3. Functions

Exercise 3.1

1. Question

Define a function as a set of ordered pairs.

Answer

A function from is defined by a set of ordered pairs such that any two ordered pairs should not have the same first component and the different second component.

This means that each element of a set, say X is assigned exactly to one element of another set, say Y.
The set X containing the first components of a function is called the domain of the function.
The set Y containing the second components of a function is called the range of the function.
For example, $f=\{(a, 1),(b, 2),(c, 3)\}$ is a function.
Domain of $f=\{a, b, c\}$
Range of $f=\{1,2,3\}$

2. Question

Define a function as a correspondence between two sets.

Answer

A function from a set X to a set Y is defined as a correspondence between sets X and Y such that for each element of X, there is only one corresponding element in Y.

The set X is called the domain of the function.
The set Y is called the range of the function.
For example, $X=\{a, b, c\}, Y=\{1,2,3,4,5\}$ and f be a correspondence which assigns the position of a letter in the set of alphabets.

Therefore, $f(a)=1, f(b)=2$ and $f(c)=3$.
As there is only one element of Y for each element of X, f is a function with domain X and range Y.

3. Question

What is the fundamental difference between a relation and a function? Is every relation a function?

Answer

Let f be a function and R be a relation defined from set X to set Y .
The domain of the relation R might be a subset of the set X, but the domain of the function f must be equal to X. This is because each element of the domain of a function must have an element associated with it, whereas this is not necessary for a relation.

In relation, one element of X might be associated with one or more elements of Y, while it must be associated with only one element of Y in a function.

Thus, not every relation is a function. However, every function is necessarily a relation.

4. Question

Let $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow Z$ be a function defined by $f(x)=x^{2}-2 x-3$. Find:
i. range of fi.e. $f(A)$
ii. pre-images of $6,-3$ and 5

Answer

Given $A=\{-2,-1,0,1,2\}$
$f: A \rightarrow Z$ such that $f(x)=x^{2}-2 x-3$
i. range of fi.e. $f(A)$

A is the domain of the function f. Hence, range is the set of elements $f(x)$ for all $x \in A$.
Substituting $x=-2$ in $f(x)$, we get
$f(-2)=(-2)^{2}-2(-2)-3$
$\Rightarrow f(-2)=4+4-3$
$\therefore \mathrm{f}(-2)=5$
Substituting $x=-1$ in $f(x)$, we get
$f(-1)=(-1)^{2}-2(-1)-3$
$\Rightarrow f(-1)=1+2-3$
$\therefore \mathrm{f}(-1)=0$
Substituting $x=0$ in $f(x)$, we get
$f(0)=(0)^{2}-2(0)-3$
$\Rightarrow f(0)=0-0-3$
$\therefore \mathrm{f}(0)=-3$
Substituting $x=1$ in $f(x)$, we get
$f(1)=1^{2}-2(1)-3$
$\Rightarrow f(1)=1-2-3$
$\therefore \mathrm{f}(1)=-4$
Substituting $x=2$ in $f(x)$, we get
$f(2)=2^{2}-2(2)-3$
$\Rightarrow f(2)=4-4-3$
$\therefore \mathrm{f}(2)=-3$
Thus, the range of f is $\{5,0,-3,-4\}$.
ii. pre-images of $6,-3$ and 5

Let x be the pre-image of $6 \Rightarrow f(x)=6$
$\Rightarrow x^{2}-2 x-3=6$
$\Rightarrow x^{2}-2 x-9=0$
$\Rightarrow x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-9)}}{2(1)}$
$\Rightarrow \mathrm{x}=\frac{2 \pm \sqrt{4+36}}{2}$
$\Rightarrow \mathrm{x}=\frac{2 \pm \sqrt{40}}{2}$
$\Rightarrow \mathrm{x}=\frac{2 \pm 2 \sqrt{10}}{2}$
$\therefore \mathrm{X}=1 \pm \sqrt{10}$

However, $1 \pm \sqrt{10} \notin \mathrm{~A}$
Thus, there exists no pre-image of 6.
Now, let x be the pre-image of $-3 \Rightarrow f(x)=-3$
$\Rightarrow x^{2}-2 x-3=-3$
$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-2)=0$
$\therefore \mathrm{x}=0$ or 2
Clearly, both 0 and 2 are elements of A.
Thus, 0 and 2 are the pre-images of -3 .
Now, let x be the pre-image of $5 \Rightarrow f(x)=5$
$\Rightarrow x^{2}-2 x-3=5$
$\Rightarrow x^{2}-2 x-8=0$
$\Rightarrow x^{2}-4 x+2 x-8=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=0$
$\Rightarrow(x+2)(x-4)=0$
$\therefore \mathrm{x}=-2$ or 4
However, $4 \notin \mathrm{~A}$ but $-2 \in \mathrm{~A}$
Thus, -2 is the pre-images of 5 .

5. Question

If a function $f: R \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{c}3 x-2, x<0 \\ 1, x=0 \\ 4 x+1, x>0\end{array}\right.$
Find: $f(1), f(-1), f(0), f(2)$.

Answer

Given $f(x)=\left\{\begin{array}{r}3 x-2, x<0 \\ 1, x=0 \\ 4 x+1, x>0\end{array}\right.$
We need to find $f(1), f(-1), f(0)$ and $f(2)$.
When $x>0, f(x)=4 x+1$
Substituting $x=1$ in the above equation, we get
$f(1)=4(1)+1$
$\Rightarrow f(1)=4+1$
$\therefore \mathrm{f}(1)=5$
When $x<0, f(x)=3 x-2$
Substituting $x=-1$ in the above equation, we get
$f(-1)=3(-1)-2$
$\Rightarrow f(-1)=-3-2$
$\therefore \mathrm{f}(-1)=-5$
When $x=0, f(x)=1$
$\therefore \mathrm{f}(0)=1$
When $x>0, f(x)=4 x+1$
Substituting $x=2$ in the above equation, we get
$f(2)=4(2)+1$
$\Rightarrow f(2)=8+1$
$\therefore \mathrm{f}(2)=9$
Thus, $f(1)=5, f(-1)=-5, f(0)=1$ and $f(2)=9$.

6. Question

A function $f: R \rightarrow R$ is defined by $f(x)=x^{2}$. Determine
i. range of f
ii. $\{x: f(x)=4\}$
iii. $\{y: f(y)=-1\}$

Answer

Given $f: R \rightarrow R$ and $f(x)=x^{2}$.
i. range of f

Domain of $f=R$ (set of real numbers)
We know that the square of a real number is always positive or equal to zero.
Hence, the range of f is the set of all non-negative real numbers.
Thus, range of $f=R^{+} u\{0\}$
ii. $\{x: f(x)=4\}$

Given $f(x)=4$
$\Rightarrow x^{2}=4$
$\Rightarrow x^{2}-4=0$
$\Rightarrow(x-2)(x+2)=0$
$\therefore \mathrm{x}= \pm 2$
Thus, $\{x: f(x)=4\}=\{-2,2\}$
iii. $\{y: f(y)=-1\}$

Given $f(y)=-1$
$\Rightarrow y^{2}=-1$
However, the domain of f is R, and for every real number y, the value of y^{2} is non-negative.
Hence, there exists no real y for which $\mathrm{y}^{2}=-1$.
Thus, $\{y: f(y)=-1\}=\varnothing$

7. Question

Let $f: R^{+} \rightarrow R$, where R^{+}is the set of all positive real numbers, be such that $f(x)=\log _{e} x$. Determine i. the image set of the domain of f
ii. $\{x: f(x)=-2\}$
iii. whether $f(x y)=f(x)+f(y)$ holds.

Answer

Given $f: R^{+} \rightarrow R$ and $f(x)=\log _{e} x$.
i. the image set of the domain of f

Domain of $f=R^{+}$(set of positive real numbers)
We know the value of logarithm to the base e (natural logarithm) can take all possible real values.
Hence, the image set of f is the set of real numbers.
Thus, the image set of $f=R$
ii. $\{x: f(x)=-2\}$

Given $f(x)=-2$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}=-2$
$\therefore x=e^{-2}\left[\because \log _{b} a=c \Rightarrow a=b^{c}\right]$
Thus, $\{x: f(x)=-2\}=\left\{e^{-2}\right\}$
iii. whether $f(x y)=f(x)+f(y)$ holds.

We have $f(x)=\log _{e} x \Rightarrow f(y)=\log _{e} y$
Now, let us consider $f(x y)$.
$f(x y)=\log _{e}(x y)$
$\Rightarrow f(x y)=\log _{e}(x \times y)\left[\because \log _{b}(a \times c)=\log _{b} a+\log _{b} c\right]$
$\Rightarrow f(x y)=\log _{e} x+\log _{e} y$
$\therefore \mathrm{f}(\mathrm{xy})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$
Hence, the equation $f(x y)=f(x)+f(y)$ holds.

8. Question

Write the following relations as sets of ordered pairs and find which of them are functions:
i. $\{(x, y): y=3 x, x \in\{1,2,3\}, y \in\{3,6,9,12\}\}$
ii. $\{(x, y): y>x+1, x=1,2$ and $y=2,4,6\}$
iii. $\{(x, y): x+y=3, x, y \in\{0,1,2,3\}\}$

Answer

i. $\{(x, y): y=3 x, x \in\{1,2,3\}, y \in\{3,6,9,12\}\}$

When $x=1$, we have $y=3(1)=3$
When $x=2$, we have $y=3(2)=6$
When $x=3$, we have $y=3(3)=9$
Thus, $R=\{(1,3),(2,6),(3,9)\}$
Every element of set x has an ordered pair in the relation and no two ordered pairs have the same first component but different second components.

Hence, the given relation R is a function.
ii. $\{(x, y): y>x+1, x=1,2$ and $y=2,4,6\}$

When $x=1$, we have $y>1+1$ or $y>2 \Rightarrow y=\{4,6\}$
When $x=2$, we have $y>2+1$ or $y>3 \Rightarrow y=\{4,6\}$
Thus, $R=\{(1,4),(1,6),(2,4),(2,6)\}$
Every element of set x has an ordered pair in the relation. However, two ordered pairs $(1,4)$ and $(1,6)$ have the same first component but different second components.

Hence, the given relation R is not a function.
iii. $\{(x, y): x+y=3, x, y \in\{0,1,2,3\}\}$

When $x=0$, we have $0+y=3 \Rightarrow y=3$
When $x=1$, we have $1+y=3 \Rightarrow y=2$
When $x=2$, we have $2+y=3 \Rightarrow y=1$
When $x=3$, we have $3+y=3 \Rightarrow y=0$
Thus, $R=\{(0,3),(1,2),(2,1),(3,0)\}$
Every element of set x has an ordered pair in the relation and no two ordered pairs have the same first component but different second components.

Hence, the given relation R is a function.

9. Question

Let $f: R \rightarrow R$ and $g: C \rightarrow C$ be two functions defined as $f(x)=x^{2}$ and $g(x)=x^{2}$. Are they equal functions?

Answer

Given $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \ni \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R} \ni \mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$
As f is defined from R to R, the domain of $f=R$.
As g is defined from C to C, the domain of $g=C$.
Two functions are equal only when the domain and codomain of both the functions are equal.
In this case, the domain of $\mathrm{f} \neq$ domain of g .
Thus, f and g are not equal functions.

10. Question

If f, g, h are three functions defined from R to R as follows:
i. $f(x)=x^{2}$
ii. $g(x)=\sin x$
iii. $h(x)=x^{2}+1$

Find the range of each function.

Answer

i. $f(x)=x^{2}$

Domain of $f=R$ (set of real numbers)
We know that the square of a real number is always positive or equal to zero.
Hence, the range of f is the set of all non-negative real numbers.
Thus, range of $f=[0, \infty)=\{y: y \geq 0\}$
ii. $g(x)=\sin x$

Domain of $g=R$ (set of real numbers)
We know that the value of sine function always lies between -1 and 1 .
Hence, the range of g is the set of all real numbers lying in the range -1 to 1 .
Thus, range of $\mathrm{g}=[-1,1]=\{\mathrm{y}:-1 \leq \mathrm{y} \leq 1\}$
iii. $h(x)=x^{2}+1$

Domain of $h=R$ (set of real numbers)
We know that the square of a real number is always positive or equal to zero.
Furthermore, if we add 1 to this squared number, the result will always be greater than or equal to 1 .
Hence, the range of h is the set of all real numbers greater than or equal to 1 .
Thus, range of $h=[1, \infty)=\{y: y \geq 1\}$

11. Question

Let $X=\{1,2,3,4\}$ and $Y=\{1,5,9,11,15,16\}$. Determine which of the following sets are functions from X to Y .
i. $f_{1}=\{(1,1),(2,11),(3,1),(4,15)\}$
ii. $f_{2}=\{(1,1),(2,7),(3,5)\}$
iii. $f_{3}=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$

Answer

Given $X=\{1,2,3,4\}$ and $Y=\{1,5,9,11,15,16\}$
i. $f_{1}=\{(1,1),(2,11),(3,1),(4,15)\}$

Every element of set X has an ordered pair in the relation f_{1} and no two ordered pairs have the same first component but different second components.

Hence, the given relation f_{1} is a function.
ii. $f_{2}=\{(1,1),(2,7),(3,5)\}$

In the relation f_{2}, the element 2 of set X does not have any image in set Y.
However, for a relation to be a function, every element of the domain should have an image.
Hence, the given relation f_{2} is not a function.
iii. $f_{3}=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$

Every element of set X has an ordered pair in the relation f_{3}. However, two ordered pairs $(2,9)$ and $(2,11)$ have the same first component but different second components.

Hence, the given relation f_{3} is not a function.

12. Question

Let $A=\{12,13,14,15,16,17\}$ and $f: A \rightarrow Z$ be a function given by $f(x)=$ highest prime factor of x. Find range of f.

Answer

Given $A=\{12,13,14,15,16,17\}$
$f: A \rightarrow Z$ such that $f(x)=$ highest prime factor of x.
A is the domain of the function f. Hence, the range is the set of elements $f(x)$ for all $x \in A$.

We have $\mathrm{f}(12)=$ highest prime factor of 12
The prime factorization of $12=2^{2} \times 3$
Thus, the highest prime factor of 12 is 3 .
$\therefore \mathrm{f}(12)=3$
We have $\mathrm{f}(13)=$ highest prime factor of 13
We know 13 is a prime number.
$\therefore \mathrm{f}(13)=13$
We have $\mathrm{f}(14)=$ highest prime factor of 14
The prime factorization of $14=2 \times 7$
Thus, the highest prime factor of 14 is 7 .
$\therefore \mathrm{f}(14)=7$
We have $\mathrm{f}(15)=$ highest prime factor of 15
The prime factorization of $15=3 \times 5$
Thus, the highest prime factor of 15 is 5 .
$\therefore \mathrm{f}(15)=5$
We have $\mathrm{f}(16)=$ highest prime factor of 16
The prime factorization of $16=2^{4}$
Thus, the highest prime factor of 16 is 2 .
$\therefore \mathrm{f}(16)=2$
We have $f(17)=$ highest prime factor of 17
We know 17 is a prime number.
$\therefore \mathrm{f}(17)=17$
Thus, the range of f is $\{3,13,7,5,2,17\}$.

13. Question

If $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$, then find $f^{-1}\{17\}$ and $f^{-1}\{-3\}$.

Answer

Given $f: R \rightarrow R$ and $f(x)=x^{2}+1$.
We need to find $f^{-1}\{17\}$ and $f^{-1}\{-3\}$.
Let $f^{-1}\{17\}=x$
$\Rightarrow f(x)=17$
$\Rightarrow x^{2}+1=17$
$\Rightarrow x^{2}-16=0$
$\Rightarrow(x-4)(x+4)=0$
$\therefore \mathrm{x}= \pm 4$
Clearly, both -4 and 4 are elements of the domain R.
Thus, $f^{-1}\{17\}=\{-4,4\}$

Now, let $\mathrm{f}^{-1}\{-3\}=\mathrm{x}$
$\Rightarrow f(x)=-3$
$\Rightarrow x^{2}+1=-3$
$\Rightarrow x^{2}=-4$
However, the domain of f is R and for every real number x, the value of x^{2} is non-negative.
Hence, there exists no real x for which $x^{2}=-4$.
Thus, $f^{-1}\{-3\}=\varnothing$

14. Question

Let $A=\{p, q, r, s\}$ and $B=\{1,2,3\}$. Which of the following relations from A to B is not a function?
i. $R_{1}=\{(p, 1),(q, 2),(r, 1),(s, 2)\}$
ii. $R_{2}=\{(p, 1),(q, 1),(r, 1),(s, 1)\}$
iii. $R_{3}=\{(p, 1),(q, 2),(p, 2),(s, 3)\}$
iv. $R_{4}=\{(p, 2),(q, 3),(r, 2),(s, 2)\}$

Answer

Given $A=\{p, q, r, s\}$ and $B=\{1,2,3\}$
i. $R_{1}=\{(p, 1),(q, 2),(r, 1),(s, 2)\}$

Every element of set A has an ordered pair in the relation R_{1} and no two ordered pairs have the same first component but different second components.

Hence, the given relation R_{1} is a function.
ii. $R_{2}=\{(p, 1),(q, 1),(r, 1),(s, 1)\}$

Every element of set A has an ordered pair in the relation R_{2}, and no two ordered pairs have the same first component but different second components.

Hence, the given relation R_{2} is a function.
iii. $R_{3}=\{(p, 1),(q, 2),(p, 2),(s, 3)\}$

Every element of set A has an ordered pair in the relation R_{3}. However, two ordered pairs ($p, 1$) and ($p, 2$) have the same first component but different second components.

Hence, the given relation R_{3} is not a function.
iv. $R_{4}=\{(p, 2),(q, 3),(r, 2),(s, 2)\}$

Every element of set A has an ordered pair in the relation R_{4}, and no two ordered pairs have the same first component but different second components.

Hence, the given relation R_{4} is a function.

15. Question

Let $A=\{9,10,11,12,13\}$ and let $f: A \rightarrow Z$ be a function given by $f(n)=$ the highest prime factor of n. Find the range of f.

Answer

Given $A=\{9,10,11,12,13\}$
$f: A \rightarrow Z$ such that $f(n)=$ the highest prime factor of n.
A is the domain of the function f. Hence, the range is the set of elements $f(n)$ for all $n \in A$.

We have $f(9)=$ highest prime factor of 9
The prime factorization of $9=3^{2}$
Thus, the highest prime factor of 9 is 3 .
$\therefore \mathrm{f}(9)=3$
We have $\mathrm{f}(10)=$ highest prime factor of 10
The prime factorization of $10=2 \times 5$
Thus, the highest prime factor of 10 is 5 .
$\therefore \mathrm{f}(10)=5$
We have $\mathrm{f}(11)=$ highest prime factor of 11
We know 11 is a prime number.
$\therefore \mathrm{f}(11)=11$
We have $\mathrm{f}(12)=$ highest prime factor of 12
The prime factorization of $12=2^{2} \times 3$
Thus, the highest prime factor of 12 is 3 .
$\therefore \mathrm{f}(12)=3$
We have $\mathrm{f}(13)=$ highest prime factor of 13
We know 13 is a prime number.
$\therefore \mathrm{f}(13)=13$
Thus, the range of f is $\{3,5,11,13\}$.

