4．Measurement of Angles

Exercise 4.1

1．Question

Find the degree measure corresponding to the following radian measures（Use $\pi=\frac{22}{7}$ ）
（i）$\frac{9 \pi}{5}$（ii）$-\frac{5 \pi}{6}$（iii）$\left.\left(\frac{18 \pi}{5}\right)\right)^{c}\left(\right.$（iv）$(-3)^{c}($ v $) 11^{c}$（vi） 1^{c}

Answer

We know that $\pi \mathrm{rad}=180^{\circ} \Rightarrow 1 \mathrm{rad}=180^{\circ} / \pi$
（i）Given $\frac{9 \pi}{5}$
$=\left(\frac{180}{\pi} \times \frac{9 \pi}{5}\right)$ 。
$=(36 \times 9)^{\circ}$
$=324^{\circ}$
（ii）Given $-\frac{5 \pi}{6}$
$=\left(\frac{180}{\pi} \times-\frac{5 \pi}{6}\right)$ 。
$=(30 \times-5)^{\circ}$
$=-(150)^{\circ}$
（iii）Given $\left(\frac{18 \pi}{5}\right)^{c}$
$=\left(\frac{180}{\pi} \times \frac{18 \pi}{5}\right)$ 。
$=(36 \times 18)^{\circ}$
$=648^{\circ}$
（iv）Given（－3）${ }^{\text {c }}$
$=\left(\frac{180}{\pi} \times-3\right)$ 。
$=\left(\frac{180}{22} \times 7 \times-3\right)$ 。
$=\left(-\frac{3780}{22}\right)$ 。
$=\left(-171 \frac{18}{22}\right)$ 。
$=\left(-171^{\circ}\left(\frac{18}{22} \times 60\right)^{\prime}\right)$
$=\left(-171^{\circ}\left(49 \frac{1}{11}\right)^{\prime}\right)$
$=\left(-171^{\circ} 49^{\prime}\left(\frac{1}{11} \times 60\right)^{\prime}\right)$
$=-\left(171^{\circ} 49^{\prime} 5.45^{\prime \prime}\right)$
$\approx-\left(171^{\circ} 49^{\prime} 5^{\prime \prime}\right)$
（v）Given 11^{C}
$=\left(\frac{180}{\pi} \times 11\right)$ 。
$=\left(\frac{180}{22} \times 7 \times 11\right)$ 。
$=(90 \times 7)^{\circ}$
$=630^{\circ}$
（vi）Given $1^{\text {c }}$
$=\left(\frac{180}{\pi} \times 1\right)$ 。
$=\left(\frac{180}{22} \times 7 \times 1\right)$ 。
$=\left(\frac{1260}{22}\right)$ 。
$=\left(57 \frac{3}{11}\right)$ 。
$=\left(57^{\circ}\left(\frac{3}{11} \times 60\right)^{\prime}\right)$
$=\left(57^{\circ}\left(16 \frac{4}{11}\right)^{\prime}\right)$
$=\left(57^{\circ} 16^{r}\left(\frac{4}{11} \times 60\right)^{r}\right)$
$=\left(57^{\circ} 16^{\prime} 21.81^{\prime \prime}\right)$
$\approx\left(57^{\circ} 16^{\prime} 22^{\prime \prime}\right)$

2．Question

Find the radian measure corresponding to the following degree measures：
（i） 300^{0}（ii） 35^{0}（iii）-56^{0}（iv） 135°（v）-300^{0}
（vi） $7^{0} 30^{\prime}$（vii） $125^{0} 30^{\prime}(v i i i)-47^{\circ} 30^{\prime}$

