6. Graphs of Trigonometric Functions

Exercise 6.1

1 A. Question

Sketch the graphs of the following functions:
$f(x)=2 \sin x, 0 \leq x \leq \pi$

Answer

We know that $g(x)=\sin x$ is a periodic function with period π.
$\therefore f(x)=2 \sin x$ is a periodic function with period π. So, we will draw the graph of $f(x)=2 \sin x$ in the interval $[0, \pi]$. The values of $f(x)=2 \sin x$ at various points in $[0, \pi]$ are listed in the following table:

X	$0(A)$	$n / 6(B)$	$\pi / 3(C)$	$\pi / 2(D)$	$2 \pi / 3(E)$	$5 n / 6(F)$	$\pi(G)$
$\mathrm{F}(\mathrm{x})=2$ $\sin \mathrm{x}$	0	1	$\sqrt{3}=1.73$	2	$\sqrt{3}=1.73$	1	0

By plotting the above points, we obtain the required curve.

1 B. Question

Sketch the graphs of the following functions:
$g(x)=3 \sin \left(x-\frac{\pi}{4}\right), 0 \leq x \leq \frac{5 \pi}{4}$

Answer

We know that if $f(x)$ is a periodic function with period T, then $f(a x+b)$ is periodic with period $T /|a|$.
$\therefore g(x)=3 \sin \left(x-\frac{\pi}{4}\right)$ is a periodic function with period π. So, we will draw the graph of $g(x)=3 \sin \left(x-\frac{\pi}{4}\right)$ in the interval $[0,5 \pi / 4]$. The values of $g(x)=3 \sin \left(x-\frac{\pi}{4}\right)$ at various points in [0,5 $\left.\pi / 4\right]$ are listed in the following table:

X	$0(A)$	$n / 4$ (B)	$\pi / 2(C)$	$3 \pi / 4$ (D)	$\pi(E)$	$5 \pi / 4$ (F)
$\mathrm{g}(\mathrm{x})$ $=3 \sin \left(\mathrm{x}-\frac{\pi}{4}\right)$	$-3 / \sqrt{ } 2=-2.1$	0	$\frac{3}{\sqrt{2}}=2.12$	3	$\frac{3}{\sqrt{2}}=2.12$	0

By plotting the above points, we obtain the required curve.

1 C. Question

Sketch the graphs of the following functions:
$h(x)=2 \sin 3 x, 0 \leq x \leq 2 \pi / 3$

Answer

We know that $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ is a periodic function with period 2π.
$\therefore h(x)=2 \sin 3 x$ is a periodic function with period $2 \pi / 3$. So, we will draw the graph of $h(x)=2 \sin 3 x$ in the interval $[0,2 \pi / 3]$. The values of $h(x)=2 \sin 3 x$ at various points in $[0,2 \pi / 3]$ are listed in the following table:

X	$0(A)$	$\pi / 6(B)$	$\pi / 3(C)$	$\pi / 2(D)$	$2 \pi / 3(E)$
$H(x)=2$ $\sin 3 x$	0	2	0	-2	0

By plotting the above points, we obtain the required curve.

1 D. Question

Sketch the graphs of the following functions:
$\phi(\mathrm{x})=2 \sin \left(2 \mathrm{x}-\frac{\pi}{3}\right), 0 \leq \mathrm{x} \leq \frac{7 \pi}{5}$

Answer

We know that if $f(x)$ is a periodic function with period T, then $f(a x+b)$ is periodic with period $T /|a|$.
$\therefore \phi(x)=2 \sin \left(2 x-\frac{\pi}{3}\right)$ is a periodic function with period π. So, we will draw the graph of
$\phi(x)=2 \sin \left(2 x-\frac{\pi}{3}\right)$ in the interval [0, 7 $\pi / 5$]. The values of $\phi(x)=2 \sin \left(2 x-\frac{\pi}{3}\right)$ at various points in [0,
$7 \pi / 5$] are listed in the following table:

X	0	$\pi / 6$	$2 \pi / 3$	$7 \pi / 6$	$7 \pi / 5$
$\phi(x)$ $=2 \sin \left(2 x-\frac{\pi}{3}\right)$	$-\sqrt{ } 3=$ -1.73	0	0	0	1.98

By plotting the above points, we obtain the required curve.