16. Question

The function f is defined by $f(x)=\left\{\begin{array}{c}x^{2}, 0 \leq x \leq 3 \\ 3 x, 3 \leq x \leq 10\end{array}\right.$
The relation g is defined by $\mathrm{g}(\mathrm{x})=\left\{\begin{array}{l}\mathrm{x}^{2}, 0 \leq \mathrm{x} \leq 2 \\ 3 \mathrm{x}, 2 \leq \mathrm{x} \leq 10\end{array}\right.$

Show that f is a function and g is not a function.

Answer

Given $f(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \\ 3 x, 3 \leq x \leq 10\end{array}\right.$ and $g(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{array}\right.$
Let us first show that f is a function.
When $0 \leq x \leq 3, f(x)=x^{2}$.
The function x^{2} associates all the numbers $0 \leq x \leq 3$ to unique numbers in R.
Hence, the images of $\{x \in Z: 0 \leq x \leq 3\}$ exist and are unique.
When $3 \leq x \leq 10, f(x)=3 x$.
The function x^{2} associates all the numbers $3 \leq x \leq 10$ to unique numbers in R.
Hence, the images of $\{x \in Z: 3 \leq x \leq 10\}$ exist and are unique.
When $x=3$, using the first definition, we have
$f(3)=3^{2}=9$
When $x=3$, using the second definition, we have
$f(3)=3(3)=9$
Hence, the image of $x=3$ is also distinct.
Thus, as every element of the domain has an image and no element has more than one image, f is a function.

Now, let us show that g is not a function.
When $0 \leq x \leq 2, g(x)=x^{2}$.
The function x^{2} associates all the numbers $0 \leq x \leq 2$ to unique numbers in R.
Hence, the images of $\{x \in Z: 0 \leq x \leq 2\}$ exist and are unique.
When $2 \leq x \leq 10, g(x)=3 x$.
The function x^{2} associates all the numbers $2 \leq x \leq 10$ to unique numbers in R.
Hence, the images of $\{x \in Z: 2 \leq x \leq 10\}$ exist and are unique.
When $x=2$, using the first definition, we have
$g(2)=2^{2}=4$
When $x=2$, using the second definition, we have
$g(2)=3(2)=6$
Here, the element 2 of the domain is associated with two elements distinct elements 4 and 6 .
Thus, g is not a function.

17. Question

If $f(x)=x^{2}$, find $\frac{f(1.1)-f(1)}{1.1-1}$

Answer

Given $f(x)=x^{2}$.
We need to find the value of $\frac{f(1.1)-f(1)}{1.1-1}$
$\frac{f(1.1)-f(1)}{1.1-1}=\frac{(1.1)^{2}-(1)^{2}}{1.1-1}$
$\Rightarrow \frac{\mathrm{f}(1.1)-\mathrm{f}(1)}{1.1-1}=\frac{(1.1+1)(1.1-1)}{0.1}$
$\Rightarrow \frac{\mathrm{f}(1.1)-\mathrm{f}(1)}{1.1-1}=\frac{(2.1)(0.1)}{0.1}$
$\therefore \frac{f(1.1)-f(1)}{1.1-1}=2.1$
Thus, $\frac{\mathrm{f}(1.1)-\mathrm{f}(1)}{1.1-1}=2.1$

18. Question

Express the function $f: X \rightarrow R$ given by $f(x)=x^{3}+1$ as set of ordered pairs, where $X=\{-1,0,3,9,7\}$.

Answer

Given $X=\{-1,0,3,9,7\}$
$f: X \rightarrow R$ and $f(x)=x^{3}+1$
When $x=-1$, we have $f(-1)=(-1)^{3}+1$
$\Rightarrow \mathrm{f}(-1)=-1+1$
$\therefore \mathrm{f}(-1)=0$
When $x=0$, we have $f(0)=0^{3}+1$
$\Rightarrow f(0)=0+1$
$\therefore \mathrm{f}(0)=1$
When $x=3$, we have $f(3)=3^{3}+1$
$\Rightarrow f(3)=27+1$
$\therefore \mathrm{f}(3)=28$
When $x=9$, we have $f(9)=9^{3}+1$
$\Rightarrow f(9)=729+1$
$\therefore \mathrm{f}(9)=730$
When $x=7$, we have $f(7)=7^{3}+1$
$\Rightarrow f(7)=343+1$
$\therefore \mathrm{f}(7)=344$
Thus, $f=\{(-1,0),(0,1),(3,28),(9,730),(7,344)\}$

Exercise 3.2

1. Question

If $f(x)=x^{2}-3 x+4$, then find the values of x satisfying the equation $f(x)=f(2 x+1)$.

Answer

Given $f(x)=x^{2}-3 x+4$.
We need to find x satisfying $f(x)=f(2 x+1)$.
We have $f(2 x+1)=(2 x+1)^{2}-3(2 x+1)+4$
$\Rightarrow f(2 x+1)=(2 x)^{2}+2(2 x)(1)+1^{2}-6 x-3+4$
$\Rightarrow f(2 x+1)=4 x^{2}+4 x+1-6 x+1$
$\therefore \mathrm{f}(2 \mathrm{x}+1)=4 \mathrm{x}^{2}-2 \mathrm{x}+2$
Now, $f(x)=f(2 x+1)$
$\Rightarrow x^{2}-3 x+4=4 x^{2}-2 x+2$
$\Rightarrow 3 x^{2}+x-2=0$
$\Rightarrow 3 x^{2}+3 \mathrm{x}-2 \mathrm{x}-2=0$
$\Rightarrow 3 x(x+1)-2(x+1)=0$
$\Rightarrow(x+1)(3 x-2)=0$
$\Rightarrow \mathrm{x}+1=0$ or $3 \mathrm{x}-2=0$
$\Rightarrow x=-1$ or $3 x=2$
$\therefore \mathrm{x}=-1$ or $\frac{2}{3}$

Thus, the required values of x are -1 and $\frac{2}{3}$.

2. Question

If $f(x)=(x-a)^{2}(x-b)^{2}$, find $f(a+b)$.

Answer

Given $f(x)=(x-a)^{2}(x-b)^{2}$
We need to find $f(a+b)$.
We have $f(a+b)=(a+b-a)^{2}(a+b-b)^{2}$
$\Rightarrow f(a+b)=(b)^{2}(a)^{2}$
$\therefore f(a+b)=a^{2} b^{2}$
Thus, $f(a+b)=a^{2} b^{2}$

3. Question

If $y=f(x)=\frac{a x-b}{b x-a}$, show that $x=f(y)$.

Answer

Given $y=f(x)=\frac{a x-b}{b x-a} \Rightarrow f(y)=\frac{a y-b}{b y-a}$
We need to prove that $x=f(y)$.
We have $\mathrm{y}=\frac{\mathrm{ax}-\mathrm{b}}{\mathrm{bx}-\mathrm{a}}$
$\Rightarrow \mathrm{y}(\mathrm{bx}-\mathrm{a})=\mathrm{ax}-\mathrm{b}$
$\Rightarrow b x y-a y=a x-b$
$\Rightarrow b x y-a x=a y-b$
$\Rightarrow x(b y-a)=a y-b$
$\Rightarrow \mathrm{x}=\frac{\mathrm{ay}-\mathrm{b}}{\mathrm{by}-\mathrm{a}}=\mathrm{f}(\mathrm{y})$
$\therefore \mathrm{x}=\mathrm{f}(\mathrm{y})$
Thus, $x=f(y)$.

4. Question

If $f(x)=\frac{1}{1-x}$, show that $\mathrm{f}[f\{f(x)\}]=x$.

Answer

Given $\mathrm{f}(\mathrm{x})=\frac{1}{1-\mathrm{x}}$
We need to prove that $\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]=\mathrm{x}$.
First, we will evaluate $f\{f(x)\}$.
$\mathrm{ff}(\mathrm{f}(\mathrm{x})\}=\mathrm{f}\left\{\frac{1}{1-\mathrm{x}}\right\}$
$\Rightarrow \mathrm{ff}(\mathrm{f})\}=\frac{1}{1-\left(\frac{1}{1-\mathrm{x}}\right)}$
$\Rightarrow f\{f(x)\}=\frac{1}{\frac{1-x-1}{1-x}}$
$\Rightarrow \mathrm{f}\{\mathrm{f}(\mathrm{x})\}=\frac{1}{\frac{-\mathrm{x}}{1-\mathrm{x}}}$
$\Rightarrow \mathrm{f}\{\mathrm{f}(\mathrm{x})\}=\frac{1-\mathrm{x}}{-\mathrm{x}}$
$\therefore \mathrm{f}\{\mathrm{f}(\mathrm{x})\}=\frac{\mathrm{x}-1}{\mathrm{x}}$
Now, we will evaluate $\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x}) \mathrm{\}}]$
$\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]=\mathrm{f}\left[\frac{\mathrm{x}-1}{\mathrm{x}}\right]$
$\Rightarrow \mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]=\frac{1}{1-\left(\frac{\mathrm{x}-1}{\mathrm{x}}\right)}$
$\Rightarrow f[f f f(x)\}]=\frac{1}{\frac{x-(x-1)}{x}}$
$\Rightarrow \mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]=\frac{1}{\frac{\mathrm{x}-\mathrm{x}+1}{\mathrm{x}}}$
$\Rightarrow \mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x})\}]=\frac{1}{\frac{1}{\mathrm{x}}}$
$\therefore \mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x}) \mathrm{f}]=\mathrm{x}$
Thus, $\mathrm{f}[\mathrm{f}\{\mathrm{f}(\mathrm{x}) \mathrm{f}]=\mathrm{x}$

5. Question

If $f(x)=\frac{x+1}{x-1}$, show that $f[f(x)]=x$.

Answer

Given $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}+1}{\mathrm{x}-1}$
We need to prove that $f[f(x)]=x$.
$\mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{f}\left[\frac{\mathrm{x}+1}{\mathrm{x}-1}\right]$
$\Rightarrow f[f(x)]=\frac{\left(\frac{x+1}{x-1}\right)+1}{\left(\frac{x+1}{x-1}\right)-1}$
$\Rightarrow f[f(x)]=\frac{\frac{(x+1)+(x-1)}{x-1}}{\frac{(x+1)-(x-1)}{x-1}}$
$\Rightarrow f[f(x)]=\frac{(x+1)+(x-1)}{(x+1)-(x-1)}$
$\Rightarrow \mathrm{f}[\mathrm{f}(\mathrm{x})]=\frac{\mathrm{x}+1+\mathrm{x}-1}{\mathrm{x}+1-\mathrm{x}+1}$
$\Rightarrow \mathrm{f}[\mathrm{f}(\mathrm{x})]=\frac{2 \mathrm{x}}{2}$
$\therefore \mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{x}$
Thus, $\mathrm{f}[\mathrm{f}(\mathrm{x}) \mathrm{]}=\mathrm{x}$

6. Question

If $f(x)=\left\{\begin{array}{l}x^{2}, \text { when } x<0 \\ x, \text { when } 0 \leq x \leq 1, \text { find: } \\ \frac{1}{x}, \text { when } x>1\end{array}\right.$
i. $f\left(\frac{1}{2}\right)$
ii. $f(-2)$
iii. $f(1)$
iv. $\mathrm{f}(\sqrt{3})$
v. $\mathrm{f}(\sqrt{-3})$

Answer

Given $f(x)=\left\{\begin{array}{c}x^{2}, \text { when } x<0 \\ x, \text { when } 0 \leq x<1 \\ \frac{1}{x}, \text { when } x \geq 1\end{array}\right.$
i. $\mathrm{f}\left(\frac{1}{2}\right)$

When $0 \leq x \leq 1, f(x)=x$
$\therefore \mathrm{f}\left(\frac{1}{2}\right)=\frac{1}{2}$
ii. $f(-2)$

When $\mathrm{x}<0, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
$\Rightarrow \mathrm{f}(-2)=(-2)^{2}$
$\therefore \mathrm{f}(-2)=4$
iii. $f(1)$

When $\mathrm{x} \geq 1, \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$
$\Rightarrow \mathrm{f}(1)=\frac{1}{1}$
$\therefore \mathrm{f}(1)=1$
iv. $\mathrm{f}(\sqrt{3})$

We have $\sqrt{3} \approx 1.732>1$
When $\mathrm{x} \geq 1, \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$
$\therefore \mathrm{f}(\sqrt{3})=\frac{1}{\sqrt{3}}$
v. $\mathrm{f}(\sqrt{-3})$

We know $\sqrt{-3}$ is not a real number and the function $f(x)$ is defined only when $x \in R$.
Thus, $\mathrm{f}(\sqrt{-3})$ does not exist.

7. Question

If $f(x)=x^{3}-\frac{1}{x^{3}}$, show that $f(x)+f\left(\frac{1}{x}\right)=0$.

Answer

Given $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}$
We need to prove that $\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=0$
We have, $\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\left(\frac{1}{\mathrm{x}}\right)^{3}-\frac{1}{\left(\frac{1}{\mathrm{x}}\right)^{3}}$
$\Rightarrow f\left(\frac{1}{\mathrm{x}}\right)=\frac{1^{3}}{\mathrm{x}^{3}}-\frac{1}{\frac{1^{3}}{\mathrm{x}^{3}}}$
$\Rightarrow f\left(\frac{1}{\mathrm{x}}\right)=\frac{1}{\mathrm{x}^{3}}-\frac{1}{\frac{1}{\mathrm{x}^{3}}}$
$\Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{x^{3}}-x^{3}$
$\Rightarrow f\left(\frac{1}{\mathrm{x}}\right)=-\left(-\frac{1}{\mathrm{x}^{3}}+\mathrm{x}^{3}\right)$
$\Rightarrow f\left(\frac{1}{x}\right)=-\left(x^{3}-\frac{1}{x^{3}}\right)$
$\Rightarrow \mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=-\mathrm{f}(\mathrm{x})$
$\therefore \mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=0$
Thus, $\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=0$

8. Question

If $f(x)=\frac{2 x}{1+x^{2}}$, show that $f(\tan \theta)=\sin 2 \theta$.

Answer

Given $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$
We need to prove that $f(\tan \theta)=\sin 2 \theta$.
We have $\mathrm{f}(\tan \theta)=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
We know $\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\Rightarrow \mathrm{f}(\tan \theta)=\frac{2\left(\frac{\sin \theta}{\cos \theta}\right)}{1+\left(\frac{\sin \theta}{\cos \theta}\right)^{2}}$
$\Rightarrow \mathrm{f}(\tan \theta)=\frac{2\left(\frac{\sin \theta}{\cos \theta}\right)}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}$
$\Rightarrow f(\tan \theta)=\frac{2\left(\frac{\sin \theta}{\cos \theta}\right)}{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}}$
However, $\cos ^{2} \theta+\sin ^{2} \theta=1$
$\Rightarrow f(\tan \theta)=\frac{2\left(\frac{\sin \theta}{\cos \theta}\right)}{\frac{1}{\cos ^{2} \theta}}$
$\Rightarrow \mathrm{f}(\tan \theta)=2\left(\frac{\sin \theta}{\cos \theta}\right) \times \cos ^{2} \theta$
$\Rightarrow \mathrm{f}(\tan \theta)=2 \sin \theta \cos \theta$
$\therefore \mathrm{f}(\tan \theta)=\sin 2 \theta$
Thus, $\mathrm{f}(\tan \theta)=\sin 2 \theta$

9. Question

If $f(x)=\frac{x+1}{x-1}$, then show that
i. $f\left(\frac{1}{x}\right)=-f(x)$
ii. $f\left(-\frac{1}{x}\right)=-\frac{1}{f(x)}$

Answer

Given $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}+1}{\mathrm{x}-1}$
i. We need to prove that $\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=-\mathrm{f}(\mathrm{x})$

We have $f\left(\frac{1}{x}\right)=\frac{\frac{1}{\mathrm{x}}+1}{\frac{1}{\mathrm{x}}-1}$
$\Rightarrow f\left(\frac{1}{x}\right)=\frac{\frac{1+x}{x}}{\frac{1-x}{x}}$
$\Rightarrow f\left(\frac{1}{\mathrm{x}}\right)=\frac{1+\mathrm{x}}{1-\mathrm{x}}$
$\Rightarrow f\left(\frac{1}{x}\right)=\frac{x+1}{-(x-1)}$
$\Rightarrow f\left(\frac{1}{x}\right)=-\left(\frac{x+1}{x-1}\right)$
$\therefore f\left(\frac{1}{\mathrm{x}}\right)=-\mathrm{f}(\mathrm{x})$
Thus, $\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=-\mathrm{f}(\mathrm{x})$
ii. We need to prove that $f\left(-\frac{1}{x}\right)=-\frac{1}{f(x)}$

We have $f\left(-\frac{1}{x}\right)=\frac{-\frac{1}{x}+1}{-\frac{1}{x}-1}$
$\Rightarrow f\left(-\frac{1}{x}\right)=\frac{\frac{-1+x}{x}}{\frac{-1-x}{x}}$
$\Rightarrow f\left(-\frac{1}{x}\right)=\frac{-1+x}{-1-x}$
$\Rightarrow f\left(-\frac{1}{x}\right)=\frac{x-1}{-(x+1)}$
$\Rightarrow f\left(-\frac{1}{x}\right)=-\left(\frac{x-1}{x+1}\right)$
$\Rightarrow f\left(-\frac{1}{x}\right)=-\frac{1}{\left(\frac{x+1}{x-1}\right)}$
$\therefore f\left(-\frac{1}{x}\right)=-\frac{1}{f(x)}$
Thus, $\mathrm{f}\left(-\frac{1}{\mathrm{x}}\right)=-\frac{1}{\mathrm{f}(\mathrm{x})}$

10. Question

If $f(x)=\left(a-x^{n}\right)^{\frac{1}{n}}, a>0$ and $n \in N$, then prove that $f[f(x)]=x$ for all x.