Answer

We know that $180^{\circ}=\pi \mathrm{rad} \Rightarrow 1^{\circ}=\pi / 180 \mathrm{rad}$
（i）Given 300°
$=\left(300 \times \frac{\pi}{180}\right) \mathrm{rad}$
$=\frac{5 \pi}{3} \mathrm{rad}$
（ii）Given 35°
$=\left(35 \times \frac{\pi}{180}\right) \mathrm{rad}$
$=\frac{7 \pi}{36} \mathrm{rad}$
（iii）Given -56°
$=\left(-56 \times \frac{\pi}{180}\right) \mathrm{rad}$
$=-\frac{14 \pi}{45} \mathrm{rad}$
（iv）Given 135°
$=\left(135 \times \frac{\pi}{180}\right) \mathrm{rad}$
$=\frac{3 \pi}{4} \mathrm{rad}$
（v）Given－ 300°
$=\left(-300 \times \frac{\pi}{180}\right) \mathrm{rad}$
$=-\frac{5 \pi}{3} \mathrm{rad}$
（vi）Given $7^{\circ} 30^{\prime}$
We know that $30^{\prime}=(1 / 2)^{\circ}$
$\therefore 7^{\circ} 30^{\prime}=(71 / 2)^{\circ}$
$=\left(\frac{15}{2}\right)$ 。
$=\left(\frac{15}{2} \times \frac{\pi}{180}\right) \mathrm{rad}$
$=\left(\frac{\pi}{24}\right) \mathrm{rad}$
（vii）Given $125^{\circ} 30^{\prime}$
We know that $30^{\prime}=(1 / 2)^{\circ}$
$\therefore 125^{\circ} 30^{\prime}=(1251 / 2)^{\circ}$
$=\left(\frac{251}{2}\right)$ 。
$=\left(\frac{251}{2} \times \frac{\pi}{180}\right) \mathrm{rad}$
$=\left(\frac{251 \pi}{360}\right) \mathrm{rad}$
（viii）Given $-47^{\circ} 30^{\prime}$
We know that $30^{\prime}=(1 / 2)^{\circ}$
$\therefore-47^{\circ} 30^{\prime}=-(471 / 2)^{\circ}$
$=-\left(\frac{95}{2}\right)$ 。
$=-\left(\frac{95}{2} \times \frac{\pi}{180}\right) \mathrm{rad}$
$=-\left(\frac{19 \pi}{72}\right) \mathrm{rad}$

3．Question

The difference between the two acute angles of a right－angled triangle is $2 \pi / 5$ radians．Express the angles in degrees．

Answer

Given the difference between the two acute angles of a right－angled triangle is $2 \pi / 5$ radians．
We know that $\pi \mathrm{rad}=180^{\circ} \Rightarrow 1 \mathrm{rad}=180^{\circ} / \pi$
Given $\frac{2 \pi}{5}$
$=\left(\frac{180}{\pi} \times \frac{2 \pi}{5}\right)$ 。
$=(36 \times 2)^{\circ}$
$=72^{\circ}$
Let one acute angle be x° and the other acute angle be $90^{\circ}-x^{\circ}$ ．
Then，
$\Rightarrow x^{\circ}-\left(90^{\circ}-x^{\circ}\right)=72^{\circ}$
$\Rightarrow 2 x^{\circ}-90^{\circ}=72^{\circ}$
$\Rightarrow 2 x^{\circ}=72^{\circ}+90^{\circ}$
$\Rightarrow 2 x^{\circ}=162^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=162^{\circ} / 2$
$\therefore \mathrm{x}^{\circ}=81^{\circ}$ and $90^{\circ}-\mathrm{x}^{\circ}=90^{\circ}-81^{\circ}=9^{\circ}$

4．Question

One angle of a triangle is $\frac{2}{3} \mathrm{x}$ grades，and another is $\frac{3}{2} \mathrm{x}$ degrees while the third is $\frac{\pi \mathrm{x}}{75}$ radians．Express all the angles in degrees．

Answer

Given one angle of a triangle is $2 x / 3$ grades and another is $3 x / 2$ degree while the third is $\pi x / 75$ radians．
We know that $1 \mathrm{grad}=\left(\frac{9}{10}\right)$ 。
$\Rightarrow \frac{2}{3} \mathrm{x} \operatorname{grad}=\left(\frac{9}{10}\right)\left(\frac{2}{3} \mathrm{x}\right) \circ=\frac{3}{5} \mathrm{x}^{\circ}$
We know that $\pi \mathrm{rad}=180^{\circ} \Rightarrow 1 \mathrm{rad}=180^{\circ} / \pi$
Given $\frac{\pi x}{75}$
$=\left(\frac{180}{\pi} \times \frac{\pi x}{75}\right)$ 。
$=\left(\frac{12}{5} x\right)$ 。
$\Rightarrow \frac{3}{5} x^{\circ}+\frac{3}{2} x^{\circ}+\frac{12}{5} x^{\circ}=180^{\circ}$
$\Rightarrow \frac{6+15+24}{10} x^{\circ}=180^{\circ}$
$\Rightarrow 45 \mathrm{x}^{\circ}=180^{\circ} \times 10^{\circ}$
$\Rightarrow 45 \mathrm{x}^{\circ}=1800^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=1800^{\circ} / 45^{\circ}$
$\therefore \mathrm{x}=40^{\circ}$
\therefore The angles of the triangle are
$\Rightarrow \frac{3}{5} \mathrm{x}^{\circ}=\frac{3}{5} \times 40^{\circ}=24^{\circ}$
$\Rightarrow \frac{3}{2} x^{\circ}=\frac{3}{2} \times 40^{\circ}=60^{\circ}$
$\Rightarrow \frac{12}{5} \mathrm{x}^{\circ}=\frac{12}{5} \times 40^{\circ}=96^{\circ}$