1 E. Question

Sketch the graphs of the following functions:
$\psi(x)=4 \sin 3\left(x-\frac{\pi}{4}\right), 0 \leq x \leq 2 \pi$

Answer

We know that if $f(x)$ is a periodic function with period T, then $f(a x+b)$ is periodic with period $T /|a|$.
$\therefore \psi(x)=4 \sin 3\left(x-\frac{\pi}{4}\right)$ is a periodic function with period 2π. So, we will draw the graph of
$\psi(x)=4 \sin 3\left(x-\frac{\pi}{4}\right)$ in the interval $[0,2 \pi]$. The values of $\psi(x)=4 \sin 3\left(x-\frac{\pi}{4}\right)$ at various points in [$0,2 \pi$] are listed in the following table:

X	0	$\pi / 4$	$\pi / 2$	π	$5 \pi / 4$	2π
$\psi(x)$ $=4 \sin 3\left(x-\frac{\pi}{4}\right)$	$-2 \sqrt{ } 2$ -2.82	0	$2 \sqrt{ } 2=2.82$	$2 \sqrt{ } 2$ $=2.82$	0	$-2 \sqrt{ } 2$ $=-2.82$

By plotting the above points, we obtain the required curve.

Sketch the graphs of the following functions:
$\theta(x)=\sin \left(\frac{x}{2}-\frac{\pi}{4}\right), 0 \leq x \leq 4 \pi$

Answer

We know that if $f(x)$ is a periodic function with period T, then $f(a x+b)$ is periodic with period $T /|a|$.
$\therefore \theta(x)=\sin \left(\frac{x}{2}-\frac{\pi}{4}\right)$ is a periodic function with period 4π. So, we will draw the graph of $\theta(x)=\sin \left(\frac{x}{2}-\frac{\pi}{4}\right)$ in the interval $[0,4 \pi]$. The values of $\theta(x)=\sin \left(\frac{x}{2}-\frac{\pi}{4}\right)$ at various points in $[0,4 \pi]$ are listed in the following table:

X	0	$\pi / 2$	π	2π	$5 \pi / 2$	$3 п$	4π
$\theta(x)$ $=\sin \left(\frac{x}{2}-\frac{\pi}{4}\right)$	-0.7	0	$1 / \sqrt{ } 2$ $=0.7$	$1 / \sqrt{ } 2$ $=0.7$	0	$-1 / \sqrt{ } 2$ $=-0.7$	$-1 / \sqrt{ } 2$ $=-0.7$

By plotting the above points, we obtain the required curve.

1 G. Question

Sketch the graphs of the following functions
$u(x)=\sin ^{2} x, 0 \leq x \leq 2 \pi u(x)=|\sin x|, 0 \leq x \leq 2 \pi$

Answer

We know that $g(x)=\sin x$ is a periodic function with period π.
$\therefore u(x)=\sin ^{2} x$ is a periodic function with period 2π. So, we will draw the graph of $u(x)=\sin ^{2} x$ in the interval $[0,2 \pi]$. The values of $u(x)=\sin ^{2} x$ at various points in $[0,2 \pi]$ are listed in the following table:

X	0	$\pi / 2$	π	$3 \pi / 2$	2π
$U(x)=\sin ^{2} x$	0	1	0	1	0

By plotting the above points, we obtain the required curve.

