Constructions

Exercise 17.1

Question: 1
Draw an $\angle \mathrm{BAC}$ of measure 50° such that $\mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$. Through C draw a line parallel to $A B$ and through B draw a line parallel to $A C$, intersecting each other at D. Measure $B D$ and $C D$

Solution:

Steps of construction:

Draw angle $B A C=50^{\circ}$ such that $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$.
Cut an arc through C at an angle of 50°
Draw a straight line passing through C and the arc. This line will be parallel to $A B$ since $\angle C A B$ $=\angle R C A=50^{\circ}$

Alternate angles are equal, therefore the line is parallel to $A B$.
Again through B, cut an arc at an angle of 50° and draw a line passing through B and this arc and say this intersects the line drawn parallel to $A B$ at D.
$\angle S B A=\angle B A C=50^{\circ}$, since they are alternate angles. Therefore BD parallel to AC
Also we can measure $\mathrm{BD}=7 \mathrm{~cm}$ and $\mathrm{CD}=5 \mathrm{~cm}$.

Question: 2

Draw a line PQ. Draw another line parallel to $P Q$ at a distance of 3 cm from it.

Solution:

Steps of construction:

Draw a line PQ.
Take any two points A and B on the line.
Construct $\angle \mathrm{PBF}=90^{\circ}$ and $\angle \mathrm{QAE}=90^{\circ}$
With A as centre and radius 3 cm cut $A E$ at C.
With B as centre and radius 3 cm cut BF at D .
Join $C D$ and produce it on either side to get the required line parallel to $A B$ and at a distance of 5 cm from it.

Question: 3

Take any three non-collinear points A, B, C and draw $\angle A B C$. Through each vertex of the triangle, draw a line parallel to the opposite side.

Solution:

Steps of construction:

Mark three non collinear points A, B and C such that none of them lie on the same line. Join $A B, B C$ and $C A$ to form triangle $A B C$.

Parallel line to $A C$
With A as centre, draw an arc cutting AC and AB at T and U , respectively.
With centre B and the same radius as in the previous step, draw an arc on the opposite side of $A B$ to cut $A B$ at X.

With centre X and radius equal to TU , draw an arc cutting the arc drawn in the previous step at Y .
Join BY and produce in both directions to obtain the line parallel to AC.

Parallel line to $A B$

With B as centre, draw an arc cutting $B C$ and $B A$ at W and V, respectively.
With centre C and the same radius as in the previous step, draw an are on the opposite side of $B C$ to cut $B C$ at P.

With centre P and radius equal to WV , draw an arc cutting the are drawh in the previous step at Q . Join CQ and produce in both directions to obtain the line parallel to $A B$.

Parallel line to BC

With B as centre, draw an arc cutting BC and BA at W and V , respectively (already drawn).
With centre A and the same radius as in the previous step, draw an arc on the opposite side of $A B$ to cut $A B$ at R.

With centre R and radius equal to $W V$, draw an arc cutting the arc drawn in the previous step at S.
Join AS and produce in both directions to obtain the line parallel to BC.

Question: 4

Draw two parallel lines at a distance of 5 kms apart.

Solution:

Steps of construction:

Draw a line PQ.
Take any two points A and B on the line.
Construct $\angle \mathrm{PBF}=90^{\circ}$ and $\angle \mathrm{QAE}=90^{\circ}$
With A as centre and radius 5 cm cut AE at C .
With B as centre and radius 5 cm cut BF at D .
Join $C D$ and produce it on either side to get the required line parallel to $A B$ and at a distance of 5 cm from it.

Exercise 17.2

Question: 1

Draw $\triangle A B C$ in which $A B=5.5 \mathrm{~cm}$. $B C=6 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$. Also, draw perpendicular bisector of side $B C$.

Solution:

Steps of construction:

- Draw a line segment $A B$ of length 5.5 cm .
- From B, cut an arc of radius 6 cm .
- With centre A , draw an arc of radius 7 cm intersecting the previously drawn arc at C .
- Join $A C$ and $B C$ to obtain the desired triangle.
- With centre B and radius more than half of $B C$, draw two arcs on both sides of $B C$.
- With centre C and the same radius as in the previous step, draw two arcs intersecting the arcs drawn in the previous step at X and Y .
- Join XY to get the perpendicular bisector of BC.

