## 28. Introduction to 3-D Coordinate Geometry

## Exercise 28.1

## 1. Question

Name the octants in which the following points lie:
(i) $(5,2,3)$
(ii) $(-5,4,3)$
(iii) $(4,-3,5)$
(iv) $(7,4,-3)$
(v) $(-5,-4,7)$
(vi) $(-5,-3,-2)$
(vii) $(2,-5,-7)$
(viii) (-7, 2, -5)

## Answer

Given: Points are given
To find: name of the octant

## Formula used:

## Notation of octants:

If $x, y$ and $z$ all three are positive, then octant will be XOYZ
If $x$ is negative and $y$ and $z$ are positive, then the octant will be $X^{\prime} O Y Z$
If $y$ is negative and $x$ and $z$ are positive, then the octant will be XOY'Z
If $z$ is negative and $x$ and $y$ are positive, then the octant will be XOYZ'
If $x$ and $y$ are negative and $z$ is positive, then the octant will be $X^{\prime} O Y^{\prime} Z$
If $z$ and $y$ are negative and $x$ is positive, then the octant will be XOY'Z'
If $x$ and $z$ are negative and $x$ is positive, then the octant will be $X^{\prime} O Y Z^{\prime}$
If $x, y$ and $z$ all three are negative, then octant will be $X^{\prime} O Y^{\prime} Z^{\prime}$
(i) $(5,2,3)$

In this case, since $x, y$ and $z$ all three are positive then octant will be XOYZ
(ii) $(-5,4,3)$

In this case, since x is negative and y and z are positive then the octant will be X 'OYZ (iii) $(4,-3,5)$

In this case, since y is negative and x and z are positive then the octant will be XOY'Z (iv) $(7,4,-3)$

In this case, since $z$ is negative and $x$ and $y$ are positive then the octant will be XOYZ'
(v) $(-5,-4,7)$

In this case, since $x$ and $y$ are negative and $z$ is positive then the octant will be $X^{\prime} O Y^{\prime} Z$
(vi) $(-5,-3,-2)$

In this case, since $x, y$ and $z$ all three are negative then octant will be $X^{\prime} O Y^{\prime} Z^{\prime}$
(vii) $(2,-5,-7)$

In this case, since $z$ and $y$ are negative and $x$ is positive then the octant will be $X O Y^{\prime} Z^{\prime}$ (viii) $(-7,2,-5)$

In this case, since $x$ and $z$ are negative and $x$ is positive then the octant will be $X^{\prime} O Y Z '$

## 2. Question

Find the image of:
(i) $(-2,3,4)$ in the $y z$-plane
(ii) $(-5,4,-3)$ in the xz-plane
(iii) $(5,2,-7)$ in the xy-plane
(iv) $(-5,0,3)$ in the xz-plane
(v) $(-4,0,0)$ in the $x y$-plane

## Answer

(i) Given: Point is $(-2,3,4)$

To find: the image of the point in yz-plane
Since we need to find its image in yz-plane, a sign of its x-coordinate will change
So, Image of point $(-2,3,4)$ is $(\mathbf{2}, \mathbf{3}, \mathbf{4})$
(ii) Given: Point is ( $-5,4,-3$ )

To find: image of the point in xz-plane
Since we need to find its image in xz-plane, sign of its $y$-coordinate will change
So, Image of point ( $-5,4,-3$ ) is ( $\mathbf{- 5}, \mathbf{- 4}, \mathbf{- 3}$ )
(iii) Given: Point is (5, 2, -7)

To find: the image of the point in $x y$-plane
Since we need to find its image in $x y$-plane, a sign of its $z$-coordinate will change
So, Image of point ( $5,2,-7$ ) is (5, 2, 7)
(iv) Given: Point is $(-5,0,3)$

To find: image of the point in $x z$-plane
Since we need to find its image in xz-plane, sign of its $y$-coordinate will change
So, Image of point $(-5,0,3)$ is $(\mathbf{- 5}, \mathbf{0}, \mathbf{3})$
(v) Given: Point is ( $-4,0,0$ )

To find: image of the point in $x y$-plane
Since we need to find its image in xy-plane, sign of its z-coordinate will change
So, Image of point ( $-4,0,0$ ) is ( $-4, \mathbf{0}, \mathbf{0}$ )

## 3. Question

A cube of side 5 has one vertex at the point ( $1,0,1$ ), and the three edges from this vertex are, respectively, parallel to the negative $x$ and $y$-axes and positive $z$-axis. Find the coordinates of the other vertices of the cube.

## Answer

Given: A cube has side 4 having one vertex at ( $1,0,1$ )

To find: coordinates of the other vertices of the cube.
Let Point $A(1,0,1)$ and $A B, A D$ and $A E$ is parallel to -ve $x$-axis, -ve $y$-axis and +ve $z$-axis respectively


Since side of cube $=5$
Point $B$ is $(-4,0,1)$
Point $D$ is $(1,-5,1)$
Point E is $(1,0,6)$
Now, EH is parallel to -ve $y$-axis
$\Rightarrow$ Point H is $(1,-5,6)$
HG is parallel to -ve $x$-axis
$\Rightarrow$ Point $G$ is $(-4,-5,6)$
Now, again GC and GF is parallel to -ve z-axis and +ve y-axis respectively
Point $C$ is $(-4,-5,1)$
Point $F$ is $(-4,0,6)$

## 4. Question

Planes are drawn parallel to the coordinates planes through the points ( $3,0,-1$ ) and $(-2,5,4)$. Find the lengths of the edges of the parallelepiped so formed.

## Answer

Given: Points are ( $3,0,-1$ ) and ( $-2,5,4$ )
To find: lengths of the edges of the parallelepiped formed
For point (3, 0, -1)
$\mathrm{x}_{1}=3, \mathrm{y}_{1}=0$ and $\mathrm{z}_{1}=-1$
For point ( $-2,5,4$ )
$\mathrm{x}_{2}=-2, \mathrm{y}_{2}=5$ and $\mathrm{z}_{2}=4$
Plane parallel to coordinate planes of $x_{1}$ and $x_{2}$ is $y z$-plane Plane parallel to coordinate planes of $y_{1}$ and $y_{2}$ is $x z$-plane Plane parallel to coordinate planes of $z_{1}$ and $z_{2}$ is $x y$-plane

Distance between planes $x_{1}=3$ and $x_{2}=-2$ is $3-(-2)=3+2=5$

Distance between planes $x_{1}=0$ and $y_{2}=5$ is $5-0=5$
Distance between planes $z_{1}=-1$ and $z_{2}=4$ is $4-(-1)=4+1=5$
Hence, edges of parallelepiped is 5, 5, 5

## 5. Question

Planes are drawn through the points $(5,0,2)$ and $(3,-2,5)$ parallel to the coordinate planes. Find the lengths of the edges of the rectangular parallelepiped so formed.