Then,
$\therefore u(x)=|\sin x|$ is a periodic function with period 2π. So, we will draw the graph of $u(x)=|\sin x|$ in the interval $[0,2 \pi]$. The values of $u(x)=|\sin x|$ at various points in $[0,2 \pi]$ are listed in the following table:

X	0	$\pi / 2$	π	$3 \pi / 2$	2π
$U(x)=\|\sin x\|$	0	1	0	1	0

By plotting the above points, we obtain the required curve.

1 G. Question

Sketch the graphs of the following functions:
$f(x)=2 \sin \pi x, 0 \leq x \leq 2$.

Answer

We know that $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ is a periodic function with period 2π.
$\therefore \mathrm{f}(\mathrm{x})=2 \sin \pi \mathrm{x}$ is a periodic function with period 2 . So, we will draw the graph of $\mathrm{f}(\mathrm{x})=2 \sin \pi \mathrm{x}$ in the interval [0,2]. The values of $f(x)=2 \sin \pi x$ at various points in [0,2] are listed in the following table:

X	0	$1 / 2$	1	$3 / 2$	2
$\mathrm{f}(\mathrm{x})=2 \sin \pi \mathrm{x}$	0	2	0	-2	0

By plotting the above points, we obtain the required curve.

2 A. Question

Sketch the graphs of the following pairs of functions on the same axes :
$f(x)=\sin x, g(x)=\sin \left(x+\frac{\pi}{4}\right)$

Answer

We observe that the functions $f(x)=\sin x$ and $g(x)=\sin (x+\pi / 4)$ are periodic functions with periods 2π and $7 \pi / 4$.

The values of these functions are tabulated below:
Values of $f(x)=\sin x$ in $[0,2 \pi]$

X	0	$\pi / 2$	π	$3 п / 2$	2π
$f(x)=\sin x$	0	1	0	-1	0

Values of $g(x)=\sin (x+\pi / 4)$ in $[0,7 \pi / 4]$

X	0	$\pi / 4$	$3 \pi / 4$	$5 \pi / 4$	$7 \pi / 4$
$\mathrm{g}(\mathrm{x})$ $=\sin \left(\mathrm{x}+\frac{\pi}{4}\right)$	$1 / \sqrt{ } 2=0.7$	1	0	-1	0

[^0]

2 B. Question

Sketch the graphs of the following pairs of functions on the same axes:
$f(x)=\sin x, g(x)=\sin 2 x$

Answer

We observe that the functions $f(x)=\sin x$ and $g(x)=\sin 2 x$ are periodic functions with periods 2π and π.
The values of these functions are tabulated below:
Values of $f(x)=\sin x$ in $[0,2 \pi]$

X	0	$\pi / 2$	π	$3 п / 2$	2π
$f(x)=\sin x$	0	1	0	-1	0

Values of $g(x)=\sin (2 x)$ in $[0, \pi]$

x	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π	$5 \pi / 4$	$3 \pi / 2$	$7 \pi / 4$	2π
$g(x)=\boldsymbol{\operatorname { s i n } (2 x)}$	0	1	0	-1	0	1	0	-1	0

By plotting the above points, we obtain the required curve.

2 C. Question

Sketch the graphs of the following pairs of functions on the same axes:
$f(x)=\sin 2 x, g(x)=2 \sin x$

Answer

We observe that the functions $f(x)=\sin 2 x$ and $g(x)=2 \sin x$ are periodic functions with periods π and π. The values of these functions are tabulated below:

Values of $f(x)=\sin (2 x)$ in $[0, \pi]$

X	0	$\pi / 4$	$\pi / 2$	$3 п / 4$	π	$5 \pi / 4$	$3 \pi / 2$	$7 \pi / 4$	2π
$f(x)=\sin (2 x)$	0	1	0	-1	0	1	0	-1	0

Values of $g(x)=2 \sin x$ in $[0, \pi]$

X	0	$\pi / 2$	π	$3 \pi / 2$	2π
$g(x)=$ $2 \sin x$	0	1	0	-1	0

By plotting the above points, we obtain the required curve.