Answer

Given $^{f}(\mathrm{x})=\left(\mathrm{a}-\mathrm{x}^{\mathrm{n}}\right)^{\frac{1}{1}}$, where $\mathrm{a}>0$ and $\mathrm{n} \in \mathrm{N}$.
We need to prove that $f[f(x)]=x$.
$\mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{f}\left[\left(\mathrm{a}-\mathrm{x}^{\mathrm{n}}\right)^{\frac{1}{n}}\right]$
$\Rightarrow f[f(x)]=\left[a-\left(\left(a-x^{n}\right)^{\frac{1}{n}}\right)^{n}\right]^{\frac{1}{n}}$
$\Rightarrow f[f(x)]=\left[a-\left(a-x^{n}\right)^{\frac{1}{n} \times n}\right]^{\frac{1}{n}}\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]$
$\Rightarrow \mathrm{f}[\mathrm{f}(\mathrm{x})]=\left[\mathrm{a}-\left(\mathrm{a}-\mathrm{x}^{\mathrm{n}}\right)^{1}\right]^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{f}[\mathrm{f}(\mathrm{x})]=\left[\mathrm{a}-\left(\mathrm{a}-\mathrm{x}^{\mathrm{n}}\right)\right]^{\frac{1}{n}}$
$\Rightarrow \mathrm{f}[\mathrm{f}(\mathrm{x})]=\left[\mathrm{a}-\mathrm{a}+\mathrm{x}^{\mathrm{n}}\right]^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{f}[\mathrm{f}(\mathrm{x})]=\left[\mathrm{x}^{\mathrm{n}}\right]^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{x}^{\mathrm{n} \times \frac{1}{\mathrm{n}}}\left[\because\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{mn}}\right]$
$\Rightarrow f[f(x)]=x^{1}$
$\therefore \mathrm{f}[\mathrm{f}(\mathrm{x})]=\mathrm{x}$
Thus, $f[f(x)]=x$ for all x.

11. Question

If for non-zero $x, a f(x)+b f\left(\frac{1}{x}\right)=\frac{1}{x}-5$, where $a \neq b$, then find $f(x)$.

Answer

Given $x \neq 0$ and $a \neq b$ such that
$a f(x)+b f\left(\frac{1}{x}\right)=\frac{1}{x}-5$
Substituting $\frac{1}{x}$ in place of x, we get
$a f\left(\frac{1}{x}\right)+b f\left(\frac{1}{\left(\frac{1}{x}\right)}\right)=\frac{1}{\left(\frac{1}{x}\right)}-5$
$\Rightarrow a f\left(\frac{1}{x}\right)+b f(x)=x-5$
On adding equations (1) and (2), we get
$a f(x)+b f\left(\frac{1}{x}\right)+a f\left(\frac{1}{x}\right)+b f(x)=\frac{1}{x}-5+x-5$
$\Rightarrow \mathrm{af}(\mathrm{x})+\mathrm{bf}(\mathrm{x})+\mathrm{af}\left(\frac{1}{\mathrm{x}}\right)+\mathrm{bf}\left(\frac{1}{\mathrm{x}}\right)=\mathrm{x}+\frac{1}{\mathrm{x}}-10$
$\Rightarrow(a+b) f(x)+(a+b) f\left(\frac{1}{x}\right)=x+\frac{1}{x}-10$
$\Rightarrow(a+b)\left[f(x)+f\left(\frac{1}{x}\right)\right]=x+\frac{1}{x}-10$
$\therefore \mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\frac{1}{\mathrm{a}+\mathrm{b}}\left(\mathrm{x}+\frac{1}{\mathrm{x}}-10\right)$
On subtracting equations (1) and (2), we get
$a f(x)+b f\left(\frac{1}{x}\right)-\left[a f\left(\frac{1}{x}\right)+b f(x)\right]=\frac{1}{x}-5-(x-5)$
$\Rightarrow a f(x)+b f\left(\frac{1}{x}\right)-a f\left(\frac{1}{x}\right)-b f(x)=\frac{1}{x}-5-x+5$
$\Rightarrow a f(x)-b f(x)-a f\left(\frac{1}{x}\right)+b f\left(\frac{1}{x}\right)=\frac{1}{x}-x$
$\Rightarrow(a-b) f(x)-(a-b) f\left(\frac{1}{x}\right)=\frac{1}{x}-x$
$\Rightarrow(\mathrm{a}-\mathrm{b})\left[\mathrm{f}(\mathrm{x})-\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)\right]=\frac{1}{\mathrm{x}}-\mathrm{x}$
$\therefore \mathrm{f}(\mathrm{x})-\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\frac{1}{\mathrm{a}-\mathrm{b}}\left(\frac{1}{\mathrm{x}}-\mathrm{x}\right)$
On adding equations (3) and (4), we get
$f(x)+f\left(\frac{1}{x}\right)+f(x)-f\left(\frac{1}{x}\right)=\frac{1}{a+b}\left(x+\frac{1}{x}-10\right)+\frac{1}{a-b}\left(\frac{1}{x}-x\right)$
$\Rightarrow 2 f(x)=\frac{(a-b)\left(x+\frac{1}{x}-10\right)+(a+b)\left(\frac{1}{x}-x\right)}{(a+b)(a-b)}$
$\Rightarrow 2 f(x)=\frac{1}{a^{2}-b^{2}}\left[(a-b) x+\frac{(a-b)}{x}-10(a-b)+\frac{(a+b)}{x}-(a+b) x\right]$
$\Rightarrow 2 f(x)=\frac{1}{a^{2}-b^{2}}\left[(a-b-a-b) x+\frac{a-b+a+b}{x}-10(a-b)\right]$
$\Rightarrow 2 f(x)=\frac{1}{a^{2}-b^{2}}\left[-2 b x+\frac{2 a}{x}-10(a-b)\right]$
$\Rightarrow 2 f(x)=\frac{2}{a^{2}-b^{2}}\left[-b x+\frac{a}{x}-5(a-b)\right]$
$\Rightarrow f(x)=\frac{1}{a^{2}-b^{2}}\left[-b x+\frac{a}{x}-5(a-b)\right]$
$\Rightarrow f(x)=\frac{1}{a^{2}-b^{2}}\left[-b x+\frac{a}{x}\right]-\frac{5(a-b)}{a^{2}-b^{2}}$
$\Rightarrow f(x)=\frac{1}{a^{2}-b^{2}}\left[-b x+\frac{a}{x}\right]-\frac{5(a-b)}{(a+b)(a-b)}$
$\therefore \mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{a}^{2}-\mathrm{b}^{2}}\left[\frac{\mathrm{a}}{\mathrm{x}}-\mathrm{bx}\right]-\frac{5}{\mathrm{a}+\mathrm{b}}$
Thus, $f(x)=\frac{1}{a^{2}-b^{2}}\left[\frac{a}{x}-b x\right]-\frac{5}{a+b}$

Exercise 3.3

1. Question

Find the domain of each of the following real valued functions of real variable:
i. $f(x)=\frac{1}{x}$
ii. $f(x)=\frac{1}{x-7}$
iii. $f(x)=\frac{3 x-2}{x+1}$
iv. $f(x)=\frac{2 x+1}{x^{2}-9}$
v. $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$

Answer

i. $f(x)=\frac{1}{x}$

Clearly, $f(x)$ is defined for all real values of x, except for the case when $x=0$.
When $x=0, f(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\{0\}$
ii. $f(x)=\frac{1}{x-7}$

Clearly, $f(x)$ is defined for all real values of x, except for the case when $x-7=0$ or $x=7$.

When $x=7, f(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\{7\}$
iii. $f(x)=\frac{3 x-2}{x+1}$

Clearly, $f(x)$ is defined for all real values of x, except for the case when $x+1=0$ or $x=-1$.
When $x=-1, f(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\{-1\}$
iv. $f(x)=\frac{2 x+1}{x^{2}-9}$

Clearly, $f(x)$ is defined for all real values of x, except for the case when $x^{2}-9=0$.
$x^{2}-9=0$
$\Rightarrow x^{2}-3^{2}=0$
$\Rightarrow(x+3)(x-3)=0$
$\Rightarrow x+3=0$ or $x-3=0$
$\Rightarrow \mathrm{x}= \pm 3$
When $x= \pm 3, f(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\{-3,3\}$
v. $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$

Clearly, $f(x)$ is defined for all real values of x, except for the case when $x^{2}-8 x+12=0$.
$x^{2}-8 x+12=0$
$\Rightarrow x^{2}-2 x-6 x+12=0$
$\Rightarrow x(x-2)-6(x-2)=0$
$\Rightarrow(x-2)(x-6)=0$
$\Rightarrow \mathrm{x}-2=0$ or $\mathrm{x}-6=0$
$\Rightarrow x=2$ or 6
When $x=2$ or $6, f(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\{2,6\}$

2 A. Question

Find the domain of each of the following real valued functions of real variable:
$f(x)=\sqrt{x-2}$

Answer

$f(x)=\sqrt{x-2}$
We know the square of a real number is never negative.
Clearly, $\mathrm{f}(\mathrm{x})$ takes real values only when $\mathrm{x}-2 \geq 0$
$\Rightarrow \mathrm{x} \geq 2$
$\therefore \mathrm{x} \in[2, \infty)$
Thus, domain of $f=[2, \infty)$

2 B. Question

Find the domain of each of the following real valued functions of real variable:
$f(x)=\frac{1}{\sqrt{x^{2}-1}}$

Answer

$\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\mathrm{x}^{2}-1}}$
We know the square of a real number is never negative.
Clearly, $f(x)$ takes real values only when $x^{2}-1 \geq 0$
$\Rightarrow x^{2}-1^{2} \geq 0$
$\Rightarrow(x+1)(x-1) \geq 0$
$\Rightarrow x \leq-1$ or $x \geq 1$
$\therefore \mathrm{x} \in(-\infty,-1] \cup[1, \infty)$
In addition, $f(x)$ is also undefined when $\mathrm{x}^{2}-1=0$ because denominator will be zero and the result will be indeterminate.
$x^{2}-1=0 \Rightarrow x= \pm 1$
Hence, $x \in(-\infty,-1] \cup[1, \infty)-\{-1,1\}$
$\therefore \mathrm{x} \in(-\infty,-1) \cup(1, \infty)$
Thus, domain of $f=(-\infty,-1) \cup(1, \infty)$

2 C. Question

Find the domain of each of the following real valued functions of real variable:
$\mathrm{f}(\mathrm{x})=\sqrt{9-\mathrm{x}^{2}}$

Answer

$\mathrm{f}(\mathrm{x})=\sqrt{9-\mathrm{x}^{2}}$
We know the square of a real number is never negative.
Clearly, $f(x)$ takes real values only when $9-x^{2} \geq 0$
$\Rightarrow 9 \geq x^{2}$
$\Rightarrow x^{2} \leq 9$
$\Rightarrow x^{2}-9 \leq 0$
$\Rightarrow x^{2}-3^{2} \leq 0$
$\Rightarrow(x+3)(x-3) \leq 0$
$\Rightarrow x \geq-3$ and $x \leq 3$
$\therefore \mathrm{x} \in[-3,3]$
Thus, domain of $f=[-3,3]$

2 D. Question

Find the domain of each of the following real valued functions of real variable:
$f(x)=\sqrt{\frac{x-2}{3-x}}$

Answer

$f(x)=\sqrt{\frac{x-2}{3-x}}$
We know the square root of a real number is never negative.
Clearly, $f(x)$ takes real values only when $x-2$ and $3-x$ are both positive or negative.
(a) Both $x-2$ and $3-x$ are positive
$x-2 \geq 0 \Rightarrow x \geq 2$
$3-x \geq 0 \Rightarrow x \leq 3$
Hence, $x \geq 2$ and $x \leq 3$
$\therefore \mathrm{x} \in[2,3]$
(b) Both $x-2$ and $3-x$ are negative
$x-2 \leq 0 \Rightarrow x \leq 2$
$3-x \leq 0 \Rightarrow x \geq 3$
Hence, $x \leq 2$ and $x \geq 3$
However, the intersection of these sets in null set. Thus, this case is not possible.
In addition, $f(x)$ is also undefined when $3-x=0$ because the denominator will be zero and the result will be indeterminate.
$3-\mathrm{x}=0 \Rightarrow \mathrm{x}=3$
Hence, $x \in[2,3]-\{3\}$
$\therefore \mathrm{x} \in[2,3)$
Thus, domain of $f=[2,3)$

3 A. Question

Find the domain and range of each of the following real valued functions:
$f(x)=\frac{a x+b}{b x-a}$

Answer

$\mathrm{f}(\mathrm{x})=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{bx}-\mathrm{a}}$
Clearly, $f(x)$ is defined for all real values of x, except for the case when $b x-a=0 \quad \operatorname{or}_{x}=\frac{a}{b}$.
When $\mathrm{x}=\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{f}(\mathrm{x})$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\left\{\frac{a}{b}\right\}$
Let $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \frac{a x+b}{b x-a}=y$
$\Rightarrow a x+b=y(b x-a)$
$\Rightarrow \mathrm{ax}+\mathrm{b}=\mathrm{bxy}-\mathrm{ay}$
$\Rightarrow a x-b x y=-a y-b$
$\Rightarrow x(a-b y)=-(a y+b)$
$\therefore \mathrm{x}=-\frac{(\mathrm{ay}+\mathrm{b})}{\mathrm{a}-\mathrm{by}}$
Clearly, when $\mathrm{a}-\mathrm{by}=0$ or $\mathrm{y}=\frac{\mathrm{a}}{\mathrm{b}}, \mathrm{x}$ will be undefined as the division result will be indeterminate.
Hence, $f(x)$ cannot take the value $\frac{a}{b}$.
Thus, range of $f=R-\left\{\frac{a}{b}\right\}$

3 B. Question

Find the domain and range of each of the following real valued functions:
$f(x)=\frac{a x-b}{c x-d}$

Answer

$f(x)=\frac{a x-b}{c x-d}$
Clearly, $f(x)$ is defined for all real values of x, except for the case when $c x-d=0$ or $x=\frac{d}{c}$.
When $x=\frac{d}{c}, f(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\left\{\frac{d}{c}\right\}$
Let $f(x)=y$
$\Rightarrow \frac{a x-b}{c x-d}=y$
$\Rightarrow \mathrm{ax}-\mathrm{b}=\mathrm{y}(\mathrm{cx}-\mathrm{d})$
$\Rightarrow \mathrm{ax}-\mathrm{b}=\mathrm{cxy}-\mathrm{dy}$
$\Rightarrow a x-c x y=b-d y$
$\Rightarrow \mathrm{x}(\mathrm{a}-\mathrm{cy})=\mathrm{b}-\mathrm{dy}$
$\therefore x=\frac{b-d y}{a-c y}$
Clearly, when $\mathrm{a}-\mathrm{cy}=0$ or $\mathrm{y}=\frac{\mathrm{a}}{\mathrm{c}}$, x will be undefined as the division result will be indeterminate.
Hence, $f(x)$ cannot take the value $\frac{a}{c}$.
Thus, range of $\mathrm{f}=\mathrm{R}-\left\{\begin{array}{l}\mathrm{a} \\ \frac{c}{c}\end{array}\right\}$

3 C. Question

Find the domain and range of each of the following real valued functions:
$f(x)=\sqrt{x-1}$

Answer

$f(x)=\sqrt{x-1}$

We know the square of a real number is never negative.
Clearly, $\mathrm{f}(\mathrm{x})$ takes real values only when $\mathrm{x}-1 \geq 0$
$\Rightarrow x \geq 1$
$\therefore \mathrm{x} \in[1, \infty)$
Thus, domain of $f=[1, \infty)$
When $x \geq 1$, we have $x-1 \geq 0$
Hence, $\sqrt{x-1} \geq 0 \Rightarrow f(x) \geq 0$
$\therefore \mathrm{f}(\mathrm{x}) \in[0, \infty)$
Thus, range of $f=[0, \infty)$

3 D. Question

Find the domain and range of each of the following real valued functions:
$f(x)=\sqrt{x-3}$

Answer

$f(x)=\sqrt{x-3}$
We know the square of a real number is never negative.
Clearly, $f(x)$ takes real values only when $x-3 \geq 0$
$\Rightarrow x \geq 3$
$\therefore \mathrm{x} \in[3, \infty)$
Thus, domain of $f=[3, \infty)$
When $x \geq 3$, we have $x-3 \geq 0$
Hence, $\sqrt{x-3} \geq 0 \Rightarrow f(x) \geq 0$
$\therefore \mathrm{f}(\mathrm{x}) \in[0, \infty)$
Thus, range of $f=[0, \infty)$

3 E. Question

Find the domain and range of each of the following real valued functions:
$f(x)=\frac{x-2}{2-x}$

Answer

$f(x)=\frac{x-2}{2-x}$
Clearly, $f(x)$ is defined for all real values of x, except for the case when $2-x=0$ or $x=2$.
When $x=2, f(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $f=R-\{2\}$
We have $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-2}{2-\mathrm{x}}$
$\Rightarrow f(x)=\frac{-(2-x)}{2-x}$
$\therefore \mathrm{f}(\mathrm{x})=-1$

Clearly, when $x \neq 2, f(x)=-1$
Thus, range of $f=\{-1\}$

3 F. Question

Find the domain and range of each of the following real valued functions:
$f(x)=|x-1|$

Answer

$f(x)=|x-1|$
We know $|x|=\left\{\begin{array}{r}-x, x<0 \\ x, x \geq 0\end{array}\right.$
Now, we have $|x-1|=\left\{\begin{array}{r}-(x-1), x-1<0 \\ x-1, x-1 \geq 0\end{array}\right.$
$\therefore f(x)=|x-1|=\left\{\begin{array}{l}1-x, x<1 \\ x-1, x \geq 1\end{array}\right.$
Hence, $f(x)$ is defined for all real numbers x.
Thus, domain of $f=R$
When $\mathrm{x}<1$, we have $\mathrm{x}-1<0$ or $1-\mathrm{x}>0$.
Hence, $|x-1|>0 \Rightarrow f(x)>0$
When $x \geq 1$, we have $x-1 \geq 0$.
Hence, $|x-1| \geq 0 \Rightarrow f(x) \geq 0$
$\therefore \mathrm{f}(\mathrm{x}) \geq 0$ or $\mathrm{f}(\mathrm{x}) \in[0, \infty)$
Thus, range of $f=[0, \infty)$

3 G. Question

Find the domain and range of each of the following real valued functions:
$f(x)=-|x|$

Answer

$f(x)=-|x|$
We know $|x|=\left\{\begin{array}{r}-x, x<0 \\ x, x \geq 0\end{array}\right.$
Now, we have $-|x|=\left\{\begin{array}{r}-(-x), x<0 \\ -x, x \geq 0\end{array}\right.$
$\therefore \mathrm{f}(\mathrm{x})=-|\mathrm{x}|=\left\{\begin{array}{r}\mathrm{x}, \mathrm{x}<0 \\ -\mathrm{x}, \mathrm{x} \geq 0\end{array}\right.$
Hence, $f(x)$ is defined for all real numbers x.
Thus, domain of $f=R$
When $x<0$, we have $-|x|<0$
Hence, $\mathrm{f}(\mathrm{x})<0$
When $x \geq 0$, we have $-x \leq 0$.
Hence, $-|x| \leq 0 \Rightarrow f(x) \leq 0$
$\therefore \mathrm{f}(\mathrm{x}) \leq 0$ or $\mathrm{f}(\mathrm{x}) \in(-\infty, 0]$
Thus, range of $f=[0, \infty)$