5. Question

Find the magnitude, in radians and degrees, of the interior angle of a regular:
(i) Pentagon
(ii) Octagon
(iii) Heptagon (iv) Duodecagon.

Answer

We know that the sum of the interior angles of a polygon $=(n-2) \pi$
And each angle of polygon $=\frac{\text { sum of interior angles of polygon }}{\text { number of sides }}$
(i) Pentagon

Number of sides in pentagon $=5$
Sum of interior angles of pentagon $=(5-2) \pi=3 \pi$
\therefore Each angle of pentagon $=\frac{3 \pi}{5} \times \frac{180^{\circ}}{\pi}=108^{\circ}$
(ii) Octagon

Number of sides in octagon $=8$
Sum of interior angles of octagon $=(8-2) \pi=6 \pi$
\therefore Each angle of octagon $=\frac{6 \pi}{8} \times \frac{180^{\circ}}{\pi}=135^{\circ}$
(iii) Heptagon

Number of sides in heptagon $=7$
Sum of interior angles of heptagon $=(7-2) \pi=5 \pi$
\therefore Each angle of heptagon $=\frac{5 \pi}{7} \times{\frac{180^{\circ}}{\pi}}_{\pi}=\frac{900}{7}{ }^{\circ}=128^{\circ} 34^{\prime} 17^{\prime \prime}$
(iv) Duodecagon

Number of sides in duodecagon $=12$
Sum of interior angles of duodecagon $=(12-2) \pi=10 \pi$
\therefore Each angle of duodecagon $=\frac{10 \pi}{12} \times \frac{180^{\circ}}{\pi}=150^{\circ}$

6. Question

The angles of a quadrilateral are in A.P., and the greatest angle is 120°. Express the angles in radians.

Answer

Let the angles of quadrilateral be $(\mathrm{a}-3 \mathrm{~d})^{\circ},(\mathrm{a}-\mathrm{d})^{\circ},(\mathrm{a}+\mathrm{d})^{\circ}$ and $(\mathrm{a}+3 \mathrm{~d})^{\circ}$.
We know that the sum of angles of a quadrilateral is 360°.
$\Rightarrow a-3 d+a-d+a+d+a+3 d=360^{\circ}$
$\Rightarrow 4 \mathrm{a}=360^{\circ}$
$\therefore \mathrm{a}=90^{\circ}$
Given the greatest angle $=120^{\circ}$
$\Rightarrow \mathrm{a}+3 \mathrm{~d}=120^{\circ}$
$\Rightarrow 90^{\circ}+3 \mathrm{~d}=120^{\circ}$
$\Rightarrow 3 \mathrm{~d}=120^{\circ}-90^{\circ}$
$\Rightarrow 3 \mathrm{~d}=30^{\circ}$
$\Rightarrow \mathrm{d}=10^{\circ}$
Hence, the angles are:
$\Rightarrow(\mathrm{a}-3 \mathrm{~d})^{\circ}=90^{\circ}-30^{\circ}=60^{\circ}$
$\Rightarrow(\mathrm{a}-\mathrm{d})^{\circ}=90^{\circ}-10^{\circ}=80^{\circ}$
$\Rightarrow(\mathrm{a}+\mathrm{d})^{\circ}=90^{\circ}+10^{\circ}=100^{\circ}$
$\Rightarrow(\mathrm{a}+3 \mathrm{~d})^{\circ}=120^{\circ}$
Angles of quadrilateral in radians:
$\Rightarrow\left(60 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{\pi}{3} \mathrm{rad}$
$\Rightarrow\left(80 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{4 \pi}{9} \mathrm{rad}$
$\Rightarrow\left(100 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{5 \pi}{9} \mathrm{rad}$
$\Rightarrow\left(120 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{2 \pi}{3} \mathrm{rad}$

7. Question

The angles of a triangle are in A.P., and the number of degrees in the least angle is to the number of degrees in the mean angle as 1:120. Find the angle in radians.