## Answer

Given: Points are (5, 0, 2) and (3, -2, 5)
To find: lengths of the edges of the parallelepiped formed
For point (5, 0, 2)
$\mathrm{x}_{1}=5, \mathrm{y}_{1}=0$ and $\mathrm{z}_{1}=2$
For point (3, -2, 5)
$x_{2}=3, y_{2}=-2$ and $z_{2}=5$
Plane parallel to coordinate planes of $x_{1}$ and $x_{2}$ is yz-plane
Plane parallel to coordinate planes of $y_{1}$ and $y_{2}$ is $x z$-plane
Plane parallel to coordinate planes of $z_{1}$ and $z_{2}$ is $x y$-plane
Distance between planes $x_{1}=5$ and $x_{2}=3$ is $5-3=2$
Distance between planes $x_{1}=0$ and $y_{2}=-2$ is $0-(-2)=0+2=2$
Distance between planes $z_{1}=2$ and $z_{2}=5$ is $5-2=3$
Hence, edges of parallelepiped is 2, 2, 3

## 6. Question

Find the distances of the point $P(-4,3,5)$ from the coordinate axes.
Answer
Given: Point $\mathrm{P}(-4,3,5)$
To find: distances of the point $P$ from coordinate axes
The distance of the point from x-axis will be given by,
$=\sqrt{y^{2}+z^{2}}$
$=\sqrt{3^{2}+5^{2}}$
$=\sqrt{9+25}$
$=\sqrt{34}$
The distance of the point from $y$-axis will be given by,
$=\sqrt{x^{2}+z^{2}}$
$=\sqrt{(-4)^{2}+5^{2}}$
$=\sqrt{16+25}$
$=\sqrt{41}$

The distance of the point from z-axis will be given by,
$=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$
$=\sqrt{(-4)^{2}+3^{2}}$
$=\sqrt{16+9}$
$=\sqrt{25}$
$=5$
7. Question

The coordinates of a point are (3, $-2,5$ ). Write down the coordinates of seven points such that the absolute values of their coordinates are the same as those of the coordinates of the given point.

## Answer

Given: Point (3, -2, 5)
To find: the coordinates of 7 more points such that the absolute values of all 8 coordinates are the same

## Formula used:

Absolute value of any $\operatorname{point}(x, y, z)$ is given by,
$\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
We need to make sure that absolute value to be the same for all points
In the formula of absolute value, there is square of the coordinates. So when we change the sign of any of the coordinates, it will not affect the absolute value.

Let point $A(3,-2,5)$
Remaining 7 points are:
Point $B(3,2,5)$ (By changing the sign of $y$ coordinate)
Point $C(-3,-2,5)$ (By changing the sign of $x$ coordinate)
Point $D(3,-2,-5)$ (By changing the sign of $z$ coordinate)
Point $E(-3,2,5)$ (By changing the sign of $x$ and $y$ coordinate)
Point $F(3,2,-5)$ (By changing the sign of $y$ and $z$ coordinate)
Point G(-3, -2, -5) (By changing the sign of $x$ and $z$ coordinate)
Point $\mathrm{H}(-3,2,-5)$ (By changing the sign of $x, y$ and $z$ coordinate)

## Exercise 28.2

## 1 A. Question

Find the distance between the following pairs of points :
$P(1,-1,0)$ and $Q(2,1,2)$

## Answer

Given: $P(1,-1,0)$ and $Q(2,1,2)$
To find: Distance between given two points

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $(1,-1,0)$ and $(2,1,2)$ is
$=\sqrt{(1-2)^{2}+(-1-1)^{2}+(0-2)^{2}}$
$=\sqrt{(-1)^{2}+(-2)^{2}+(-2)^{2}}$
$=\sqrt{1+4+4}$
$=\sqrt{9}$
$=3$
Hence, Distance between $\mathbf{P}$ and $\mathbf{Q}$ is $\mathbf{3}$ units

## 1 B. Question

Find the distance between the following pairs of points :
$A(3,2,-1)$ and $B(-1,-1,-1)$

## Answer

Given: $\mathrm{A}(3,2,-1)$ and $\mathrm{Q}(-1,-1,-1)$
To find: Distance between given two points

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $(3,2,-1)$ and ( $-1,-1,-1$ ) is
$=\sqrt{(3-(-1))^{2}+(2-(-1))^{2}+(-1-(-1))^{2}}$
$=\sqrt{(3+1)^{2}+(2+1)^{2}+(-1+1)^{2}}$
$=\sqrt{(4)^{2}+(3)^{2}+(0)^{2}}$
$=\sqrt{16+9+0}$
$=\sqrt{25}$
$=5$
Hence, Distance between A and B is 5 units

## 2. Question

Find the distance between the points $P$ and $Q$ having coordinates $(-2,3,1)$ and $(2,1,2)$.

## Answer

Given: Points are $(-2,3,1)$ and $(2,1,2)$
To find: Distance between given two points

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $(-2,3,1)$ and $(2,1,2)$ is
$=\sqrt{(-2-2)^{2}+(3-1)^{2}+(1-2)^{2}}$
$=\sqrt{(-4)^{2}+(2)^{2}+(-1)^{2}}$
$=\sqrt{16+4+1}$
$=\sqrt{21}$
Hence, Distance between two given points is $\sqrt{ } \mathbf{2 1}$ units

## 3 A. Question

Using distance formula prove that the following points are collinear :
$\mathrm{A}(4,-3,-1), \mathrm{B}(5,-7,6)$ and $\mathrm{C}(3,1,-8)$

## Answer

Given: $\mathrm{A}(4,-3,-1), \mathrm{B}(5,-7,6)$ and $\mathrm{C}(3,1,-8)$
To prove: Points $\mathrm{A}, \mathrm{B}$ and C are collinear

