6. Factorization of Polynomials

Exercise 6.1

1. Question

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:
(i) $3 x^{2}-4 x+15$
(ii) $y^{2}+2 \sqrt{3}$
(iii) $3 \sqrt{x}+\sqrt{2} x$
(iv) $x-\frac{4}{x}$
(v) $x^{12}+y^{3}+t^{50}$

Answer
(i) $3 x^{2}-4 x+15$ is a polynomial of one variable x.
(ii) $y^{2}+2 \sqrt{3}$ is a polynomial of one variable y.
(iii) $3 \sqrt{x}+\sqrt{2} x$ is not a polynomial as the exponent of $3 \sqrt{x}$ is not a positive integer.
(iv) $\mathrm{x}-\frac{4}{x}$ is not a polynomial as the exponent of $-\frac{4}{x}$ is not a positive integer.
(v) $x^{12}+y^{3}+t^{50}$ is a polynomial of three variables $\mathrm{x}, \mathrm{y}, \mathrm{t}$.

2. Question

Write the coefficient of x^{2} in each of the following:
(i) $17-2 x+7 x^{2}$
(ii) $9-12 x+x^{3}$
(iii) $\frac{\pi}{6} x^{2}-3 x+4$
(iv) $\sqrt{3} x-7$

Answer

Coefficient of x^{2} in:
(i) $17-2 x+7 x^{2}$ is 7
(ii) $9-12 x+x^{3}$ is 0
(iii) $\frac{\pi}{6} x^{2}-3 x+4$ is $\frac{\pi}{6}$
(iv) $\sqrt{3} x-7$ is 0

3. Question

Write the degrees of each of the following polynomials:
(i) $7 x^{3}+4 x^{2}-3 x+12$
(ii) $12-x+2 x^{3}$
(iii) $5 y-\sqrt{2}$
(iv) 7
(v) 0

Answer

Degree of polynomial in:
(i) $7 x^{3}+4 x^{2}-3 x+12$ is 3
(ii) $12-x+2 x^{3}$ is 3
(iii) $5 y-\sqrt{2}$ is 1
(iv) 7 is 0
(v) 0 is undefined

4. Question

Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials:
(i) $x+x^{2}+7 y^{2}$ (ii) $3 x-2$
(iii) $2 x+x^{2}$
(iv) $3 y(v) t^{2}+1$
(vi) $7 t^{4}+4 t^{3}+3 t-2$

Answer

Given polynomial,
(i) $x+x^{2}+7 y^{2}$ is quadratic as degree of polynomial is 2 .
(ii) $3 x-2$ is linear as degree of polynomial is 1 .
(iii) $2 x+x^{2}$ is quadratic as degree of polynomial is 2 .
(iv) $3 y$ is linear as degree of polynomial is 1 .
(v) $\mathrm{t}^{2}+1$ is quadratic as degree of polynomial is 2 .
(vi) $7 t^{4}+4 t^{3}+3 t-2$ is bi-quadratic as degree of polynomial is 4 .

5. Question

Classify the following polynomials as polynomials in one-variable, two variable etc:
(i) $x^{2}-x y+7 y^{2}$ (ii) $x^{2}-2 t x+7 y^{2}-x+t$
(iii) $t^{3}-3 t^{2}+4 t-5$ (iv) $x y+y z+z x$

Answer

(i) $x^{2}-x y+7 y^{2}$ is a polynomial in two variable x, y.
(ii) $x^{2}-2 t x+7 y^{2}-x+t$ is a polynomial in two variable x, t.
(iii) $t^{3}-3 t^{2}+4 t-5$ is a polynomial in one variable t.
(iv) $x y+y z+z x$ is a polynomial in three variable $\mathrm{x}, \mathrm{y}, \mathrm{t}$.

6. Question

Identify polynomials in the following:
(i) $f(x)=4 x^{3}-x^{2}-3 x+7$
(ii) $g(x)=2 x^{3}-3 x^{2}+\sqrt{x}-1$
(iii) $p(x)=\frac{2}{3} x^{2}-\frac{7}{4} x+9$
(iv) $q(x)=2 x^{2}-3 x+\frac{4}{x}+2$
(v) $h(x)=x^{4}-x^{\frac{3}{2}}+x-1$
(vi) $f(x)=2+\frac{3}{x}+4 x$

Answer

(i) $f(x)=4 x^{3}-x^{2}-3 x+7$ is a polynomial.
(ii) $g(x)=2 x^{3}-3 x^{2}+\sqrt{x}-1$ is not a polynomial as exponent of x in \sqrt{x} is not a positive integer.
(iii) $p(x)=\frac{2}{3} x^{2}-\frac{7}{4} x+9$ is a polynomial as all the exponents are positive integer.
(iv) $q(x)=2 x^{2}-3 x+\frac{4}{x}+2$ is not a polynomial as the exponent of x in $\frac{4}{x}$ is not a positive integer.
(v) $h(x)=x^{4}-x^{\frac{3}{2}}+x-1$ is not a polynomial as the exponent of x in $-x^{3 / 2}$ is not a positive integer.
(vi) $f(x)=2+\frac{3}{x}+4 x$ is not a polynomial as the exponent of x in $\frac{3}{x}$ is not a positive integer.

7. Question

Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
(i) $f(x)=0$ (ii) $g(x)=2 x^{3}-7 x+4$
(iii) $h(x)=-3 x+\frac{1}{2}$
(iv) $p(x)=2 x^{2}-x+4$
(v) $q(x)=4 x+3\left(\right.$ vi) $r(x)=3 x^{3}+4 x^{2}+5 x-7$

Answer

Given polynomial,
(i) $f(x)=0$ is a constant polynomial as 0 is constant.
(ii) $g(x)=2 x^{3}-7 x+4$ is a cubic polynomial as degree of the polynomial is 3 .
(iii) $h(x)=-3 x+\frac{1}{2}$ is a linear polynomial as the degree of polynomial is 1 .
(iv) $p(x)=2 x^{2}-x+4$ is a quadratic polynomial as the degree of polynomial is 2 .
(v) $q(x)=4 x+3$ is a linear polynomial as the degree of polynomial is 1 .
(vi) $r(x)=3 x^{3}+4 x^{2}+5 x-7$ is a cubic polynomial as the degree of polynomial is 3 .

8. Question

Give one example each of a binomial of degree 35 , and of a monomial of degree 100

Answer

Example of a binomial with degree 35 is $7 x^{35}-5$.
Example of a monomial with degree 100 is $2 t^{100}$.

Exercise 6.2

1. Question

If $f(\mathrm{x})=2 x^{3}-13 x^{2}+17 x+12$, find
(i) f(2) (ii) f-3) (iii) f0)

Answer

We have,
$f(x)=2 x^{3}-13 x^{2}+17 x+12$
(i) $f(2)=2(2)^{3}-13(2)^{2}+17(2)+12$
$=(2 * 8)-(13 * 4)+(17 * 2)+12$
$=16-52+34+12$
$=10$
(ii) $\mathrm{f}(-3)=2(-3)^{3}-13(-3)^{2}+17(-3)+12$
$=(2 *-27)-(13 * 9)+(17 *-3)+12$
$=-54-117-51+12$
$=-210$
(iii) $f(0)=2(0)^{3}-13(0)^{2}+17(0)+12$
$=0-0+0+12$
$=12$

2. Question

Verify whether the indicated numbers are zeros of the polynomials corresponding to them in the following cases:
(i) $f(x)=3 x+1 ; x=-\frac{1}{3}$
(ii) $f(x)=x^{2}-1 ; x=1,-1$
(iii) $g(x)=3 x^{2}-2 ; x=\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}}$
(iv) $p(x)=x^{3}-6 x^{2}+11 x-6, x=1,2,3$
(v) $f(x)=5 x-\pi, x=\frac{4}{5}$
(vi) $f(x)=x^{2}, x=0$
(vii) $f(x)=1 x+m, x=-\frac{m}{1}$
(viii) $f(x)=2 x+1, x=\frac{1}{2}$

Answer

(i) $f(x)=3 x+1$

Put $x=-1 / 3$
$f(-1 / 3)=3 *(-1 / 3)+1$
$=-1+1$
$=0$
Therefore, $x=-1 / 3$ is a root of $f(x)=3 x+1$
(ii) We have,
$f(x)=x^{2}-1$
Put $x=1$ and $x=-1$
$f(1)=(1)^{2}-1$ and $f(-1)=(-1)^{2}-1$
$=1-1=1-1$
$=0=0$
Therefore, $x=-1$ and $x=1$ are the roots of $f(x)=x^{2}-1$
(iii) $g(x)=3 x^{2}-2$

Put $x=\frac{2}{\sqrt{3}}$ and $x=\frac{-2}{\sqrt{3}}$
$g\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-2$ and $g\left(\frac{-2}{\sqrt{3}}\right)=3\left(\frac{-2}{\sqrt{3}}\right)^{2}-2$
$=3 * \frac{4}{3}-2=3 * \frac{4}{3}-2$
$=2 \neq 0=2 \neq 0$
Therefore, $x=\frac{2}{\sqrt{3}}$ and $x=\frac{-2}{\sqrt{3}}$ are not the roots of $g(x)=3 x^{2}-2$
(iv) $p(x)=x^{3}-6 x^{2}+11 x-6$

Put $x=1$
$p(1)=(1)^{3}-6(1)^{2}+11(1)-6$
$=1-6+11-6$
$=0$
Put $x=2$
$p(2)=(2)^{3}-6(2)^{2}+11(2)-6$
$=8-24+22-6$
$=0$
Put $x=3$
$p(3)=(3)^{3}-6(3)^{2}+11(3)-6$
$=27-54+33-6$
$=0$
Therefore, $x=1,2,3$ are roots of $p(x)=x^{3}-6 x^{2}+11 x-6$
(v) $f(x)=5 x-\pi$

Put $x=\frac{4}{5}$
$f\left(\frac{4}{5}\right)=5 * \frac{4}{5}-\pi$
$=4-\pi \neq 0$
Therefore, $x=\frac{4}{5}$ is not a root of $f(x)=5 x-\pi$
(vi) $f(x)=x^{2}$

Put $x=0$
$f(0)=(0)^{2}$
$=0$
Therefore, $x=0$ is not a root of $f(x)=x^{2}$
(vii) $f(x)=I x+m$

Put $\mathrm{x}=\frac{-m}{l}$
$\mathrm{f}\left(\frac{-m}{l}\right)=1 *\left(\frac{-m}{l}\right)+\mathrm{m}$
$=-\mathrm{m}+\mathrm{m}$
$=0$
Therefore, $\mathrm{x}=\frac{-m}{l}$ is a root of $\mathrm{f}(\mathrm{x})=\mathrm{lx}+\mathrm{m}$
(viii) $f(x)=2 x+1$

Put $x=\frac{1}{2}$
$f\left(\frac{1}{2}\right)=2 * \frac{1}{2}+1$
$=1+1$
$=2 \neq 0$
Therefore, $x=\frac{1}{2}$ is not a root of $f(x)=2 x+1$

3. Question

If $x=2$ is a root of the polynomial $f(x)=2 x^{2}-3 x+7 a$, find the value of a.

Answer

We have,
$f(x)=2 x^{2}-3 x+7 a$
Put $x=2$
$f(2)=2(2)^{2}-3(2)+7 a$
$=2 * 4-6+7 a$
$=8-6+7 a$
$=2+7 a$
Given, $x=2$ is a root of $f(x)=2 x^{2}-3 x+7 a$
$f(2)=0$
Therefore, $2+7 \mathrm{a}=0$
$7 a=-2$
$a=\frac{-2}{7}$

4. Question

If $x=-1 / 2$ is a zero of the polynomial $p(x)=8 x^{3}-a x^{2}-x+2$, find the value of a.