3 H. Question

Find the domain and range of each of the following real valued functions:
$\mathrm{f}(\mathrm{x})=\sqrt{9-\mathrm{x}^{2}}$

Answer

$\mathrm{f}(\mathrm{x})=\sqrt{9-\mathrm{x}^{2}}$
We know the square of a real number is never negative.
Clearly, $f(x)$ takes real values only when $9-x^{2} \geq 0$
$\Rightarrow 9 \geq x^{2}$
$\Rightarrow x^{2} \leq 9$
$\Rightarrow x^{2}-9 \leq 0$
$\Rightarrow x^{2}-3^{2} \leq 0$
$\Rightarrow(x+3)(x-3) \leq 0$
$\Rightarrow x \geq-3$ and $x \leq 3$
$\therefore \mathrm{x} \in[-3,3]$
Thus, domain of $f=[-3,3]$
When $x \in[-3,3]$, we have $0 \leq 9-x^{2} \leq 9$
Hence, $0 \leq \sqrt{9-x^{2}} \leq 3 \Rightarrow 0 \leq f(x) \leq 3$
$\therefore \mathrm{f}(\mathrm{x}) \in[0,3]$
Thus, range of $f=[0,3]$

3 I. Question

Find the domain and range of each of the following real valued functions:
$f(x)=\frac{1}{\sqrt{16-x^{2}}}$

Answer

$\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{16-\mathrm{x}^{2}}}$
We know the square of a real number is never negative.
Clearly, $f(x)$ takes real values only when $16-x^{2} \geq 0$
$\Rightarrow 16 \geq x^{2}$
$\Rightarrow x^{2} \leq 16$
$\Rightarrow x^{2}-16 \leq 0$
$\Rightarrow x^{2}-4^{2} \leq 0$
$\Rightarrow(x+4)(x-4) \leq 0$
$\Rightarrow x \geq-4$ and $x \leq 4$
$\therefore \mathrm{x} \in[-4,4]$

In addition, $f(x)$ is also undefined when $16-x^{2}=0$ because denominator will be zero and the result will be indeterminate.
$16-x^{2}=0 \Rightarrow x= \pm 4$
Hence, $x \in[-4,4]-\{-4,4\}$
$\therefore \mathrm{x} \in(-4,4)$
Thus, domain of $f=(-4,4)$
Let $f(x)=y$
$\Rightarrow \frac{1}{\sqrt{16-x^{2}}}=y$
$\Rightarrow\left(\frac{1}{\sqrt{16-x^{2}}}\right)^{2}=y^{2}$
$\Rightarrow \frac{1}{16-x^{2}}=y^{2}$
$\Rightarrow 1=\left(16-x^{2}\right) y^{2}$
$\Rightarrow 1=16 y^{2}-x^{2} y^{2}$
$\Rightarrow x^{2} y^{2}+1-16 y^{2}=0$
$\Rightarrow\left(y^{2}\right) x^{2}+(0) x+\left(1-16 y^{2}\right)=0$
As $x \in R$, the discriminant of this quadratic equation in x must be non-negative.
$\Rightarrow 0^{2}-4\left(y^{2}\right)\left(1-16 y^{2}\right) \geq 0$
$\Rightarrow-4 y^{2}\left(1-16 y^{2}\right) \geq 0$
$\Rightarrow 4 y^{2}\left(1-16 y^{2}\right) \leq 0$
$\Rightarrow 1-16 y^{2} \leq 0\left[\because y^{2} \geq 0\right]$
$\Rightarrow 16 y^{2}-1 \geq 0$
$\Rightarrow(4 y)^{2}-1^{2} \geq 0$
$\Rightarrow(4 y+1)(4 y-1) \geq 0$
$\Rightarrow 4 \mathrm{y} \leq-1$ and $4 \mathrm{y} \geq 1$
$\Rightarrow \mathrm{y} \leq-\frac{1}{4}$ and $\mathrm{y} \geq \frac{1}{4}$
$\Rightarrow \mathrm{y} \in\left(-\infty,-\frac{1}{4}\right] \cup\left[\frac{1}{4}, \infty\right)$
$\Rightarrow \mathrm{f}(\mathrm{x}) \in\left(-\infty,-\frac{1}{4}\right] \cup\left[\frac{1}{4}, \infty\right)$
However, y is always positive because it is the reciprocal of a non-zero square root.
$\therefore \mathrm{f}(\mathrm{x}) \in\left[\frac{1}{4}, \infty\right)$
Thus, range of $f=\left[\frac{1}{4}, \infty\right)$

3 J. Question

Find the domain and range of each of the following real valued functions:
$f(x)=\sqrt{x^{2}-16}$

Answer

$f(x)=\sqrt{x^{2}-16}$
We know the square of a real number is never negative.
Clearly, $f(x)$ takes real values only when $x^{2}-16 \geq 0$
$\Rightarrow x^{2}-4^{2} \geq 0$
$\Rightarrow(x+4)(x-4) \geq 0$
$\Rightarrow x \leq-4$ or $x \geq 4$
$\therefore \mathrm{x} \in(-\infty,-4] \cup[4, \infty)$
Thus, domain of $f=(-\infty,-4] \cup[4, \infty)$
When $x \in(-\infty,-4] \cup[4, \infty)$, we have $x^{2}-16 \geq 0$
Hence, $\sqrt{x^{2}-16} \geq 0 \Rightarrow f(x) \geq 0$
$\therefore \mathrm{f}(\mathrm{x}) \in[0, \infty)$
Thus, range of $f=[0, \infty)$

Exercise 3.4

1 A. Question

Find $f+g, f-g$, $c f(c \in R, c \neq 0), f g, 1 / f$ and f / g in each of the following:
$f(x)=x^{3}+1$ and $g(x)=x+1$

Answer

i. $f(x)=x^{3}+1$ and $g(x)=x+1$

We have $f(x): R \rightarrow R$ and $g(x): R \rightarrow R$
(a) $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\Rightarrow(f+g)(x)=x^{3}+1+x+1$
$\therefore(f+g)(x)=x^{3}+\mathrm{x}+2$
Clearly, $(f+g)(x): R \rightarrow R$
Thus, $f+g: R \rightarrow R$ is given by $(f+g)(x)=x^{3}+x+2$
(b) $\mathrm{f}-\mathrm{g}$

We know $(f-g)(x)=f(x)-g(x)$
$\Rightarrow(f-g)(x)=x^{3}+1-(x+1)$
$\Rightarrow(f-g)(x)=x^{3}+1-x-1$
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}$
Clearly, $(f-g)(x): R \rightarrow R$
Thus, $f-\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}$
(c) $\mathrm{cf}(c \in R, c \neq 0)$

We know $(\mathrm{cf})(\mathrm{x})=\mathrm{c} \times \mathrm{f}(\mathrm{x})$
$\Rightarrow(\mathrm{cf})(\mathrm{x})=\mathrm{c}\left(\mathrm{x}^{3}+1\right)$
$\therefore(c f)(x)=c x^{3}+c$
Clearly, (cf)(x): R \rightarrow R
Thus, $c f: R \rightarrow R$ is given by $(c f)(x)=c x^{3}+c$
(d) fg

We know $(f g)(x)=f(x) g(x)$
$\Rightarrow(\mathrm{fg})(\mathrm{x})=\left(\mathrm{x}^{3}+1\right)(\mathrm{x}+1)$
$\Rightarrow(f g)(x)=(x+1)\left(x^{2}-x+1\right)(x+1)$
$\therefore(f g)(x)=(x+1)^{2}\left(x^{2}-x+1\right)$
Clearly, $(\mathrm{fg})(\mathrm{x}): \mathrm{R} \rightarrow \mathrm{R}$
Thus, $f g: R \rightarrow R$ is given by $(f g)(x)=(x+1)^{2}\left(x^{2}-x+1\right)$
(e) $\frac{1}{f}$

We know $\left(\frac{1}{f}\right)(x)=\frac{1}{f(x)}$
$\therefore\left(\frac{1}{\mathrm{f}}\right)(\mathrm{x})=\frac{1}{\mathrm{x}^{3}+1}$
Observe that $\frac{1}{f(x)}$ is undefined when $f(x)=0$ or when $x=-1$
Thus, $\frac{1}{f}: R-\{-1\} \rightarrow R$ is given by $\left(\frac{1}{f}\right)(x)=\frac{1}{x^{3}+1}$
(f) $\frac{\mathrm{f}}{\mathrm{g}}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\Rightarrow\left(\frac{f}{g}\right)(x)=\frac{x^{3}+1}{x+1}$
Observe that $\frac{x^{3}+1}{x+1}$ is undefined when $g(x)=0$ or when $x=-1$.
Using $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$, we have
$\left(\frac{f}{g}\right)(x)=\frac{(x+1)\left(x^{2}-x+1\right)}{x+1}$
$\therefore\left(\frac{f}{g}\right)(x)=x^{2}-x+1$
Thus, $\frac{f}{g}: R-\{-1\} \rightarrow R$ is given by $\left(\frac{f}{g}\right)(x)=x^{2}-x+1$

1 B. Question

Find $f+g, f-g, c f(c \in R, c \neq 0), f g, 1 / f$ and f / g in each of the following:
$f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{x+1}$

Answer

$f(x)=\sqrt{x-1}$ and $g(x)=\sqrt{x+1}$

We have $f(x):[1, \infty) \rightarrow R^{+}$and $g(x):[-1, \infty) \rightarrow R^{+}$as real square root is defined only for non-negative numbers.
(a) $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\therefore(\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}-1}+\sqrt{\mathrm{x}+1}$
Domain of $f+g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $\mathrm{f}+\mathrm{g}=[1, \infty) \cap[-1, \infty)$
\therefore Domain of $\mathrm{f}+\mathrm{g}=[1, \infty$)
Thus, $f+g:[1, \infty) \rightarrow R$ is given by $(f+g)(x)=\sqrt{x-1}+\sqrt{x+1}$
(b) $f-g$

We know $(f-g)(x)=f(x)-g(x)$
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}-1}-\sqrt{\mathrm{x}+1}$
Domain of $f-g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $\mathrm{f}-\mathrm{g}=[1, \infty) \cap[-1, \infty)$
\therefore Domain of $\mathrm{f}-\mathrm{g}=[1, \infty)$
Thus, $f-g:[1, \infty) \rightarrow R$ is given by $(f-g)(x)=\sqrt{x-1}-\sqrt{x+1}$
(c) $\mathrm{cf}(\mathrm{c} \in \mathrm{R}, \mathrm{c} \neq 0)$

We know $(c f)(x)=c \times f(x)$
$\therefore(\mathrm{cf})(\mathrm{x})=\mathrm{c} \sqrt{\mathrm{x}-1}$
Domain of $\mathrm{cf}=$ Domain of f
\therefore Domain of cf $=[1, \infty)$
Thus, $\mathrm{cf}:[1, \infty) \rightarrow R$ is given by $(c f)(x)=c \sqrt{x-1}$
(d) fg

We know $(f g)(x)=f(x) g(x)$
$\Rightarrow(f g)(x)=\sqrt{x-1} \sqrt{x+1}$
$\therefore(\mathrm{fg})(\mathrm{x})=\sqrt{\mathrm{x}^{2}-1}$
Domain of $\mathrm{fg}=$ Domain of $\mathrm{f} \cap$ Domain of g
\Rightarrow Domain of $\mathrm{fg}=[1, \infty) \cap[-1, \infty)$
\therefore Domain of $\mathrm{fg}=[1, \infty)$
Thus, $f g:[1, \infty) \rightarrow R$ is given by $(f g)(x)=\sqrt{x^{2}-1}$
(e) $\frac{1}{f}$

We know $\left(\frac{1}{f}\right)(x)=\frac{1}{f(x)}$
$\therefore\left(\frac{1}{\mathrm{f}}\right)(\mathrm{x})=\frac{1}{\sqrt{\mathrm{x}-1}}$
Domain of $\frac{1}{f}=$ Domain of f
\therefore Domain of $\frac{1}{f}=[1, \infty)$
Observe that $\frac{1}{\sqrt{x-1}}$ is also undefined when $x-1=0$ or $x=1$.
Thus, $\frac{1}{f}:(1, \infty) \rightarrow R$ is given by $\left(\frac{1}{f}\right)(x)=\frac{1}{\sqrt{x-1}}$
(f) $\frac{f}{g}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\Rightarrow\left(\frac{f}{g}\right)(x)=\frac{\sqrt{x-1}}{\sqrt{x+1}}$
$\therefore\left(\frac{f}{g}\right)(x)=\sqrt{\frac{x-1}{x+1}}$
Domain of $\frac{f}{g}=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $\frac{\mathrm{f}}{\mathrm{g}}=[1, \infty) \cap[-1, \infty)$
\therefore Domain of $\frac{\mathrm{f}}{\mathrm{g}}=[1, \infty)$
Thus, $\frac{f}{g}:[1, \infty) \rightarrow R$ is given by $\left(\frac{f}{g}\right)(x)=\sqrt{\frac{x-1}{x+1}}$

2. Question

Let $f(x)=2 x+5$ and $g(x)=x^{2}+x$. Describe
i. $f+g$
ii. $f-g$
iii. fg
iv. $\frac{f}{\mathrm{~g}}$

Find the domain in each case.

Answer

Given $f(x)=2 x+5$ and $g(x)=x^{2}+x$
Clearly, both $f(x)$ and $g(x)$ are defined for all $x \in R$.
Hence, domain of $f=$ domain of $g=R$
i. $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\Rightarrow(f+g)(x)=2 x+5+x^{2}+x$
$\therefore(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{x}^{2}+3 \mathrm{x}+5$
Clearly, $(f+g)(x)$ is defined for all real numbers x.
\therefore The domain of $(f+g)$ is R
ii. $f-g$

We know $(f-g)(x)=f(x)-g(x)$
$\Rightarrow(f-g)(x)=2 x+5-\left(x^{2}+x\right)$
$\Rightarrow(f-g)(x)=2 x+5-x^{2}-x$
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=5+\mathrm{x}-\mathrm{x}^{2}$
Clearly, $(f-g)(x)$ is defined for all real numbers x.
\therefore The domain of $(f-g)$ is R
iii. fg

We know $(f g)(x)=f(x) g(x)$
$\Rightarrow(f g)(x)=(2 x+5)\left(x^{2}+x\right)$
$\Rightarrow(f g)(x)=2 x\left(x^{2}+x\right)+5\left(x^{2}+x\right)$
$\Rightarrow(f g)(x)=2 x^{3}+2 x^{2}+5 x^{2}+5 x$
$\therefore(f g)(x)=2 x^{3}+7 x^{2}+5 x$
Clearly, $(\mathrm{fg})(\mathrm{x})$ is defined for all real numbers x .
\therefore The domain of fg is R
iv. $\frac{f}{g}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\therefore\left(\frac{f}{g}\right)(x)=\frac{2 x+5}{x^{2}+x}$
Clearly, $\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})$ is defined for all real values of x , except for the case when $\mathrm{x}^{2}+\mathrm{x}=0$.
$x^{2}+x=0$
$\Rightarrow x(x+1)=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{x}+1=0$
$\Rightarrow \mathrm{x}=0$ or -1
When $x=0$ or $-1,\left(\frac{f}{g}\right)(x)$ will be undefined as the division result will be indeterminate.
Thus, domain of $\frac{f}{g}=R-\{-1,0\}$

3. Question

If $f(x)$ be defined on $[-2,2]$ and is given by $f(x)=\left\{\begin{array}{l}-1,-2 \leq x \leq 0 \\ x-1,0 \leq x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$. Find $g(x)$.

Answer

Given $f(x)=\left\{\begin{array}{l}-1,-2 \leq x \leq 0 \\ x-1,0 \leq x \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$
Now, we have $f(|x|)=\left\{\begin{array}{c}-1,-2 \leq|x| \leq 0 \\ |x|-1,0 \leq|x| \leq 2\end{array}\right.$
However, $|x| \geq 0 \Rightarrow f(|x|)=|x|-1$ when $0 \leq|x| \leq 2$
We also have $|f(x)|=\left\{\begin{array}{l}|-1|,-2 \leq x \leq 0 \\ |x-1|, 0 \leq x \leq 2\end{array}\right.$
$\Rightarrow|f(x)|=\left\{\begin{array}{c}1,-2 \leq x \leq 0 \\ |x-1|, 0 \leq x \leq 2\end{array}\right.$
We know $|x-1|=\left\{\begin{array}{r}-(x-1), x-1<0 \\ x-1, x-1 \geq 0\end{array}\right.$
$\Rightarrow|x-1|=\left\{\begin{array}{r}-(x-1), x<1 \\ x-1, x \geq 1\end{array}\right.$
Here, we are interested only in the range [0, 2].
$\Rightarrow|x-1|=\left\{\begin{array}{r}-(x-1), 0 \leq x<1 \\ x-1,1 \leq x \leq 2\end{array}\right.$
Substituting this value of $|x-1|$ in $|f(x)|$, we get
$|f(x)|=\left\{\begin{array}{c}1,-2 \leq x \leq 0 \\ -(x-1), 0<x<1 \\ x-1,1 \leq x \leq 2\end{array}\right.$
$\therefore|f(\mathrm{x})|=\left\{\begin{array}{c}1,-2 \leq \mathrm{x} \leq 0 \\ 1-\mathrm{x}, 0<\mathrm{x}<1 \\ \mathrm{x}-1,1 \leq \mathrm{x} \leq 2\end{array}\right.$
We need to find $g(x)$.
$g(x)=f(|x|)+|f(x)|$
$\Rightarrow \mathrm{g}(\mathrm{x})=\left\{|\mathrm{x}|-1,0 \leq|\mathrm{x}| \leq 2+\left\{\begin{array}{c}1,-2 \leq \mathrm{x} \leq 0 \\ 1-\mathrm{x}, 0<\mathrm{x}<1 \\ \mathrm{x}-1,1 \leq \mathrm{x} \leq 2\end{array}\right.\right.$
$\Rightarrow g(x)=\left\{\begin{array}{c}-x-1,-2 \leq x \leq 0 \\ x-1,0<x<1 \\ x-1,1 \leq x \leq 2\end{array}+\left\{\begin{array}{c}1,-2 \leq x \leq 0 \\ 1-x, 0<x<1 \\ x-1,1 \leq x \leq 2\end{array}\right.\right.$
$\Rightarrow g(x)=\left\{\begin{array}{l}-x-1+1,-2 \leq x \leq 0 \\ x-1+1-x, 0<x<1 \\ x-1+x-11 \leq x \leq 2\end{array}\right.$
$\therefore g(x)=\left\{\begin{array}{c}-x,-2 \leq x \leq 0 \\ 0,0<x<1 \\ 2(x-1), 1 \leq x \leq 2\end{array}\right.$
Thus, $\mathrm{g}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|=\left\{\begin{array}{c}-\mathrm{x},-2 \leq \mathrm{x} \leq 0 \\ 0,0<\mathrm{x}<1 \\ 2(\mathrm{x}-1), 1 \leq \mathrm{x} \leq 2\end{array}\right.$