2 D. Question

Sketch the graphs of the following pairs of functions on the same axes:
$f(x)=\sin \frac{x}{2}, g(x)=\sin x$

Answer

We observe that the functions $f(x)=\sin x / 2$ and $g(x)=\sin x$ are periodic functions with periods π and 2π.
The values of these functions are tabulated below:
Values of $f(x)=\sin x / 2$ in $[0, \pi]$

X	0	π	2π	3π	4π
$f(x)=$ $\sin x / 2$	0	1	0	-1	0

Values of $g(x)=\sin (x)$ in $[0,2 \pi]$

X	0	$\pi / 2$	π	$3 \pi / 2$	2π	$5 \pi / 2$	3π	$7 \pi / 2$	4π
$\left.\begin{array}{l}g(x) \\ (2 x)\end{array}\right) \sin$	0	1	0	-1	0	1	0	-1	0

By plotting the above points, we obtain the required curve.

Exercise 6.2

1 A. Question

Sketch the graphs of the following trigonometric functions :
$f(x)=\cos \left(x-\frac{\pi}{4}\right)$

Answer

We know that $\mathrm{g}(\mathrm{x})=\cos \mathrm{x}$ is a periodic function with period 2π.
$\therefore f(x)=\cos (x-\pi / 4)$ is a periodic function with period π. So, we will draw the graph of $f(x)=\cos (x-\pi / 4)$ in the interval $[0, \pi]$. The values of $f(x)=\cos (x-\pi / 4)$ at various points in $[0, \pi]$ are listed in the following table:

x	0	$n / 4$	$\pi / 2$	$3 n / 4$	n	$5 n / 4$	$3 \pi / 2$	$7 n / 4$
$\mathrm{f}(\mathrm{x})=\cos$ $(\mathrm{x}-\mathrm{n} / 4)$	$1 / \sqrt{ } 2$ $=0.7$	1	$1 / \sqrt{ } 2$ $=0.7$	0	$-1 / \sqrt{ } 2$ $=-0.7$	-1	$-1 / \sqrt{ } 2$ $=-0.7$	0

By plotting the above points, we obtain the required curve.

1 B. Question

Sketch the graphs of the following trigonometric functions :
$g(x)=\cos \left(x+\frac{\pi}{4}\right)$

Answer

We know that $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ is a periodic function with period 2π.
$\therefore g(x)=\cos (x+\pi / 4)$ is a periodic function with period π. So, we will draw the graph of $g(x)=\cos (x+\pi / 4)$ in the interval $[0, \pi]$. The values of $g(x)=\cos (x+\pi / 4)$ at various points in $[0, \pi]$ are listed in the following table:

x	0	$n / 4$	$n / 2$	$3 n / 4$	π	$5 n / 4$	$3 n / 2$	$7 n / 4$
$g(x)=\cos$ $(x+n / 4)$	$1 / \sqrt{2}$ $=0.7$	0	$-1 / \sqrt{ } 2=$ -0.7	-1	$-1 / \sqrt{2}$ $=-0.7$	0	$1 / \sqrt{2}$ $=0.7$	1

By plotting the above points, we obtain the required curve.

1 C. Question

Sketch the graphs of the following trigonometric functions:
$\mathrm{h}(\mathrm{x})=\cos ^{2} 2 \mathrm{x}$

Answer

We know that $f(x)=\cos x$ is a periodic function with period 2π.
$\therefore \mathrm{h}(\mathrm{x})=\cos ^{2} 2 \mathrm{x}$ is a periodic function with period π. So, we will draw the graph of $\mathrm{h}(\mathrm{x})=\cos ^{2} 2 \mathrm{x}$ in the interval $[0, \pi]$. The values of $h(x)=\cos ^{2} 2 x$ at various points in $[0, \pi]$ are listed in the following table:

X	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π	$5 \pi / 4$	$3 \pi / 2$
$\mathrm{h}(\mathrm{x})=$ $\cos ^{2} 2 \mathrm{x}$	1	0	1	0	1	0	1

By plotting the above points, we obtain the required curve.