## Formula used:

Points $A, B$ and $C$ are collinear if $A B+B C=A C$ or $A B+A C=B C$ or $A C+B C=A B$ The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $\mathrm{A}(4,-3,-1)$ and $\mathrm{B}(5,-7,6)$ is AB ,
$=\sqrt{(4-5)^{2}+(-3-(-7))^{2}+(-1-6)^{2}}$
$=\sqrt{(-1)^{2}+(-4)^{2}+(-7)^{2}}$
$=\sqrt{1+16+49}$
$=\sqrt{66}$
Distance between $\mathrm{B}(5,-7,6)$ and $\mathrm{C}(3,1,-8)$ is BC ,
$=\sqrt{(5-3)^{2}+(-7-1)^{2}+(6-(-8))^{2}}$
$=\sqrt{(-2)^{2}+(-8)^{2}+(14)^{2}}$
$=\sqrt{4+64+196}$
$=\sqrt{264}$
$=2 \sqrt{66}$
Distance between $\mathrm{A}(4,-3,-1)$ and $\mathrm{C}(3,1,-8)$ is AC ,
$=\sqrt{(4-3)^{2}+(-3-1)^{2}+(-1-(-8))^{2}}$
$=\sqrt{(1)^{2}+(-4)^{2}+(7)^{2}}$
$=\sqrt{1+16+49}$
$=\sqrt{66}$
Clearly,
$A B+A C$
$=\sqrt{66}+\sqrt{66}$
$=2 \sqrt{66}$
$=B C$

## Hence, A, B and C are collinear

## 3 B. Question

Using distance formula prove that the following points are collinear :
$P(0,7,-7), Q(1,4,-5)$ and $R(-1,10,-9)$

## Answer

Given: $P(0,7,-7), Q(1,4,-5)$ and $R(-1,10,-9)$
To prove: Points $P, Q$ and $R$ are collinear
Formula used:
Points $P, Q$ and $R$ are collinear if $P Q+Q R=P R$ or $P Q+P R=Q R$ or $P R+Q R=P Q$
Distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $\mathrm{P}(0,7,-7)$ and $\mathrm{Q}(1,4,-5)$ is PQ ,
$=\sqrt{(0-1)^{2}+(7-4)^{2}+(-7-(-5))^{2}}$
$=\sqrt{(-1)^{2}+(3)^{2}+(-2)^{2}}$
$=\sqrt{1+9+4}$
$=\sqrt{14}$
Distance between $Q(1,4,-5)$ and $R(-1,10,-9)$ is $Q R$,
$=\sqrt{(1-(-1))^{2}+(4-10)^{2}+(-5-(-9))^{2}}$
$=\sqrt{(2)^{2}+(-6)^{2}+(4)^{2}}$
$=\sqrt{4+36+16}$
$=\sqrt{56}$
$=2 \sqrt{14}$
Distance between $P(0,7,-7)$ and $R(-1,10,-9)$ is $P R$,
$=\sqrt{(0-(-1))^{2}+(7-10)^{2}+(-7-(-9))^{2}}$
$=\sqrt{(1)^{2}+(-3)^{2}+(2)^{2}}$
$=\sqrt{1+9+4}$
$=\sqrt{14}$
Clearly,
$P Q+P R$
$=\sqrt{14}+\sqrt{14}$
$=2 \sqrt{14}$
$=Q R$
Hence, $\mathbf{P}, \mathbf{Q}$ and $\mathbf{R}$ are collinear

## 3 C. Question

Using distance formula prove that the following points are collinear :
$A(3,-5,1), B(-1,0,8)$ and $C(7,-10,-6)$

## Answer

Given: $A(3,-5,1), B(-1,0,8)$ and $C(7,-10,-6)$
To prove: Points A, B and C are collinear

## Formula used:

Points $A, B$ and $C$ are collinear if $A B+B C=A C$ or $A B+A C=B C$ or $A C+B C=A B$
Distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(3,-5,1)$ and $B(-1,0,8)$ is $A B$,
$=\sqrt{(3-(-1))^{2}+(-5-0)^{2}+(1-8)^{2}}$
$=\sqrt{(4)^{2}+(-5)^{2}+(-7)^{2}}$
$=\sqrt{16+25+49}$
$=\sqrt{90}$
$=3 \sqrt{10}$
Distance between $B(-1,0,8)$ and $C(7,-10,-6)$ is $B C$,
$=\sqrt{(-1-7)^{2}+(0-(-10))^{2}+(8-(-6))^{2}}$
$=\sqrt{(-8)^{2}+(10)^{2}+(14)^{2}}$
$=\sqrt{64+100+196}$
$=\sqrt{360}$
$=6 \sqrt{10}$
Distance between $A(3,-5,1)$ and $C(7,-10,-6)$ is $A C$,
$=\sqrt{(3-7)^{2}+(-5-(-10))^{2}+(1-(-6))^{2}}$
$=\sqrt{(-4)^{2}+(5)^{2}+(7)^{2}}$
$=\sqrt{16+25+49}$
$=\sqrt{90}$
$=3 \sqrt{10}$
Clearly,
$A B+A C$
$=3 \sqrt{10}+3 \sqrt{10}$
$=6 \sqrt{10}$
= BC
Hence, A, B and C are collinear

## 4. Question

Determine the points in (i) $x y$-plane (ii) yz-plane and (iii) zx -plane which are equidistant from the points $\mathrm{A}(1$, $1,0), B(2,1,2)$ and $C(3,2,-1)$.

## Answer

(i) xy-plane

Given: Points $\mathrm{A}(1,-1,0), \mathrm{B}(2,1,2)$ and $\mathrm{C}(3,2,-1)$
To find: the point on $x y$-plane which is equidistant from the points
As we know $z=0$ in $x y$-plane.
Let $P(x, y, 0)$ any point in $x y$-plane
According to the question:
$P A=P B=P C$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}=\mathrm{PC}^{2}$