Answer

We have,
$p(x)=8 x^{3}-a x^{2}-x+2$
Put $x=-\frac{1}{2}$
$p\left(-\frac{1}{2} \quad\right)=8\left(-\frac{1}{2} \quad\right)^{3}-a\left(-\frac{1}{2} \quad\right)^{2}-\left(-\frac{1}{2} \quad\right)+2$
$=8 \times \frac{-1}{8}-\mathrm{a} \times \frac{1}{4}+\frac{1}{2}+2$
$=-1-\frac{a}{4}+\frac{1}{2}+2$
$=\frac{3}{2}-\frac{a}{4}$
Given that,
$x=-\frac{1}{2} \quad$ is a root of $p(x)$
$p\left(-\frac{1}{2}\right)=0$
Therefore,
$\frac{3}{2}-\frac{a}{4}=0$
$\frac{3}{2}=\frac{a}{4}$
$2 \mathrm{a}=12$
$a=6$

5. Question

If $x=0$ and $x=-1$ are the roots of the polynomial $f(x)=2 x^{3}-3 x^{2}+a x+b$, find the value of a and b.

Answer

we have,
$f(x)=2 x^{3}-3 x^{2}+a x+b$
Put,
$x=0$
$f(0)=2(0)^{3}-3(0)^{2}+a(0)+b$
$=0-0+0+b$
$=\mathrm{b}$
$x=-1$
$f(-1)=2(-1)^{3}-3(-1)^{2}+a(-1)+b$
$=-2-3-a+b$
$=-5-a+b$
Since, $x=0$ and $x=-1$ are roots of $f(x)$
$f(0)=0$ and $f(-1)=0$
$\mathrm{b}=0$ and $-5-\mathrm{a}+\mathrm{b}=0$
$=a-b=-5$
$=a-0=-5$
$=a=-5$
Therefore, $a=-5$ and $b=0$

6. Question

Find the integral roots of the polynomial $f(x)=x^{3}+6 x^{2}+11 x+6$.

Answer

We have,
$f(x)=x^{3}+6 x^{2}+11 x+6$
Clearly, $f(x)$ is a polynomial with integer coefficient and the coefficient of the highest degree term i.e., the leading coefficient is 1 .

Therefore, integer root of $f(x)$ are limited to the integer factors of 6 , which are:
$\pm 1, \pm 2, \pm 3, \pm 6$
We observe that
$f(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6$
$=-1+6-11+6$
$=0$
$f(-2)=(-2)^{3}+6(-2)^{2}+11(-2)+6$
$=-8+24-22+6$
$=0$
$f(-3)=(-3)^{3}+6(-3)^{2}+11(-3)+6$
$=-27+54-33+6$
$=0$
Therefore, integral roots of $f(x)$ are $-1,-2,-3$.

7. Question

Find rational roots of the polynomial $f(x)=2 x^{3}+x^{2}-7 x-6$.

Answer

We have,
$f(x)=2 x^{3}+x^{2}-7 x-6$
Clearly, $\mathrm{f}(\mathrm{x})$ is a cubic polynomial with integer coefficients. If $\frac{b}{c}$ is a rational root in lowest term, then the value of b are limited to the factors of 6 which are $\pm 1, \pm 2, \pm 3, \pm 6$ and values of c are limited to the factors of 2 which are $\pm 1, \pm 2$.

Hence, the possible rational roots of $f(x)$ are:
$\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$
We observe that,
$f(-1)=2(-1)^{3}+(-1)^{2}-7(-1)-6$
$=-2+1+7-6$
$=0$
$f(2)=2(2)^{3}+(2)^{2}-7(2)-6$
$=16+4-14-6$
$=0$
$f\left(\frac{-3}{2}\right)=2\left(\frac{-3}{2}\right)^{3}+\left(\frac{-3}{2}\right)^{2}-7\left(\frac{-3}{2}\right)-6$
$=\frac{-27}{4}+\frac{9}{4}+\frac{21}{2}-6$
$=0$
Hence, $-1,2, \frac{-3}{2}$ are the rational roots of $f(x)$.

Exercise 6.3

1. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$:
$f(x)=x^{3}+4 x^{2}-3 x+10, g(x)=x+4$

Answer

We have,
$f(x)=x^{3}+4 x^{2}-3 x+10$ and $g(x)=x+4$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-(-4)$, the remainder is equal to $f(-4)$ Now, $f(x)=x^{3}+4 x^{2}-3 x+10$
$f(-4)=(-4)^{3}+4(-4)^{2}-3(-4)+10$
$=-64+4 * 16+12+10$
$=22$
Hence, required remainder is 22.

2. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$:
$f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7, g(x)=x-1$

Answer

We have,
$f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7$ and $g(x)=x-1$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-1$, the remainder is equal to $f(+1)$
Now, $f(x)=4 x^{4}-3 x^{3}-2 x^{2}+x-7$
$f(1)=4(1)^{4}-3(1)^{3}-2(1)^{2}+1-7$
$=4-3-2+1-7$
$=-7$
Hence, required remainder is -7 .

3. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$:
$f(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2, g(x)=x+2$

Answer

We have,
$f(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2$ and $g(x)=x+2$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-(-2)$, the remainder is equal to $f(-2)$ Now, $f(x)=2 x^{4}-6 x^{3}+2 x^{2}-x+2$
$f(-2)=2(-2)^{4}-6(-2)^{3}+2(-2)^{2}-(-2)+2$
$=2 * 16+48+8+2+2$
$=32+48+12$
$=92$
Hence, required remainder is 92 .

4. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$:
$f(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$

Answer

We have,
$f(x)=4 x^{3}-12 x^{2}+14 x-3$ and $g(x)=2 x-1$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=2\left(x-\frac{1}{2}\right)$, the remainder is equal to $f\left(\frac{1}{2}\right)$
Now, $f(x)=4 x^{3}-12 x^{2}+14 x-3$
$\mathrm{f}\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+14\left(\frac{1}{2}\right)-3$
$=\left(4 * \frac{1}{8}\right)-\left(12 * \frac{1}{4}\right)+7-3$
$=\frac{1}{2}-3+7-3$
$=\frac{3}{2}$
Hence, required remainder is $\frac{3}{2}$

5. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$:
$f(x)=x^{3}-6 x^{2}+2 x-4, g(x)=1-2 x$

Answer

We have,
$f(x)=x^{3}-6 x^{2}+2 x-4$ and $g(x)=1-2 x$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=-2\left(x-\frac{1}{2}\right)$, the remainder is equal to $f\left(\frac{1}{2}\right)$
Now, $f(x)=x^{3}-6 x^{2}+2 x-4$
$f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{3}-6\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)-4$
$=\frac{1}{8}-\frac{3}{2}+1-4$
$=\frac{-35}{8}$
Hence, required remainder is $\frac{-35}{8}$

6. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$: $f(x)=x^{4}-3 x^{2}+4, g(x)=x-2$

Answer

We have,
$f(x)=x^{4}-3 x^{2}+4$ and $g(x)=x-2$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-2$, the remainder is equal to $f(2)$ Now, $f(x)=x^{4}-3 x^{2}+4$
$f(2)=(2)^{4}-3(2)^{2}+4$
$=16-12+4$
$=8$
Hence, required remainder is 8 .

7. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$:
$f(x)=9 x^{3}-3 x^{2}+x-5, g(x)=x=-\frac{2}{3}$

Answer

We have,
$f(x)=9 x^{3}-3 x^{2}+x-5$ and $g(x)=x=-\frac{2}{3}$
Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-\frac{2}{3}$, the remainder is equal to $f\left(\frac{2}{3}\right)$
Now, $f(x)=9 x^{3}-3 x^{2}+x-5$
$\mathrm{f}\left(\frac{2}{3}\right)=9\left(\frac{2}{3}\right)^{3}-3\left(\frac{2}{3}\right)^{2}+\frac{2}{3}-5$
$=\left(9 * \frac{8}{27}\right)-\left(3 * \frac{4}{9}\right)+\frac{2}{3}-5$
$=\frac{8}{3}-\frac{4}{3}+\frac{2}{3}-5$
$=2-5=-3$
Hence, the required remainder is -3 .
8. Question

In each of the following, using the remainder theorem, find the remainder when $f(x)$ is divided by $g(x)$:
$f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}, g(x)=x+\frac{2}{3}$

Answer

We have,
$f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}$ and $g(x)=x+\frac{2}{3}$

Therefore, by remainder theorem when $f(x)$ is divided by $g(x)=x-\left(-\frac{2}{3}\right)$, the remainder is equal to $f\left(\frac{-2}{3}\right)$ Now, $f(x)=3 x^{4}+2 x^{3}-\frac{x^{2}}{3}-\frac{x}{9}+\frac{2}{27}$
$\left.f\left(\frac{-2}{3}\right)=3\left(\frac{-2}{3}\right)^{4}+2\left(\frac{-2}{3}\right)^{3}-\frac{\left(\frac{-2}{3} * \frac{2}{3}\right.}{3}\right)-\frac{-\frac{2}{3}}{9}+\frac{2}{27}$
$=3 * \frac{16}{81}+2 * \frac{-8}{27}-\frac{4}{9 * 3}-\frac{-2}{3 * 9}+\frac{2}{27}$
$=\frac{16}{27}-\frac{16}{27}-\frac{4}{27}+\frac{2}{27}+\frac{2}{27}$
$=\frac{16-16-4+2+2}{27}=\frac{0}{27}$
$=0$
Hence, required remainder is 0 .

9. Question

If the polynomials $2 x^{3}+a x^{2}+3 x-5$ and $x^{3}+x^{2}-4 x+a$ leave the same remainder when divided by $x-2$, find the value of a.

Answer

Let, $\mathrm{p}(\mathrm{x})=2 x^{3}+a x^{2}+3 x-5$ and $\mathrm{q}(\mathrm{x})=x^{3}+x^{2}-4 x+a$ be the given polynomials.
The remainders when $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ are divided by $(\mathrm{x}-2)$ and $\mathrm{p}(2)$ and $\mathrm{q}(2)$ respectively.
By the given condition, we have:
$p(2)=q(2)$
$2(2)^{3}+a(2)^{2}+3(2)-5=(2)^{3}+(2)^{2}-4(2)+a$
$16+4 a+6-5=8+4-8+a$
$3 a+13=0$
$3 a=-13$
$a=\frac{-13}{3}$
10. Question

If the polynomials $a x^{3}+3 x^{2}-3 x$ and $2 x^{3}-5 x+a$ when divided by ($x-4$) leave the remainder R_{1} and R_{2} respectively. Find the value of a in each of the following cases, if
(i) $R_{1}=R_{2}$ (ii) $R_{1}+R_{2}=0$
(iii) $2 R_{1}-R_{2}=0$.

Answer

Let, $\mathrm{p}(\mathrm{x})=a x^{3}+3 x^{2}-3$ and $\mathrm{q}(\mathrm{x})=2 x^{3}-5 x+a$ be the given polynomials.
Now,
$R_{1}=$ Remainder when $p(x)$ is divided by $(x-4)$
$=p(4)$
$=a(4)^{3}+3(4)^{2}-3\left[\right.$ Therefore, $\left.p(x)=a x^{3}+3 x^{2}-3\right]$
$=64 a+48-3$
$R_{1}=64 a+45$
And,
$R_{2}=$ Remainder when $q(x)$ is divided by $(x-4)$
$=q(4)$
$=2(4)^{3}-5(4)+a\left[\right.$ Therefore, $\left.q(x)=2 x^{3}-5 x+a\right]$
$=128-20+\mathrm{a}$
$R_{2}=108+a$
(i) Given condition is,
$\mathrm{R}_{1}=\mathrm{R}_{2}$
$64 a+45=108+a$
$63 a-63=0$
$63 a=63$
$a=1$
(ii) Given condition is $R_{1}+R_{2}=0$
$64 a+45+108+a=0$
$65 a+153=0$
$65 a=-153$
$a=\frac{-153}{65}$
(iii) Given condition is $2 R_{1}-R_{2}=0$
$2(64 a+45)-(108+a)=0$
$128 a+90-108-a$
$127 a-18=0$
$127 a=18$
$a=\frac{18}{127}$

11. Question

If the polynomials $a x^{3}+3 x^{2}-13$ and $2 x^{3}-5 x+a$ when divided by $(x-2)$ leave the same remainder, find the value of a.