1 D. Question

Sketch the graphs of the following trigonometric functions:
$\phi(x)=2 \cos \left(x-\frac{\pi}{6}\right)$

Answer

We know that $f(x)=\cos x$ is a periodic function with period 2π.
$\therefore \phi(x)=2 \cos (x-\pi / 6)$ is a periodic function with period π. So, we will draw the graph of $\phi(x)=2 \cos (x-\pi / 6)$ in the interval $[0, \pi]$. The values of $\phi(x)=2 \cos (x-\pi / 6)$ at various points in $[0, \pi]$ are listed in the following table:

X	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$
$\phi(x)=2 \cos$ $(x-\pi / 6)$	$\sqrt{3}=$ 1.73	$\sqrt{ } 3=$	0	$-\sqrt{3}=$	$-\sqrt{3}$	0
$=-1.73$		-1.73	$=-1.73$			

By plotting the above points, we obtain the required curve.

1 E. Question

Sketch the graphs of the following trigonometric functions:
$\psi(\mathrm{x})=\cos 3 \mathrm{x}$

Answer

We know that $f(x)=\cos x$ is a periodic function with period 2π.
$\therefore \psi(x)=\cos (3 x)$ is a periodic function with period $2 \pi / 3$. So, we will draw the graph of $\psi(x)=\cos (3 x)$ in the
interval $[0,2 \pi / 3]$. The values of $\psi(x)=\cos (3 x)$ at various points in $[0,2 \pi / 3]$ are listed in the following table:

X	0	$\pi / 6$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$5 \pi / 6$
$\Psi(x)=\cos (3 x)$	1	0	-1	0	1	0

By plotting the above points, we obtain the required curve.

1 F. Question

Sketch the graphs of the following trigonometric functions
$\mathrm{u}(\mathrm{x})=\cos ^{2} \frac{\mathrm{x}}{2}$

Answer

We know that $f(x)=\cos x$ is a periodic function with period 2π.
$\therefore u(x)=\cos ^{2}(x / 2)$ is a periodic function with period π. So, we will draw the graph of $u(x)=\cos ^{2}(x / 2)$ in the interval $[0, \pi]$. The values of $u(x)=\cos ^{2}(x / 2)$ at various points in $[0, \pi]$ are listed in the following table:

x	0	π	2π	$3 n$
$u(x)=\cos ^{2}(x / 2)$	1	0	1	0

[^1]

1 G. Question

Sketch the graphs of the following trigonometric functions:
$f(x)=\cos \pi x$

Answer

We know that $g(x)=\cos x$ is a periodic function with period 2π.
$\therefore f(x)=\cos (\pi x)$ is a periodic function with period 2 . So, we will draw the graph of $f(x)=\cos (\pi x)$ in the interval $[0,2]$. The values of $f(x)=\cos (\pi x)$ at various points in $[0,2]$ are listed in the following table:

X	0	$1 / 2$	1	$3 / 2$	2	$5 / 2$
$f(x)=\cos (n x)$	1	0	-1	0	1	0

By plotting the above points, we obtain the required curve.

1 H. Question

Sketch the graphs of the following trigonometric functions:
$g(x)=\cos 2 \pi x$

Answer

$\therefore g(x)=\cos (2 \pi x)$ is a periodic function with period 1 . So, we will draw the graph of $g(x)=\cos (2 \pi x)$ in the interval $[0,1]$. The values of $g(x)=\cos (2 \pi x)$ at various points in [0,1] are listed in the following table:

X	0	$1 / 4$	$1 / 2$	$3 / 4$	1	$5 / 4$	$3 / 2$	$7 / 4$	2
$\mathrm{g}(\mathrm{x})=$ $\cos (2 \pi x)$	1	0	-1	0	1	0	-1	0	1

By plotting the above points, we obtain the required curve.