Question: 2

Draw $\triangle P Q R$ in which $P Q=3 \mathrm{~cm}, \mathrm{QR} .4 \mathrm{~cm}$ and $\mathrm{RP}=5 \mathrm{~cm}$. Also, draw the bisector of $\angle Q$

Solution:

Steps of construction:

- Draw a line segment PQ of length 3 cm .
- With Q as centre and radius 4 cm , draw an arc.
- With P as centre and radius 5 cm , draw an arc intersecting the previously drawn arc at R .
- Join PR and OR to obtain the required triangle.
- From Q, cut arcs of equal radius intersecting $P Q$ and $Q R$ at M and N, respectively.
- From M and N , cut arcs of equal radius intersecting at point S .
- Join QS and extend to produce the angle bisector of angle PQR.
- Verify that angle PQS and angle SQR are equal to 45° each.

Question: 3

Draw an equilateral triangle one of whose sides is of length 7 cm .

Solution:

Steps of construction:

- Draw a line segment $A B$ of length 7 cm .
- With centre A, draw an arc of radius 7 cm .
- With centre B , draw an arc of radius 7 cm intersecting the previously drawn arc at C .
- Join $A C$ and $B C$ to get the required triangle.

Question: 4

Draw a triangle whose sides are of lengths $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 7 cm . Draw the perpendicular bisector of the largest side.

Solution:

Steps of construction:

Draw a line segment PR of length 7 cm .

- With centre P, draw an arc of radius 5 cm .
- With centre R, draw an arc of radius 4 cm intersecting the previously drawn arc at Q .
- Join $P Q$ and $Q R$ to obtain the required triangle.
- From P, draw arcs with radius more than half of PR on either sides.
- With the same radius as in the previous step, draw arcs from R on either sides of PR intersecting the arcs drawn in the previous step at M and N .
- MN is the required perpendicular bisector of the largest side.

Question: 5

Draw a triangle ABC with $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CA}=8 \mathrm{~cm}$. Using ruler and compass alone, draw (i) the bisector $A D$ of $\angle A$ and (ii) perpendicular AL from A on $B C$. Measure LAD.

Solution:

Steps of construction:

Draw a line segment BC of length 7 cm .
With centre B , draw an arc of radius 6 cm .
With centre C , draw an arc of radius 8 cm intersecting the previously drawn arc at A .
Join $A C$ and $B C$ to get the required triangle.

Angle bisector steps:

- From A, cut arcs of equal radius intersecting $A B$ and $A C$ at E and F, respectively.
- From E and F, cut arcs of equal radius intersecting at point H .
- Join AH and extend to produce the angle bisector of angle A, meeting line BC at D.

Perpendicular from Point A to line BC steps:

- From A, cut arcs of equal radius intersecting $B C$ at P and Q, respectively (Extend $B C$ to draw these arcs).
- From P and Q, cut arcs of equal radius intersecting at M.
- Join AM cutting BC at L.
- $A L$ is the perpendicular to the line $B C$.
- Angle LAD is 15°.

Question: 6

Draw $\triangle D E F$ such that $D E=D F=4 \mathrm{~cm}$ and $E F=6 \mathrm{~cm}$. Measure $\angle E$ and $\angle F$.

Solution:

Steps of construction:

- Draw a line segment EF of length 6 cm .
- With E as centre, draw an arc of radius 4 cm .
- With F as centre, draw an arc of radius 4 cm intersecting the previous arc at D .
- Join DE and DF to get the desired triangle DEF.
- By measuring we get, $\angle E=\angle F=40^{\circ}$..

Question: 7

Draw any triangle $A B C$. Bisect side $A B$ at D. Through D, draw a line parallel to $B C$, meeting $A C$ in E.
Measure AE and EC.

Solution:

Steps of construction:

We first draw a triangle $A B C$ with each side $=6 \mathrm{~cm}$.

Steps to bisect line AB:

- Draw an arc from A on either side of line $A B$.
- With the same radius as in the previous step, draw an arc from B on either side of $A B$ intersecting the arcs drawn in the previous step at P and Q .
- Join PQ cutting $A B$ at $D . P Q$ is the perpendicular bisector of $A B$.

Parallel line to BC:

- With B as centre, draw an arc cutting $B C$ and $B A$ at M and N, respectively.
- With centre D and the same radius as in the previqus step, draw an arc on the opposite side of AB to cut $A B$ at Y .
- With centre Y and radius equal to MN , draw an arc cutting the arc drawn in the previous step at X .
- Join XD and extend it to intersect AC at E.
- $D E$ is the required parallel line.

Exercise 17.3

Question: 1

Draw $\triangle A B C$ in which $A B=3 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\angle Q=70^{\circ}$.
Solution:

Steps of construction:

- Draw a line segment $A B$ of length 3 cm .
- Draw $\angle X B A=70^{\circ}$.
- Cut an arc on BX at a distance of 5 cm at C .
- Join AC to get the required triangle.