Answer

Let $\mathrm{p}(\mathrm{x})=a x^{3}+3 x^{2}-13$ and $\mathrm{q}(\mathrm{x})=2 x^{3}-5 x+a$ be the given polynomials.
The remainders when $p(x)$ and $q(x)$ are divided by $(x-2)$ and $p(2)$ and $q(2)$ respectively.
By the given condition, we have:
$p(2)=q(2)$
$a(2)^{3}+3(2)^{2}-13=2(2)^{3}-5(2)+a$
$8 a+12-13=16-10+a$
$7 a-7=0$
$7 a=7$
$a=\frac{7}{7}$
$=1$

12. Question

Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by
(i) $x+1$ (ii) $x-\frac{1}{2}$
(iii) x (iv) $x+\pi$
(v) $5+2 x$

Answer

Let, $f(x)=x^{3}+3 x^{2}+3 x+1$
(i) $x+1$

Apply remainder theorem
$\Rightarrow \mathrm{x}+1=0$
$\Rightarrow \mathrm{x}=-1$
Replace x by - 1 we get
$\Rightarrow x^{3}+3 x^{2}+3 x+1$
$\Rightarrow(-1)^{3}+3(-1)^{2}+3(-1)+1$
$\Rightarrow-1+3-3+1$
$\Rightarrow 0$
Hence, the required remainder is 0 .
(ii) $x-\frac{1}{2}$

Apply remainder theorem
$\Rightarrow x-1 / 2=0$
$\Rightarrow x=1 / 2$
Replace x by $1 / 2$ we get
$\Rightarrow x^{3}+3 x^{2}+3 x+1$
$\Rightarrow(1 / 2)^{3}+3(1 / 2)^{2}+3(1 / 2)+1$
$\Rightarrow 1 / 8+3 / 4+3 / 2+1$
Add the fraction taking LCM of denominator we get
$\Rightarrow(1+6+12+8) / 8$
$\Rightarrow 27 / 8$
Hence, the required remainder is 27/8
(iii) $x=x-0$

By remainder theorem required remainder is equal to $f(0)$
Now, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 x+1$
$f(0)=(0)^{3}+3(0)^{2}+3(0)+1$
$=0+0+0+1$
$=1$
Hence, the required remainder is 1 .
(iv) $x+\pi=x-(-\pi)$

By remainder theorem required remainder is equal to $f(-\pi)$
Now, $f(x)=x^{3}+3 x^{2}+3 x+1$
$f(-\pi)=(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1$
$=-\pi^{3}+3 \pi^{2}-3 \pi+1$
Hence, required remainder is $-\pi^{3}+3 \pi^{2}-3 \pi+1$.
(v) $5+2 x=2\left[x-\left(\frac{-5}{2}\right)\right]$

By remainder theorem required remainder is equal to $f\left(\frac{-5}{2}\right)$
Now, $f(x)=x^{3}+3 x^{2}+3 x+1$
$f\left(\frac{-5}{2}\right)=\left(\frac{-5}{2}\right)^{3}+3\left(\frac{(-5}{2}\right)^{2}+3\left(\frac{-5}{2}\right)+1$
$=\frac{-125}{8}+3 * \frac{25}{4}+3 * \frac{-5}{2}+1$
$=\frac{-125}{8}+\frac{75}{4}-\frac{15}{2}+1$
$=\frac{-27}{8}$
Hence, the required remainder is $\frac{-27}{8}$.

Exercise 6.4

1. Question

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not:
$f(x)=x^{3}-6 x^{2}+11 x-6, g(x)=x-3$

Answer

We have,
$f(x)=x^{3}-6 x^{2}+11 x-6$ and $g(x)=x-3$
In order to find whether polynomials $g(x)=x-3$ is a factor of $f(x)$, it is sufficient to show that $f(3)=0$
Now,
$f(x)=x^{3}-6 x^{2}+11 x-6$
$f(3)=3^{3}-6(3)^{2}+11(3)-6$
$=27-54+33-6$
$=60-60$
$=0$
Hence, $g(x)$ is a factor of $f(x)$.

2. Question

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not:
$f(x)=3 x^{4}+17 x^{3}+9 x^{2}-7 x-10, g(x)=x+5$
Answer

We have,
$f(x)=3 x^{4}+17 x^{3}+9 x^{2}-7 x-10$ and $g(x)=x+5$
In order to find whether the polynomials $g(x)=x-(-5)$ is a factor of $f(x)$ or not, it is sufficient to show that f $(-5)=0$

Now,
$f(x)=3 x^{4}+17 x^{3}+9 x^{2}-7 x-10$
$f(-5)=3(-5)^{4}+17(-5)^{3}+9(-5)^{2}-7(-5)-10$
$=3 * 625+17 *(-125)+9 * 25+35-10$
$=1875-2125+225+35-10$
$=0$
Hence, $g(x)$ is a factor of $f(x)$.

3. Question

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not:
$f(x)=x^{5}+3 x^{4}-x^{3}-3 x^{2}+5 x+15, g(x)=x+3$

Answer

We have,
$f(x)=x^{5}+3 x^{4}-x^{3}-3 x^{2}+5 x+15$ and $g(x)=x+3$
In order to find whether $g(x)=x-(-3)$ is a factor of $f(x)$ or not, it is sufficient to prove that $f(-3)=0$
Now,
$f(x)=x^{5}+3 x^{4}-x^{3}-3 x^{2}+5 x+15$
$f(-3)=(-3)^{5}+3(-3)^{4}-(-3)^{3}-3(-3)^{2}+5(-3)+15$
$=-243+243-(-27)-3(9)+5(-3)+15$
$=-243+243+27-27-15+15$
$=0$
Hence, $g(x)$ is a factor of $f(x)$.

4. Question

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not:
$f(x)=x^{3}-6 x^{2}-19 x+84, g(x)=x-7$

Answer

We have,
$f(x)=x^{3}-6 x^{2}-19 x+84$ and $g(x)=x-7$
In order to find whether $g(x)=x-7$ is a factor of $f(x)$ or not, it is sufficient to show that $f(7)=0$ Now,
$f(x)=x^{3}-6 x^{2}-19 x+84$
$f(7)=(7)^{3}-6(7)^{2}-19(7)+84$
$=343-294-133+84$
$=0$
Hence, $g(x)$ is a factor of $f(x)$.

5. Question

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not:
$f(x)=3 x^{3}+x^{2}-20 x+12, g(x)=3 x-2$

Answer

We have,
$f(x)=3 x^{3}+x^{2}-20 x+12$ and $g(x)=3 x-2$
In order to find whether $g(x)$ is $=3 x-2$ is a factor of $f(x)$ or not, it is sufficient to show that $f\left(\frac{2}{3}\right)=0$
Now,
$f(x)=3 x^{3}+x^{2}-20 x+12$
$f\left(\frac{2}{3}\right)=3\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{2}-20\left(\frac{2}{3}\right)+12$
$=\frac{12}{9}-\frac{40}{3}+12$
$=\frac{120-120}{9}$
$=0$
Hence, $g(x)$ is a factor of $f(x)$.

6. Question

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not:
$f(x)=2 x^{3}-9 x^{2}+x+12, g(x)=3-2 x$

Answer

We have,
$f(x)=2 x^{3}-9 x^{2}+x+12$ and $g(x)=3-2 x$
In order to find $g(x)=3-2 x=2\left(x-\frac{3}{2}\right)$ is a factor of $f(x)$ or not, it is sufficient to prove that $f\left(\frac{3}{2}\right)=0$
Now,
$f(x)=2 x^{3}-9 x^{2}+x+12$
$f\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{3}-9\left(\frac{3}{2}\right)^{2}+\frac{3}{2}+12$
$=\frac{27}{4}-\frac{81}{4}+\frac{3}{2}+12$
$=\frac{81-81}{4}$
$=0$
Hence, $g(x)$ is a factor of $f(x)$.

7. Question

In each of the following, use factor theorem to find whether polynomial $g(x)$ is a factor of polynomial $f(x)$ or, not:
$f(x)=x^{3}-6 x^{2}+11 x-6, g(x)=x^{2}-3 x+2$

Answer

We have,
$f(x)=x^{3}-6 x^{2}+11 x-6$ and $g(x)=x^{2}-3 x+2$
In order to find $g(x)=x^{2}-3 x+2=(x-1)(x-2)$ is a factor of $f(x)$ or not, it is sufficient to prove that $(x-1)$ and ($x-2$) are factors of $f(x)$
i.e. We have to prove that $f(1)=0$ and $f(2)=0$
$f(1)=(1)^{3}-6(1)^{2}+11(1)-6$
$=1-6+11-6$
$=12-12$
$=0$
$f(2)=(2)^{3}-6(2)^{2}+11(2)-6$
$=8-24+22-6$
$=30-30$
$=0$
Since, $(x-1)$ and ($x-2$) are factors of $f(x)$.
Therefore, $g(x)=(x-1)(x-2)$ are the factors of $f(x)$.

8. Question

Show that $(x-2),(x+3)$ and $(x-4)$ are factors of $x^{3}-3 x^{2}-10 x+24$.

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}-3 x^{2}-10 x+24$ be the given polynomial.
In order to prove that $(x-2)(x+3)(x-4)$ are the factors of $f(x)$, it is sufficient to show that $f(2)=0, f(-3)$ $=0$ and $\mathrm{f}(4)=0$ respectively.

Now,
$f(x)=x^{3}-3 x^{2}-10 x+24$
$f(2)=(2)^{3}-3(2)^{2}-10(2)+24$
$=8-12-20+24$
$=0$
$f(-3)=(-3)^{3}-3(-3)^{2}-10(-3)+24$
$=-27-27+30+24$
$=0$
$f(4)=(4)^{3}-3(4)^{2}-10(4)+24$
$=64-48-40+24$
$=0$
Hence, $(x-2),(x+3)$ and $(x-4)$ are the factors of the given polynomial.

9. Question

Show that $(x+4),(x-3)$ and $(x-7)$ are factors of $x^{3}-6 x^{2}-19 x+84$.

Answer

Let $f(x)=x^{3}-6 x^{2}-19 x+84$ be the given polynomial.
In order to prove that $(x+4),(x-3)$ and $(x-7)$ are factors of $f(x)$, it is sufficient to prove that $f(-4)=0, f$
(3) $=0$ and $f(7)=0$ respectively.

Now,
$f(x)=x^{3}-6 x^{2}-19 x+84$
$f(-4)=(-4)^{3}-6(-4)^{2}-19(-4)+84$
$=-64-96+76+84$
$=0$
$f(3)=(3)^{3}-6(3)^{2}-19(3)+84$
$=27-54-57+84$
$=0$
$f(7)=(7)^{3}-6(7)^{2}-19(7)+84$
$=343-294-133+84$
$=0$
Hence, $(x-4),(x-3)$ and $(x-7)$ are the factors of the given polynomial $x^{3}-6 x^{2}-19 x+84$.