Answer

Let the angles of the triangle be $(a-d)^{\circ}, a^{\circ}$ and $(a+d)^{\circ}$.
We know that the sum of the angles of a triangle is 180°.
$\Rightarrow a-d+a+a+d=180^{\circ}$
$\Rightarrow 3 \mathrm{a}=180^{\circ}$
$\therefore \mathrm{a}=60^{\circ}$
Given $\frac{\text { Number of degrees in the least angle }}{\text { Number of degrees in the mean angle }}=\frac{1}{120}$
$\Rightarrow \frac{a-d}{a}=\frac{1}{120}$
$\Rightarrow \frac{60-\mathrm{d}}{60}=\frac{1}{120}$
$\Rightarrow \frac{60-\mathrm{d}}{1}=\frac{1}{2}$
$\Rightarrow 120-2 d=1$
$\Rightarrow 2 \mathrm{~d}=119$
$\therefore \mathrm{d}=59.5$
Hence, angles are:
$\Rightarrow(\mathrm{a}-\mathrm{d})^{\circ}=60^{\circ}-59.5^{\circ}=0.5^{\circ}$
$\Rightarrow a^{\circ}=60^{\circ}$
$\Rightarrow(\mathrm{a}+\mathrm{d})^{\circ}=60^{\circ}+59.5^{\circ}=119.5^{\circ}$
\therefore Angles of triangle in radians:
$\Rightarrow\left(0.5 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{\pi}{360} \mathrm{rad}$
$\Rightarrow\left(60 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{\pi}{3} \mathrm{rad}$
$\Rightarrow\left(119.5 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{239 \pi}{360} \mathrm{rad}$

8. Question

The angle in one regular polygon is to that in another as 3:2 and the number of sides in first is twice that in the second. Determine the number of sides of two polygons.

Answer

Let the number of sides in the first polygon be $2 x$ and the number of sides in the second polygon be x.
We know that angle of an n-sided regular polygon $=\left(\frac{n-2}{n}\right) \pi$ radian
\Rightarrow The angle of the first polygon $=\left(\frac{2 x-2}{2 x}\right) \pi=\left(\frac{x-1}{x}\right) \pi$ radian
\Rightarrow The angle of the second polygon $=\left(\frac{x-2}{x}\right) \pi$ radian
Thus,
$\Rightarrow \frac{\left(\frac{x-1}{x}\right) \pi}{\left(\frac{x-2}{x}\right) \pi}=\frac{3}{2}$
$\Rightarrow \frac{x-1}{x-2}=\frac{3}{2}$
$\Rightarrow 2 x-2=3 x-6$
$\therefore \mathrm{x}=4$
Thus,
Number of sides in the first polygon $=2 x=8$
Number of sides in the second polygon $=x=4$

9. Question

The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.

Answer

Let the angles of the triangle be $(a-d)^{\circ}, a^{\circ}$ and $(a+d)^{\circ}$.
We know that the sum of angles of triangle is 180°.
$\Rightarrow \mathrm{a}-\mathrm{d}+\mathrm{a}+\mathrm{a}+\mathrm{d}=180^{\circ}$
$\Rightarrow 3 \mathrm{a}=180^{\circ}$
$\therefore a=60^{\circ}$
Given greatest angle $=5 \times$ least angle
$\frac{\text { Greatest angle }}{\text { Least angle }}=5$
$\Rightarrow \frac{a+d}{a-d}=5$
$\Rightarrow \frac{60+d}{60-d}=5$
$\Rightarrow 60+d=300-5 d$
$\Rightarrow 6 d=240$
$\therefore \mathrm{d}=40$
Hence, angles are:
$\Rightarrow(\mathrm{a}-\mathrm{d})^{\circ}=60^{\circ}-40^{\circ}=20^{\circ}$
$\Rightarrow a^{\circ}=60^{\circ}$
$\Rightarrow(\mathrm{a}+\mathrm{d})^{\circ}=60^{\circ}+40^{\circ}=100^{\circ}$
\therefore Angles of triangle in radians:
$\Rightarrow\left(20 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{\pi}{9} \mathrm{rad}$
$\Rightarrow\left(60 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{\pi}{3} \mathrm{rad}$
$\Rightarrow\left(100 \times \frac{\pi}{180}\right) \mathrm{rad}=\frac{5 \pi}{9} \mathrm{rad}$

10. Question

The number of sides of two regular polygons is $5: 4$ and the difference between their angle is 9^{0}. Find the number of sides of the polygons.