2 A. Question

Sketch the graphs of the following curves on the same scale and the same axes:
$y=\cos x$ and $y=\cos \left(x-\frac{\pi}{4}\right)$

Answer

We observe that the functions $y=\cos x$ and $y=\cos (x-\pi / 4)$ are periodic functions with periods π and π.
The values of these functions are tabulated below:

x	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π	$5 \pi / 4$	$3 \pi / 2$	$7 n / 4$
$y=\cos x$	1	$1 / \sqrt{ } 2$ $=0.7$	0	$-1 / \sqrt{ } 2$ $=-0.7$	-1	$-1 / \sqrt{ } 2$ $=-0.7$	0	1
$\mathrm{y}=\cos$ $(x-n / 4)$	$1 / \sqrt{ } 2$ $=0.7$	1	$1 / \sqrt{ } 2$ $=0.7$	0	$-1 / \sqrt{ } 2$ $=-0.7$	-1	$-1 / \sqrt{ } 2$ $=-0.7$	0

By plotting the above points, we obtain the required curve.

2 B. Question

Sketch the graphs of the following curves on the same scale and the same axes:
$y=\cos 2 x$ and $y=\cos \left(x-\frac{\pi}{4}\right)$

Answer

We observe that the functions $y=\cos 2 x$ and $y=\cos 2(x-\pi / 4)$ are periodic functions with periods π and π.
The values of these functions are tabulated below:

x	0	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π	$5 \pi / 4$	$3 \pi / 2$	$7 \pi / 4$
$y=\cos 2 x$	1	0	-1	0	1	0	-1	0
$y=\cos 2(x-\pi / 4)$	0	1	0	-1	0	1	0	-1

By plotting the above points, we obtain the required curve.

2 C. Question

Sketch the graphs of the following curves on the same scale and the same axes:
$y=\cos x$ and $y=\cos \frac{x}{2}$

Answer

We observe that the functions $y=\cos x$ and $y=\cos (x / 2)$ are periodic functions with periods π and π. The values of these functions are tabulated below:

x	0	$\pi / 2$	π	$3 n / 2$	$2 n$
$y=\cos x$	1	0	-1	0	1
$y=\cos (x / 2)$	1	$1 / \sqrt{ } 2$ $=0.7$	0	$-1 / \sqrt{ } 2$ $=-0.7$	-1

By plotting the above points, we obtain the required curve.

2 D. Question

Sketch the graphs of the following curves on the same scale and the same axes:
$y=\cos ^{2} x$ and $y=\cos x$

Answer

We observe that the functions $y=\cos ^{2} x$ and $y=\cos (x)$ are periodic functions with period 2π.
The values of these functions are tabulated below:

x	0	$\pi / 2$	π	$3 п / 2$	2π
$y=\cos ^{2} x$	1	0	1	0	1
$y=\cos x$	1	0	-1	0	1

By plotting the above points, we obtain the required curve.

Exercise 6.3

1. Question

Sketch the graphs of the following functions:
$\mathrm{f}(\mathrm{x})=2 \operatorname{cosec} \pi \mathrm{x}$

Answer

We know that $g(x)=\operatorname{cosec} x$ is a periodic function with period 2π.
$\therefore f(x)=2 \operatorname{cosec}(\pi x)$ is a periodic function with period 2 . So, we will draw the graph of $f(x)=2 \operatorname{cosec}(\pi x)$ in the interval $[0,2]$. The values of $f(x)=2 \operatorname{cosec}(\pi x)$ at various points in $[0,2]$ are listed in the following table:

x	0	$1 / 2$	1	$1-$	$3 / 2$	$2-$	2	$5 / 2$
$f(x)=2 \operatorname{cosec}(n x)$	∞	2	∞	$-\infty$	-2	$-\infty$	∞	2

By plotting the above points, we obtain the required curve.