10. Question

For what value of a is $(x-5)$ a factor of $x^{3}-3 x^{2}+a x-10$.

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}-3 x^{2}+a x-10$ be the given polynomial.
By factor theorem,
If $(x-5)$ is a factor of $f(x)$ then $f(5)=0$

Now,

$\mathrm{f}(\mathrm{x})=x^{3}-3 x^{2}+a x-10$
$f(5)=(5)^{3}-3(5)^{2}+a(5)-10$
$0=125-75+5 a-10$
$0=5 a+40$
$a=-8$
Hence, $(x-5)$ is a factor of $f(x)$, if $a=-8$.

11. Question

Find the value of a such that $(x-4)$ is a factor of $5 x^{3}-7 x^{2}-a x-28$.

Answer

Let $f(x)=5 x^{3}-7 x^{2}-a x-28$ be the given polynomial.
From factor theorem,
If $(x-4)$ is a factor of $f(x)$ then $f(4)=0$
$f(4)=0$
$0=5(4)^{3}-7(4)^{2}-a(4)-28$
$0=320-112-4 a-28$
$0=180-4 a$
$4 a=180$
$a=45$
Hence, $(x-4)$ is a factor of $f(x)$ when $a=45$.

12. Question

Find the value of a, if $x+2$ is a factor of $4 x^{4}+2 x^{3}-3 x^{2}+8 x+5 a$.

Answer

Let, $\mathrm{f}(\mathrm{x})=4 x^{4}+2 x^{3}-3 x^{2}+8 x+5 a$
$f(-2)=0$
$4(-2)^{4}+2(-2)^{3}-3(-2)^{2}+8(-2)+5 a=0$
$64-16-12-16+5 a=0$
$5 \mathrm{a}=-20$
$a=-4$
Hence, $(x+2)$ is a factor $f(x)$ when $a=-4$.

13. Question

Find the value of k if $x-3$ is a factor of $k^{2} x^{3}-k x^{2}+3 k x-k$.

Answer

Let, $\mathrm{f}(\mathrm{x})=k^{2} x^{3}-\mathrm{k} x^{2}+3 k x-k$
By factor theorem,
If $(x-3)$ is a factor of $f(x)$ then $f(3)=0$
$k^{2}(3)^{3}-k(3)^{2}+3 k(3)-k=0$
$27 \mathrm{k}^{2}-9 \mathrm{k}+9 \mathrm{k}-\mathrm{k}=0$
$\mathrm{k}(27 \mathrm{k}-1)=0$
$\mathrm{k}=0$ or $(27 \mathrm{k}-1)=0$
$k=0$ or $k=\frac{1}{27}$
Hence, $(x-3)$ is a factor of $f(x)$ when $k=0$ or $k=\frac{1}{27}$.

14. Question

Find the value is of a and b, if $x^{2}-4$ is a factor of $a x^{4}+2 x^{3}-3 x^{2}+b x-4$.

Answer

Let, $\mathrm{f}(\mathrm{x})=a x^{4}+2 x^{3}-3 x^{2}+b x-4$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-4$
We have,
$g(x)=x^{2}-4$
$=(x-2)(x+2)$
Given,
$g(x)$ is a factor of $f(x)$
$(x-2)$ and ($x+2$) are factors of $f(x)$.

From factor theorem if $(x-2)$ and $(x+2)$ are factors of $f(x)$ then $f(2)=0$ and $f(-2)=0$ respectively.
$f(2)=0$
$a^{*}(-2)^{4}+2(2)^{3}-3(2)^{2}+b(2)-4=0$
$16 a-16-12+2 b-4=0$
$16 a+2 b=0$
$2(8 a+b)=0$
$8 a+b=0(i)$
Similarly,
$f(-2)=0$
$a *(-2)^{4}+2(-2)^{3}-3(-2)^{2}+b(-2)-4=0$
$16 a-16-12-2 b-4=0$
$16 a-2 b-32=0$
$16 a-2 b-32=0$
$2(8 a-b)=32$
$8 a-b=16$ (ii)
Adding (i) and (ii), we get
$8 a+b+8 a-b=16$
$16 a=16$
$a=1$
Put $\mathrm{a}=1$ in (i), we get
$8 * 1+b=0$
$b=-8$
Hence, $\mathrm{a}=1$ and $\mathrm{b}=-8$.

15. Question

Find α and β if $x+1$ and $x+2$ are factors of $x^{3}+3 x^{2}-2 \alpha x+\beta$.

Answer

Let, $f(x)=x^{3}+3 x^{2}-2 \alpha x+\beta$ be the given polynomial,
From factor theorem,
If $(x+1)$ and $(x+2)$ are factors of $f(x)$ then $f(-1)=0$ and $f(-2)=0$
$f(-1)=0$
$(-1)^{3}+3(-1)^{2}-2 \alpha(-1)+\beta=0$
$-1+3+2 \alpha+\beta=0$
$2 \alpha+\beta+2=0$ (i)
Similarly,
$f(-2)=0$
$(-2)^{3}+3(-2)^{2}-2 \alpha(-2)+\beta=0$
$-8+12+4 \alpha+\beta=0$
$4 \alpha+\beta+4=0$ (ii)
Subtract (i) from (ii), we get
$4 \alpha+\beta+4-(2 \alpha+\beta+2)=0-0$
$4 \alpha+\beta+4-2 \alpha-\beta-2=0$
$2 \alpha+2=0$
$\alpha=-1$
Put $\alpha=-1$ in (i), we get
$2(-1)+\beta+2=0$
$\beta=0$
Hence, $\alpha=-1$ and $\beta=0$.

16. Question

Find the value of p and q so that $x^{4}+p x^{3}+2 x^{2}-3 x+q$ is divisible by $\left(x^{2}-1\right)$.

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{4}+p x^{3}+2 x^{2}-3 x+q$ be the given polynomial.
And, let $g(x)=\left(x^{2}-1\right)=(x-1)(x+1)$
Clearly,
$(x-1)$ and $(x+1)$ are factors of $g(x)$
Given, $g(x)$ is a factor of $f(x)$
$(x-1)$ and $(x+1)$ are factors of $f(x)$
From factor theorem
If $(x-1)$ and $(x+1)$ are factors of $f(x)$ then $f(1)=0$ and $f(-1)=0$ respectively.
$f(1)=0$
$(1)^{4}+p(1)^{3}+2(1)^{2}-3(1)+q=0$
$1+p+2-3+q=0$
$p+q=0(i)$
Similarly,
$f(-1)=0$
$(-1)^{4}+p(-1)^{3}+2(-1)^{2}-3(-1)+q=0$
$1-p+2+3+q=0$
$q-p+6=0$ (ii)
Adding (i) and (ii), we get
$p+q+q-p+6=0$
$2 q+6=0$
$2 q=-6$
$q=-3$
Putting value of q in (i), we get
$p-3=0$
$p=3$
Hence, $x^{2}-1$ is divisible by $f(x)$ when $p=3$ and $q=-3$.

17. Question

Find the value is of a and b, so that $(x+1)$ and $(x-1)$ are factors of $x^{4}+a x^{3}-3 x^{2}+2 x+b$.

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{4}+a x^{3}-3 x^{2}+2 x+b$ be the given polynomial
From factor theorem
If $(x+1)$ and $(x-1)$ are factors of $f(x)$ then $f(-1)=0$ and $f(1)=0$ respectively.
$f(-1)=0$
$(-1)^{4}+a(-1)^{3}-3(-1)^{2}+2(-1)+b=0$
$1-a-3-2+b=0$
$\mathrm{b}-\mathrm{a}-4=0(\mathrm{i})$
Similarly, $f(1)=0$
$(1)^{4}+a(1)^{3}-3(1)^{2}+2(1)+b=0$
$1+a-3+2+b=0$
$a+b=0$ (ii)
Adding (i) and (ii), we get
$2 b-4=0$
$2 b=4$
$b=2$
Putting the value of b in (i), we get
$2-a-4=0$
$a=-2$
Hence, $a=-2$ and $b=2$.

18. Question

If $x^{3}+a x^{2}-b x+10$ is divisible by $x^{2}-3 x+2$, find the values of a and b.

Answer

Let $\mathrm{f}(\mathrm{x})=x^{3}+a x^{2}-b x+10$ and $\mathrm{g}(\mathrm{x})=x^{2}-3 x+2$ be the given polynomials.
We have $g(x)=x^{2}-3 x+2=(x-2)(x-1)$
Clearly, ($x-1$) and ($x-2$) are factors of $g(x)$
Given that $f(x)$ is divisible by $g(x)$
$g(x)$ is a factor of $f(x)$
$(x-2)$ and $(x-1)$ are factors of $f(x)$
From factor theorem,
If $(x-1)$ and $(x-2)$ are factors of $f(x)$ then $f(1)=0$ and $f(2)=0$ respectively.
$f(1)=0$
$(1)^{3}+\mathrm{a}(1)^{2}-\mathrm{b}(1)+10=0$
$1+a-b+10=0$
$a-b+11=0$ (i)
$f(2)=0$
$(2)^{3}+a(2)^{2}-b(2)+10=0$
$8+4 a-2 b+10=0$
$4 a-2 b+18=0$
$2(2 a-b+9)=0$
$2 a-b+9=0(i i)$
Subtract (i) from (ii), we get
$2 a-b+9-(a-b+11)=0$
$2 a-b+9-a+b-11=0$
$a-2=0$
$a=2$
Putting value of a in (i), we get
$2-b+11=0$
b $=13$
Hence, $a=2$ and $b=13$

19. Question

If both $x+1$ and $x-1$ are factors of $a x^{3}+x^{2}-2 x+b$, find the value of a and b.

Answer

Let, $\mathrm{f}(\mathrm{X})=a x^{3}+x^{2}-2 x+b$ be the given polynomial.
Given $(x+1)$ and $(x-1)$ are factors of $f(x)$.
From factor theorem,
If $(x+1)$ and $(x-1)$ are factors of $f(x)$ then $f(-1)=0$ and $f(1)=0$ respectively.
$f(-1)=0$
$a(-1)^{3}+(-1)^{2}-2(-1)+b=0$
$-a+1+2+b=0$
$-a+3+b=0$
$b-a+3=0(i)$
$f(1)=0$
$a(1)^{3}+(1)^{2}-2(1)+b=0$
$a+1-2+b=0$
$a+b-1=0$
$b+a-1=0$ (ii)
Adding (i) and (ii), we get
$b-a+3+b+a-1=0$
$2 b+2=0$
$2 b=-2$
$b=-1$
Putting value of b in (i), we get
$-1-a+3=0$
$-a+2=0$
$a=2$
Hence, the value of $a=2$ and $b=-1$.

20. Question

What must be added to $x^{3}-3 x^{2}-12 x+19$ so that the result is exactly divisibly by $x^{2}+x-6$?