Question: 2

Draw $\triangle A B C$ in which $\angle A=70^{\circ}$., $A B=4 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$. Measure $B C$.

Solution:

Steps of construction:

- Draw a line segment $A C$ of length 6 cm .
- Draw $\angle X A C=70^{\circ}$.
- Cut an arc on $A X$ at a distance of 4 cm at B.
- Join $B C$ to get the desired triangle.
- We see that $\mathrm{BC}=6 \mathrm{~cm}$.

Question: 3

Draw an isosceles triangle in which each of the equal sides is of length 3 cm and the angle between them is 45°.

Solution:

Steps of construction:
Draw a line segment PQ of length 3 cm .
Draw $\angle Q P X=45^{\circ}$.
Cut an arc on PX at a distance of 3 cm at R.
Join QR to get the required triangle.

Question: 4

Draw $\triangle A B C$ in which $\angle A=120^{\circ}, A B=A C=3 \mathrm{~cm}$. Measure $\angle B$ and $\angle C$.
Solution:

Steps of construction:

- Draw a line segment AC of length 3 cm .
- Draw $\angle X A C=120^{\circ}$.
- Cut an arc on AX at a distance of 3 cm at B.
- Join $B C$ to get the required triangle.

By measuring, we get $\angle B=\angle C=30^{\circ}$.

Question: 5

Draw $\triangle A B C$ in which $\angle C=90^{\circ}$ and $A C=B C=4 \mathrm{~cm}$.

Solution:

Steps of construction:

- Draw a line segment $B C$ of length 4 cm .
- At C, draw $\angle B C Y=90^{\circ}$.
- Cut an arc on CY at a distance of 4 cm at A .
- Join AB . ABC is the required triangle.

Question: 6

Draw a triangle $A B C$ in which $B C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}$ and $\angle B=45^{\circ}$. Also, draw a perpendicular from A on BC.

Solution:

Steps of construction:

- Draw a line segment $A B$ of length 3 cm .
- Draw an angle of 45° and cut an arc at this angle at a radius of 4 cm at C .
- Join $A C$ to get the required triangle.
- With A as centre, draw intersecting arcs at M and N .
- With centre M and radius more than half of MN, cut an arc on the opposite side of A .
- With N as centre and radius the same as in the previous step, cut an arc intersecting the previous arc at E .
- Join $A E$, it meets $B C$ at D, then $A E$ is the required perpendicular.

Question: 7

Draw a triangle ABC with $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\angle B=60^{\circ}$. Also, draw the bisector of angles C and A of the triangle, meeting in a point O . Measure $\angle C O A$.

Solution:

Steps of construction:

Draw a line segment $B C=4 \mathrm{~cm}$.
Draw $\angle C B X=60^{\circ}$.
Draw an arc on $B X$ at a radius of 3 cm cutting $B X$ at A.
Join $A C$ to get the required triangle.

Angle bisector for angle A:

- With A as centre, cut arcs of the same radius cutting AB and AC at P and Q , respectively.
- From P and Q cut arcs of same radius intersecting at R.
- Join AR to get the angle bisector of angle A.

Angle bisector for angle C:

- With A as centre, cut arcs of the same radius cutting CB and CA at M and N , respectively.
- From M and N, cut arcs of the same radius intersecting at T
- Join CT to get the angle bisector of angle C.

Mark the point of intersection of CT and AR as 0 .
Angle $\angle C O A=120^{\circ}$.

Exercise 17.3

Question: 1

Draw $\triangle A B C$ in which $A B=3 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $\angle Q=70^{\circ}$.
Solution:

Steps of construction:

- Draw a line segment $A B$ of length 3 cm .
- Draw $\angle X B A=70^{\circ}$.
- Cut an arc on $B X$ at a distance of 5 cm at C .
- Join $A C$ to get the required triangle.

Question: 2

Draw $\triangle A B C$ in which $\angle A=70^{\circ}$., $A B=4 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$. Measure $B C$.
Solution:

Steps of construction:

- Draw a line segment $A C$ of length 6 cm .
- Draw $\angle X A C=70^{\circ}$.
- Cut an arc on $A X$ at a distance of 4 cm at B .
- Join BC to get the desired triangle.
- We see that $\mathrm{BC}=6 \mathrm{~cm}$.

Question: 3

Draw an isosceles triangle in which each of the equal sides is of length 3 cm and the angle between them is 45°.