2. Question

Sketch the graphs of the following functions:
$f(x)=3 \sec x$

Answer

We know that $g(x)=\sec x$ is a periodic function with period π.
$\therefore f(x)=3 \sec (x)$ is a periodic function with period π. So, we will draw the graph of $f(x)=3 \sec (x)$ in the interval $[0, \pi]$. The values of $f(x)=3 \sec (x)$ at various points in $[0, \pi]$ are listed in the following table:

x	0	$n / 2$	$\pi / 2-$	π	$3 \pi / 2-$	$3 \pi / 2$	2π	$5 \pi / 2$
$f(x)=3 \sec (x)$	3	∞	$-\infty$	-3	$-\infty$	∞	3	∞

By plotting the above points, we obtain the required curve.

3. Question

Sketch the graphs of the following functions:
$f(x)=\cot 2 x$

Answer

We know that $\mathrm{g}(\mathrm{x})=\cot \mathrm{x}$ is a periodic function with period π.
$\therefore f(x)=\cot (2 x)$ is a periodic function with period π. So, we will draw the graph of $f(x)=\cot (2 x)$ in the interval $[0, \pi]$. The values of $f(x)=\cot (2 x)$ at various points in $[0, \pi]$ are listed in the following table:

X	0	$\pi / 4$	$\pi / 2-$	$\pi / 2+$	$3 п / 4$	$\Pi-$
$f(x)=\cot (2 x)$	$\rightarrow \infty$	0	$-\infty$	$\rightarrow \infty$	0	$-\infty$

By plotting the above points, we obtain the required curve.

4. Question

Sketch the graphs of the following functions:
$\mathrm{f}(\mathrm{x})=2 \sec \pi \mathrm{x}$

Answer

We know that $\mathrm{g}(\mathrm{x})=\sec \mathrm{x}$ is a periodic function with period π.
$\therefore \mathrm{f}(\mathrm{x})=2 \sec (\pi \mathrm{x})$ is a periodic function with period 1 . So, we will draw the graph of $\mathrm{f}(\mathrm{x})=2 \sec (\pi \mathrm{x})$ in the interval $[0,1]$. The values of $f(x)=2 \sec (\pi x)$ at various points in $[0,1]$ are listed in the following table:

x	0	$1 / 2+$	$1 / 2-$	1	$3 / 2-$	$3 / 2$	2
$f(x)=3 \sec (x)$	2	∞	$\rightarrow-\infty$	-2	$-\infty$	∞	2

By plotting the above points, we obtain the required curve.

5. Question

Sketch the graphs of the following functions:
$f(x)=\tan ^{2} x$

Answer

We know that $g(x)=\tan x$ is a periodic function with period π.
$\therefore f(x)=\tan ^{2}(x)$ is a periodic function with period π. So, we will draw the graph of $f(x)=\tan ^{2}(x)$ in the interval $[0, \pi]$. The values of $f(x)=\tan ^{2}(x)$ at various points in $[0, \pi]$ are listed in the following table:

X	0	$\pi / 2$	$\pi / 2$	Π	$3 \pi / 2$	$3 п / 2$	2π
$f(x)=\tan ^{2}(x)$	0	∞	$\rightarrow \infty$	0	∞	$\rightarrow \infty$	0

By plotting the above points, we obtain the required curve.

6. Question

Sketch the graphs of the following functions:
$f(x)=\cot ^{2} x$

Answer

We know that $\mathrm{g}(\mathrm{x})=\cot \mathrm{x}$ is a periodic function with period π.
$\therefore f(x)=\cot ^{2}(x)$ is a periodic function with period π. So, we will draw the graph of $f(x)=\cot ^{2}(x)$ in the interval $[0, \pi]$. The values of $f(x)=\cot ^{2}(x)$ at various points in $[0, \pi]$ are listed in the following table:

X	0	$\pi / 2$	π	π	3п/2	2π
$f(x)=\cot ^{2}(x)$	$\rightarrow \infty$	0	∞	$\rightarrow \infty$	0	∞

By plotting the above points, we obtain the required curve.