Answer

Let $\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}-12 x+19$ and $\mathrm{q}(\mathrm{x})=x^{2}+x-6$
By division algorithm, when $p(x)$ is divided by $q(x)$, the remainder is a linear expression in x.
So, let $r(x)=a x+b$ is added to $p(x)$ so that $p(x)+r(x)$ is divisible by $q(x)$.
Let,

$$
\begin{aligned}
f(x) & =p(x)+r(x) \\
& =x^{3}-3 x^{2}-12 x+19+a x+b \\
& =x^{3}-3 x^{2}+x(a-12)+b+19
\end{aligned}
$$

We have,
$\mathrm{q}(\mathrm{x})=x^{2}+x-6$
$=(x+3)(x-2)$
Clearly, $q(x)$ is divisible by $(x-2)$ and $(x+3)$ i.e. $(x-2)$ and $(x+3)$ are factors of $q(x)$
We have,
$f(x)$ is divisible by $q(x)$
$(x-2)$ and $(x+3)$ are factors of $f(x)$
From factor theorem,
If $(x-2)$ and $(x+3)$ are factors of $f(x)$ then $f(2)=0$ and $f(-3)=0$ respectively.
$f(2)=0$
$(2)^{3}-3(2)^{2}+2(a-12)+b+19=0$
$\Rightarrow 8-12+2 a-24+b+19=0$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}-9=0$
Similarly,
$f(-3)=0$
$(-3)^{3}-3(-3)^{2}+(-3)(a-12)+b+19=0$
$\Rightarrow-27-27-3 a+36+b+19=0$
$\Rightarrow \mathrm{b}-3 \mathrm{a}+1=0$
Subtract (i) from (ii), we get
$b-3 a+1-(2 a+b-9)=0-0$
$\Rightarrow \mathrm{b}-3 \mathrm{a}+1-2 \mathrm{a}-\mathrm{b}+9=0$
$\Rightarrow-5 \mathrm{a}+10=0$
$\Rightarrow 5 \mathrm{a}=10$
$\Rightarrow \mathrm{a}=2$
Put $\mathrm{a}=2$ in (ii), we get
$b-3 \times 2+1=0$
$\Rightarrow \mathrm{b}-6+1=0$
$\Rightarrow \mathrm{b}-5=0$
$\Rightarrow b=5$
Therefore, $r(x)=a x+b$

$$
=2 x+5
$$

Hence, $x^{3}-3 x-12 x+19$ is divisible by $x^{2}+x-6$ when $2 x+5$ is added to it.

21. Question

What must be subtracted from $x^{3}-6 x^{2}-15 x+80$, so that the result is exactly divisible by $x^{2}+x-12$?

Answer

Let $\mathrm{p}(\mathrm{x})=x^{3}-6 x^{2}-15 x+80$ and $\mathrm{q}(\mathrm{x})=x^{2}+x-12$
By division algorithm, when $p(x)$ is divided by $q(x)$, the remainder is alinear expression in x.
So, let $r(x)=a x+b$ is subtracted to $p(x)$ so that $p(x)+r(x)$ is divisible by $q(x)$.
Let, $\mathrm{f}(\mathrm{x})=\mathrm{p}(\mathrm{x})-\mathrm{r}(\mathrm{x})$
$\Rightarrow f(x)=x^{3}-6 x^{2}-15 x+80-(a x+b)$
$\Rightarrow \mathrm{f}(\mathrm{x})=x^{3}-6 x^{2}-(\mathrm{a}+15) x+(80-\mathrm{b})$
We have,
$\mathrm{q}(\mathrm{x})=x^{2}+x-12$
$\Rightarrow q(x)=(x+4)(x-3)$
Clearly, $q(x)$ is divisible by $(x+4)$ and $(x-3)$ i.e. $(x+4)$ and $(x-3)$ are factors of $q(x)$
Therefore, $f(x)$ will be divisible by $q(x)$, if $(x+4)$ and $(x-3)$ are factors of $f(x)$.
i.e. $f(-4)=0$ and $f(3)=0$
$f(3)=0$
$\Rightarrow(3)^{3}-6(3)^{2}-3(a+15)+80-b=0$
$\Rightarrow 27-54-3 \mathrm{a}-45+80-\mathrm{b}=0$
$\Rightarrow 8-3 \mathrm{a}-\mathrm{b}=0$
$f(-4)=0$
$\Rightarrow(-4)^{3}-6(-4)^{2}-(-4)(a+15)+80-b=0$
$\Rightarrow-64-96+4 a+60+80-b=0$
$\Rightarrow 4 \mathrm{a}-\mathrm{b}-20=0$
Subtract (i) from (ii), we get
$\Rightarrow 4 a-b-20-(8-3 a-b)=0$
$\Rightarrow 4 a-b-20-8+3 a+b=0$
$\Rightarrow 7 a=28$
$\Rightarrow \mathrm{a}=4$
Put value of a in (ii), we get
$\Rightarrow b=-4$
Putting the value of a and b in $r(x)=a x+b$, we get
$r(x)=4 x-4$
Hence, $p(x)$ is divisible by $q(x)$, if $r(x)=4 x-4$ is subtracted from it.

22. Question

What must be added to $3 x^{3}+x^{2}-22 x+9$ so that the result is exactly divisible by $3 x^{2}+7 x-6$?

Answer

Let $\mathrm{p}(\mathrm{x})=3 x^{3}+x^{2}-22 x+9$ and $\mathrm{q}(\mathrm{x})=3 x^{2}+7 x-6$.
By division algorithm,
When $\mathrm{p}(\mathrm{x})$ is divided by $\mathrm{q}(\mathrm{x})$, the remainder is a linear expression in x .
So, let $r(x)=a x+b$ is added to $p(x)$ so that $p(x)+r(x)$ is divisible by $q(x)$.
Let, $f(x)=p(x)+r(x)$

$$
\begin{aligned}
& =3 x^{3}+x^{2}-22 x+9+(a x+b) \\
& =3 x^{3}+x^{2}+x(a-22)+b+9
\end{aligned}
$$

We have,
$q(x)=3 x^{2}+7 x-6$
$q(x)=3 x(x+3)-2(x+3)$
$q(x)=(3 x-2)(x+3)$
Clearly, $q(x)$ is divisible by $(3 x-2)$ and $(x+3)$. i.e. $(3 x-2)$ and $(x+3)$ are factors of $q(x)$,
Therefore, $f(x)$ will be divisible by $q(x)$, if $(3 x-2)$ and $(x+3)$ are factors of $f(x)$.
i.e. $f(2 / 3)=0$ and $f(-3)=0 \quad[\because 3 x-2=0, x=2 / 3$ and $x+3=0, x=-3]$
$f(2 / 3)=0$
$\Rightarrow 3\left(\frac{2}{3}\right)^{3}+\left(\frac{2}{3}\right)^{2}+\frac{2}{3}(a-2 x)+b+9=0$
$\Rightarrow \frac{12}{9}+\frac{2}{3 a}-\frac{44}{3}+b+9=0$
$\Rightarrow \frac{12+6 a-132+9 b+81}{9}=0$
$\Rightarrow 6 a+9 b-39=0$
$\Rightarrow 3(2 a+3 b-13)=0$
$\Rightarrow 2 \mathrm{a}+3 \mathrm{~b}-13=0$
Similarly,
$f(-3)=0$
$\Rightarrow 3(-3)^{3}+(-3)^{2}+(-3)(a-2 x)+b+9=0$
$\Rightarrow-81+9-3 a+66+b+9=0$
$\Rightarrow b-3 a+3=0$
$\Rightarrow 3(\mathrm{~b}-3 \mathrm{a}+3)=0$
$\Rightarrow 3 \mathrm{~b}-9 \mathrm{a}+9=0$
Subtract (i) from (ii), we get
$3 b-9 a+9-(2 a+3 b-13)=0$
$3 b-9 a+9-2 a-3 b+13=0$
$\Rightarrow-11 a+22=0$
$\Rightarrow \mathrm{a}=2$
Putting value of a in (i), we get
$\Rightarrow \mathrm{b}=3$
Putting the values of a and b in $r(x)=a x+b$, we get
$r(x)=2 x+3$
Hence, $p(x)$ is divisible by $q(x)$ if $r(x)=2 x+3$ is divisible by it.

23. Question

If $x-2$ is a factor of each of the following two polynomials, find the values of a in each case.
(i) $x^{3}-2 a x^{2}+a x-1$
(ii) $x^{5}-3 x^{4}-a x^{3}+3 a x^{2}+2 a x+4$

Answer

(i) Let, $\mathrm{f}(\mathrm{x})=x^{3}-2 a x^{2}+a x-1$ be the given polynomial

From factor theorem,
If $(x-2)$ is a factor of $f(x)$ then $f(2)=0$ [Therefore, $x-2=0, x=2$]
$f(2)=0$
$(2)^{3}-2 \mathrm{a}(2)^{2}+\mathrm{a}(2)-1=0$
$8-8 a+2 a-1=0$
$7-6 a=0$
$6 a=7$
$a=\frac{7}{6}$
Hence, $(x-2)$ is a factor of $f(x)$ when $a=\frac{7}{6}$.
(ii) Let $\mathrm{f}(x)=x^{5}-3 x^{4}-a x^{3}+3 a x^{2}+2 a x+4$ be the given polynomial

From factor theorem,
If $(x-2)$ is a factor of $f(x)$ then $f(2)=0$ [Therefore, $x-2=0, x=2$]
$f(2)=0$
$(2)^{5}-3(2)^{4}-a(2)^{3}+3 a(2)^{2}+2 a(2)+4=0$
$32-48-8 a+12 a+4 a+4=0$
$-12+8 a=0$
$8 \mathrm{a}=12$
$a=\frac{3}{2}$
Hence, $(x-2)$ is a factor of $f(x)$ when $a=\frac{3}{2}$.

24. Question

In each of the following two polynomials, find the value of a, if $x-a$ is a factor:
(i) $x^{6}-a x^{5}+x^{4}-a x^{3}+3 x-a+2$.
(ii) $x^{5}-a^{2} x^{3}+2 x+a+1$.

Answer

(i) Let $\mathrm{f}(\mathrm{x})=x^{6}-a x^{5}+x^{4}-a x^{3}+3 x-a+2$ be the given polynomial

From factor theorem,
If $(x-a)$ is a factor of $f(x)$ then $f(a)=0$ [Therefore, $x-a=0, x=a$]
$f(a)=0$
$(a)^{6}-a(a)^{5}+(a)^{4}-a(a)^{3}+3(a)-a+2=0$
$a^{6}-a^{6}+a^{4}-a^{4}+3 a-a+2=0$
$2 a+2=0$
$a=-1$
Hence, $(x-a)$ is a factor $f(x)$ when $a=-1$.
(ii) Let, $\mathrm{f}(\mathrm{x})=x^{5}-a^{2} x^{3}+2 x+a+1$ be the given polynomial

From factor theorem,
If $(x-a)$ is a factor of $f(x)$ then $f(a)=0$ [Therefore, $x-a=0, x=a$]
$f(a)=0$
$(a)^{5}-a^{2}(a)^{3}+2(a)+a+1=0$
$a^{5}-a^{5}+2 a+a+1=0$
$3 a+1=0$
$3 \mathrm{a}=-1$
$a=\frac{-1}{3}$
Hence, $(x-a)$ is a factor $f(x)$ when $a=\frac{-1}{3}$.

25. Question

In each of the following two polynomials, find the value of a, if $x+a$ is a factor:
(i) $x^{3}+a x^{2}-2 x+a+4$
(ii) $x^{4}-a^{2} x^{2}+3 x-a$

Answer

(i) Let, $\mathrm{f}(\mathrm{x})=x^{3}+a x^{2}-2 x+a+4$ be the given polynomial

From factor theorem,
If $(x+a)$ is a factor of $f(x)$ then $f(-a)=0$ [Therefore, $x+a=0, x=-a$]
$f(-a)=0$
$(-a)^{3}+a(-a)^{2}-2(-a)+a+4=0$
$-a^{3}+a^{3}+2 a+a+4=0$
$3 a+4=0$
$3 a=-4$
$a=\frac{-4}{3}$
Hence, $(x+a)$ is a factor $f(x)$ when $a=\frac{-4}{3}$.
(ii) Let, $\mathrm{f}(\mathrm{x})=x^{4}-a^{2} x^{2}+3 x-a$ be the given polynomial

From factor theorem,
If $(x+a)$ is a factor of $f(x)$ then $f(-a)=0$ [Therefore, $x+a=0, x=-a$]
$f(-a)=0$
$(-a)^{4}-a^{2}(-a)^{2}+3(-a)-a=0$
$a^{4}-a^{4}-3 a-a=0$
$-4 a=0$
$a=0$
Hence, $(x+a)$ is a factor $f(x)$ when $a=0$.

