{4}$		NaOH	$\mathrm{Na}_{3} \mathrm{PO}_{4}$
Zinc	ZnCl_{2}	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	ZnSO_{4}	ZnCO_{3}	$\mathrm{Zn}[\mathrm{OH}]_{2}$	$\mathrm{Zn}_{3}\left[\mathrm{PO}_{4}\right)_{2}$
Silver	AgCl	AgNO	$\mathrm{As}_{2} \mathrm{SO}_{4}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	AgOH	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$
Ammonium	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\begin{gathered} {\left[\mathrm{NH}_{4}\right]_{2}} \\ \mathrm{SO}_{4} \end{gathered}$	$\left[\mathrm{NH}_{4}\right]_{2} \mathrm{SO}_{4}$	NH 4 OH	$\left[\mathrm{NH}_{4}\right]_{3} \mathrm{PO}_{4}$
Calcium	CaCl_{2}	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	CaSO_{4}	CaCO_{3}	$\mathrm{Ca}[\mathrm{OH}]_{2}$	$\mathrm{Ca}_{3}\left[\mathrm{PO}_{4}\right]_{2}$
Iron (II)	FeCl_{2}	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$	FeSO_{4}	FeCO_{3}	$\mathrm{Fe}[\mathrm{OH}]_{2}$	$\mathrm{Fe}_{3}\left[\mathrm{PO}_{4}\right]_{2}$
Potassium	KCl	KNO_{3}	$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	KOH	$\mathrm{K}_{3} \mathrm{PO}_{4}$

Solution 3.

(a) Equation $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
(b) Yes, the equation is balanced.
(c) $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
$(23+35.5)(108+14+48)(108+35.5)(23+14+48)$
Wt. of reactants $228.5 \mathrm{~g} \quad$ Wt. of products 228.5 g
(d) This equation satisfies the "Law of Conservation of Mass."

Law of Conservation of mass: "Matter is neither created nor destroyed in course of a chemical reaction."

Solution 4.
(a)
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$
This equation conveys following information:

1. The actual result of chemical change.
2. The substances take part in a chemical reaction and substances formed as a result of reaction.
3. Here one molecule of zinc, one molecule ofSulphuric acid react to give one molecule of zinc sulphate and one molecule of Hydrogen.
4. Composition of respective molecules i.e. one molecule ofsulphuric acid contains two atoms of hydrogen, one atom of sulphur and four atoms of oxygen.
5. Relativemoleculer masses of different substances i.e. molecular mass of $\mathrm{Zn}=65, \mathrm{H}_{2} \mathrm{SO}_{4}(2+32+64)=\mathbf{9 8}$ $\mathrm{ZnSO}_{4}(65+32+64)=161$ $\mathrm{H}_{2}=2$
6. 22.4 litres of hydrogen are formed at S.T.P.
(b)
$\mathrm{Mg}+2 \mathrm{HCl}_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
This equation conveys following information:
7. Magnesium reacts with of Hydrochloric acid to form Magnesium chloride and Hydrogen gas.
8. 24 g of Magnesium react with $2(1+35.5)=73 \mathrm{~g}$ of Hydrochloric acid to produce (24 $+71)$ i.e. 95 g of Magnesium chloride
9. That Hydrogen produced out at S.T.P. is 22.4 liters.

Solution 5.

(a) A poly-atomic ion is a charged ion composed of two or more atoms covalently bounded that can be carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and sulphate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$
(b) The fundamental laws which are involved in every equation are:

1. A chemical equation consists of formulae of reactants connected by plus sign (+) and arrow (\rightarrow) followed by the formulae of products connected by plus sign (+).
2. The sign of an arrow (\rightarrow) is to read 'to form'. It also shows the direction in which reaction is predominant.

Solution 6.

(a) two
(b) six
(c) three
(d) four
(e) (i) three (ii) five (iii) four (iv) two

Solution 7.