Answer

Let the number of sides in the first polygon be $5 x$ and the number of sides in the second polygon be $4 x$.
We know that angle of an n-sided regular polygon $=\left(\frac{n-2}{n}\right) \pi$ radian
\Rightarrow The angle of the first polygon $=\left(\frac{5 x-2}{5 x}\right) 180^{\circ}$
\Rightarrow The angle of the second polygon $=\left(\frac{4 x-1}{4 x}\right) 180^{\circ}$
Thus,
$\Rightarrow\left(\frac{5 \mathrm{x}-2}{5 \mathrm{x}}\right) 180^{\circ}-\left(\frac{4 \mathrm{x}-1}{4 \mathrm{x}}\right) 180^{\circ}=9$
$\Rightarrow 180^{\circ}\left(\frac{4(5 \mathrm{x}-2)-5(4 \mathrm{x}-2)}{20 \mathrm{x}}\right)=9$
$\Rightarrow \frac{20 \mathrm{x}-8-20 \mathrm{x}+10}{20 \mathrm{x}}=\frac{9}{180}$
$\Rightarrow \frac{2}{20 \mathrm{x}}=\frac{1}{20}$
$\Rightarrow \frac{2}{x}=1$
$\therefore \mathrm{x}=2$
Thus,
Number of sides in the first polygon $=5 x=10$
Number of sides in the second polygon $=4 x=8$

11. Question

A railroad curve is to be laid out on a circle. What radius should be used if the track is to change direction by 25^{0} at a distance of 40 meters?

Answer

Given length of arc $=40 \mathrm{~m}$
And $\theta=25^{\circ}$
We know that $180^{\circ}=\pi \mathrm{rad} \Rightarrow 1^{\circ}=\pi / 180 \mathrm{rad}$
$\Rightarrow 25^{\circ}=\left(25 \times \frac{\pi}{180}\right)=\frac{5 \pi}{36}$ radian
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \frac{5 \pi}{36}=\frac{40}{\text { radius }}$
\Rightarrow Radius $=\frac{40}{\frac{5 \pi}{36}}$
$=\frac{40 \times 36 \times 7}{5 \times 22}$
$=91.64 \mathrm{~m}$
So, the radius of the track should be 91.64 m .

12. Question

Find the length which at a distance of 5280 m will subtend an angle of 1^{\prime} at the eye.

Answer

Given radius $=5280 \mathrm{~m}$
We know that $\theta=1^{\prime}=\left(\frac{1}{60}\right)^{\circ}=\left(\frac{1}{60} \times \frac{\pi}{180}\right)$ rad
And know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \frac{1}{60} \times \frac{\pi}{180}=\frac{\text { arc }}{5280}$
$\therefore \operatorname{arc}=\frac{5280 \times 22}{60 \times 180 \times 7}$
$=1.5365 \mathrm{~m}$

13. Question

A wheel makes 360 revolutions per minute. Through how many radians does it turn in 1 second?

Answer

Given the number of revolutions taken by the wheel in 1 minute $=360$
Number of revolution taken by the wheel in 1 second $=360 / 6=6$
We know that 1 revolution $=2 \pi$ radians
\therefore Number of radians the wheel will turn in 1 second $=6 \times 2 \pi=12 \pi$

14. Question

Find the angle in radians through which a pendulum swings if its length is 75 cm and the tip describes an arc of length (i) 10 cm (ii) 15 cm (iii) 21 cm .

Answer

Given radius $=75 \mathrm{~cm}$
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
(i) Given length of arc $=10 \mathrm{~cm}$
$\Rightarrow \theta=\frac{10}{75}=\frac{2}{15}$ radian
(ii) Given length of arc $=15 \mathrm{~cm}$
$\Rightarrow \theta=\frac{15}{75}=\frac{1}{5}$ radian
(iii) Given length of arc $=21 \mathrm{~cm}$
$\Rightarrow \theta=\frac{21}{75}=\frac{7}{25}$ radian

15. Question

The radius of a circle is 30 cm . Find the length of an arc of this circle, if the length of the chord of the arc is 30 cm .