Exercise 6.5

1. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}+6 x^{2}+11 x+6$

Answer

Let $\mathrm{f}(\mathrm{x})=x^{3}+6 x^{2}+11 x+6$ be the given polynomial.
The constant term in $f(x)$ is 6 and factors of 6 are $\pm 1, \pm 2, \pm 3$ and ± 6
Putting $x=-1$ in $f(x)$ we have,
$f(-1)=(-1)^{3}+6(-1)^{2}+11(-1)+6$
$=-1+6-11+6$
$=0$
Therefore, $(x+1)$ is a factor of $f(x)$
Similarly, $(x+2)$ and $(x+3)$ are factors of $f(x)$.
Since, $f(x)$ is a polynomial of degree 3 . So, it cannot have more than three linear factors.
Therefore, $f(x)=k(x+1)(x+2)(x+3)$
$x^{3}+6 x^{2}+11 x+6=\mathrm{k}(x+1)(x+2)(x+3)$
Putting $x=0$, on both sides we get,
$0+0+0+6=k(0+1)(0+2)(0+3)$
$6=6 k$
$k=1$
Putting $k=1$ in $f(x)=k(x+1)(x+2)(x+3)$, we get
$f(x)=(x+1)(x+2)(x+3)$
Hence,
$x^{3}+6 x^{2}+11 x+6=(x+1)(x+2)(x+3)$

2. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}+2 x^{2}-x-2$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}+2 x^{2}-x-2$
The constant term in $f(x)$ is equal to -2 and factors of -2 are $\pm 1, \pm 2$.
Putting $x=1$ in $f(x)$, we have
$f(1)=(1)^{3}+2(1)^{2}-1-2$
$=1+2-1-2$
$=0$
Therefore, $(x-1)$ is a factor of $f(x)$.
Similarly, $(x+1)$ and $(x+2)$ are the factors of $f(x)$.
Since, $f(x)$ is a polynomial of degree 3. So, it cannot have more than three linear factors.
Therefore, $f(x)=k(x-1)(x+1)(x+2)$
$x^{3}+2 x^{2}-x-2=k(x-1)(x+1)(x+2)$
Putting $\mathrm{x}=0$ on both sides, we get
$0+0-0-2=k(0-1)(0+1)(0+2)$
$-2=-2 \mathrm{k}$
$\mathrm{k}=1$
Putting $k=1$ in $f(x)=k(x-1)(x+1)(x+2)$, we get
$f(x)=(x-1)(x+1)(x+2)$
Hence,
$x^{3}+2 x^{2}-x-2=(x-1)(x+1)(x+2)$

3. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}-6 x^{2}+3 x+10$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}-6 x^{2}+3 x+10$
The constant term in $f(x)$ is equal to 10 and factors of 10 are $\pm 1, \pm 2, \pm 5$ and ± 10
Putting $x=-1$ in $f(x)$, we have
$f(-1)=(-1)^{3}-6(-1)^{2}+3(-1)+10$
$=-1-6-3+10$
$=0$

Therefore, $(x+1)$ is a factor of $f(x)$.
Similarly, $(x-2)$ and ($x-5$) are the factors of $f(x)$.
Since, $f(x)$ is a polynomial of degree 3. So, it cannot have more than three linear factors.
Therefore, $f(x)=k(x+1)(x-2)(x-5)$
$x^{3}-6 x^{2}+3 x+10=k(x+1)(x-2)(x-5)$
Putting $x=0$ on both sides, we get
$0+0-0+10=k(0+1)(0-2)(0-5)$
$10=10 k$
$\mathrm{k}=1$
Putting $k=1$ in $f(x)=k(x+1)(x-2)(x-5)$, we get
$f(x)=(x+1)(x-2)(x-5)$
Hence,
$x^{3}-6 x^{2}+3 x+10=(x+1)(x-2)(x-5)$

4. Question

Using factor theorem, factorize each of the following polynomial:
$x^{4}-7 x^{3}+9 x^{2}+7 x-10$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{4}-7 x^{3}+9 x^{2}+7 x-10$
The constant term in $f(x)$ is equal to -10 and factors of -10 are $\pm 1, \pm 2, \pm 5$ and ± 10
Putting $x=1$ in $f(x)$, we have
$f(1)=(1)^{4}-7(1)^{3}+9(1)^{2}+7(1)-10$
$=1-7+9+7-10$
$=0$
Therefore, $(x-1)$ is a factor of $f(x)$.
Similarly, $(x+1),(x-2)$ and $(x-5)$ are the factors of $f(x)$.
Since, $f(x)$ is a polynomial of degree 4 . So, it cannot have more than four linear factors.
Therefore, $f(x)=k(x-1)(x+1)(x-2)(x-5)$
$x^{4}-7 x^{3}+9 x^{2}+7 x-10=\mathrm{k}(x-1)(x+1)(x-2)(x-5)$
Putting $x=0$ on both sides, we get
$0+0-0-10=k(0-1)(0+1)(0-2)(0-5)$
$-10=-10 k$
$k=1$
Putting $k=1$ in $f(x)=k(x-1)(x+1)(x-2)(x-5)$, we get
$f(x)=(x-1)(x+1)(x-2)(x-5)$
Hence,
$x^{4}-7 x^{3}+9 x^{2}+7 x-10=(x-1)(x+1)(x-2)(x-5)$

5. Question

Using factor theorem, factorize each of the following polynomial:
$x^{4}-2 x^{3}-7 x^{2}+8 x+12$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{4}-2 x^{3}-7 x^{2}+8 x+12$
The constant term in $f(x)$ is equal to +12 and factors of +12 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6$ and ± 12
Putting $x=-1$ in $f(x)$, we have
$f(-1)=(-1)^{4}-2(-1)^{3}-7(-1)^{2}+8(-1)+12$
$=1+2-7-8+12$
$=0$
Therefore, $(x+1)$ is a factor of $f(x)$.
Similarly, $(x+2),(x-2)$ and $(x-3)$ are the factors of $f(x)$.
Since, $f(x)$ is a polynomial of degree 4 . So, it cannot have more than four linear factors.
Therefore, $f(x)=k(x+1)(x+2)(x-2)(x-3)$
$x^{4}-2 x^{3}-7 x^{2}+8 x+12=\mathrm{k}(x+1)(x+2)(x-2)(x-3)$
Putting $x=0$ on both sides, we get
$0-0-0+0+12=k(0+1)(0+2)(0-2)(0-3)$
$12=12 \mathrm{k}$
$k=1$
Putting $k=1$ in $f(x)=k(x+1)(x+2)(x-2)(x-3)$, we get
$f(x)=(x+1)(x+2)(x-2)(x-3)$
Hence,
$x^{4}-2 x^{3}-7 x^{2}+8 x+12=(x+1)(x+2)(x-2)(x-3)$

6. Question

Using factor theorem, factorize each of the following polynomial:
$x^{4}+10 x^{3}+35 x^{2}+50 x+24$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{4}+10 x^{3}+35 x^{2}+50 x+24$
The constant term in $f(x)$ is equal to +24 and factors of +24 are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12$ and ± 18 Putting $x=-1$ in $f(x)$, we have
$f(-1)=(-1)^{4}+10(-1)^{3}+35(-1)^{2}+50(-1)+24$
$=1-10+35-50+24$
$=0$
Therefore, $(x+1)$ is a factor of $f(x)$.
Similarly, $(x+2),(x+3)$ and $(x+4)$ are the factors of $f(x)$.
Since, $f(x)$ is a polynomial of degree 4 . So, it cannot have more than four linear factors.
Therefore, $f(x)=k(x+1)(x+2)(x+3)(x+4)$
$x^{4}+10 x^{3}+35 x^{2}+50 x+24=k(x+1)(x+2)(x+3)(x+4)$
Putting $x=0$ on both sides, we get
$0+0+0+0+24=k(0+1)(0+2)(0+3)(0+4)$
$24=24 k$
$k=1$
Putting $k=1 \inf (x)=k(x+1)(x+2)(x+3)(x+4)$, we get
$f(x)=(x+1)(x+2)(x+3)(x+4)$
Hence,
$x^{4}+10 x^{3}+35 x^{2}+50 x+24=(x+1)(x+2)(x+3)(x+4)$

7. Question

Using factor theorem, factorize each of the following polynomial:
$2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$

Answer

Let, $\mathrm{f}(\mathrm{x})=2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$
The factors of the constant term - 45 are $\pm 1, \pm 3, \pm 5, \pm 9, \pm 15$ and ± 45
The factor of the coefficient of x^{4} is 2 . Hence, possible rational roots of $f(x)$ are:
$\pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{9}{2}, \pm \frac{15}{2}, \pm \frac{45}{2}$
We have,
$f(1)=2(1)^{4}-7(1)^{3}-13(1)^{2}+63(1)-45$
$=2-7-13+63-45$
$=0$
And,
$f(3)=2(3)^{4}-7(3)^{3}-13(3)^{2}+63(3)-45$
$=162-189-117+189-45$
$=0$
So, $(x-1)$ and $(x+3)$ are the factors of $f(x)$
$(x-1)(x+3)$ is also a factor of $f(x)$
Let us now divide
$f(x)=2 x^{4}-7 x^{3}-13 x^{2}+63 x-45$ by $\left(x^{2}-4 x+3\right)$ to get the other factors of $f(x)$
Using long division method, we get
$2 x^{4}-7 x^{3}-13 x^{2}+63 x-45=\left(x^{2}-4 x+3\right)\left(2 x^{2}+x-15\right)$
$2 x^{4}-7 x^{3}-13 x^{2}+63 x-45=(x-1)(x-3)\left(2 x^{2}+x-15\right)$
Now,
$2 x^{2}+x-15=2 x^{2}+6 x-5 x-15$
$=2 x(x+3)-5(x+3)$
$=(2 x-5)(x+3)$

Hence, $2 x^{4}-7 x^{3}-13 x^{2}+63 x-45=(x-1)(x-3)(x+3)(2 x-5)$

8. Question

Using factor theorem, factorize each of the following polynomial:
$3 x^{3}-x^{2}-3 x+1$

Answer

Let, $\mathrm{f}(\mathrm{x})=3 x^{3}-x^{2}-3 x+1$
The factors of the constant term ± 1 is ± 1.
The factor of the coefficient of x^{3} is 3 . Hence, possible rational roots of $f(x)$ are:
$\pm 1, \pm \frac{1}{3}$
We have,
$f(1)=3(1)^{3}-(1)^{2}-3(1)+1$
$=3-1-3+1$
$=0$
So, $(x-1)$ is a factor of $f(x)$
Let us now divide
$f(x)=3 x^{3}-x^{2}-3 x+1$ by $(x-1)$ to get the other factors of $f(x)$
Using long division method, we get
$3 x^{3}-x^{2}-3 x+1=(x-1)\left(3 x^{2}+2 x-1\right)$
Now,
$3 x^{2}+2 x-1=3 x^{2}+3 x-x-1$
$=3 x(x+1)-1(x+1)$
$=(3 x-1)(x+1)$
Hence, $3 x^{3}-x^{2}-3 x+1=(x-1)(x+1)(3 x-1)$

9. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}-23 x^{2}+142 x-120$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}-23 x^{2}+142 x-120$
The factors of the constant term - 120 are
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 8, \pm 10, \pm 12, \pm 15, \pm 20, \pm 24, \pm 30, \pm 40, \pm 60$ and \pm 120