## Formula used:

The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, 0)$ and $\mathrm{A}(1,-1,0)$ is PA ,
$=\sqrt{(x-1)^{2}+(y-(-1))^{2}+(0-0)^{2}}$
$=\sqrt{(x-1)^{2}+(y+1)^{2}}$
The distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, 0)$ and $\mathrm{B}(2,1,2)$ is PB ,
$=\sqrt{(x-2)^{2}+(y-1)^{2}+(0-2)^{2}}$
$=\sqrt{(x-2)^{2}+(y-1)^{2}+4}$
Distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, 0)$ and $\mathrm{C}(3,2,-1)$ is PC ,
$=\sqrt{(x-3)^{2}+(y-2)^{2}+(0-(-1))^{2}}$
$=\sqrt{(x-3)^{2}+(y-2)^{2}+1}$
As $\mathrm{PA}^{2}=\mathrm{PB}^{2}$
$(x-1)^{2}+(y+1)^{2}=(x-2)^{2}+(y-1)^{2}+4$
$\Rightarrow x^{2}+1-2 x+y^{2}+1+2 y=x^{2}+4-4 x+y^{2}+1-2 y+4$
$\Rightarrow-2 x+2+2 y=9-4 x-2 y$
$\Rightarrow-2 x+2+2 y-9+4 x+2 y=0$
$\Rightarrow 2 x+4 y-7=0$
$\Rightarrow 2 x=-4 y+7$.
As $P A^{2}=P C^{2}$
$(x-1)^{2}+(y+1)^{2}=(x-3)^{2}+(y-2)^{2}+1$
$\Rightarrow x^{2}+1-2 x+y^{2}+1+2 y=x^{2}+9-6 x+y^{2}+4-4 y+1$
$\Rightarrow-2 x+2+2 y=14-6 x-4 y$
$\Rightarrow-2 x+2+2 y-14+6 x+4 y=0$
$\Rightarrow 4 x+6 y-12=0$
$\Rightarrow 2(2 x+3 y-6)=0$
Put the value of $2 x$ from (1):
$\Rightarrow 7-4 y+3 y-6=0$
$\Rightarrow-y+1=0$
$\Rightarrow y=1$
Put this value of y in (1):
$2 x=7-4 y$
$\Rightarrow 2 \mathrm{x}=7-4(1)$
$\Rightarrow 2 x=3$
$\Rightarrow \mathrm{x}=\frac{3}{2}$
Hence point $\mathbf{P}\left(\frac{3}{2}, \mathbf{1}, \mathbf{0}\right)$ in xy-plane is equidistant from $A, B$ and $C$

## (ii) yz-plane

Given: Points $A(1,-1,0), B(2,1,2)$ and $C(3,2,-1)$
To find: the point on yz-plane which is equidistant from the points
As we know $x=0$ in yz-plane.
Let $\mathrm{Q}(0, y, z)$ any point in yz-plane
According to the question:
$\mathrm{QA}=\mathrm{QB}=\mathrm{QC}$
$\Rightarrow \mathrm{QA}^{2}=\mathrm{QB}^{2}=\mathrm{QC}^{2}$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $Q(0, y, z)$ and $A(1,-1,0)$ is $Q A$,
$=\sqrt{(0-1)^{2}+(y-(-1))^{2}+(z-0)^{2}}$
$=\sqrt{1+(\mathrm{y}+1)^{2}+\mathrm{z}^{2}}$
The distance between $Q(0, y, Z)$ and $B(2,1,2)$ is $Q B$,
$=\sqrt{(0-2)^{2}+(y-1)^{2}+(z-2)^{2}}$
$=\sqrt{(z-2)^{2}+(y-1)^{2}+4}$
Distance between $Q(0, y, z)$ and $C(3,2,-1)$ is $Q C$,
$=\sqrt{(0-3)^{2}+(y-2)^{2}+(z-(-1))^{2}}$
$=\sqrt{(z+1)^{2}+(y-2)^{2}+9}$
As $\mathrm{QA}^{2}=\mathrm{QB}^{2}$
$1+z^{2}+(y+1)^{2}=(z-2)^{2}+(y-1)^{2}+4$
$\Rightarrow z^{2}+1+y^{2}+1+2 y=z^{2}+4-4 z+y^{2}+1-2 y+4$
$\Rightarrow 2+2 y=9-4 z-2 y$
$\Rightarrow 2+2 y-9+4 z+2 y=0$
$\Rightarrow 4 y+4 z-7=0$
$\Rightarrow 4 z=-4 y+7$
$\Rightarrow z=\frac{-4 y+7}{4} \ldots$
As $\mathrm{QA}^{2}=\mathrm{QC}^{2}$
$1+z^{2}+(y+1)^{2}=(z+1)^{2}+(y-2)^{2}+9$
$\Rightarrow z^{2}+1+y^{2}+1+2 y=z^{2}+1+2 z+y^{2}+4-4 y+9$
$\Rightarrow 2+2 y=14+2 z-4 y$
$\Rightarrow 2+2 y-14-2 z+4 y=0$
$\Rightarrow-2 z+6 y-12=0$
$\Rightarrow 2(-z+3 y-6)=0$
Put the value of $z$ from (1):
$\Rightarrow 3 y-\frac{(-4 y+7)}{4}-6=0$
$\Rightarrow \frac{12 y-(-4 y+7)-24}{4}=0$
$\Rightarrow 12 y+4 y-7-24=0$
$\Rightarrow 16 y-31=0$
$\Rightarrow \mathrm{y}=\frac{31}{16}$

Put this value of y in (1):
$z=\frac{-4 y+7}{4}$
$\Rightarrow z=\frac{-4\left(\frac{31}{16}\right)+7}{4}$
$\Rightarrow z=\frac{-\frac{124}{16}+7}{4}$
$\Rightarrow z=\frac{\frac{-124+112}{16}}{4}$
$\Rightarrow z=\frac{-12}{4 \times 16}$
$\Rightarrow z=\frac{-3}{16}$
Hence point $\mathbf{Q}\left(\mathbf{0}, \frac{\mathbf{3 1}}{\mathbf{1 6}},-\frac{\mathbf{3}}{\mathbf{1 6}}\right)$ in yz-plane is equidistant from $A, B$ and $C$

## (iii) xz-plane

Given: Points $A(1,-1,0), B(2,1,2)$ and $C(3,2,-1)$
To find: the point on xz-plane which is equidistant from the points
As we know $\mathrm{y}=0 \mathrm{in} x z-$ plane.
Let $R(x, 0, z)$ any point in $x z-p l a n e$
According to the question:
$R A=R B=R C$
$\Rightarrow R A^{2}=R B^{2}=R C^{2}$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $R(x, 0, z)$ and $A(1,-1,0)$ is RA,
$=\sqrt{(\mathrm{x}-1)^{2}+(0-(-1))^{2}+(\mathrm{z}-0)^{2}}$
$=\sqrt{1+(\mathrm{x}-1)^{2}+\mathrm{z}^{2}}$
Distance between $R(x, 0, z)$ and $B(2,1,2)$ is $R B$,
$=\sqrt{(x-2)^{2}+(0-1)^{2}+(z-2)^{2}}$
$=\sqrt{(z-2)^{2}+(x-2)^{2}+1}$
Distance between $R(x, 0, z)$ and $C(3,2,-1)$ is $R C$,
$=\sqrt{(\mathrm{x}-3)^{2}+(0-2)^{2}+(\mathrm{z}-(-1))^{2}}$
$=\sqrt{(z+1)^{2}+(x-3)^{2}+4}$