4. Question

Let f, g be two real functions defined by $f(x)=\sqrt{x+1}$ and $g(x)=\sqrt{9-x^{2}}$. Then, describe each of the following functions.
i. $f+g$
ii. g - f
iii. fg
iv. $\frac{f}{g}$
v. $\frac{g}{f}$
vi. $2 f-\sqrt{5}$ g
vii. $f^{2}+7 f$
viii. $\frac{5}{\mathrm{~g}}$

Answer

Given $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}+1}$ and $\mathrm{g}(\mathrm{x})=\sqrt{9-\mathrm{x}^{2}}$
We know the square of a real number is never negative.
Clearly, $\mathrm{f}(\mathrm{x})$ takes real values only when $\mathrm{x}+1 \geq 0$
$\Rightarrow x \geq-1$
$\therefore \mathrm{x} \in[-1, \infty)$
Thus, domain of $f=[-1, \infty)$
Similarly, $g(x)$ takes real values only when $9-x^{2} \geq 0$
$\Rightarrow 9 \geq \mathrm{x}^{2}$
$\Rightarrow x^{2} \leq 9$
$\Rightarrow x^{2}-9 \leq 0$
$\Rightarrow x^{2}-3^{2} \leq 0$
$\Rightarrow(x+3)(x-3) \leq 0$
$\Rightarrow x \geq-3$ and $x \leq 3$
$\therefore \mathrm{x} \in[-3,3]$
Thus, domain of $\mathrm{g}=[-3,3]$
i. $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\therefore(\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}+1}+\sqrt{9-\mathrm{x}^{2}}$
Domain of $f+g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $f+g=[-1, \infty) \cap[-3,3]$
\therefore Domain of $\mathrm{f}+\mathrm{g}=[-1,3]$
Thus, $\mathrm{f}+\mathrm{g}:[-1,3] \rightarrow \mathrm{R}$ is given by $(\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}+1}+\sqrt{9-\mathrm{x}^{2}}$
ii. $\mathrm{f}-\mathrm{g}$

We know $(f-g)(x)=f(x)-g(x)$
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}+1}-\sqrt{9-\mathrm{x}^{2}}$
Domain of $f-g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $\mathrm{f}-\mathrm{g}=[-1, \infty) \cap[-3,3]$
\therefore Domain of $\mathrm{f}-\mathrm{g}=[-1,3]$
Thus, $\mathrm{f}-\mathrm{g}:[-1,3] \rightarrow \mathrm{R}$ is given by $(\mathrm{f}-\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}+1}-\sqrt{9-\mathrm{x}^{2}}$
iii. fg

We know $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
$\Rightarrow(\mathrm{fg})(\mathrm{x})=\sqrt{\mathrm{x}+1} \sqrt{9-\mathrm{x}^{2}}$
$\Rightarrow(f g)(x)=\sqrt{(x+1)\left(9-x^{2}\right)}$
$\Rightarrow(f g)(x)=\sqrt{x\left(9-x^{2}\right)+\left(9-x^{2}\right)}$
$\Rightarrow(f g)(x)=\sqrt{9 x-x^{3}+9-x^{2}}$
$\therefore(\mathrm{fg})(\mathrm{x})=\sqrt{9+9 \mathrm{x}-\mathrm{x}^{2}-\mathrm{x}^{3}}$
As earlier, domain of $f g=[-1,3]$
Thus, $f-g:[-1,3] \rightarrow R$ is given by $(f g)(x)=\sqrt{9+9 x-x^{2}-x^{3}}$
iv. $\frac{\mathrm{f}}{\mathrm{g}}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\Rightarrow\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\frac{\sqrt{\mathrm{x}+1}}{\sqrt{9-\mathrm{x}^{2}}}$
$\therefore\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\sqrt{\frac{\mathrm{x}+1}{9-\mathrm{x}^{2}}}$
As earlier, domain of $\frac{f}{g}=[-1,3]$
However, $\left(\frac{f}{g}\right)(x)$ is defined for all real values of $x \in[-1,3]$, except for the case when $9-x^{2}=0$ or $x= \pm 3$
When $x= \pm 3,\left(\frac{f}{g}\right)(x)$ will be undefined as the division result will be indeterminate.
\Rightarrow Domain of $\frac{\mathrm{f}}{\mathrm{g}}=[-1,3]-\{-3,3\}$
\therefore Domain of $\frac{\mathrm{f}}{\mathrm{g}}=[-1,3)$
Thus, $\frac{f}{g}:[-1,3) \rightarrow R$ is given by $\left(\frac{f}{g}\right)(x)=\sqrt{\frac{x+1}{9-x^{2}}}$
v. $\frac{g}{f}$

We know $\left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}$
$\Rightarrow\left(\frac{g}{\mathrm{f}}\right)(\mathrm{x})=\frac{\sqrt{9-\mathrm{x}^{2}}}{\sqrt{\mathrm{x}+1}}$
$\therefore\left(\frac{g}{f}\right)(x)=\sqrt{\frac{9-x^{2}}{x+1}}$
As earlier, domain of $\frac{g}{f}=[-1,3]$
However, $\left(\frac{g}{f}\right)(x)$ is defined for all real values of $x \in[-1,3]$, except for the case when $x+1=0$ or $x=-1$
When $x=-1,\left(\frac{g}{f}\right)(x)$ will be undefined as the division result will be indeterminate.
\Rightarrow Domain of $\underset{f}{g}=[-1,3]-\{-1\}$
\therefore Domain of $\frac{g}{f}=(-1,3]$

Thus, $\frac{g}{f}:(-1,3] \rightarrow R$ is given by $\left(\frac{f}{g}\right)(x)=\sqrt{\frac{9-x^{2}}{x+1}}$
vi. $2 \mathrm{f}-\sqrt{5} \mathrm{~g}$

We know $(f-g)(x)=f(x)-g(x)$ and $(c f)(x)=c f(x)$
$\Rightarrow(2 \mathrm{f}-\sqrt{5} \mathrm{~g})(\mathrm{x})=2 \mathrm{f}(\mathrm{x})-\sqrt{5} \mathrm{~g}(\mathrm{x})$
$\therefore(2 \mathrm{f}-\sqrt{5} \mathrm{~g})(\mathrm{x})=2 \sqrt{\mathrm{x}+1}-5 \sqrt{9-\mathrm{x}^{2}}$
As earlier, Domain of $2 \mathrm{f}-\sqrt{5} \mathrm{~g}=[-1,3]$
Thus, $2 \mathrm{f}-\sqrt{5} \mathrm{~g}:[-1,3] \rightarrow R$ is given by $(2 \mathrm{f}-\sqrt{5} \mathrm{~g})(\mathrm{x})=2 \sqrt{\mathrm{x}+1}-5 \sqrt{9-\mathrm{x}^{2}}$
vii. $f^{2}+7 f$

We know $\left(f^{2}+7 f\right)(x)=f^{2}(x)+(7 f)(x)$
$\Rightarrow\left(f^{2}+7 f\right)(x)=f(x) f(x)+7 f(x)$
$\Rightarrow\left(f^{2}+7 f\right)(x)=\sqrt{x+1} \sqrt{x+1}+7 \sqrt{x+1}$
$\therefore\left(\mathrm{f}^{2}+7 \mathrm{f}\right)(\mathrm{x})=\mathrm{x}+1+7 \sqrt{\mathrm{x}+1}$
Domain of $f^{2}+7 f$ is same as domain of f.
\therefore Domain of $\mathrm{f}^{2}+7 \mathrm{f}=[-1, \infty)$
Thus, $f^{2}+7 f:[-1, \infty) \rightarrow R$ is given by $\left(f^{2}+7 f\right)(x)=x+1+7 \sqrt{x+1}$
viii. $\frac{5}{g}$

We know $\left(\frac{1}{g}\right)(x)=\frac{1}{g(x)}$ and $(c g)(x)=c g(x)$
$\therefore\left(\frac{5}{g}\right)(x)=\frac{5}{\sqrt{9-x^{2}}}$
Domain of $\frac{5}{g}=$ Domain of $g=[-3,3]$
However, $\left(\frac{5}{g}\right)(x)$ is defined for all real values of $x \in[-3,3]$, except for the case when $9-x^{2}=0$ or $x= \pm 3$
When $x= \pm 3,\left(\frac{5}{g}\right)(x)$ will be undefined as the division result will be indeterminate.
\Rightarrow Domain of $\frac{5}{g}=[-3,3]-\{-3,3\}$
\therefore Domain of $\frac{5}{g}=(-3,3)$
Thus, $\frac{5}{g}:(-3,3) \rightarrow R$ is given by $\left(\frac{5}{g}\right)(x)=\frac{5}{\sqrt{9-x^{2}}}$

5. Question

If $f(x)=\log _{e}(1-x)$ and $g(x)=[x]$, then determine each of the following functions:
i. $f+g$
ii. fg
iii. $\frac{\mathrm{f}}{\mathrm{g}}$
iv. $\frac{g}{f}$

Also, find $(f+g)(-1),(f g)(0),\left(\frac{f}{g}\right)\left(\frac{1}{2}\right)$ and $\left(\frac{g}{f}\right)\left(\frac{1}{2}\right)$.

Answer

Given $\mathrm{f}(\mathrm{x})=\log _{\mathrm{e}}(1-\mathrm{x})$ and $\mathrm{g}(\mathrm{x})=[\mathrm{x}]$
Clearly, $\mathrm{f}(\mathrm{x})$ takes real values only when $1-\mathrm{x}>0$
$\Rightarrow 1>x$
$\Rightarrow \mathrm{x}<1$
$\therefore \mathrm{x} \in(-\infty, 1)$
Thus, domain of $f=(-\infty, 1)$
$g(x)$ is defined for all real numbers x.
Thus, domain of $g=R$
i. $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\therefore(f+g)(x)=\log _{e}(1-x)+[x]$
Domain of $f+g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $f+g=(-\infty, 1) \cap R$
\therefore Domain of $\mathrm{f}+\mathrm{g}=(-\infty, 1)$
Thus, $f+g:(-\infty, 1) \rightarrow R$ is given by $(f+g)(x)=\log _{e}(1-x)+[x]$
ii. fg

We know $(f g)(x)=f(x) g(x)$
$\Rightarrow(f g)(x)=\log _{e}(1-x) \times[x]$
$\therefore(f g)(x)=[x] \log _{e}(1-x)$
Domain of $f g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $\mathrm{fg}=(-\infty, 1) \cap \mathrm{R}$
\therefore Domain of $\mathrm{fg}=(-\infty, 1)$
Thus, $f-g:(-\infty, 1) \rightarrow R$ is given by $(f g)(x)=[x] \log _{e}(1-x)$
iii. $\frac{f}{g}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\therefore\left(\frac{f}{g}\right)(x)=\frac{\log _{e}(1-x)}{[x]}$
As earlier, domain of $\frac{f}{g}=(-\infty, 1)$
However, $\left(\frac{f}{g}\right)(x)$ is defined for all real values of $x \in(-\infty, 1)$, except for the case when $[x]=0$.
We have $[x]=0$ when $0 \leq x<1$ or $x \in[0,1)$
When $0 \leq x<1,\left(\frac{f}{g}\right)$ (x) will be undefined as the division result will be indeterminate.
\Rightarrow Domain of $\frac{f}{g}=(-\infty, 1)-[0,1)$
\therefore Domain of $\frac{\mathrm{f}}{\mathrm{g}}=(-\infty, 0)$
Thus, $\frac{f}{g}:(-\infty, 0) \rightarrow R$ is given by $\left(\frac{f}{g}\right)(x)=\frac{\log _{e}(1-x)}{[x]}$
iv. $\frac{g}{f}$

We know $\left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}$
$\therefore\left(\frac{g}{\mathrm{f}}\right)(\mathrm{x})=\frac{[\mathrm{x}]}{\log _{\mathrm{e}}(1-\mathrm{x})}$
As earlier, domain of $\frac{\mathrm{g}}{\mathrm{f}}=(-\infty, 1)$
However, $\left(\frac{g}{f}\right)(x)$ is defined for all real values of $x \in(-\infty, 1)$, except for the case when $\log _{e}(1-x)=0$.
$\log _{e}(1-x)=0 \Rightarrow 1-x=1$ or $x=0$
When $x=0,\left(\frac{g}{f}\right)(x)$ will be undefined as the division result will be indeterminate.
\Rightarrow Domain of $\frac{\mathrm{g}}{\mathrm{f}}=(-\infty, 1)-\{0\}$
\therefore Domain of $\frac{g}{f}=(-\infty, 0) \cup(0, \infty)$
Thus, $\frac{g}{f}:(-\infty, 0) \cup(0, \infty) \rightarrow R$ is given by $\left(\frac{g}{f}\right)(x)=\frac{[x]}{\log _{e}(1-x)}$
We have $(f+g)(x)=\log _{e}(1-x)+[x], x \in(-\infty, 1)$
We need to find $(f+g)(-1)$.
Substituting $x=-1$ in the above equation, we get
$(f+g)(-1)=\log _{e}(1-(-1))+[-1]$
$\Rightarrow(f+g)(-1)=\log _{e}(1+1)+(-1)$
$\therefore(f+g)(-1)=\log _{e} 2-1$
Thus, $(f+g)(-1)=\log _{e} 2-1$
We have $(f g)(x)=[x] \log _{e}(1-x), x \in(-\infty, 1)$
We need to find (fg)(0).
Substituting $x=0$ in the above equation, we get
$(f g)(0)=[0] \log _{e}(1-0)$
$\Rightarrow(f g)(0)=0 \times \log _{\mathrm{e}} 1$
$\therefore(\mathrm{fg})(0)=0$
Thus, $(\mathrm{fg})(0)=0$
We have $\left(\frac{f}{g}\right)(x)=\frac{\log _{e}(1-x)}{[x]}, x \in(-\infty, 0)$
We need to find $\left(\frac{f}{g}\right)\left(\frac{1}{2}\right)$
However, $\frac{1}{2}$ is not in the domain of $\frac{f}{g}$.

Thus, $\left(\frac{\mathrm{f}}{\mathrm{g}}\right)\left(\frac{1}{2}\right)$ does not exist.
We have $\left(\frac{g}{f}\right)(x)=\frac{[x]}{\log _{e}(1-x)}, x \in(-\infty, 0) \cup(0, \infty)$
We need to find $\left(\frac{g}{f}\right)\left(\frac{1}{2}\right)$
Substituting $\mathrm{x}=\frac{1}{2}$ in the above equation, we get
$\left(\frac{g}{f}\right)\left(\frac{1}{2}\right)=\frac{\left[\frac{1}{2}\right]}{\log _{e}\left(1-\frac{1}{2}\right)}$
$\Rightarrow\left(\frac{\mathrm{g}}{\mathrm{f}}\right)\left(\frac{1}{2}\right)=\frac{[0.5]}{\log _{\mathrm{e}}\left(\frac{1}{2}\right)}$
$\Rightarrow\left(\frac{\mathrm{g}}{\mathrm{f}}\right)\left(\frac{1}{2}\right)=\frac{0}{\log _{\mathrm{e}}\left(\frac{1}{2}\right)}$
$\therefore\left(\frac{\mathrm{g}}{\mathrm{f}}\right)\left(\frac{1}{2}\right)=0$
Thus, $\left(\frac{\mathrm{g}}{\mathrm{f}}\right)\left(\frac{1}{2}\right)=0$

6. Question

If f, g, h are real functions defined by $f(x)=\sqrt{x+1}, g(x)=\frac{1}{x}$ and $h(x)=2 x^{2}-3$, then find the values of ($2 f$ $+g-h)(1)$ and $(2 f+g-h)(0)$.

Answer

Given $f(x)=\sqrt{x+1}, g(x)=\frac{1}{x}$ and $h(x)=2 x^{3}-3$
We know the square of a real number is never negative.
Clearly, $f(x)$ takes real values only when $x+1 \geq 0$
$\Rightarrow x \geq-1$
$\therefore \mathrm{x} \in[-1, \infty)$
Thus, domain of $f=[-1, \infty)$
$g(x)$ is defined for all real values of x, except for 0 .
Thus, domain of $g=R-\{0\}$
$h(x)$ is defined for all real values of x.
Thus, domain of $h=R$
We know $(2 f+g-h)(x)=(2 f)(x)+g(x)-h(x)$
$\Rightarrow(2 f+g-h)(x)=2 f(x)+g(x)-h(x)$
$\Rightarrow(2 f+g-h)(x)=2 \sqrt{x+1}+\frac{1}{x}-\left(2 x^{2}-3\right)$
$\therefore(2 f+g-h)(x)=2 \sqrt{x+1}+\frac{1}{x}-2 x^{2}+3$
Domain of $2 f+g-h=$ Domain of $f \cap$ Domain of $g \cap$ Domain of h
\Rightarrow Domain of $2 f+g-h=[-1, \infty) \cap R-\{0\} \cap R$
\therefore Domain of $2 \mathrm{f}+\mathrm{g}-\mathrm{h}=[-1, \infty)-\{0\}$
i. $(2 f+g-h)(1)$

We have $(2 \mathrm{f}+\mathrm{g}-\mathrm{h})(\mathrm{x})=2 \sqrt{\mathrm{x}+1}+\frac{1}{\mathrm{x}}-2 \mathrm{x}^{2}+3$
$\Rightarrow(2 f+g-h)(1)=2 \sqrt{1+1}+\frac{1}{1}-2(1)^{2}+3$
$\Rightarrow(2 f+g-h)(1)=2 \sqrt{2}+1-2+3$
$\therefore(2 \mathrm{f}+\mathrm{g}-\mathrm{h})(1)=2 \sqrt{2}+2$
ii. $(2 f+g-h)(0)$

0 is not in the domain of $(2 f+g-h)(x)$.
Hence, $(2 f+g-h)(0)$ does not exist.
Thus, $(2 f+g-h)(1)=2 \sqrt{2}+2$ and $(2 f+g-h)(0)$ does not exist as 0 is not in the domain of $(2 f+g-h)(x)$.

7. Question

The function f is defined by $f(x)=\left\{\begin{array}{c}1-x, x<0 \\ 1, x=0 \\ x+1, x>0\end{array}\right.$. Draw the graph of $f(x)$.

Answer

Given $f(x)=\left\{\begin{array}{c}1-x, x<0 \\ 1, x=0 \\ x+1, x>0\end{array}\right.$
When $x<0$, we have $f(x)=1-x$
$f(-4)=1-(-4)=1+4=5$
$f(-3)=1-(-3)=1+3=4$
$f(-2)=1-(-2)=1+2=3$
$f(-1)=1-(-1)=1+1=2$
When $x=0$, we have $f(x)=f(0)=1$
When $x>0$, we have $f(x)=1+x$
$f(1)=1+1=2$
$f(2)=1+2=3$
$f(3)=1+3=4$
$f(4)=1+4=5$
Plotting these points on a graph sheet, we get

8. Question

Let $f, g: R \rightarrow R$ be defined, respectively by $f(x)=x+1$ and $g(x)=2 x-3$. Find $f+g, f-g$ and $\frac{f}{g}$.
Find the domain in each case.