Putting $x=1$, we have
$f(1)=(1)^{3}-23(1)^{2}+142(1)-120$
$=1-23+142-120$
$=0$
So, $(x-1)$ is a factor of $f(x)$

Let us now divide
$f(x)=x^{3}-23 x^{2}+142 x-120$ by $(x-1)$ to get the other factors of $f(x)$
Using long division method, we get
$x^{3}-23 x^{2}+142 x-120=(x-1)\left(x^{2}-22 x+120\right)$
$x^{2}-22 x+120=x^{2}-10 x-12 x+120$
$=x(x-10)-12(x-10)$
Hence, $x^{3}-23 x^{2}+142 x-120=(x-1)(x-10)(x-12)$

10. Question

Using factor theorem, factorize each of the following polynomial:
$y^{3}-7 y+6$

Answer

Let, $\mathrm{f}(\mathrm{y})=y^{3}-7 y+6$
The constant term in $f(y)$ is equal to +6 and factors of +6 are $\pm 1, \pm 2, \pm 3$ and ± 6
Putting $y=1$ in $f(y)$, we have
$f(1)=(1)^{3}-7(1)+6$
$=1-7+6$
$=0$
Therefore, $(y-1)$ is a factor of $f(y)$.
Similarly, $(y-2)$ and $(y+3)$ are the factors of $f(y)$.
Since, $f(y)$ is a polynomial of degree 3 . So, it cannot have more than three linear factors.
Therefore, $f(y)=k(y-1)(y-2)(y+3)$
$y^{3}-7 y+6=k(y-1)(y-2)(y+3)$
Putting $x=0$ on both sides, we get
$0-0+6=k(0-1)(0-2)(0+3)$
$6=6 k$
$k=1$
Putting $k=1 \inf (y)=k(y-1)(y-2)(y+3)$, we get
$f(y)=(y-1)(y-2)(y+3)$
Hence,
$y^{3}-7 y+6=(y-1)(y-2)(y+3)$

11. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}-10 x^{2}-53 x-42$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}-10 x^{2}-53 x-42$
The factors of the constant term - 42 are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21$ and ± 42

Putting $x=-1$, we have
$f(-1)=(-1)^{3}-10(-1)^{2}-53(-1)-42$
$=-1-10+53-42$
$=0$
So, $(x+1)$ is a factor of $f(x)$
Let us now divide
$f(x)=x^{3}-10 x^{2}-53 x-42$ by $(x+1)$ to get the other factors of $f(x)$
Using long division method, we get
$x^{3}-10 x^{2}-53 x-42=(x+1)\left(x^{2}-11 x-42\right)$
$x^{2}-11 x-42=x^{2}-14 x+3 x-42$
$=x(x-14)+3(x-14)$
$=(x-14)(x+3)$
Hence, $x^{3}-10 x^{2}-53 x-42=(x+1)(x-14)(x+3)$

12. Question

Using factor theorem, factorize each of the following polynomial:
$y^{3}-2 y^{2}-29 y-42$

Answer

Let, $\mathrm{f}(\mathrm{y})=y^{3}-2 y^{2}-29 y-42$
The factors of the constant term - 42 are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21$ and ± 42
Putting $y=-2$, we have
$f(-2)=(-2)^{3}-2(-2)^{2}-29(-2)-42$
$=-8-8+58-42$
$=0$
So, $(y+2)$ is a factor of $f(y)$
Let us now divide
$f(y)=y^{3}-2 y^{2}-29 y-42$ by $(y+2)$ to get the other factors of $f(x)$
Using long division method, we get
$y^{3}-2 y^{2}-29 y-42=(y+2)\left(y^{2}-4 y-21\right)$
$y^{2}-4 y-21=y^{2}-7 y+3 y-21$
$=y(y-7)+3(y-7)$
$=(y-7)(y+3)$
Hence, $y^{3}-2 y^{2}-29 y-42=(y+2)(y-7)(y+3)$

13. Question

Using factor theorem, factorize each of the following polynomial:
$2 y^{3}-5 y^{2}-19 y+42$

Answer

Let, $f(y)=2 y^{3}-5 y^{2}-19 y+42$
The factors of the constant term +42 are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21$ and ± 42
Putting $y=2$, we have
$f(2)=2(2)^{3}-5(2)^{2}-19(2)+42$
$=16-20-38+42$
$=0$
So, $(y-2)$ is a factor of $f(y)$
Let us now divide
$f(y)=2 y^{3}-5 y^{2}-19 y+42$ by $(y-2)$ to get the other factors of $f(x)$
Using long division method, we get
$2 y^{3}-5 y^{2}-19 y+42=(y-2)\left(2 y^{2}-y-21\right)$
$2 y^{2}-y-21=(y+3)(2 y-7)$
Hence, $2 y^{3}-5 y^{2}-19 y+42=(y-2)(2 y-7)(y+3)$

14. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}+13 x^{2}+32 x+20$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}+13 x^{2}+32 x+20$
The factors of the constant term +20 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$ and ± 20
Putting $x=-1$, we have
$f(-1)=(-1)^{3}+13(-1)^{2}+32(-1)+20$
$=-1+13-32+20$
$=0$
So, $(x+1)$ is a factor of $f(x)$
Let us now divide
$f(x)=x^{3}+13 x^{2}+32 x+20$ by $(x+1)$ to get the other factors of $f(x)$
Using long division method, we get
$x^{3}+13 x^{2}+32 x+20=(x+1)\left(x^{2}+12 x+20\right)$
$x^{2}+2 x+20=x^{2}+10 x+2 x+20$
$=x(x+10)+2(x+10)$
$=(x+10)(x+2)$
Hence, $x^{3}+13 x^{2}+32 x+20=(x+1)(x+10)(x+2)$

15. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}-3 x^{2}-9 x-5$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}-3 x^{2}-9 x-5$
The factors of the constant term - 5 are $\pm 1, \pm 5$
Putting $x=-1$, we have
$f(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5$
$=-1-3+9-5$
$=0$
So, $(x+1)$ is a factor of $f(x)$
Let us now divide
$f(x)=x^{3}-3 x^{2}-9 x-5$ by $(x+1)$ to get the other factors of $f(x)$
Using long division method, we get
$x^{3}-3 x^{2}-9 x-5=(x+1)\left(x^{2}-4 x 5\right)$
$x^{2}-4 x-5=x^{2}-5 x+x-5$
$=x(x-5)+1(x-5)$
$=(x+1)(x-5)$
Hence, $x^{3}+13 x^{2}+32 x+20=(x+1)(x+1)(x-5)$
$=(x+1)^{2}(x-5)$

16. Question

Using factor theorem, factorize each of the following polynomial:
$2 y^{3}+y^{2}-2 y-1$

Answer

Let, $\mathrm{f}(\mathrm{y})=2 y^{3}+y^{2}-2 y-1$
The factors of the constant term - 1 are ± 1
The factor of the coefficient of y^{3} is 2. Hence, possible rational roots are $\pm 1, \pm \frac{1}{2}$
We have
$f(1)=2(1)^{3}+(1)^{2}-2(1)-1$
$=2+1-2-1$
$=0$
So, $(y-1)$ is a factor of $f(y)$
Let us now divide
$f(y)=2 y^{3}+y^{2}-2 y-1$ by $(y-1)$ to get the other factors of $f(x)$
Using long division method, we get
$2 y^{3}+y^{2}-2 y-1=(y-1)\left(2 y^{2}+3 y+1\right)$
$2 y^{2}+3 y+1=2 y^{2}+2 y+y+1$
$=2 y(y+1)+1(y+1)$
$=(2 y+1)(y+1)$
Hence, $2 y^{3}+y^{2}-2 y-1=(y-1)(2 y+1)(y+1)$

17. Question

Using factor theorem, factorize each of the following polynomial:
$x^{3}-2 x^{2}-x+2$

Answer

Let, $\mathrm{f}(\mathrm{x})=x^{3}-2 x^{2}-x+2$
The factors of the constant term +2 are $\pm 1, \pm 2$
Putting $x=1$, we have
$f(1)=(1)^{3}-2(1)^{2}-(1)+2$
$=1-2-1+2$
$=0$
So, $(x-1)$ is a factor of $f(x)$
Let us now divide
$f(x)=x^{3}-2 x^{2}-x+2$ by $(x-1)$ to get the other factors of $f(x)$
Using long division method, we get
$x^{3}-2 x^{2}-x+2=(x-1)\left(x^{2}-x-2\right)$
$x^{2}-x-2=x^{2}-2 x+x-2$
$=x(x-2)+1(x-2)$
$=(x+1)(x-2)$
Hence, $x^{3}-2 x^{2}-x+2=(x-1)(x+1)(x-2)$
$=(x-1)(x+1)(x-2)$

18. Question

Factorize each of the following polynomials:
(i) $x^{3}+13 x^{2}+31 x-45$ given that $x+9$ is a factor
(ii) $4 x^{3}+20 x^{2}+33 x+18$ given that $2 x+3$ is a factor.

Answer

(i) Let, $\mathrm{f}(\mathrm{x})=x^{3}+13 x^{2}+31 x-45$

Given that $(x+9)$ is a factor of $f(x)$
Let us divide $f(x)$ by $(x+9)$ to get the other factors
By using long division method, we have
$f(x)=x^{3}+13 x^{2}+31 x-45$
$=(x+9)\left(x^{2}+4 x-5\right)$
Now,
$x^{2}+4 x-5=x^{2}+5 x-x-5$
$=x(x+5)-1(x+5)$
$=(x-1)(x+5)$
$f(x)=(x+9)(x+5)(x-1)$

Therefore, $x^{3}+13 x^{2}+31 x-45=(x+9)(x+5)(x-1)$
(ii) Let, $\mathrm{f}(\mathrm{x})=4 x^{3}+20 x^{2}+33 x+18$

Given that $(2 x+3)$ is a factor of $f(x)$
Let us divide $f(x)$ by $(2 x+3)$ to get the other factors
By long division method, we have
$4 x^{3}+20 x^{2}+33 x+18=(2 x+3)\left(2 x^{2}+7 x+6\right)$
$2 x^{2}+7 x+6=2 x^{2}+4 x+3 x+6$
$=2 x(x+2)+3(x+2)$
$=(2 x+3)(x+2)$
$4 x^{3}+20 x^{2}+33 x+18=(2 x+3)(2 x+3)(x+2)$
$=(2 x+3)^{2}(x+2)$
Hence,
$4 x^{3}+20 x^{2}+33 x+18=(2 x+3)^{2}(x+2)$

CCE - Formative Assessment

1. Question

Define zero or root of a polynomial.

Answer

The zeros are the roots, or where the polynomial crosses the axis. A polynomial will have 2 roots that mean it has 2 zeros. To find the roots you can graph and look where it crosses the axis, or you can use the quadratic equation. This is also known as the solution.

2. Question

If $x=\frac{1}{2}$ is a zero of the polynomial $f(x)=8 x^{3}+a x^{2}-4 x+2$, find the value of a.

Answer

If $x=\frac{1}{2}$
$f\left(\frac{1}{2}\right)=8\left(\frac{1}{2}\right)^{3}+a\left(\frac{1}{2}\right)^{2}-4\left(\frac{1}{2}\right)+2$
$0=1+\frac{a}{4}-2+2$
$\mathrm{a}=-4$

3. Question

Write the remainder when the polynomial $f(x)=x^{3}+x^{2}-3 x+2$ is divided by $x+1$.