As $R A^{2}=R B^{2}$
$1+z^{2}+(x-1)^{2}=(z-2)^{2}+(x-2)^{2}+1$
$\Rightarrow z^{2}+1+x^{2}+1-2 x=z^{2}+4-4 z+x^{2}+4-4 x+1$
$\Rightarrow 2-2 x=9-4 z-4 x$
$\Rightarrow 2+4 z-9+4 x-2 x=0$
$\Rightarrow 2 \mathrm{x}+4 \mathrm{z}-7=0$
$\Rightarrow 2 x=-4 z+7$.
As $R A^{2}=R C^{2}$
$1+z^{2}+(x-1)^{2}=(z+1)^{2}+(x-3)^{2}+4$
$\Rightarrow z^{2}+1+x^{2}+1-2 x=z^{2}+1+2 z+x^{2}+9-6 x+4$
$\Rightarrow 2-2 x=14+2 z-6 x$
$\Rightarrow 2-2 \mathrm{x}-14-2 \mathrm{z}+6 \mathrm{x}=0$
$\Rightarrow-2 z+4 x-12=0$
$\Rightarrow 2(2 x)=12+2 z$
Put the value of $2 x$ from (1):
$\Rightarrow 2(-4 z+7)=12+2 z$
$\Rightarrow-8 z+14=12+2 z$
$\Rightarrow 14-12=8 z+2 z$
$\Rightarrow 10 z=2$
$\Rightarrow \mathrm{z}=\frac{1}{5}$
Put this value of $z$ in (1):
$2 x=-4 z+7$
$\Rightarrow 2 x=-4\left(\frac{1}{5}\right)+7$
$\Rightarrow 2 x=-\frac{4}{5}+7$
$\Rightarrow 2 x=\frac{-4+35}{5}$
$\Rightarrow 2 x=\frac{31}{5}$
$\Rightarrow \mathrm{x}=\frac{31}{10}$
Hence point $\mathbf{R}\left(\frac{\mathbf{3 1}}{\mathbf{1 0}}, \mathbf{0}, \frac{\mathbf{1}}{\mathbf{5}}\right)$ in xz-plane is equidistant from $A, B$ and $C$

## 5. Question

Determine the point on $z$-axis which is equidistant from the points $(1,5,7)$ and $(5,1,-4)$

## Answer

Given: Points are $A(1,5,7), B(5,1,-4)$

To find: the point on z-axis which is equidistant from the points
As we know $\mathrm{x}=0$ and $\mathrm{y}=0$ on z -axis
Let $R(0,0, z)$ any point on $z$-axis
According to the question:
$R A=R B$
$\Rightarrow R A^{2}=R B^{2}$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $R(0,0, z)$ and $A(1,5,7)$ is $R A$,
$=\sqrt{(0-1)^{2}+(0-5)^{2}+(z-7)^{2}}$
$=\sqrt{1+25+(\mathrm{z}-7)^{2}}$
$=\sqrt{26+(\mathrm{z}-7)^{2}}$
Distance between $R(0,0, z)$ and $B(5,1,-4)$ is $R B$,
$=\sqrt{(0-5)^{2}+(0-1)^{2}+(z-(-4))^{2}}$
$=\sqrt{(\mathrm{z}+4)^{2}+25+1}$
$=\sqrt{(z+4)^{2}+26}$
As $R A^{2}=R B^{2}$
$26+(z-7)^{2}=(z+4)^{2}+26$
$\Rightarrow z^{2}+49-14 z+26=z^{2}+16+8 z+26$
$\Rightarrow 49-14 z=16+8 z$
$\Rightarrow 49-16=14 z+8 z$
$\Rightarrow 22 z=33$
$\Rightarrow \mathrm{z}=\frac{33}{22}$
$\Rightarrow \mathrm{z}=\frac{3}{2}$
Hence point $\mathbf{R}\left(\mathbf{0}, \mathbf{0}, \frac{3}{2}\right)$ on $z$-axis is equidistant from $(1,5,7)$ and $(5,1,-4)$

## 6. Question

Find the point on $y$-axis which is equidistant from the points $(3,1,2)$ and $(5,5,2)$.

## Answer

Given: Points are $A(3,1,2)$ and $B(5,5,2)$
To find: the point on $y$-axis which is equidistant from the points
As we know $x=0$ and $z=0$ on $y$-axis

Let $R(0, y, 0)$ any point on the $y$-axis
According to the question:
$R A=R B$
$\Rightarrow R A^{2}=R B^{2}$

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $R(0, y, 0)$ and $A(3,1,2)$ is $R A$,
$=\sqrt{(0-3)^{2}+(y-1)^{2}+(0-2)^{2}}$
$=\sqrt{9+4+(y-1)^{2}}$
$=\sqrt{13+(y-1)^{2}}$
Distance between $R(0, y, 0)$ and $B(5,5,2)$ is $R B$,
$=\sqrt{(0-5)^{2}+(y-5)^{2}+(0-2)^{2}}$
$=\sqrt{(y-5)^{2}+25+4}$
$=\sqrt{(y-5)^{2}+29}$
As $R A^{2}=R B^{2}$
$13+(y-1)^{2}=(y-5)^{2}+29$
$\Rightarrow y^{2}+1-2 y+13=y^{2}+25-10 y+29$
$\Rightarrow 10 y-2 y=54-14$
$\Rightarrow 8 y=40$
$\Rightarrow y=\frac{40}{8}$
$\Rightarrow y=5$
Hence point $\mathbf{R}(\mathbf{0}, \mathbf{5}, \mathbf{0})$ on $y$-axis is equidistant from $(3,1,2)$ and $(5,5,2)$

## 7. Question

Find the points on z-axis which are at a distance $\sqrt{21}$ from the point $(1,2,3)$.