Answer

Let $A B$ be chord and O be the centre if the circle.
Here $A O=B O=A B=30 \mathrm{~cm}$
$\therefore \triangle \mathrm{AOB}$ is an equilateral triangle.
Given radius $=30 \mathrm{~cm}$
And $\theta=60^{\circ}$
We know that $180^{\circ}=\pi \mathrm{rad} \underset{\underline{1^{\circ}}=\pi / 180 \mathrm{rad}}{\underline{0}}$
$\Rightarrow 60^{\circ}=\left(60 \times \frac{\pi}{180}\right)=\frac{\pi}{3}$ radian
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \frac{\pi}{3}=\frac{\operatorname{arc}}{30}$
$\therefore \operatorname{arc}=\frac{30 \pi}{3}$
$=10 \pi \mathrm{~cm}$

16. Question

A railway train is traveling on a circular curve of 1500 meters radius at the rate of $66 \mathrm{~km} / \mathrm{hr}$. Through what angle has it turned in 10 seconds?

Answer

Given time is 10 seconds.
And speed $=66 \mathrm{~km} / \mathrm{h}=\frac{66 \times 1000}{3600} \mathrm{~m} / \mathrm{s}$
We know that speed $=\frac{\text { distance }}{\text { time }}$
$\Rightarrow \frac{66 \times 1000}{3600}=\frac{\text { distance }}{\text { time }}$
\Rightarrow Distance $=\frac{66 \times 1000}{3600} \times 10=\frac{1100}{6} \mathrm{~m}$
Now radius of curve $=1500 \mathrm{~m}$
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \theta=\frac{\frac{1100}{6}}{1500}$
$=\frac{1100}{1500 \times 6}=\frac{11}{90}$ radian
So, the train will turn 11/ 90 radian in 10 seconds.

17. Question

Find the distance from the eye at which a coin of 2 cm diameter should be held so as to conceal the full moon whose angular diameter is 31^{\prime}.

Answer

Let $P Q$ be the diameter of the coin and E be the eye of the observer.
Let the coin be kept at a distance r from the eye of the observer to hide the moon completely.
$\Rightarrow \theta=1^{\prime}=\left(\frac{1}{60}\right)^{\circ}=\left(\frac{1}{60} \times \frac{\pi}{180}\right) \mathrm{rad}$
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \frac{31}{60} \times \frac{\pi}{180}=\frac{2}{\text { radius }}$
\therefore radius $=\frac{180 \times 60 \times 2 \times 7}{31 \times 22}$
$=221.7 \mathrm{~cm}$

18. Question

Find the diameter of the Sun in km supposing that it subtends an angle of 32^{\prime} at the eye of an observer. Given that the distance of the Sun is $91 \times 10^{6} \mathrm{~km}$.

Answer

Let $P Q$ be the diameter of the sun and E be the eye of the observer.

The distance between the Sun and Earth is large, so we will take PQ as arc PQ .
Given radius $=91 \times 10^{6} \mathrm{~km}$
$\Rightarrow \theta=32^{\prime}=\left(\frac{32}{60}\right)^{\circ}=\left(\frac{32}{60} \times \frac{\pi}{180}\right) \mathrm{rad}$
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \frac{32}{60} \times \frac{\pi}{180}=\frac{d}{91 \times 10^{6}}$
$\therefore \mathrm{d}=\frac{32 \times 91 \times 10^{6} \times 22}{60 \times 180 \times 7}$
$=847407.4 \mathrm{~km}$

19. Question

If the arcs of the same length in two circles subtend angles 65° and 110° at the center, find the ratio of their radii.

Answer

Let the angles subtended at the centers by the arcs and radii of first and second circles be θ_{1} and r_{1} and θ_{2} and r_{2}.

Then,
We know that $180^{\circ}=\pi$ rad $\Rightarrow \underline{1^{\circ}}=\pi / 180 \mathrm{rad}$
$\Rightarrow \theta_{1}=65^{\circ}=\left(65 \times \frac{\pi}{180}\right)$ radian
$\Rightarrow \theta_{2}=110^{\circ}=\left(110 \times \frac{\pi}{180}\right)$ radian
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \theta_{1}=\frac{\mathrm{l}}{\mathrm{r}_{1}}$ and $\theta_{2}=\frac{\mathrm{l}}{\mathrm{r}^{2}}$
$\Rightarrow r_{1}=\frac{1}{\left(65 \times \frac{\pi}{180}\right)}$ and $r_{2}=\frac{1}{\left(110 \times \frac{\pi}{180}\right)}$
$\therefore \frac{r_{1}}{r_{2}}=\frac{\frac{1}{\left(65 \times \frac{\pi}{180}\right)}}{\frac{1}{\left(110 \times \frac{\pi}{180}\right)}}$
$=\frac{110}{65}$
$=\frac{22}{13}$
$\therefore \mathrm{r}_{1}: \mathrm{r}_{2}=22: 13$

20. Question

Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use $\pi=\frac{22}{7}$).