Answer

$f(x)=x^{3}+x^{2}-3 x+2$
Given,
$f(x)$ divided by $(x+1)$, so reminder is equal to $f(-1)$
$f(-1)=(-1)^{3}+(-1)^{2}-3(-1)+2$
$=-1+1+3+2$
$=5$

Thus, remainder is 5 .

4. Question

Find the remainder when $x^{3}+4 x^{2}+4 x-3$ is divided by x.

Answer

Let, $f(x)=x^{3}+4 x^{2}+4 x-3$
Given $f(x)$ is divided by x so remainder is equal to $f(0)$
$f(0)=0^{3}+4(0)^{2}+4(0)-3$
$=0-3$
$=-3$
Thus, remainder is - 3

5. Question

If $x+1$ is a factor of $x^{3}+a$, then write the value of a.

Answer

Let, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{a}$
$(x+1)$ is a factor of $f(x)$, so $f(-1)=0$
$f(-1)=0$
$(-1)^{3}+a=0$
$-1+a=0$
$a=1$

6. Question

If $f(x)=x^{4}-2 x^{3}+3 x^{2}-a x-b$ when divided by $x-1$, the remainder is 6 , then find the value of $a+b$

Answer

$f(x)=x^{4}-2 x^{2}+3 x^{2}-a x-b$
Given $f(x)$ is divided by $(x-1)$, then remainder is 6
$f(1)=6$
$1^{4}-2(1)^{3}-3(1)^{2}-a(1)-b=6$
$1-2+3-a-b=6$
$-a-b=4$
$a+b=-4$

1. Question

If $x-2$ is factor of $x^{2}-3 a x-2 a$, then $a=$
A. 2
B. -2
C. 1
D. -1

Answer

Let $f(x)=x^{2}-3 a x-2 a$
Since, $x-2$ is a factor of $f(x)$ so,
$f(2)=0$
$2^{2}+3 a(2)-2 a=0$
$4+6 a-2 a=0$
$a=-1$

2. Question

If $x^{3}+6 x^{2}+4 x+k$ is exactly divisible by $x+2$, then $k=$
A. -6
B. -7
C. -8
D. -10

Answer

Since, $x+2$ is exactly divisible by $f(x)$
Means $x+2$ is a factor of $f(x)$, so
$f(-2)=0$
$(-2)^{3}+6(-2)^{2}+4(-2)+k=0$
$-16+24+k=0$
$\mathrm{k}=-8$

3. Question

If $x-a$ is a factor of $x^{3}-3 x^{2} a+2 a^{2} x+b$, then the value of b is
A. 0
B. 2
C. 1
D. 3

Answer

Let $f(x)=x^{3}-3 x^{2} a+2 a^{2} x+b$
Since, $x-a$ is a factor of $f(x)$
So, $f(a)=0$
$a^{3}-3 a^{2}(a)+2 a^{2}(a)+b=0$
$a^{3}-3 a^{3}+2 a^{3}+b=0$
$b=0$

4. Question

If $x^{140}+2 x^{151}+k$ is divisible by $x+1$, then the value of k is
A. 1
B. -3
C. 2
D. -2

Answer

Let $f(x)=x^{140}+2 x^{151}+k$
Since, $x+1$ is a factor of $f(x)$
So, $f(-1)=0$
$(-1)^{140}+2(-1)^{151}+k=0$
$1-2+k=0$
$\mathrm{k}=1$

5. Question

If $x+2$ and $x-1$ are the factors of $x^{3}+10 x^{2}+m x+n$, then the value of m and n are respectively
A. 5 and - 3
B. 17 and -8
C. 7 and -18
D. 23 and -19

Answer

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+10 \mathrm{x}^{2}+\mathrm{mx}+\mathrm{n}$
Since, $(x+2)$ and $(x-1)$ are factor of $f(x)$
So, $f(-2)=0$
$(-2)^{3}+10(-2)^{2}+m(-2)+n$
$32-2 m+n=0(i)$
$f(1)=0$
$(1)^{3}+10(1)^{2}+m(1)+n=0$
$11+m+n=0$ (ii)
(2) - (1)
$3 m-21=0$
$\mathrm{m}=7$ (iii)
Using (iii) and (ii), we get
$11+7+n=0$
$\mathrm{n}=-18$

6. Question

Let $f(x)$ be a polynomial such that $f\left(-\frac{1}{2}\right)=0$, then a factor of $f(x)$ is
A. $2 x-1$
B. $2 x+1$
C. $x-1$
D. $x+1$

Answer

Let $f(x)$ be a polynomial and $f\left(\frac{-1}{2}\right)=0$
$x+\frac{1}{2}=2 x+1$ is a factor of $f(x)$

7. Question

When $x^{3}-2 x^{2}+a x=b$ is divided by $x^{2}-2 x-3$, the remainder is $x-6$. The value of a and b respectively
A. $-2,-6$
B. 2 and -6
C. -2 and 6
D. 2 and 6

Answer

Let $p(x)=x^{3}-2\left(x^{2}\right)+a x-b$
$q(x)=x^{2}-2 x-3$
$r(x)=x-6$
Therefore,
$f(x)=p(x)-r(x)$
$f(x)=x^{3}-2 x^{2}+a x-b-x-6$
$=x^{3}-2 x^{2}+(a-1) x-(b-6)$
$q(x)=x^{2}-2 x-3$
$=(x+1)(x-3)$
Thus,
$(x+1)$ and $(x-3)$ are factor of $f(x)$
$a+b=4$
$f(3)=0$
$3^{3}-2(3)^{2}+(a-1) 3-b+6=0$
$12+3 a-b=0$
$a=-2, b=6$

8. Question

One factor of $x^{4}+x^{2}-20$ is $x^{2}+5$. The other factor is
A. $x^{2}-4$
B. $x-4$
C. $x^{2}-5$
D. $x+2$

Answer

$f(x)=x^{4}+x^{2}-20$
$\left(x^{2}+5\right)\left(x^{2}-4\right)$
Therefore, $\left(x^{2}+5\right)$ and $\left(x^{2}-4\right)$ are the factors of $f(x)$

9. Question

If $(x-1)$ is a factor of polynomial $f(x)$ but not of $g(x)$, then it must be a factor of
A. $f(x) g(x)$
B. $-f(x)+g(x)$
C. $f(x)-g(x)$
D. $\{f(x)+g(x)\} g(x)$

Answer

Given,
$(x-1)$ is a factor of $f(x)$ but not of $g(x)$.
Therefore, $x-1$ is also a factor of $f(x) g(x)$.

10. Question

$(x+1)$ is a factor of $x^{n}+1$ only if
A. n is an odd integer
B. n is an even integer
C. n is a negative integer
D. n is a positive integer

Answer

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}+1$
Since, $x+1$ is a factor of $f(x)$, so
$f(-1)=9$
Thus, n is an odd integer.

11. Question

If $x+2$ is a factor of $x^{2}+m x+14$, then $m=$
A. 7
B. 2
C. 9
D. 14

Answer
$f(x)=x^{2}+m x+14$
Since, $(x+2)$ is a factor of $f(x)$, so
$f(-2)=0$
$(-2)^{2}+m(-2)+14=0$
$18-2 m=0$
$\mathrm{m}=9$

12. Question

If $x-3$ is a factor of $x^{2}-a x-15$, then $a=$
A. -2
B. 5
C. -5
D. 3

Answer

Let, $f(x)=x^{2}-a x-15$
Since, $(x-3)$ is a factor of $f(x)$, so
$f(3)=0$
$3^{2}-a(3)-15=0$
$9-3 a-15=0$
$a=-2$

13. Question

If $x^{2}+x+1$ is a factor of the polynomial $3 x^{2}+8 x^{2}+8 x+3+5 k$, then the value of k is
A. 0
B. $2 / 5$
C. $5 / 2$
D. -1

Answer

Let, $p(x)=3 x^{3}+8(x)^{2}+8 x+3+5 k$
$g(x)=x^{2}+x+1$
Given $g(x)$ is a factor of $p(x)$ so remainder will be 0
Remainder $=-2+5 k$
Therefore, $-2+5 k=0$
$k=2 / 5$
14. Question

If $(3 x-1)^{7}=a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+\ldots a_{1} x+a_{0}$, then $a_{7}+a_{6}+a_{5}+\ldots+a_{1}+a_{0}=$
A. 0
B. 1
C. 128
D. 64

Answer

We have,
$(3 x-1)^{7}=a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+\ldots . a_{1} x+a_{0}$
Putting $x=1$, we get
$(3 * 1-1)^{7}=a_{7}+a_{6}+a_{5}+a_{4}+a_{3}+a_{2}+a_{1}+a_{0}$
$(2)^{7}=a_{7}+a_{6}+a_{5}+a_{4}+a_{3}+a_{2}+a_{1}+a_{0}$
$a_{7}+a_{6}+a_{5}+\ldots+a_{1}+a_{0}=128$
15. Question

If $x^{51}+51$ is divide by $x+1$, the remainder is
A. 0
B. 1
C. 49
D. 50

Answer

Let, $f(x)=x^{51}+51$
Since, $x+1$ is divided by $f(x)$ so,
$f(-1)=(-1)^{51}+51$
$=-1+51$
$=50$
Thus, remainder is 50

16. Question

If $x+1$ is a factor if the polynomial $2 x^{2}+k x$, then $k=$
A. -2
B. -3
C. 4
D. 2

Answer

Let, $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}+\mathrm{kx}$
Since, $x+1$ is divided by $f(x)$ so,
$\mathrm{f}(-1)=0$
$2(-1)+k(-1)=0$
$\mathrm{k}=2$

17. Question

If $x+a$ is a factor of $x^{4}-a^{2} x^{2}+3 x-6 a$, then $a=$
A. 0
B. -1
C. 1
D. 2

Answer

Let, $f(x)=x^{4}-a^{2} x^{2}+3 x-6 a$
Since, $x+a$ is divided by $f(x)$ so,
$f(-a)=0$
$(-a)^{4}-a^{2}(-a)^{2}+3(-a)-6 a=0$
$-9 a=0$
$a=0$

18. Question

The value of k for which $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$, is
A. 3
B. 1
C. -2
D. -3

Answer

Since, $x-1$ is a factor of $f(x)$
Therefore,
$f(1)=0$
$4(1)^{3}+3(1)^{2}-4(1)+k=0$
$4+3-4+k=0$
$k=-3$
19. Question

If both $x-2$ and $x-\frac{1}{2}$ are factors of $p x^{2}+5 x+r$, then
A. $p=r$
B. $p+r=0$
C. $2 p+r=0$
D. $p+2 r=0$

Answer

Let $\mathrm{f}(\mathrm{x})=\mathrm{px} \mathrm{x}^{2}+5 \mathrm{x}+\mathrm{r}$
Since, $x-2$ and $x-1 / 2$ are factors of $f(x)$
$f(2)=0$
$4 p+10+r=0(i)$
$f(1 / 2)=0$
$p+10+4 r=0$ (ii)
(i) * (ii), we get,
$4 p+40+16 r=0(i i i)$
Subtracting (i) and (iii)
$-30-15 r=0$
$r=-2$
Putting value of r in (i),
$4 p+10-2=0$
$p=-2$
Therefore, $\mathrm{p}=\mathrm{r}$

20. Question

If $x^{2}-1$ is a factor of $a x^{4}+b x^{3}+c x^{2}+d x+e$, then
A. $a+c+e=b+d$
B. $a+b+e=c+d$
C. $a+b+c=d+e$
D. $b+c+d=a+e$

Answer

Let $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$
Since, $x^{2}-1$ is a factor of $f(x)$
Therefore,
$f(-1)=0$
$a(-1)+b(-1)^{3}+c(-1)^{2}+d(-1)+e=0$
$a+c+e=b+d$