## Answer

Given: Points $A(1,2,3)$
To find: the point on z-axis which is at distance of $\sqrt{21}$ from the given point
As we know $\mathrm{x}=0$ and $\mathrm{y}=0$ on z -axis
Let $R(0,0, z)$ any point on z-axis
According to question:
$R A=\sqrt{21}$
$\Rightarrow R A^{2}=21$

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $R(0,0, z)$ and $A(1,2,3)$ is $R A$,
$=\sqrt{(0-1)^{2}+(0-2)^{2}+(z-3)^{2}}$
$=\sqrt{1+4+(z-3)^{2}}$
$=\sqrt{5+(\mathrm{z}-3)^{2}}$
As $R A^{2}=21$
$5+(z-3)^{2}=21$
$\Rightarrow z^{2}+9-6 z+5=21$
$\Rightarrow z^{2}-6 z=21-14$
$\Rightarrow z^{2}-6 z-7=0$
$\Rightarrow z^{2}-7 z+z-7=0$
$\Rightarrow z(z-7)+1(z-7)=0$
$\Rightarrow(z-7)(z+1)=0$
$\Rightarrow(z-7)=0$ or $(z+1)=0$
$\Rightarrow z=7$ or $z=-1$
Hence points $(\mathbf{0}, \mathbf{0}, \mathbf{7})$ and $(\mathbf{0}, \mathbf{0}, \mathbf{- 1})$ on $\mathbf{z}$-axis is equidistant from $(1,2,3)$

## 8. Question

Prove that the triangle formed by joining the three points whose coordinates are $(1,2,3),(2,3,1)$ and $(3,1$, 2 ) is an equilateral triangle.

## Answer

Given: Points are $A(1,2,3), B(2,3,1)$ and $C(3,1,2)$
To prove: the triangle formed by given points is an equilateral triangle
An equilateral triangle is a triangle whose all sides are equal
So we need to prove $A B=B C=A C$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$1 \sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $A(1,2,3)$ and $B(2,3,1)$ is $A B$,
$=\sqrt{(1-2)^{2}+(2-3)^{2}+(3-1)^{2}}$
$=\sqrt{(-1)^{2}+(-1)^{2}+2^{2}}$
$=\sqrt{1+1+4}$
$=\sqrt{6}$
Distance between $B(2,3,1)$ and $C(3,1,2)$ is $B C$,
$=\sqrt{(2-3)^{2}+(3-1)^{2}+(1-2)^{2}}$
$=\sqrt{(-1)^{2}+2^{2}+(-1)^{2}}$
$=\sqrt{1+1+4}$
$=\sqrt{6}$
The distance between $A(1,2,3)$ and $C(3,1,2)$ is $A C$,
$=\sqrt{(1-3)^{2}+(2-1)^{2}+(3-2)^{2}}$
$=\sqrt{(-2)^{2}+1^{2}+1^{2}}$
$=\sqrt{1+1+4}$
$=\sqrt{6}$
Clearly,
$A B=B C=A C$

## Thus, $\triangle A B C$ is a equilateral triangle

## Hence Proved

## 9. Question

Show that the points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of an isosceles right-angled triangle.

## Answer

Given: Points are $A(0,7,10), B(-1,6,6)$ and $C(-4,9,6)$
To prove: the triangle formed by given points is an isosceles right-angled triangle
Isosceles right-angled triangle is a triangle whose two sides are equal and also satisfies Pythagoras Theorem

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(0,7,10)$ and $B(-1,6,6)$ is $A B$,
$=\sqrt{(0-(-1))^{2}+(7-6)^{2}+(10-6)^{2}}$
$=\sqrt{1^{2}+1^{2}+4^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Distance between $B(-1,6,6)$ and $C(-4,9,6)$ is $B C$,
$=\sqrt{(-1-(-4))^{2}+(6-9)^{2}+(6-6)^{2}}$
$=\sqrt{3^{2}+(-3)^{2}+0^{2}}$
$=\sqrt{9+9}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Distance between $\mathrm{A}(0,7,10)$ and $\mathrm{C}(-4,9,6)$ is AC ,
$=\sqrt{(0-(-4))^{2}+(7-9)^{2}+(10-6)^{2}}$
$=\sqrt{4^{2}+(-2)^{2}+4^{2}}$
$=\sqrt{16+4+16}$
$=\sqrt{36}$
$=6$
Since, $A B=B C$
$A B^{2}+B C^{2}$
$=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}$
$=18+18$
$=36$
$=A C^{2}$
As, $A B=B C$ and $A B^{2}+B C^{2}=A C^{2}$

## Thus, $\triangle A B C$ is an isosceles-right angled triangle

## Hence Proved

## 10. Question

Show that the points $A(3,3,3), B(0,6,3), C(1,7,7)$ and $D(4,4,7)$ are the vertices of squares.

## Answer

Given: Points are $\mathrm{A}(3,3,3), \mathrm{B}(0,6,3), \mathrm{C}(1,7,7)$ and $\mathrm{D}(4,4,7)$
To prove: the quadrilateral formed by these 4 points is a square
All sides of a square are equal

## Formula used:

The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $A(3,3,3)$ and $B(0,6,3)$ is $A B$,
$=\sqrt{(3-0)^{2}+(3-6)^{2}+(3-3)^{2}}$
$=\sqrt{3^{2}+3^{2}+0^{2}}$
$=\sqrt{9+9}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Distance between $B(0,6,3)$ and $C(1,7,7)$ is $B C$,
$=\sqrt{(0-1)^{2}+(6-7)^{2}+(3-7)^{2}}$
$=\sqrt{1^{2}+1^{2}+4^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Distance between $C(1,7,7)$ and $D(4,4,7)$ is $C D$,
$=\sqrt{(1-4)^{2}+(7-4)^{2}+(7-7)^{2}}$
$=\sqrt{3^{2}+3^{2}+0^{2}}$
$=\sqrt{9+9+0}$
$=\sqrt{18}$
$=3 \sqrt{2}$
The distance between $A(3,3,3)$ and $D(4,4,7)$ is $A D$,
$=\sqrt{(3-4)^{2}+(3-4)^{2}+(3-7)^{2}}$
$=\sqrt{1^{2}+1^{2}+4^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Clearly,
$A B=B C=C D=A D$
Thus, Quadrilateral formed by ABCD is a square

## Hence Proved

## 11. Question

Prove that the point $A(1,3,0), B(-5,5,2), C(-9,-1,2)$ and $D(-3,-3,0)$ taken in order are the vertices of a parallelogram. Also, show that $A B C D$ is not a rectangle.