Answer

Given $f(x)=x+1$ and $g(x)=2 x-3$
Clearly, both $f(x)$ and $g(x)$ exist for all real values of x.
Hence, Domain of $f=$ Domain of $g=R$
Range of $f=$ Range of $g=R$
i. $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\Rightarrow(f+g)(x)=x+1+2 x-3$
$\therefore(f+g)(x)=3 x-2$
Domain of $f+g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $f+g=R \cap R$
\therefore Domain of $\mathrm{f}+\mathrm{g}=\mathrm{R}$
Thus, $f+g: R \rightarrow R$ is given by $(f+g)(x)=3 x-2$
ii. $f-g$

We know $(f-g)(x)=f(x)-g(x)$
$\Rightarrow(f-g)(x)=x+1-(2 x-3)$
$\Rightarrow(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{x}+1-2 \mathrm{x}+3$
$\therefore(f-g)(x)=-x+4$
Domain of $f-g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $f-g=R \cap R$
\therefore Domain of $\mathrm{f}-\mathrm{g}=\mathrm{R}$
Thus, $f-g: R \rightarrow R$ is given by $(f-g)(x)=-x+4$
iii. $\frac{f}{g}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\therefore\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\frac{\mathrm{x}+1}{2 \mathrm{x}-3}$
Clearly, $\left(\frac{f}{g}\right)(x)$ is defined for all real values of x, except for the case when $2 x-3=0$ or $x=\frac{3}{2}$.
When $\mathrm{x}=\frac{3}{2},\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})$ will be undefined as the division result will be indeterminate.
Thus, domain of $\frac{f}{g}=R-\left\{\frac{3}{2}\right\}$
Thus, $\frac{f}{g}: R-\left\{\frac{3}{2}\right\} \rightarrow R$ is given by $\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}$

9. Question

Let $f:[0, \infty) \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=\sqrt{x}$ and $g(x)=x$. Find $f+g, f-g$,fg and $\frac{f}{g}$

Answer

Given $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}$
Domain of $f=[0, \infty)$
Domain of $g=R$
i. $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\therefore(\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}}+\mathrm{x}$
Domain of $f+g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $f+g=[0, \infty) \cap R$
\therefore Domain of $\mathrm{f}+\mathrm{g}=[0, \infty$)
Thus, $f+g:[0, \infty) \rightarrow R$ is given by $(f+g)(x)=\sqrt{x}+x$
ii. $f-g$

We know $(f-g)(x)=f(x)-g(x)$
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=\sqrt{\mathrm{x}}-\mathrm{x}$
Domain of $f-g=$ Domain of $f \cap$ Domain of g
\Rightarrow Domain of $f-g=[0, \infty) \cap R$
\therefore Domain of $\mathrm{f}-\mathrm{g}=[0, \infty)$
Thus, $f-g:[0, \infty) \rightarrow R$ is given by $(f-g)(x)=\sqrt{x}-x$
iii. fg

We know $(f g)(x)=f(x) g(x)$
$\Rightarrow(\mathrm{fg})(\mathrm{x})=\sqrt{\mathrm{x}} \times \mathrm{x}$
$\Rightarrow(\mathrm{fg})(\mathrm{x})=\mathrm{x}^{\frac{1}{2}} \times \mathrm{x}$
$\therefore(\mathrm{fg})(\mathrm{x})=\mathrm{x}^{\frac{3}{2}}$

Clearly, $(f g)(x)$ is also defined only for non-negative real numbers x as square of a real number is never negative.

Thus, $\mathrm{fg}:[0, \infty) \rightarrow R$ is given by $(\mathrm{fg})(\mathrm{x})=\mathrm{x}^{\frac{3}{2}}$
iv. $\frac{f}{g}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\Rightarrow\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\frac{\sqrt{\mathrm{x}}}{\mathrm{x}}$
$\Rightarrow\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\frac{\sqrt{\mathrm{x}}}{(\sqrt{\mathrm{x}})^{2}}$
$\therefore\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})=\frac{1}{\sqrt{\mathrm{x}}}$
Clearly, $\left(\frac{f}{g}\right)(x)$ is defined for all positive real values of x, except for the case when $x=0$.
When $x=0,\left(\frac{f}{g}\right)(x)$ will be undefined as the division result will be indeterminate.
\Rightarrow Domain of $\frac{f}{g}=[0, \infty)-\{0\}$
\therefore Domain of $\frac{\mathrm{f}}{\mathrm{g}}=(0, \infty)$
Thus, $\frac{f}{g}:(0, \infty) \rightarrow R$ is given by $\left(\frac{f}{g}\right)(x)=\frac{1}{\sqrt{x}}$

10. Question

Let $f(x)=x^{2}$ and $g(x)=2 x+1$ be two real functions. Find $(f+g)(x),(f-g)(x),(f g)(x)$ and $\left(\frac{f}{g}\right)(x)$.

Answer

Given $f(x)=x^{2}$ and $g(x)=2 x+1$
Both $f(x)$ and $g(x)$ are defined for all $x \in R$.
Hence, domain of $f=$ domain of $g=R$
i. $f+g$

We know $(f+g)(x)=f(x)+g(x)$
$\Rightarrow(f+g)(x)=x^{2}+2 x+1$
$\therefore(f+g)(x)=(x+1)^{2}$
Clearly, $(f+g)(x)$ is defined for all real numbers x.
\therefore Domain of $(f+g)$ is R
Thus, $f+g: R \rightarrow R$ is given by $(f+g)(x)=(x+1)^{2}$
ii. $f-g$

We know $(f-g)(x)=f(x)-g(x)$
$\Rightarrow(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{x}^{2}-(2 \mathrm{x}+1)$
$\therefore(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-1$

Clearly, $(f-g)(x)$ is defined for all real numbers x.
\therefore Domain of $(\mathrm{f}-\mathrm{g})$ is R
Thus, $f-g: R \rightarrow R$ is given by $(f-g)(x)=x^{2}-2 x-1$
iii. fg

We know $(f g)(x)=f(x) g(x)$
$\Rightarrow(\mathrm{fg})(\mathrm{x})=\mathrm{x}^{2}(2 \mathrm{x}+1)$
$\therefore(f g)(x)=2 x^{3}+x^{2}$
Clearly, $(f g)(x)$ is defined for all real numbers x.
\therefore Domain of fg is R
Thus, $f g: R \rightarrow R$ is given by $(f g)(x)=2 x^{3}+x^{2}$
iv. $\frac{f}{g}$

We know $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\therefore\left(\frac{f}{g}\right)(x)=\frac{x^{2}}{2 x+1}$
Clearly, $\left(\frac{f}{g}\right)(x)$ is defined for all real values of x, except for the case when $2 x+1=0$.
$2 x+1=0$
$\Rightarrow 2 x=-1$
$\Rightarrow \mathrm{x}=-\frac{1}{2}$
When $\mathrm{x}=-\frac{1}{2},\left(\frac{\mathrm{f}}{\mathrm{g}}\right)(\mathrm{x})$ will be undefined as the division result will be indeterminate.
Thus, the domain of $\frac{f}{g}=R-\left\{-\frac{1}{2}\right\}$

Very Short Answer

1. Question

Write the range of the real function $f(x)=|x|$.

Answer

$f(x)=|x|$
$f(-x)=|-x|$
therefore, $f(x)$ will always be 0 or positive.
Thus, range of $f(x) \in[0, \infty)$.

2. Question

If f is a real function satisfying $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$ for all $x \in R-\{0\}$, then write the expression for $f(x)$.

Answer

$f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$
$=x^{2}+\frac{1}{x^{2}}+2 \cdot x \cdot \frac{1}{x}-2$
$\left\{\right.$ since, $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right\}$
$=\left(x+\frac{1}{x}\right)^{2}-2$
Let $x+\frac{1}{x}=y$
$f(y)=y^{2}-2$
$x+\frac{1}{x}=y$
$x+\frac{1}{x}=y$
$x+1=x y$
$x^{2}-y x+1=0$
$x=\frac{y \pm \sqrt{y^{2}-4.1 .1}}{2.1}$
for x to be real
$y^{2}-4 \geq 0$
$y \in(-\infty, 2] \cup[2, \infty)$
$|y|>2$ Ans.

3. Question

Write the range of the function $\mathrm{f}(\mathrm{x})=\sin [\mathrm{x}]$ where $\frac{-\pi}{4} \leq \mathrm{x} \leq \frac{\pi}{4}$.

Answer

$F(x)=\sin [x]$
$-\frac{\pi}{4} \leq \mathrm{x} \leq \frac{\pi}{4}$
$\sin \left[-\frac{\pi}{4}\right]=\sin (-1)$
$=-\sin 1$
$\sin 0=0$
$\sin \frac{\pi}{4}=\sin 0$
$=0$
Using properties of greatest integer function:
$[1]=1 ;[0.5]=0 ;[-0.5]=-1$
Therefore, $R(f)=\{-\sin 1,0\}$

4. Question

If $f(x)=\cos 2\left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$, where $[x]$ denotes the greatest integer less than or equal to x, then write the value of $f(\pi)$.

Answer
$f(x)=\cos 2\left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$
$\pi^{2} \approx 9.8596$
So, we have $\left[\pi^{2}\right]=9$ and $\left[-\pi^{2}\right]=-10$
$f(x)=\cos 18 x+\cos (-10) x$
$=\cos 18 x+\cos 10 x$
$=2 \cos \left(\frac{18 \mathrm{x}+10 \mathrm{x}}{2}\right) \cos \left(\frac{18 \mathrm{x}-10 \mathrm{x}}{2}\right)$
$=2 \cos 14 x \cos 4 x$
$f(\pi)=2 \cos 14 \pi \cos 4 \pi$
$=2 \times 1 \times 1$
Therefore, $\mathrm{f}(\pi)=2$

5. Question

Write the range of the function $\mathrm{f}(\mathrm{x})=\cos [\mathrm{x}]$, where $-\frac{\pi}{2}<\mathrm{x}<\frac{\pi}{2}$.

Answer

for $-\frac{\pi}{2}<x<-1$
$[x]=-2$
$f(x)=\cos [x]=\cos (-2)$
$=\cos 2$
because $\cos (-x)=\cos (x)$
for- $1 \leq x<0$
$[x]=-1$
$f(x)=\cos [x]=\cos (-1)$
$=\cos 1$
for $0 \leq x<1$
$[x]=0$
$f(x)=\cos 0=1$
for $1 \leq x<\pi / 2$
$[x]=1$
$f(x)=\cos 1$
Therefore, $R(f)=\{1, \cos 1, \cos 2\}$

6. Question

Write the range of the function $f(x)=e^{x-[x]}, x \in R$.

Answer

$\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}-[\mathrm{x}]}$
$0 \leq x-[x]<1$
$e^{0} \leq e^{x-[x]}<e^{1}$
$1 \leq \mathrm{e}^{\mathrm{x}-[\mathrm{x}]}<\mathrm{e}$
Therefore, $\mathrm{R}(\mathrm{f})=[1, \mathrm{e})$

7. Question

Let $f(x)=\frac{\alpha \mathrm{x}}{\mathrm{x}+1}, \mathrm{x} \neq-1$. Then write the value of α satisfying $\left.\mathrm{f}(\mathrm{x})\right)=\mathrm{x}$ for all $\mathrm{x} \neq-1$.

Answer

$\mathrm{f}(\mathrm{x})=\frac{\mathrm{ax}}{\mathrm{x}+1}, \mathrm{x} \neq-1$
If $\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$
$a \frac{\frac{a x}{x+1}}{\frac{a x}{x+1}+1}=x$
$\frac{\frac{a^{2} x}{x+1}}{\frac{a x+x+1}{x+1}}=x$
$\frac{a^{2} x}{a x+x+1}=x$
$a^{2} x=a x^{2}+x^{2}+x$
$x^{2}(a+1)+x\left(1-a^{2}\right)=0$
$x^{2}(a+1)+x(1-a)(1+a)=0$
$(a+1)\left(x^{2}+x(1-a)\right)=0$
$a+1=0$
Therefore, $a=-1$

8. Question

If $f(x)=1-\frac{1}{x}$, then write the value of $f\left(f\left(\frac{1}{x}\right)\right)$.

Answer

$\mathrm{f}(\mathrm{x})=1-\frac{1}{\mathrm{x}}$
replacexby $\frac{1}{\mathrm{x}}$
$f\left(\frac{1}{x}\right)=1-\frac{1}{\frac{1}{x}}=1-x$
now, $f\left(f\left(\frac{1}{x}\right)\right)=1-\frac{1}{f\left(\frac{1}{x}\right)}$
$=1-\frac{1}{1-\mathrm{x}}=\frac{1-\mathrm{x}-1}{1-\mathrm{x}}$
$f\left(f\left(\frac{1}{x}\right)\right)=\frac{-x}{1-x}=\frac{x}{x-1}$

9. Question

Write the domain and range of the function $f(x)=\frac{x-2}{2-x}$.

Answer

For function to be defined, $2-\mathrm{x} \neq 0$
$x \neq 2$
Therefore, $D(f)=R-\{2\}$.
Let $\mathrm{y}=\frac{\mathrm{x}-2}{2-\mathrm{x}}$
$y=-1$
Therefore, $R(f)=\{-1\}$.

10. Question

If $f(x)=4 x-x^{2}, x \in R$, then write the value of $f(a+1)-f(a-1)$.

Answer

$\mathrm{f}(\mathrm{x})=4 \mathrm{x}-\mathrm{x}^{2}$
$f(a+1)-f(a-1)=\left[4(a+1)-(a+1)^{2}\right]-\left[4(a-1)-(a-1)^{2}\right]$
$=4[(a+1)-(a-1)]-\left[(a+1)^{2}-(a+1)^{2}\right]$
$=4(2)-[(a+1+a-1)(a+1-a+1)]$
Using: $a^{2}-b^{2}=(a+b)(a-b)$
$f(a+1)-f(a-1)=4(2)-2 a(2)$
$=4(2-\mathrm{a})$

11. Question

If f, g, h are real functions given by $f(x)=x^{2}, g(x)=\tan x$ and $h(x)=\log _{e} x$, then write the value of (hogof) $\left(\sqrt{\frac{\pi}{4}}\right)$.

Answer

$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} ; \mathrm{g}(\mathrm{x})=\tan \mathrm{x} ; \mathrm{h}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x}$
$f\left(\sqrt{\frac{\pi}{4}}\right)=\left(\sqrt{\frac{\pi}{4}}\right)^{2}=\frac{\pi}{4}$
$g\left(f\left(\sqrt{\frac{\pi}{4}}\right)\right)=g\left(\frac{\pi}{4}\right)=\tan \frac{\pi}{4}=1$
(hogof) $\left(\sqrt{\frac{\pi}{4}}\right)=\mathrm{h}(1)=\log _{\mathrm{e}} 1=0$
Therefore, answer $=0$.

12. Question

Write the domain and range of function $f(x)$ given by $f(x)=\frac{1}{\sqrt{x-|x|}}$.

Answer

For $f(x)$ to be defined,
$x-|x|>0$
But $x-|x| \leq 0$
So, $f(x)$ does not exist.
Therefore, $\mathrm{D}(\mathrm{f})=\mathrm{R}(\mathrm{f})=\phi$

13. Question

Write the domain and range of $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}-[\mathrm{x}]}$

Answer

For $f(x)$ to be defined,
$x-[x] \geq 0$
We know that, $\{x\}+[x]=x$ where $\{x\}$ is fractional part function and $[x]$ is greatest integer function.
$\{x\} \geq 0$
Also, $0 \leq\{x\}<1$
Therefore, $D(f)=R$ and range $=[0,1)$.

14. Question

Write the domain and range of function $f(x)$ given by $f(x)=\sqrt{[x]-x}$.

Answer

For function to be defined,
$[x]-x \geq 0$
$-\{x\} \geq 0$
Therefore, domain of $f(x)$ is integers.
$D(f) \in I$
Range $=\{0\}$.

15. Question

Let A and B be two sets such that $n(A)=p$ and $n(B)=q$, write the number of functions from A to B.

Answer

For each value of set A, we can have q functions as each value of A pair up with all the values of B.
So, total number of functions from A to $B=q \times q \times q \ldots .\{p$ times $\}$
$=q^{p}$

16. Question

Let f and g be two functions given by
$f=\{(2,4),(5,6),(8,-1),(10,-3)\}$ and $g=\{(2,5),(7,1),(8,4),(10,13),(11,-5)\}$.
Find the domain of $f+g$.

Answer

$D(f)=\{2,5,8,10\}$
$D(g)=\{2,7,8,10,11\}$

Therefore, $\mathrm{D}(\mathrm{f}+\mathrm{g})=\{2,8,10\}$

17. Question

Find the set of values of x for which the functions $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal.

Answer

$f(x)=3 x^{2}-1 ; g(x)=3+x$
For $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$
$3 x^{2}-1=3+x$
$3 x^{2}-x-4=0$
$(3 x-4)(x+1)=0$
$3 x-4=0$ or $x+1=0$
$x=\frac{4}{3},-1$
18. Question

Let f and g be two real functions given by
$f=\{(0,1),(2,0),(3,-4),(4,2),(5,1)\}$ and $g=\{(1,0),(2,2),(3,-1),(4,4),(5,3)\}$.
Find the domain of fg .

Answer

$D(f)=\{0,2,3,4,5\}$
$D(g)=\{1,2,3,4,5\}$
So, $D(f g)=\{2,3,4,5\}$
MCQ

1. Question

Mark the correct alternative in the following:
Let $A=\{1,2,3\}, B=\{2,3,4\}$, then which of the following is a function from A to B ?
A. $\{(1,2),(1,3),(2,3),(3,3)\}$
B. $\{(1,3),(2,4)\}$
C. $\{(1,3),(2,2),(3,3)\}$
D. $\{(1,2),(2,3),(3,2),(3,4)$

Answer

A function is said to be defined from A to B if each element in set A has an unique image in set B. Not all the elements in set B are the images of any element of set A.

Therefore, option C is correct.

2. Question

Mark the correct alternative in the following:
If $f: Q \rightarrow Q$ is defined as $f(x)=x^{2}$, then $f^{-1}(9) s$ is equal to
A. 3
B. -3
C. $\{-3,3\}$
D. ϕ

Answer

$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
Replace $f(x)$ by y,
$y=x^{2}$
$\mathrm{x}=\sqrt{\mathrm{y}}$
Replace x by $\mathrm{f}^{-1} \mathrm{x}$ and y by x .
$\mathrm{f}^{-1} \mathrm{x}=\sqrt{\mathrm{x}}$
So, $\mathrm{f}^{-1}(9)=\sqrt{9}$
$= \pm 3$
Option C is correct.