According to law of conservation of mass, "matter can neither be created nor be destroyed in a chemical reaction". This is possible only, if total number of atoms on the reactants side is equals to total number of atoms on products side. Thus, a chemical reaction should be always balanced.

Let us consider an example, $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}$
In this equation number of atoms on both sides is not the same, the equation is not balanced.
The balanced form of this equation is given by,
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$

Solution 8.

(a) $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
(b) $3 \mathrm{Ca}+\mathrm{N}_{2} \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}$
(c) $\mathrm{Zn}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
(d) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(e) $3 \mathrm{PbO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{~Pb}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$
(f) $2 \mathrm{~Pb}_{3} \mathrm{O}_{4} \rightarrow 6 \mathrm{PbO}+\mathrm{O}_{2}$
(g) $2 \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$
(h) $\mathrm{S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(i) $\mathrm{S}+6 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(j) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
(k) $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
(I) $6 \mathrm{KOH}+3 \mathrm{Cl}_{2} \rightarrow 5 \mathrm{KCl}+\mathrm{KClO}+3 \mathrm{H}_{2} \mathrm{O}$
(m) $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
(n) $\mathrm{Pb}_{3} \mathrm{O}_{4}+8 \mathrm{HCl} \rightarrow 3 \mathrm{PbCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
(o) $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}_{2}+$ Sunlight $\rightarrow 4 \mathrm{HCl}+\mathrm{O}_{2}$
(p) $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(q) $2 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}$
(r) $\mathrm{P}+5 \mathrm{HNO}_{3} \rightarrow 5 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4}$

Solution 9.

(a) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $2 \mathrm{KHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}\left(\mathrm{SO}_{4}\right)+\mathrm{H}_{2}$
(d) $\mathrm{Cl}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
(e) $2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+2 \mathrm{NO}_{2}+\mathrm{O}_{2}$
(f) $3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
(g) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\mathrm{Pt}, 800^{\circ} \mathrm{C}} 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}$? + Heat
(h) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
(i) $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
(j) $\mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}$
(k) $4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$
(l) $2 \mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
(m) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{NaOH} \rightarrow 3 \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{NaAlO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
(n) $2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$
(o) $2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}_{2}$
(p) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cl}_{2}$
(q) $\mathrm{S}+6 \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+6 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(r) $2 \mathrm{KI}+2 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+2 \mathrm{KHSO}_{4}+2 \mathrm{MnSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$

Solution 10.

(a) The atomic mass unit (amu) is defined as $1 / 12^{\text {th }}$ of the mass of an atom of carbon.

1 a.m.u. $=1.67 \times 10^{-24} \mathrm{gm}=1.67 \times 10^{-27} \mathrm{~kg}$
1 gm mass $=6.02 \times 10^{23}$ a.m.u. and 1 kg mass $=6.02 \times 10^{26}$ a.m.u. (b)
(i) The relative molecular mass of $=\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$
$=63.5+32+(16 \times 4)+5(2+16)$
$=159.5+90=249.5$
(ii) The relative molecular mass of $=\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=\mathrm{N}_{2} \mathrm{H}_{8} \mathrm{CO}_{3}$
$=14 \times 2+1 \times 8+12+3 \times 16$
$=28+8+12+48=\mathbf{9 6}$
(iii) The relative molecular mass of $=\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}=\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{CO}$
$=2 \times 14+1 \times 4+12+16$
$=28+4+12+16=60$
(iv) The relative molecular mass of $=\mathrm{Mg}_{3} \mathrm{~N}_{2}=3 \times 24+2 \times 14=72+28=\mathbf{1 0 0}$

Solution 11.
(a) (iii) Berzelius
(b) (i) One
(c) (iii) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(d) (i) $1: 8$
(e) (ii) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$

Solution 12.

(a) A molecular formula represent The Molecule of an element or of a Compound.
(b) The molecular formula of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ represents 18 parts by mass of water.
(c) A balanced equation obeys the law of conservation of mass wherever unbalanced equation does not obey this law.
(d) CO and Co represent carbon-monoxide and cobalt respectively.