Given length of arc $=22 \mathrm{~cm}$
And radius $=100 \mathrm{~cm}$
We know that $\theta=\frac{\text { arc }}{\text { radius }}$
$\Rightarrow \theta=\frac{22}{100}$
$=\frac{11}{50}$ radian
\therefore The angle subtended at the centre by the arc:
$\Rightarrow\left(\frac{32}{60} \times \frac{\pi}{180}\right)^{\circ}=\left(\frac{11}{5} \times \frac{18}{220} \times 7\right)^{\circ}$
$=\left(\frac{63}{5}\right)$ 。
$=12^{\circ} 36^{\prime}$.
MCQ

1. Question

Mark the correct alternative in the following:
If D, G and R denote respectively the number of degrees, grades and radians in an angle, then
A. $\frac{\mathrm{D}}{100}=\frac{\mathrm{G}}{90}=\frac{2 \mathrm{R}}{\pi}$
B. $\frac{\mathrm{D}}{90}=\frac{\mathrm{G}}{100}=\frac{\mathrm{R}}{\pi}$
C. $\frac{\mathrm{D}}{90}=\frac{\mathrm{G}}{100}=\frac{2 \mathrm{R}}{\pi}$
D. $\frac{\mathrm{D}}{90}=\frac{\mathrm{G}}{100}=\frac{\mathrm{R}}{2 \pi}$

Answer

Let θ be the angle which is measure in degree, radian and grade
We know that $90^{\circ}=1$ right angle
$\Rightarrow 1^{\circ}=\frac{1}{90}$ right angle
$\Rightarrow \mathrm{D}^{\circ}=\frac{\mathrm{D}}{90}$ right angles
$\Rightarrow \theta=\frac{\mathrm{D}}{90}$ right angle
Also we know that , π radians= 2 right angles
$\Rightarrow 1^{\mathrm{c}}=\frac{2}{\pi}$ right angle
$\Rightarrow R=\frac{2}{\pi} \times \mathrm{R}$ right angles
$\Rightarrow \theta=\frac{2}{\pi} \times \mathrm{R}$ right angles
Also we know that, 100 grades=1 right angle
$\Rightarrow 1$ grade $=\frac{1}{100}$ right angle
$\Rightarrow G$ grade $=\frac{G}{100}$ right angles
$\Rightarrow \theta=\frac{G}{100}$ right angles
From (1),(2) and (3)
$\frac{D}{90}=\frac{2 R}{\pi}$
$=\frac{\mathrm{G}}{100}$

2. Question

Mark the correct alternative in the following:
If the angles of a triangle are in A.P., then the measure of one of the angles in radians is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer

Here, angles of triangle are in A.P.
So, Let angles of triangle are $a, a+d, a+2 d$.
We know that, sum of angles of triangle is π.
$\therefore a+a+d+a+2 d=\pi$
$\therefore 3 a+3 d=\pi$
$\therefore 3(a+d)=\pi$
$\therefore a+d=\frac{\pi}{3}$
Also, by our assumption, $a+d$ is one angle of triangle.
So, required measure of one of the angles is $\frac{\pi}{3}$.

3. Question

Mark the correct alternative in the following:
The angle between the minute and hour hands of a clock at 8:30 is
A. 80°
B. 75°
C. 60°
D. 105°

Answer

We know, in clock 1 rotation gives 360°
i.e. 60 minutes $=360^{\circ}$ and 12 hours $=360^{\circ}$

So, 1 minute $=6^{\circ}$ and 1 hour $=30^{\circ}$
Now, For hour hand:
8 hours $=8 \times 30^{\circ}=240^{\circ}$ and for another 30 minute (which is half of hour) $=30^{\circ} \div 2=15^{\circ}$
i.e. angle traced by hour hand is $240^{\circ}+15^{\circ}=255^{\circ}$

Now, For minute hand:
30 minute $=30 \times 6^{\circ}=180^{\circ}$
i.e. angle traced by minute hand is 180°.