3. Question

Mark the correct alternative in the following:
Which one of the following is not a function?
A. $\left\{(x, y): x, y \in R, x^{2}=y\right\}$
B. $\left\{(x, y): x, y \in R, y^{2}=x\right\}$
C. $\left\{(x, y): x, y \in R, x=y^{3}\right\}$
D. $\left\{(x, y): x, y \in R, y=x^{3}\right\}$

Answer

A function is said to exist when we get a unique value for any value of x..
Therefore, option B is correct.. $\mathrm{y}^{2}=\mathrm{x}$ is not a function as for each value of x , we will get 2 values of y .. which is not as per the definition of a function.

4. Question

Mark the correct alternative in the following:
If $f(x)=\cos (\log x)$, then $f\left(x^{2}\right) f\left(y^{2}\right)-\frac{1}{2}\left\{f\left(\frac{x^{2}}{y^{2}}\right)+f\left(x^{2} y^{2}\right)\right\}$ has the value
A. -2
B. -1
C. $1 / 2$
D. None of these

Answer

$f(x)=\cos (\log x)$
Now, $f\left(x^{2}\right) f\left(y^{2}\right)-\frac{1}{2}\left\{f\left(\frac{x^{2}}{y^{2}}\right)+f\left(x^{2} y^{2}\right)\right\}$
$=\cos \left(\log x^{2}\right) \cos \left(\log y^{2}\right)-\frac{1}{2}\left\{\cos \left(\log \left(\frac{x^{2}}{y^{2}}\right)\right)+\cos \left(\log x^{2} y^{2}\right)\right\}$
$=\cos (2 \log x) \cos (2 \log y)-\frac{1}{2}\left\{\cos \left(\log x^{2}-\log y^{2}\right)+\cos \left(\log x^{2}+\log y^{2}\right)\right\}$
$=\cos (2 \log x) \cos (2 \log y)-\frac{1}{2}\{\cos (2 \log x-2 \log y)+\cos (2 \log x+2 \log y)\}$
Using: $\cos \mathrm{x} \cos \mathrm{y}=\frac{1}{2}[\cos (\mathrm{x}+\mathrm{y})+\cos (\mathrm{x}-\mathrm{y})]$
$=\cos (2 \log x)] \cos (2 \log y)-\cos (2 \log x) \cos (2 \log y)$
$=0$

5. Question

Mark the correct alternative in the following:
If $f(x)=\cos (\log x)$, then $f(x) f(y)-\frac{1}{2}\left\{f\left(\frac{x}{y}\right)+f(x y)\right\}$ has the value
A. -1
B. $1 / 2$
C. -2
D. None of these

Answer
$f(x)=\cos (\log x)$
Now, $\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})-\frac{1}{2}\left\{\mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)+\mathrm{f}(\mathrm{xy})\right\}$
$=\cos (\log x) \cos (\log y)-\frac{1}{2}\left\{\cos \left(\log \left(\frac{x}{y}\right)\right)+\cos (\log x y)\right\}$
$=\cos (\log x) \cos (\log y)-\frac{1}{2}\{\cos (\log x-\log y)+\cos (\log x+\log y)\}$
Using: $\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
$=\cos (\log x) \cos (\log y)-\cos (\log x) \cos (\log y)$
$=0$

6. Question

Mark the correct alternative in the following:
Let $f(x)=|x-1|$. Then,
A. $f\left(x^{2}\right)=[f(x)]^{2}$
B. $f(x+y)=f(x) f(y)$
C. $f(|x|)=|f(x)|$
D. None of these

Answer

$\mathrm{f}(\mathrm{x})=|\mathrm{x}-1|$
$f\left(x^{2}\right)=\left|x^{2}-1\right|$
$\left[f(x)^{2}=(x-1)^{2}\right.$
$=x^{2}+1-2 x$

So, $f\left(x^{2}\right) \neq[f(x)]^{2}$
$f(x+y)=|x+y-1|$
$f(x) f(y)=(x-1)(y-1)$
So, $f(x+y) \neq f(x) f(y)$
$\mathrm{f}(|\mathrm{x}|)=||\mathrm{x}|-1|$
Therefore, option D is correct.

7. Question

Mark the correct alternative in the following:
The range of $f(x)=\cos [x]$, for $-\pi / 2<x<\pi / 2$ is
A. $\{-1,1,0\}$
B. $\{\cos 1, \cos 2,1\}$
C. $\{\cos 1,-\cos 1,1\}$
D. $[-1,1]$

Answer

for $-\frac{\pi}{2}<x<-1$
$[x]=-2$
$\mathrm{f}(\mathrm{x})=\cos [\mathrm{x}]=\cos (-2)$
$=\cos 2$
because $\cos (-x)=\cos (x)$
for-1 $\leq x<0$
$[x]=-1$
$\mathrm{f}(\mathrm{x})=\cos [\mathrm{x}]$
$=\cos (-1)$
$=\cos 1$
for $0 \leq x<1$
$[x]=0$
$\mathrm{f}(\mathrm{x})=\cos 0$
$=1$
for $1 \leq \mathrm{x}<\frac{\pi}{2}$
$[x]=1$
$\mathrm{f}(\mathrm{x})=\cos 1$
Therefore, $R(f)=\{1, \cos 1, \cos 2\}$
Option B is correct.

8. Question

Mark the correct alternative in the following:
Which of the following are functions?
A. $\{(x, y): y 2=x, x, y \in R\}$
B. $\{(x, y): y=|x|, x, y, \in R\}$
C. $\left\{(x, y): x^{2}+y^{2}=1, x, y \in R\right\}$
D. $\left\{(x, y): x^{2}-y^{2}=1, x, y \in R\right\}$

Answer

A function is said to exist when we get a unique value of y for any value of x..If we get 2 values of y for any value of x , then it is not a function..

Therefore, option B is correct .
NOTE: To check if a given curve is a function or not, draw the curve and then draw a line parallel to y-axis..If it intersects the curve at only one point, then it is a function, else not..

9. Question

Mark the correct alternative in the following:
If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $f(g(x)$ is equal to
A. $\mathrm{f}(3 \mathrm{x})$
B. $\{f(x)\}^{3}$
C. $3 f(x)$
D. $-f(x)$

Answer

$\mathrm{f}(\mathrm{g}(\mathrm{x}))=\log \left(\frac{1+\mathrm{g}(\mathrm{x})}{1-\mathrm{g}(\mathrm{x})}\right)$
$=\log \left(\frac{1+\frac{3 \mathrm{x}+\mathrm{x}^{3}}{1+3 \mathrm{x}^{2}}}{1-\frac{3 \mathrm{x}+\mathrm{x}^{2}}{1+3 \mathrm{x}^{2}}}\right)$
$=\log \left(\frac{1+3 \mathrm{x}^{2}+3 \mathrm{x}+\mathrm{x}^{3}}{1+3 \mathrm{x}^{2}-3 \mathrm{x}-\mathrm{x}^{3}}\right)$
Using: $(1+x)^{3}=1+3 x+3 x^{2}+x^{3}$
And $(1-x)^{3}=1-3 x+3 x^{2}-x^{3}$
$=\log \left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)^{3}=3 \log \left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$
$\mathrm{f}(\mathrm{g}(\mathrm{x}))=3 \mathrm{f}(\mathrm{x})$
Option C is correct.

10. Question

Mark the correct alternative in the following:
If $A=\{1,2,3\}, B=\{x, y\}$, then the number of functions that can be defined from A into B is
A. 12
B. 8
C. 6
D. 3

Answer

Since A has 3 elements and B has 2..then number of functions from A to $B=2 * 2 * 2=2^{3}=8$ Option B is correct.

11. Question

Mark the correct alternative in the following:
If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2 x}{1+x^{2}}\right)$ is equal to
A. $\{f(x)\}^{2}$
B. $\{f(x)\}^{3}$
C. $2 f(x)$
D. $3 f(x)$

Answer

$\mathrm{f}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)=\log \left(\frac{1+\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}}{1-\frac{2 \mathrm{X}}{1+\mathrm{x}^{2}}}\right)$
$=\log \left(\frac{1+x^{2}+2 x}{1+x^{2}-2 x}\right)$
$=\log \left(\frac{1+x}{1-x}\right)^{2}$
$f\left(\frac{2 x}{1+x^{2}}\right)=2 \log \left(\frac{1+x}{1-x}\right)$
$=2 f(x)$
Option C is correct..

12. Question

Mark the correct alternative in the following:
If $f(x)=\cos (\log x)$, then value of $f(x) f(4)-\frac{1}{2}\left\{f\left(\frac{x}{4}\right)+f(4 x)\right\}$ is
A. 1
B. -1
C. 0
D. ± 1

Answer

$f(x)=\cos (\log x)$
Now, $\mathrm{f}(\mathrm{x}) \mathrm{f}(4)-\frac{1}{2}\left\{\mathrm{f}\left(\frac{\mathrm{x}}{4}\right)+\mathrm{f}(4 \mathrm{x})\right\}$
$=\cos (\log x) \cos (\log 4)-\frac{1}{2}\left\{\cos \left(\log \left(\frac{x}{4}\right)\right)+\cos (\log 4 x)\right\}$
$=\cos (\log x) \cos (\log 4)-\frac{1}{2}\{\cos (\log x-\log 4)+\cos (\log x+\log 4)\}$
Using: $\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
$=\cos (\log x) \cos (\log 4)-\cos (\log x) \cos (4)$
$=0$
Option C is correct..

13. Question

Mark the correct alternative in the following:
If $f(x)=\frac{2^{x}+2^{-x}}{2}$, then $f(x+y) f(x-y)$ is equals to
A. $\frac{1}{2}\{\mathrm{f}(2 \mathrm{x})+\mathrm{f}(2 \mathrm{y})\}$
B. $\frac{1}{2}\{\mathrm{f}(2 \mathrm{x})-\mathrm{f}(2 \mathrm{y})\}$
C. $\frac{1}{4}\{\mathrm{f}(2 \mathrm{x})+\mathrm{f}(2 \mathrm{y})\}$
D. $\frac{1}{4}\{\mathrm{f}(2 \mathrm{x})-\mathrm{f}(2 \mathrm{y})\}$

Answer

$f(x+y) f(x-y)=\left(\frac{2^{x+y}+2^{-(x+y)}}{2}\right)\left(\frac{2^{x-y}+2^{-(x-y)}}{2}\right)$
$=\left(\frac{2^{x+y}+\frac{1}{2^{x+y}}}{2}\right)\left(\frac{2^{x-y}+\frac{1}{2^{x-y}}}{2}\right)$
$=\left(\frac{2^{2(x+y)}+1}{2 \cdot 2^{(x+y)}}\right)\left(\frac{2^{2(x-y)}+1}{2 \cdot 2^{(x-y)}}\right)$
$=\left(\frac{2^{2(x+y)} 2^{2(x-y)}+2^{2(x+y)}+2^{2(x-y)}+1}{4.2^{(x+y)} 2^{(x-y)}}\right)$
$=\left(\frac{2^{4 \mathrm{x}}+2^{2(\mathrm{x}+\mathrm{y})}+2^{2(\mathrm{x}-\mathrm{y})}+1}{4.2^{2 \mathrm{x}}}\right)$
$=\left(\frac{2^{2 x}+2^{2 y}+2^{-2 y}+2^{-2 x}}{4}\right)$
$=\frac{1}{2}\left(\frac{2^{2 \mathrm{x}}+2^{-2 \mathrm{x}}}{2}+\frac{2^{2 \mathrm{y}}+2^{-2 \mathrm{y}}}{2}\right)$
$=\frac{1}{2}\{\mathrm{f}(2 \mathrm{x})+\mathrm{f}(2 \mathrm{y})\}$
Option A is correct.

14. Question

Mark the correct alternative in the following:
If $2 f(x)-3 f\left(\frac{1}{x}\right)=x^{2}(x \neq 0)$, then $f(2)$ is equal to
A. $-\frac{7}{4}$
B. $\frac{5}{2}$
C. -1
D. None of these

Answer

$2 f(x)-3 f\left(\frac{1}{x}\right)=x^{2}$ eqn. 1
Replace x by $1 / x$ in eqn. 1 ;
$2 f\left(\frac{1}{x}\right)-3 f(x)=\frac{1}{x^{2}}$ eqn. 2
Multiply eqn. 1 by 2 and eqn. 2 by 3 and add them..
On adding, we get
$-5 f(x)=2 x^{2}+\frac{3}{x^{2}}$
$f(x)=\frac{-1}{5}\left(2 x^{2}+\frac{3}{x^{2}}\right)$
$f(2)=\frac{-1}{5}\left(2 \times 2^{2}+\frac{3}{2^{2}}\right)=\frac{-1}{5}\left(8+\frac{3}{4}\right)$
$=\frac{-1}{5}\left(\frac{35}{4}\right)=\frac{-7}{4}$
Option A is correct.

15. Question

Mark the correct alternative in the following:
Let $f: R \rightarrow r$ be defined by $f(x)=2 x+|x|$. Then $f(2 x)+f(-x)-f(x)=$
A. $2 x$
B. $2|x|$
C. $-2 x$
D. $-2|x|$

Answer

$\mathrm{f}(\mathrm{x})=2 \mathrm{x}+|\mathrm{x}|$
$f(2 x)=2(2 x)+|2 x|=4 x+2|x|$
$f(-x)=2(-x)+|-x|$
$f(2 x)+f(-x)-f(x)=4 x+2|x|-2 x+|-x|-(2 x+|x|)$
$=4 x+2|x|-2 x+|x|-2 x-|x|=2|x|$
Option B is correct..

16. Question

Mark the correct alternative in the following:

The range of the function $f(x)=\frac{x^{2}-x}{x^{2}+2 x}$ is
A. R
B. $R-\{1\}$
C. $R-\{-1 / 2,1\}$
D. None of these

Answer

Let $y=\frac{x^{2}-x}{x^{2}+2 x}$
$y\left(x^{2}+2 x\right)=x^{2}-x$
$y x(x+2)=x(x-1)$
$y(x+2)=x-1$
$x(y-1)=-(1+2 y)$
$x=-\frac{(1+2 y)}{y-1}$
Value of x can't be zero or it cannot be not defined..
$y \neq 1,-1 / 2$
So, range $=\mathrm{R}-\{-1 / 2,1\}$

17. Question

Mark the correct alternative in the following:
If $x \neq 1$ and $f(x)=\frac{x+1}{x-1}$ is a real function, the $f(f(f(2))$ is
A. 1
B. 2
C. 3
D. 4

Answer

$f(x)=\frac{x+1}{x-1}$
$f(f(x))=\frac{f(x)+1}{f(x)-1}=\frac{\frac{x+1}{\frac{x}{x}+1}}{\frac{x+1}{x-1}-1}$
$=\frac{x+1+x-1}{x+1-x+1}=\frac{2 x}{2}=x$
$\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))=\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}+1}{\mathrm{x}-1}$
$f(f(f(2)))=\frac{2+1}{2-1}$
$=3$
Option C is correct..
18. Question

Mark the correct alternative in the following:
If $f(x)=\cos \left(\log _{e} x\right)$, then $f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)-\frac{1}{2}\left\{f(x y)+f\left(\frac{x}{y}\right)\right\}$ is equal to
A. $\cos (x-y)$
B. $\log (\cos (x-y))$
C. 1
D. $\cos (x+y)$

Answer
$f(x)=\cos \left(\log _{e} x\right)$
Now, $f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)-\frac{1}{2}\left\{f(x y)+f\left(\frac{x}{y}\right)\right\}$
$=\cos \left(\log _{e} \frac{1}{x}\right) \cos \left(\log _{e} \frac{1}{y}\right)-\frac{1}{2}\left\{\cos \left(\log _{e} x y\right)+\cos \left(\log _{e} \frac{x}{y}-\right\}\right.$
$=\cos \left(\log _{e} x^{-1}\right) \cos \left(\log _{e} y^{-1}\right)-\frac{1}{2}\left\{\cos \left(\log _{e} x+\log _{e} y\right)+\cos \left(\log _{e} x-\log _{e} y\right)\right\}$
$=\cos \left(-\log _{e} x\right) \cos \left(-\log _{e} y\right)-\left\{\cos \left(\log _{e} x\right)+\cos \left(\log _{e} y\right)\right\}$
Using: $\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
$=\cos \left(\log _{e} x\right) \cos \left(\log _{e} x y\right)-\left\{\cos \left(\log _{e} x x\right) \cos \left(\log _{e} x y\right) \square\right\}$
$=0$

19. Question

Mark the correct alternative in the following:
Let $f(x)=x, g(x)=\frac{1}{x}$ and $h(x)=f(x) g(x)$. Then, $h(x)=1$ for
A. $x \in R$
B. $x \in Q$
C. $x \in R-Q$
D. $x \in R, x \neq 0$

Answer

$\mathrm{f}(\mathrm{x})=\mathrm{x} ; \mathrm{g}(\mathrm{x})=\frac{1}{\mathrm{x}} ; \mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$
$h(x)=1$
$f(x) g(x)=1$
$=x\left(\frac{1}{\mathrm{x}}\right)$
$x \neq 0$
Option D is correct.

20. Question

Mark the correct alternative in the following:

If $f(x)=\frac{\sin ^{4} x+\cos ^{2} x}{\sin ^{2} x+\cos ^{4} x}$ for $x \in R$, then $f(2002)=$
A. 1
B. 2
C. 3
D. 4

Answer

$\mathrm{f}(\mathrm{x})=\frac{\left(\sin ^{2} \mathrm{x}\right)^{2}+\cos ^{2} \mathrm{x}}{1-\cos ^{2} \mathrm{x}+\left(\cos ^{2} \mathrm{x}\right)^{2}}$
$=\frac{\left(1-\cos ^{2} x\right)^{2}+\cos ^{2} x}{1-\cos ^{2} x+\cos ^{4} x}$
$=\frac{1+\cos ^{4} x-2 \cos ^{2} x+\cos ^{2} x}{1-\cos ^{2} x+\cos ^{4} x}$
$=\frac{1+\cos ^{4} x-\cos ^{2} x}{1-\cos ^{2} x+\cos ^{4} x}=1$
Now, $f(2002)=1$
Option A is correct..