7. Question

Sketch the graphs of the following functions:
$f(x)=\cot \frac{\pi x}{2}$

Answer

We know that $g(x)=\cot x$ is a periodic function with period π.
$\therefore \mathrm{f}(\mathrm{x})=\cot (\pi \mathrm{x} / 2)$ is a periodic function with period 2 . So, we will draw the graph of $\mathrm{f}(\mathrm{x})=\cot (\pi x / 2)$ in the interval $[0,2]$. The values of $f(x)=\cot (\pi x / 2)$ at various points in $[0,2]$ is listed in the following table:

X	-2	-1	$0-$	$0+$	1	2
$f(x)=\cot (n x / 2)$	$\rightarrow \infty$	0	$\rightarrow-\infty$	$\rightarrow \infty$	0	$\rightarrow-\infty$

By plotting the above points, we obtain the required curve.

8. Question

Sketch the graphs of the following functions:
$f(x)=\sec ^{2} x$

Answer

We know that $g(x)=\sec x$ is a periodic function with period π.
$\therefore f(x)=\sec ^{2}(x)$ is a periodic function with period π. So, we will draw the graph of $f(x)=\sec ^{2}(x)$ in the interval $[0, \pi]$. The values of $f(x)=\sec ^{2}(x)$ at various points in $[0, \pi]$ are listed in the following table:

X	0	$\pi / 2$	$\pi / 2$	π	$3 п / 2$	$3 п / 2$	2π
$f(x)=\sec ^{2}(x)$	1	$\rightarrow \infty$	$\rightarrow-\infty$	1	$\rightarrow \infty$	$\rightarrow-\infty$	1

By plotting the above points, we obtain the required curve.

9. Question

Sketch the graphs of the following functions:
$f(x)=\operatorname{cosec}^{2} x$

Answer

We know that $g(x)=\operatorname{cosec} x$ is a periodic function with period 2π.
$\therefore f(x)=\operatorname{cosec}^{2}(x)$ is a periodic function with period 2π. So, we will draw the graph of $f(x)=\operatorname{cosec}^{2}(x)$ in the interval $[0,2 \pi]$. The values of $f(x)=\operatorname{cosec}^{2}(x)$ at various points in $[0,2 \pi]$ are listed in the following table:

X	0	$n / 2$	Π	π	$3 \pi / 2$	2π
$f(x)=\operatorname{cosec}^{2}(x)$	$\rightarrow-\infty$	1	$\rightarrow \infty$	$\rightarrow-\infty$	1	$\rightarrow \infty$

By plotting the above points, we obtain the required curve.

10. Question

Sketch the graphs of the following functions:
$\mathrm{f}(\mathrm{x})=\tan 2 \mathrm{x}$

Answer

We know that $\mathrm{g}(\mathrm{x})=\tan \mathrm{x}$ is a periodic function with period π.
$\therefore f(x)=\tan (2 x)$ is a periodic function with period $\pi / 2$. So, we will draw the graph of $f(x)=\tan (2 x)$ in the interval $[0, \pi / 2]$. The values of $f(x)=\tan (2 x)$ at various points in $[0, \pi / 2]$ are listed in the following table:

X	$-3 \pi / 4$	$-\pi / 2$	$-\pi / 4$	$-\pi / 4$	0	$\pi / 4$	$\pi / 4$	$\pi / 2$	$3 \pi / 4$
$\left.\begin{array}{l}\mathrm{f}(\mathrm{x}) \\ (2 \mathrm{x})\end{array}\right) \tan$	$\rightarrow-\infty$	0	$\rightarrow \infty$	$\rightarrow-\infty$	0	$\rightarrow \infty$	$\rightarrow-\infty$	0	$\rightarrow \infty$

By plotting the above points, we obtain the required curve.

[^0]: By plotting the above points, we obtain the required curve.

[^1]: By plotting the above points, we obtain the required curve.