Solution:

Steps of construction:
Draw a line segment $P Q$ of length 3 cm .
Draw $\angle Q P X=45^{\circ}$.
Cut an arc on PX at a distance of 3 cm at R .
Join QR to get the required triangle.

Question: 4

Draw $\triangle A B C$ in which $\angle A=120^{\circ}, A B=A C=3 \mathrm{~cm}$. Measure $\angle B$ and $\angle C$.

Solution:

Steps of construction:

- Draw a line segment $A C$ of length 3 cm .
- Draw $\angle X A C=120^{\circ}$.
- Cut an arc on $A X$ at a distance of 3 cm at B.
- Join BC to get the required triangle.

By measuring, we get $\angle B=\angle C=30^{\circ}$.

Question: 5

Draw $\triangle A B C$ in which $\angle C=90^{\circ}$ and $A C=B C=4 \mathrm{~cm}$.

Solution:

Steps of construction:

- Draw a line segment $B C$ of length 4 cm .
- At C, draw $\angle B C Y=90^{\circ}$.
- Cut an arc on CY at a distance of 4 cm at A .
- Join AB . ABC is the required triangle.

Question: 6

Draw a triangle $A B C$ in which $B C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}$ and $\angle B=45^{\circ}$. Also, draw a perpendicular from A on BC.

Solution:

Steps of construction:

- Draw a line segment $A B$ of length 3 cm .
- Draw an angle of 45° and cut an arc at this angle at a radius of 4 cm at C .
- Join $A C$ to get the required triangle.
- With A as centre, draw intersecting arcs at M and N .
- With centre M and radius more than half of MN, cut an arc on the opposite side of A.
- With N as centre and radius the same as in the previous step, cut an arc intersecting the previous arc at E .
- Join $A E$, it meets $B C$ at D, then $A E$ is the required perpendicular.

Question: 7

Draw a triangle ABC with $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\angle B=60^{\circ}$. Also, draw the bisector of angles C and A of the triangle, meeting in a point O . Measure $\angle C O A$.
Solution:

Steps of construction:

Draw a line segment $B C=4 \mathrm{~cm}$.
Draw $\angle C B X=60^{\circ}$.
Draw an arc on $B X$ at a radius of 3 cm cutting $B X$ at A.
Join $A C$ to get the required triangle.
Angle bisector for angle A:

- With A as centre, cut arcs of the same radius cuftiing $A B$ and $A C$ at P and Q, respectively.
- From P and Q cut arcs of same radius intersecting at R.
- Join AR to get the angle bisector of angle A.

Angle bisector for angle C:

- With A as centre, cut arcs of the same radius cutting $C B$ and $C A$ at M and N, respectively.
- From M and N , cutarcs of the same radius intersecting at T
- Join CT to get the angle bisector of angle C.

Mark the point of intersection of CT and AR as 0 .
Angle $\angle C O A=120^{\circ}$.

Exercise 17.4

Question: 1

Construct $\triangle A B C$ in which $B C=4 \mathrm{~cm}, \angle B=50^{\circ}$ and $\angle C=70^{\circ}$.

Solution:

Steps of construction:

- Draw a line segment BC of length 4 cm .
- Draw $\angle C B X$ such that $\angle C B X=50^{\circ}$.
- Draw $\angle B C Y$ with Y on the same side of $B C$ as X such that $\angle B C Y=70^{\circ}$.
- Let CY and BX intersect at A.
- ABC
is
the
required
triangle.

Question: 2

Draw $\triangle A B C$ in which $B C=8 \mathrm{~cm}, \angle B=50^{\circ}$ and $\angle A=50^{\circ}$.
$\angle A B C+\angle B C A+\angle C A B=180^{\circ}$
$\angle B C A=180^{\circ}-\angle C A B-\angle A B C$
$\angle B C A=180^{\circ}-100^{\circ}=80^{\circ}$

Solution:

Steps of construction:

- Draw a line segment $B C$ of length 8 cm .
- Draw $\angle C B X$ such that $\angle C B X=50^{\circ}$.
- Draw $\angle B C Y$ with Y on the same side of $B C$ as X such that $\angle B C Y=80^{\circ}$.
- Let and BX intersect at A.

Question: 3

Draw $\triangle A B C$ in which $\angle Q=80^{\circ}, \angle R=55^{\circ}$ and $Q R=4.5 \mathrm{~cm}$. Draw the perpendicular bisector of side QR.