## Answer

Given: Points are $A(1,3,0), B(-5,5,2), C(-9,-1,2)$ and $D(-3,-3,0)$
To prove: the quadrilateral formed by these 4 points is a parallelogram but not a rectangle Opposite sides of both parallelogram and rectangle are equal

But diagonals of a parallelogram are not equal whereas they are equal for rectangle

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(1,3,0)$ and $B(-5,5,2)$ is $A B$,
$=\sqrt{(1-(-5))^{2}+(3-5)^{2}+(0-2)^{2}}$
$=\sqrt{6^{2}+2^{2}+2^{2}}$
$=\sqrt{36+4+4}$
$=\sqrt{44}$
$=2 \sqrt{11}$
Distance between $B(-5,5,2)$ and $C(-9,-1,2)$ is $B C$,
$=\sqrt{(-5-(-9))^{2}+(5-(-1))^{2}+(2-2)^{2}}$
$=\sqrt{4^{2}+6^{2}+0^{2}}$
$=\sqrt{16+36+0}$
$=\sqrt{52}$
$=2 \sqrt{13}$
Distance between $C(-9,-1,2)$ and $D(-3,-3,0)$ is $C D$,
$=\sqrt{(-9-(-3))^{2}+(-1-(-3))^{2}+(2-0)^{2}}$
$=\sqrt{6^{2}+2^{2}+2^{2}}$
$=\sqrt{36+4+4}$
$=\sqrt{44}$
$=2 \sqrt{11}$
Distance between $A(1,3,0)$ and $D(-3,-3,0)$ is $A D$,
$=\sqrt{(1-(-3))^{2}+(3-(-3))^{2}+(0-0)^{2}}$
$=\sqrt{4^{2}+6^{2}+0^{2}}$
$=\sqrt{16+36+0}$
$=\sqrt{52}$
$=2 \sqrt{13}$
Clearly,
$A B=C D$
$B C=A D$
Opposite sides are equal

Now, we will find length of diagonals
Distance between $A(1,3,0)$ and $C(-9,-1,2)$ is $A C$,
$=\sqrt{(1-(-9))^{2}+(3-(-1))^{2}+(0-2)^{2}}$
$=\sqrt{10^{2}+4^{2}+2^{2}}$
$=\sqrt{100+16+4}$
$=\sqrt{120}$
$=2 \sqrt{30}$
Distance between $B(-5,5,2)$ and $D(-3,-3,0)$ is $B D$,
$=\sqrt{(-5-(-3))^{2}+(5-(-3))^{2}+(2-0)^{2}}$
$=\sqrt{(-2)^{2}+8^{2}+2^{2}}$
$=\sqrt{4+64+4}$
$=\sqrt{72}$
$=6 \sqrt{2}$
Clearly,
$A C \neq B D$
The diagonals are not equal, but opposite sides are equal
Thus, Quadrilateral formed by ABCD is a parallelogram but not a rectangle

## Hence Proved

## 12. Question

Show that the points $A(1,3,4), B(-1,6,10), C(-7,4,7)$ and $D(-5,1,1)$ are the vertices of a rhombus.

## Answer

Given: Points are $A(1,3,4), B(-1,6,10), C(-7,4,7)$ and $D(-5,1,1)$
To prove: the quadrilateral formed by these 4 points is a rhombus
All sides of both square and rhombus are equal
But diagonals of a rhombus are not equal whereas they are equal for square

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(1,3,4)$ and $B(-1,6,10)$ is $A B$,
$=\sqrt{(1-(-1))^{2}+(3-6)^{2}+(4-10)^{2}}$
$=\sqrt{2^{2}+(-3)^{2}+(-6)^{2}}$
$=\sqrt{4+9+36}$
$=\sqrt{49}$
$=7$
Distance between $\mathrm{B}(-1,6,10)$ and $\mathrm{C}(-7,4,7)$ is BC ,
$=\sqrt{(-1-(-7))^{2}+(6-4)^{2}+(10-7)^{2}}$
$=\sqrt{6^{2}+2^{2}+3^{2}}$
$=\sqrt{36+4+9}$
$=\sqrt{49}$
$=7$
Distance between $C(-7,4,7)$ and $D(-5,1,1)$ is $C D$,
$=\sqrt{(-7-(-5))^{2}+(4-1)^{2}+(7-1)^{2}}$
$=\sqrt{(-2)^{2}+3^{2}+6^{2}}$
$=\sqrt{36+4+9}$
$=\sqrt{49}$
$=7$
Distance between $A(1,3,4)$ and $D(-5,1,1)$ is $A D$,
$=\sqrt{(1-(-5))^{2}+(3-1)^{2}+(4-1)^{2}}$
$=\sqrt{6^{2}+2^{2}+3^{2}}$
$=\sqrt{36+4+9}$
$=\sqrt{49}$
$=7$
Clearly,
$A B=B C=C D=A D$
All sides are equal
Now, we will find length of diagonals
Distance between $\mathrm{A}(1,3,4)$ and $\mathrm{C}(-7,4,7)$ is AC ,
$=\sqrt{(1-(-7))^{2}+(3-4)^{2}+(4-7)^{2}}$
$=\sqrt{8^{2}+(-1)^{2}+(-3)^{2}}$
$=\sqrt{64+1+9}$
$=\sqrt{74}$
Distance between $\mathrm{B}(-1,6,10)$ and $\mathrm{D}(-5,1,1)$ is BD ,
$=\sqrt{(-1-(-5))^{2}+(6-1)^{2}+(10-1)^{2}}$
$=\sqrt{4^{2}+5^{2}+9^{2}}$
$=\sqrt{16+25+81}$
$=\sqrt{112}$
$=4 \sqrt{7}$
Clearly,
$A C \neq B D$
The diagonals are not equal but all sides are equal
Thus, Quadrilateral formed by ABCD is a rhombus but not square

## Hence Proved

## 13. Question

Prove that the tetrahedron with vertices at the points $\mathrm{O}(0,0,0), \mathrm{A}(0,1,1), \mathrm{B}(1,0,1)$ and $\mathrm{C}(1,1,0)$ is a regular one.