So, the angle between hour hand and minute hand $=255^{\circ}-180^{\circ}$
$=75^{\circ}$

4. Question

Mark the correct alternative in the following:
At 3:40, the hour and minute hands of a clock are inclined at
A. $\frac{2 \pi^{\mathrm{c}}}{3}$
B. $\frac{7 \pi^{\mathrm{c}}}{12}$
C. $\frac{13 \pi^{\mathrm{c}}}{18}$
D. $\frac{3 \pi^{\mathrm{c}}}{4}$

Answer

We know, in clock 1 rotation gives 360°
i.e. 60 minutes $=360^{\circ}$ and 12 hours $=360^{\circ}$

So, 1 minute $=6^{\circ}$ and 1 hour $=30^{\circ}$
Now, For hour hand:
3 hours $=3 \times 30^{\circ}=90^{\circ}$ and for another 40 minute $=\left(30^{\circ} \div 60\right) \times 40=20^{\circ}$
i.e. angle traced by hour hand is $90^{\circ}+20^{\circ}=110^{\circ}$

Now, for minute hand:
40 minute $=40 \times 6^{\circ}=240^{\circ}$
i.e. angle traced by minute hand is 240°.

So, the angle between hour hand and minute hand $=240^{\circ}-110^{\circ}$
$=130^{\circ}$
$=130^{\circ} \times \frac{\pi^{\mathrm{c}}}{180}$
$=\frac{13 \pi^{c}}{18}$

5. Question

Mark the correct alternative in the following:
If the arcs of the same length in two circles subtend angles 65° and 110° at the centre, then the ratio of the radii of the circles is
A. $22: 13$
B. $11: 13$
C. $22: 15$
D. $21: 13$

Answer

Let radius of two circles be the r_{1} and r_{2}
Let θ_{1} and θ_{2} be the subtend angles of arcs of two circles
i.e. $\theta_{1}=65^{\circ}$ and $\theta_{2}=110^{\circ}$

We know that arc length,
$\mathrm{I}=\mathrm{r} \times \theta$
Here, arc lengths of two circles are same.
$\therefore r_{1} \times \theta_{1}=r_{2} \times \theta_{2}$
$\therefore \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\theta_{2}}{\theta_{1}}=\frac{110}{65}$
$\therefore \frac{r_{1}}{r_{2}}=\frac{11 \times 2}{13}$
$\therefore r_{1}: r_{2}=22: 13$

6. Question

Mark the correct alternative in the following:
If OP makes 4 revolutions in one second, the angular velocity in radians per second is
A. π
B. 2π
C. 4π
D. 8π

Answer

We know that, 1 revolution $=2 \times \pi$ radians
Now, Angular velocity $=\frac{\text { Distance }}{\text { Time }}$
$=\frac{4 \text { revolutions }}{1 \text { second }}$
$=\frac{4 \times 2 \times \pi}{1}$
$=8 \times \pi$

7. Question

Mark the correct alternative in the following:
A circular wire of radius 7 cm is cut and bent again into an arc of a circle of radius 12 cm . The angle subtended by the arc at the centre is
A. 50°
B. 210°
C. 100°
D. 60°
E. 195°

Answer

Here, radius of circular wire is $\mathrm{r}=7 \mathrm{~cm}$
So, length of wire $=2 \times \pi \times r$
$=2 \times \pi \times 7$
$=14 \times \pi$
Wire is cut and bent again into an arc of a circle of radius 12 cm .
So, length of arc=length of wire $=14 \times \pi$
We know, angle subtended by the arc is given by,
$\theta=\frac{\text { length of arc }}{\text { radius }}$
$=\frac{14 \pi}{12}$
$=\frac{14 \pi}{12} \times \frac{180^{\circ}}{\pi}$
$=210^{\circ}$

8. Question

Mark the correct alternative in the following:
The radius of the circle whose arc of length $15 \pi \mathrm{~cm}$ makes an angle of $3 \pi / 4$ radian at the centre is
A. 10 cm
B. 20 cm
C. $11 \frac{1}{4} \mathrm{~cm}$
D. $22 \frac{1}{2} \mathrm{~cm}$

Answer

Here, arc length $I=15 \pi \mathrm{~cm}$
Angle $\theta=\frac{3 \pi}{4}$
We know, angle subtended by the arc is given by,
$\theta=\frac{\text { length of arc }}{\text { radius }}$
\therefore radius $=\frac{1}{\theta}$
$=\frac{15 \pi}{3 \pi} \times 4$
$=20 \mathrm{~cm}$