21. Question

Mark the correct alternative in the following:
The function $f: R \rightarrow R$ is defined by $f(x)=\cos ^{2} x+\sin ^{4} x$. Then, $f(R)=$
A. $[3 / 4,1)$
B. $(3 / 4,1]$
C. $[3 / 4,1]$
D. $(3 / 4,1)$

Answer

$f(x)=\sin ^{4} x+1-\sin ^{2} x$
$f(x)=\sin ^{4} x-\sin ^{2} x+\frac{1}{4}-\frac{1}{4}+1$
$f(x)=\left(\sin ^{2} x-\frac{1}{2}\right)^{2}+\frac{3}{4}$
$\left(\sin ^{2} x-\frac{1}{2}\right)^{2} \geq 0$
Minimum value of $f(x)=3 / 4$
$0 \leq \sin ^{2} x \leq 1$
So, maximum value of $\mathrm{f}(\mathrm{x})=\left(1-\frac{1}{2}\right)^{2}+\frac{3}{4}$
$=\frac{1}{4}+\frac{3}{4}$
$=1$
$R(f)=[3 / 4,1]$

Answer is C.

22. Question

Mark the correct alternative in the following:
Let $A=\{x \in R: x \neq 0,-4 \leq x \leq 4\}$ and $f: A \rightarrow R$ be defined by $f(x)=\frac{|x|}{x}$ for $x \in A$. Then A is
A. $\{1,-1\}$
B. $\{x: 0 \leq x \leq 4\}$
C. $\{1\}$
D. $\{x:-4 \leq x \leq 0\}$

Answer

When $-4 \leq x<0$
$f(x)=-\frac{x}{x}$
$=-1$
When $0<x \leq 4$
$f(x)=\frac{x}{x}$
$=1$
$R(f)=\{-1,1\}$
Option A is correct..

23. Question

Mark the correct alternative in the following:
If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=2 x+3$ and $g(x)=x^{2}+7$, then the values of x such that $g(f(x))$ $=8$ are
A. 1,2
B. $-1,2$
C. $-1,-2$
D. 1, -2

Answer

$g(f(x))=8$
$(f(x))^{2}+7=8$
$(2 x+3)^{2}=1$
$4 x^{2}+12 x+9=1$
$4 x^{2}+12 x+8=0$
$x^{2}+3 x+2=0$
$(x+1)(x+2)=0$
$x+1=0$ or $x+2=0$
$x=-1$ or $x=-2$

Option C is correct..

24. Question

Mark the correct alternative in the following:
If $f:[-2,2] \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{l}-1, \text { for }-2 \leq x \leq 0 \\ x-1, \text { for } 0 \leq x \leq 2\end{array}\right.$, then
$\{x[-2,2]: x \leq 0$ and $f(|x|)=x\}=$
A. $\{-1\}$
B. $\{0\}$
C. $\{-1 / 2\}$
D. ϕ

Answer

$f(|x|)=|x|-1$
$f(|x|)=x$
We have, $|x|=x ; x \geq 0$
And $|x|=-x ; x \leq 0$
So, $-x-1=x$
$2 x=-1$
$x=-\frac{1}{2}$
Option C...

25. Question

Mark the correct alternative in the following:
If $\mathrm{e}^{\mathrm{f}(\mathrm{x})}=\frac{10+\mathrm{x}}{10-\mathrm{x}}, \mathrm{x} \in(-10,10)$ and $\mathrm{f}(\mathrm{x})=\mathrm{kf}\left(\frac{200 \mathrm{x}}{100+\mathrm{x}^{2}}\right)$, then $\mathrm{k}=$
A. 0.5
B. 0.6
C. 0.7
D. 0.8

Answer

$\mathrm{e}^{\mathrm{f}(\mathrm{x})}=\frac{10+\mathrm{x}}{10-\mathrm{x}}$
$\mathrm{f}(\mathrm{x})=\ln \left(\frac{10+\mathrm{x}}{10-\mathrm{x}}\right)$
$\mathrm{f}(\mathrm{x})=\mathrm{kf}\left(\frac{200 \mathrm{x}}{100+\mathrm{x}^{2}}\right)$
$\ln \left(\frac{10+\mathrm{x}}{10-\mathrm{x}}\right)=\mathrm{k} \ln \left(\frac{10+\frac{200 \mathrm{x}}{100+\mathrm{x}^{2}}}{10-\frac{200 \mathrm{x}}{100+\mathrm{x}^{2}}}\right)$
$\ln \left(\frac{10+x}{10-x}\right)=k \ln \left(\frac{1000+10 x^{2}+200 x}{1000+10 x^{2}-200 x}\right)$
$=\mathrm{k} \ln \left(\frac{100+\mathrm{x}^{2}+20 \mathrm{x}}{100+\mathrm{x}^{2}-20 \mathrm{x}}\right)$
$\ln \left(\frac{10+x}{10-x}\right)=k \ln \left(\frac{10+x}{10-x}\right)^{2}$
$\ln \left(\frac{10+x}{10-x}\right)=\ln \left(\frac{10+x}{10-x}\right)^{2 k}$
$2 \mathrm{k}=1$;
$\mathrm{k}=\frac{1}{2}$
$=0.5$
Option A is correct.

26. Question

Mark the correct alternative in the following:
If f is a real valued function given by $f(x)=27 x^{3}+\frac{1}{x^{3}}$ and α, β are roots of $3 x+\frac{1}{x}=12$. Then,
A. $f(\alpha) \neq f(\beta)$
B. $f(\alpha)=10$
C. $f(\beta)=-10$
D. None of these

Answer

There is a mistake in the question...
$3 x+\frac{1}{x}=2$
Now, $\mathrm{f}(\mathrm{x})=\left(3 \mathrm{x}+\frac{1}{\mathrm{x}}\right)^{3}-3(3 \mathrm{x})\left(\frac{1}{\mathrm{x}}\right)\left(3 \mathrm{x}+\frac{1}{\mathrm{x}}\right)$
Since, α, β are roots of $3 x+\frac{1}{x}=12$.
So, $f(\alpha)=f(\beta)$
$=(2)^{3}-9(2)$
$=8-18$
$=-10$
Option C...

27. Question

Mark the correct alternative in the following:
If $f(x)=64 x^{3}+\frac{1}{x^{3}}$ and α, β are the roots of $4 x+\frac{1}{x}=3$. Then,
A. $f(\alpha)=f(\beta)=-9$
B. $f(\alpha)=f(\beta)=63$
C. $f(\alpha) \neq f(\beta)$
D. None of these

Answer

$f(x)=64 x^{3}+\frac{1}{x^{3}}$
$=\left(4 x+\frac{1}{x}\right)^{3}-3(4 x)\left(\frac{1}{x}\right)\left(4 x+\frac{1}{x}\right)$
Since, $4 x+\frac{1}{x}=3$ and α, β are its roots,
$f(x)=3^{3}-12(3)$
$=27-36$
$=-9$
So, $f(\alpha)=f(\beta)=-9$
Option A is correct..

28. Question

Mark the correct alternative in the following:
If $3 f(x)+5 f\left(\frac{1}{x}\right)=\frac{1}{x}-3$ for all non-zero x, then $f(x)=$
A. $\frac{1}{14}\left(\frac{3}{\mathrm{x}}+5 \mathrm{x}-6\right)$
B. $\frac{1}{14}\left(-\frac{3}{\mathrm{x}}+5 \mathrm{x}-6\right)$
C. $\frac{1}{14}\left(-\frac{3}{\mathrm{x}}+5 \mathrm{x}+6\right)$
D. None of these

Answer

$3 f(x)+5 f\left(\frac{1}{x}\right)=\frac{1}{x}-3$ eqn. 1
Replacing x by $1 / x$;
$3 f\left(\frac{1}{x}\right)+5 f(x)=x-3$ eqn. 2
Multiply eqn. 1 by 3 and eqn. 2 by 5, and then subtract them
We get,
$9 f(x)+15 f\left(\frac{1}{x}\right)-15 f\left(\frac{1}{x}\right)-25 f(x)=\frac{3}{x}-9-5 x+15$
$-16 f(x)=\frac{3}{x}-5 x+6$
$f(x)=\frac{1}{16}\left(-\frac{3}{x}+5 x-6\right)$

29. Question

Mark the correct alternative in the following:

If $f: R \rightarrow R$ be given by $f(x)=\frac{4^{x}}{4^{x}+2}$ for all $x \in R$. Then,
A. $f(x)=f(1-x)$
B. $f(x)+f(1-x)=0$
C. $f(x)+f(1-x)=1$
D. $f(x)+f(x-1)=1$

Answer

$f(x)=\frac{4^{x}}{4^{x}+2}$
$f(1-x)=\frac{4^{1-x}}{4^{1-x}+2}$
$=\frac{4.4^{-x}}{4.4^{-x}+2}$
$=\frac{\frac{2}{4^{x}}}{\frac{2}{4^{x}}+1}$
$=\frac{2}{2+4^{\mathrm{x}}}$
$f(x-1)=\frac{4^{x-1}}{4^{x-1}+2}$
$=\frac{4^{x}}{4^{x}+8}$
$f(x)+f(1-x)=\frac{4^{x}}{4^{x}+2}+\frac{2}{2+4^{x}}=\frac{4^{x}+2}{4^{x}+2}=1$
$\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-1)=\frac{4^{\mathrm{x}}}{4^{\mathrm{x}}+2}+\frac{4^{\mathrm{x}}}{4^{\mathrm{x}}+8} \neq 1$

30. Question

Mark the correct alternative in the following:
If $f(x)=\sin \left[\pi^{2}\right] x+\sin \left[-\pi^{2}\right] x$, where $[x]$ denotes the greatest integer less than or equal to x, then
A. $f(\pi / 2)=1$
B. $f(\pi)=2$
C. $f(\pi / 4)=-1$
D. None of these

Answer

$\pi^{2} \approx 9.8596$
$\left[\pi^{2}\right]=9$ and $\left[-\pi^{2}\right]=-10$
Now, $f(x)=\sin \left[\pi^{2}\right] x+\sin \left[-\pi^{2}\right] x$
$=\sin 9 x-\sin 10 x$
Now, checking values of $f(x)$ at given points..
$f\left(\frac{\pi}{2}\right)=\sin 9\left(\frac{\pi}{2}\right)-\sin 10\left(\frac{\pi}{2}\right)$
$=1-0$
$=1$
Option A is correct..
$f(\pi)=\sin 9 \pi-\sin 10 \pi$
$=0-0$
$=0$
$f\left(\frac{\pi}{4}\right)=\sin 9\left(\frac{\pi}{4}\right)-\sin 10\left(\frac{\pi}{4}\right)$
$=\frac{1}{\sqrt{2}}-1$
Option B \& C are incorrect..

31. Question

Mark the correct alternative in the following:
The domain of the function $\mathrm{f}(\mathrm{x})=\sqrt{2-2 \mathrm{x}-\mathrm{x}^{2}}$ is
A. $[-\sqrt{3}, \sqrt{3}]$
B. $[-1-\sqrt{3},-1+\sqrt{3}]$
C. $[-2,2]$
D. $[-2-\sqrt{3},-2+\sqrt{3}]$

Answer

for $f(x)$ to be defined,
$2-2 x-x^{2} \geq 0$
$x^{2}+2 x-2 \leq 0$
$(x-(1-\sqrt{3}))(x-(-1+\sqrt{ } 3)) \leq 0$
$x \in[-1-\sqrt{ } 3,-1+\sqrt{ } 3]$
Option B is correct..

32. Question

Mark the correct alternative in the following:
The domain of definition of $\mathrm{f}(\mathrm{x})=\sqrt{\frac{x+3}{(2-x)(x-5)}}$ is
A. $(-\infty,-3] \cup(2,5)$
B. $(-\infty,-3) \cup(2,5)$
C. $(-\infty,-3] \cup[2,5]$
D. None of these

Answer
for given function,
$\frac{x+3}{(2-x)(x-5)} \geq 0$
$\frac{x+3}{(x-2)(x-5)} \leq 0$
$x \neq 2,5$
Therefore, $x \in(-\infty,-3] \cup(2,5)$
Option B is correct..

33. Question

Mark the correct alternative in the following:
The domain of the function $f(x)=\sqrt{\frac{(x+1)(x-3)}{x-2}}$ is
A. $[-1,2) \cup[3, \infty)$
B. $(-1,2) \cup[3, \infty)$
C. $[-1,2] \cup[3, \infty)$
D. None of these

Answer

Here, $\frac{(x+1)(x-3)}{(x-2)} \geq 0$
But $x \neq 2$
So, $x \in[-1,2) \cup[3, \infty)$
Option A is correct..

34. Question

Mark the correct alternative in the following:
The domain of definition of the function $f^{f}(x)=\sqrt{x-1}+\sqrt{3-x}$ is
A. $[1, \infty)$
B. $(-\infty, 3)$
C. $(1,3)$
D. $[1,3]$

Answer

Here, $x-1 \geq 0$ and $3-x \geq 0$
So, $x \geq 1$ and $x \leq 3$
Therefore, $x \in[1,3] o p t i o n ~ D$ is correct..

35. Question

Mark the correct alternative in the following:
The domain of definition of the function $f(x)=\sqrt{\frac{x-2}{x+2}}+\sqrt{\frac{1-x}{1+x}}$ is
A. $(-\infty,-2] \cup[2, \infty)$
B. $[-1,1]$
C. ϕ
D. None of these

Answer

For function to be defined,
$\frac{x-2}{x+2} \geq 0, x \neq-2$
$x \in(-\infty,-2) \cup[2, \infty)$
And $\frac{1-x}{1+x} \geq 0, x \neq-1$
$\frac{x-1}{x+1} \leq 0$
So, $x \in(-1,1] \ldots(2)$
Taking common of both the solutions, we get $x \in \phi$.
Option C is correct..

36. Question

Mark the correct alternative in the following:
The domain of definition of the functionf $(x)=\log |x|$ is
A. R
B. $(-\infty, 0)$
C. $(0, \infty)$
D. $R-\{0\}$

Answer

For $f(x)=\log |x|$;
It is defined at all positive values of \times except 0 ..
But since we have $|x|$;
So, $|x|>0$;
$x \in R-\{0\}$

37. Question

Mark the correct alternative in the following:
The domain of definition of the function $f(x)=\sqrt{4 x-x^{2}}$ is
A. $R-[0,4]$
B. $R-(0,4)$
C. $(0,4)$
D. $[0,4]$

Answer

Here, $4 x-x^{2} \geq 0$
$x^{2}-4 x \leq 0$
$x(x-4) \leq 0$
So, $x \in[0,4]$
Option D is correct..

38. Question

Mark the correct alternative in the following:
The domain of definition of $f(x)=\sqrt{x-3-2 \sqrt{x-4}}-\sqrt{x-3+2 \sqrt{x-4}}$ is
A. $[4, \infty)$
B. $(-\infty, 4]$
C. $(4, \infty)$
D. $(-\infty, 4)$

Answer

Here, $x-3-2 \sqrt{x-4} \geq 0$
$(\sqrt{x-4})^{2}+1-2 \sqrt{x-4} \geq 0$
$(\sqrt{x-4}-1)^{2} \geq 0$
$x-4 \geq 0 ; x \geq 4 \ldots .$. (1)
Also, $x-3+2 \sqrt{x-4} \geq 0$
$(\sqrt{x-4})^{2}+1+2 \sqrt{x-4} \geq 0$
$(\sqrt{x-4}+1)^{2} \geq 0$
$x \geq 4$
Option A is correct..

39. Question

Mark the correct alternative in the following:
The domain of definition of the function $f(x)=\sqrt{5|x|-x^{2}-6}$ is
A. $(-3,-2) \cup(2,3)$
B. $[-3,-2) \cup[2,3)$
C. $[-3,-2] \cup[2,3]$
D. None of these

Answer

$5|x|-x^{2}-6 \geq 0$
$x^{2}-5|x|+6 \leq 0$
$(|x|-2)(|x|-3) \leq 0$
So, $|x| \in[2,3]$
Therefore, $x \in[-3,-2] \cup[2,3]$

Option C is correct.

40. Question

Mark the correct alternative in the following:
The range of the function $f(x)=\frac{x}{|x|}$ is
A. $R-\{0\}$
B. $R-\{-1,1\}$
C. $\{-1,1\}$
D. None of these

Answer

We know that
$|x|=-x$ in $(-\infty, 0)$ and $|x|=x$ in $[0, \infty)$
So, $f(x)=\frac{x}{-x}=-1$ in $(-\infty, 0)$
And $f(x)=\frac{x}{x}=1$ in $(0, \infty)$
As clearly shown above $f(x)$ has only two values 1 and -1
So, range of $f(x)=\{-1,1\}$
41. Question

Mark the correct alternative in the following:
The range of the function $f(x)=\frac{x+2}{|x+2|}, x \neq-2$ is
A. $\{-1,1\}$
B. $\{-1,0,1\}$
C. $\{1\}$
D. $(0, \infty)$

Answer

$f(x)=\frac{x+2}{|x+2|}$
When $x>-2$,
We have $f(x)=\frac{x+2}{x+2}$
$=1$
When $x<-2$,
We have $f(x)=\frac{x+2}{-(x+2)}$
$=-1$
$R(f)=\{-1,1\}$
Option A is correct.

42. Question

Mark the correct alternative in the following:
The range of the function $f(x)=|x-1|$ is
A. $(-\infty, 0)$
B. $[0, \infty)$
C. $(0, \infty)$
D. R

Answer

A modulus function always gives a positive value..
$R(f)=[0, \infty)$
Option B..

43. Question

Mark the correct alternative in the following:
Let $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}^{2}+1}$. Then, which of the following is correct?
A. $f(x y)=f(x) f(y)$
B. $f(x y) \geq f(x) f(y)$
C. $f(x y) \leq f(x) f(y)$
D. None of these

Answer

$f(x y)=\sqrt{x^{2} y^{2}+1}$
$f(x) f(y)=\left(\sqrt{x^{2}+1}\right)\left(\sqrt{y^{2}+1}\right)$
$=\sqrt{x^{2} y^{2}+1+x^{2}+y^{2}}$
So, comparing, $f(x y)$ and $f(x) f(y)$;
We get $f(x y) \leq f(x) f(y)$
Option C..

44. Question

Mark the correct alternative in the following:
If $[x]^{2}-5[x]+6=0$, where $[\cdot]$ denotes the greatest integer function, then
A. $x \in[3,4]$
B. $x \in(2,3]$
C. $x \in[2,3]$
D. $x \in[2,4]$

Answer

$[x]^{2}-5[x]+6=0$
$([x]-2)([x]-3)=0$
if $[x]=2$
$2 \leq x<3$
and if $[x]=3$
$3 \leq x<4$
Therefore, $x \in[2,4]$
Option D..

45. Question

Mark the correct alternative in the following:
The range of $f(x)=\frac{1}{1-2 \cos x}$ is
A. $[1 / 3,1]$
B. $[-1,1 / 3]$
C. $(-\infty,-1) \cup[1 / 3, \infty)$
D. $[-1,3,1]$

Answer

we know, $-1 \leq \cos x \leq 1$
$-2 \leq-2 \cos x \leq 2$
$-1 \leq(1-2 \cos x) \leq 3$
$-1 \leq\left(\frac{1}{1-2 \cos x}\right) \leq \frac{1}{3}$
So, $R(f)=[-1,1 / 3]$
Option ..B