Solution:

Steps of construction:

- Draw a line segment $\mathrm{QR}=4.5 \mathrm{~cm}$.
- Draw $\angle R Q X=80^{\circ}$ and $\angle Q R Y=55^{\circ}$.
- Let $Q X$ and $R Y$ intersect at P so that $P Q R$ is the required triangle.
- With Q as centre and radius more that 2.25 cm , draw arcs on either sides of QR.
- With R as centre and radius more than 2.25 cm , draw arcs intersecting the previous arcs at M and N .
- Join MN

MN is the required perpendicular bisector of QR.

Question: 4

Construct $\triangle A B C$ in which $A B=6.4 \mathrm{~cm}, \angle A=45^{\circ}$ and $\angle B=60^{\circ}$

Solution:

Steps of construction:

Draw a line segment $A B=6.4 \mathrm{~cm}$.
Draw $\angle B A X=45^{\circ}$.
Draw $\angle A B Y$ with Y on the same side of $A B$ as X such that $\angle A B Y=60^{\circ}$
Let $A X$ and $B Y$ intersect at C.
$A B C$ is the required triangle.

Question: 5

Draw $\triangle A B C$ in which $A C=6 \mathrm{~cm}, \angle A=90^{\circ}$ and $\angle B=60^{\circ}$.
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
Therefore $\angle \mathrm{C}=180^{\circ}-60^{\circ}-90^{\circ}=30^{\circ}$

Solution:

Steps of construction:

- Draw a line segment $A C=6 \mathrm{~cm}$.
- Draw $\angle A C X=30^{\circ}$.
- Draw $\angle C A Y$ with Y on the same side of $A C$ as X such that $\angle C A Y=90^{\circ}$.
- Join CX and AY. Let these intersect at B.
$A B C$ is the required triangle where angle $\angle A B C=60^{\circ}$.

Exercise 17.5

Question: 1

Draw a right triangle with hypotenuse of length 5 cm and one side of length 4 cm .

Solution:

Steps of construction:

- Draw a line segment $Q R=4 \mathrm{~cm}$.
- Draw $\angle Q R X$ of measure 90°
- With centre Q and radius $P Q=5 \mathrm{~cm}$, draw an arc of the circle to intersect ray $R X$ at P.
- Join PQ to obtain the desired triangle PQR.

PQR is the required triangle.

Question: 2

Draw a right triangle whose hypotenuse is of length 4 cm and one side is of length 2.5 cm .

Solution:

Steps of construction:

- Draw a line segment $Q R=2.5 \mathrm{~cm}$.
- Draw $\angle Q R X$ of measure 90°.
- With centre Q and radius $P Q=4 \mathrm{~cm}$, draw an arc of the circle to intersect ray $R X$ at P.
- Join PQ to obtain the desired triangle PQR.
$P Q R$ is the required triangle.

Question: 3

Draw a right triangle having hypotenuse of length 5.4 cm , and one of the acute angles of measure 30°

Solution:

Let $A B C$ be the right triangle at A such that hypotenuse $B C=5.4 \mathrm{~cm}$. Let $\mathrm{cC}=30^{\circ}$.
Therefore $\angle A+\angle B+\angle C=180^{\circ} \angle B=180^{\circ}-30^{\circ}-90^{\circ}=60^{\circ}$
Steps of construction:

- Draw a line segment $B C=5.4 \mathrm{~cm}$.
- Draw angle CBY $=60^{\circ}$
- Draw angle BCX of measure 30° with X on the same side of BC as Y .
- Let BY and CX intersect at A.

Then $A B C$ is the required triangle.

Question: 4

Construct a right triangle ABC in which $\mathrm{AB}=5.8 \mathrm{~cm}, \mathrm{BC}=4.5 \mathrm{~cm}$ and $\angle C=90^{\circ}$.

Solution:

Steps of construction:

- Draw a line segment $B C=4.5 \mathrm{~cm}$.
- Draw $\angle B C X$ of measure 90°..
- With centre B and radius $A B=5.8 \mathrm{~cm}$, draw an arc of the circle to intersect ray $B X$ at A.
- Join $A B$ to obtain the desired triangle $A B C$.
$A B C$ is the required triangle.

Question: 5

Construct a right triangle, right angled at C in which $\mathrm{AB}=5.2 \mathrm{~cm}$ and $\mathrm{BC}=4.6 \mathrm{~cm}$.

Solution:

Steps of construction:

- Draw a line segment $\mathrm{BC}=4.6 \mathrm{~cm}$.
- Draw $\angle B C X$ of measure 90°
- With centre B and radius $A B=5.2 \mathrm{~cm}$, draw an arc of the circle to intersect ray $C X$ at A.
- Join $A B$ to obtain the desired triangle $A B C$.
$A B C$ is the required triangle.

