Chapter 8. Electricity and Magnetism: Current Electricity

PAGE NO: 312

Solution 1:

The flow of electrons in a particular direction in a conductor is called an electric current.

Solution 2:

An electric cell is the source of electric current in which chemical energy changes to electrical energy.

Solution 3:

The charge on an electron is $-1.6 \times 10^{-19} \mathrm{C}$.
Solution 4:
The constituents of cell are two electrodes in the form of conducting rods immersed in the solution called electrolyte.

Solution 5:

- S. I unit of electric current is Ampere
- S.I unit of potential difference is volt.
- S.I unit of resistance is ohm.

Solution 6:

$\mathrm{I}=1 \mathrm{~A}$
$\mathrm{T}=1 \mathrm{~s}$.
$\mathrm{I}=\mathrm{Q} / \mathrm{t}=\mathrm{ne} / \mathrm{t}$
So, $n=I . t / e=1.1 /\left(1.6 \times 10^{-19}\right)=6.25 \times 10^{18}$ electrons.
Solution 7:
$\mathrm{I}=\mathrm{Q} / \mathrm{t}=0.7 / 7=0.1$ Ampere.

Solution 8:

Rheostat is used to control the current in the circuit.
PAGE NO: 313
Solution 9:
Rheostat is the variable name of electrical resistance.
Solution 10:
Switch is used to put the current on and off in the circuit.

Solution 11:
(i) Cell - Cell provide an electric current in the circuit.

(ii) Ammeter - It is a device to measure an electric current in the circuit.

(iii) Voltmeter - It is used to measure the potential difference between two points in the circuit.

(iv) Key - It is used to put the current on and off in the circuit.

(v) Battery - It is used to charge the cell.

(vi) Rheostat - it is used to control the electric current in the circuit.

Solution 12:

$\mathrm{I}=\mathrm{Q} / \mathrm{t}$ So, $\mathrm{Q}=\mathrm{I} . \mathrm{t}=1.2 \times 3.0=3.6 \mathrm{C}$.

Solution 13:

A - is a voltmeter to measure the potential difference, B is an electric resistance to control the current in the circuit, C is the ammeter to measure the magnitude of an electric current, D is cell to provide electric current in circuit, E is an electric key to on and off the circuit, F is the rheostat to control the current in circuit.

Solution 14:

The slope of the graph represents that with current flowing through a conductor is directly proportional to the potential difference applied the resistance of conductor is constant.

Solution 15:

Potential difference between two conductors is defined as the amount of work done in moving the unit positive charge from one conductor to another through the wire.

Solution 16:
Yes, electric current is a scalar quantity.

Solution 17:

The electric resistance of the wire depends on the following factors :

- The length of the wire.
- The area of cross-section of the wire.
- The temperature of the wire.
- The material of the wire.

Solution 18:

The S.I unit of resistance is ohm.

Solution 19:

If another bulb is connected in series then the resistance of the wire will increase.
If another bulb is connected in parallel then resistance will decrease.
Solution 20:
$\mathrm{V}=\mathrm{IR}$.

Solution 21:

The resistance of the wire is 2 ohms if a current of 1 ampere flows through it when the potential difference across it is 2 volt.

Solution 22:

The current $\mathrm{I}=\mathrm{V} / \mathrm{R}=14 / 28=0.5$ Ampere.
Solution 23:
The factors on which resistance of the wire depends are:

- The length of the wire, resistance is directly proportional to the length of wire.
- The cross-section of the wire, resistance is inversely proportional to the cross-section of the wire.
- The temperature of the wire, resistance of wire is directly proportional to the temperature of the wire.
- The material of the wire (good conductors possess less resistance.)

Solution 24:

$\mathrm{W}=\mathrm{V} . \mathrm{Q}=6.3=18$ Joule.

Solution 25:

The resistance of the conductor is the property due to which it opposes the flow of current in it.

Solution 26:

The potential difference between two points is 1 volt if the work done in transferring 1 coulomb of charge from one point to another point is 1 joule.