## Answer

Given: Points are $\mathrm{O}(0,0,0), \mathrm{A}(0,1,1), \mathrm{B}(1,0,1)$ and $\mathrm{C}(1,1,0)$
To prove: given points are forming a regular tetrahedron
All edges of a regular tetrahedron are equal

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $\mathrm{O}(0,0,0)$ and $\mathrm{A}(0,1,1)$ is OA ,
$=\sqrt{(0-0)^{2}+(0-1)^{2}+(0-1)^{2}}$
$=\sqrt{0^{2}+(-1)^{2}+(-1)^{2}}$
$=\sqrt{0+1+1}$
$=\sqrt{2}$
Distance between $O(0,0,0)$ and $B(1,0,1)$ is $O B$,
$=\sqrt{(0-1)^{2}+(0-0)^{2}+(0-1)^{2}}$
$=\sqrt{0^{2}+(-1)^{2}+(-1)^{2}}$
$=\sqrt{0+1+1}$
$=\sqrt{2}$
Distance between $O(0,0,0)$ and $C(1,1,0)$ is $O C$,
$=\sqrt{(0-1)^{2}+(0-1)^{2}+(0-0)^{2}}$
$=\sqrt{(-1)^{2}+(-1)^{2}+0^{2}}$
$=\sqrt{1+1+0}$
$=\sqrt{2}$

Distance between $A(0,1,1)$ and $B(1,0,1)$ is $A B$,
$=\sqrt{(0-1)^{2}+(1-0)^{2}+(1-1)^{2}}$
$=\sqrt{(-1)^{2}+1^{2}+0^{2}}$
$=\sqrt{1+1+0}$
$=\sqrt{2}$
Distance between $B(1,0,1)$ and $C(1,1,0)$ is $B C$,
$=\sqrt{(1-1)^{2}+(0-1)^{2}+(1-0)^{2}}$
$=\sqrt{0^{2}+(-1)^{2}+1^{2}}$
$=\sqrt{0+1+1}$
$=\sqrt{2}$
Distance between $A(0,1,1)$ and $C(1,1,0)$ is $A C$,
$=\sqrt{(0-1)^{2}+(1-1)^{2}+(1-0)^{2}}$
$=\sqrt{(-1)^{2}+0^{2}+1^{2}}$
$=\sqrt{1+0+1}$
$=\sqrt{2}$
Clearly,
$A B=B C=A C=O A=O B=O C$
All edges are equal
Thus, A, B, C and $\mathbf{O}$ forms a regular tetrahedron

## Hence Proved

## 14. Question

Show that the points $(3,2,2),(-1,4,2),(0,5,6),(2,1,2)$ lie on a sphere whose centre is $(1,3,4)$. Find also its radius.

## Answer

Given: Points are $A(3,2,2), B(-1,4,2), C(0,5,6), D(2,1,2)$
To prove: given points lie on sphere whose centre is $(1,3,4)$
To find: radius of sphere
Let Center is $O(1,3,4)$
Since $O$ is centre of sphere and $A, B, C, D$ lie on a sphere
$\Rightarrow O A=O B=O C=O D=$ radius

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,

The distance between $O(1,3,4)$ and $A(3,2,2)$ is $O A$,
$=\sqrt{(1-3)^{2}+(3-2)^{2}+(4-2)^{2}}$
$=\sqrt{(-2)^{2}+1^{2}+2^{2}}$
$=\sqrt{4+1+4}$
$=\sqrt{9}$
$=3$
Distance between $O(1,3,4)$ and $B(-1,4,2)$ is $O B$,
$=\sqrt{(1-(-1))^{2}+(3-4)^{2}+(4-2)^{2}}$
$=\sqrt{2^{2}+(-1)^{2}+2^{2}}$
$=\sqrt{4+1+4}$
$=\sqrt{9}$
$=3$
Distance between $O(1,3,4)$ and $C(0,5,6)$ is $O C$,
$=\sqrt{(1-0)^{2}+(3-5)^{2}+(4-6)^{2}}$
$=\sqrt{1^{2}+(-2)^{2}+(-2)^{2}}$
$=\sqrt{1+4+4}$
$=\sqrt{9}$
$=3$
Distance between $O(1,3,4)$ and $D(2,1,2)$ is $O D$,
$=\sqrt{(1-2)^{2}+(3-1)^{2}+(4-2)^{2}}$
$=\sqrt{(-1)^{2}+2^{2}+2^{2}}$
$=\sqrt{1+4+4}$
$=\sqrt{9}$
$=3$
Clearly,
$O A=O B=O C=O D=3$ units
Therefore, radius of sphere $=\mathbf{3}$ units and $A, B, C, D$ lie on sphere having centre 0

## 15. Question

Find the coordinates of the point which is equidistant from the four points $O(0,0,0), A(2,0,0), B(0,3,0)$ and $C(0,0,8)$.

## Answer

Given: Points are $O(0,0,0), A(2,0,0), B(0,3,0)$ and $C(0,0,8)$
To find: the coordinates of point which is equidistant from the points
Let required point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$

According to question:
$P A=P B=P C=P O$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}=\mathrm{PC}^{2}=\mathrm{PO}^{2}$

## Formula used:

Distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{O}(0,0,0)$ is PO ,
$=\sqrt{(\mathrm{x}-0)^{2}+(\mathrm{y}-0)^{2}+(\mathrm{z}-0)^{2}}$
$=\sqrt{x^{2}+y^{2}+z^{2}}$
Distance between $P(x, y, z)$ and $A(2,0,0)$ is $P A$,
$=\sqrt{(x-2)^{2}+(y-0)^{2}+(z-0)^{2}}$
$=\sqrt{(x-2)^{2}+y^{2}+z^{2}}$
Distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{B}(0,3,0)$ is PB ,
$=\sqrt{(x-0)^{2}+(y-3)^{2}+(z-0)^{2}}$
$=\sqrt{x^{2}+(y-3)^{2}+z^{2}}$
Distance between $P(x, y, z)$ and $C(0,0,8)$ is $P C$,
$=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-8)^{2}}$
$=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}-8)^{2}}$
As $\mathrm{PO}^{2}=\mathrm{PA}^{2}$
$x^{2}+y^{2}+z^{2}=(x-2)^{2}+y^{2}+z^{2}$
$\Rightarrow x^{2}=x^{2}+4-4 x$
$\Rightarrow 4 x=4$
$\Rightarrow \mathrm{x}=1$
As $\mathrm{PO}^{2}=\mathrm{PB}^{2}$
$x^{2}+y^{2}+z^{2}=x^{2}+(y-3)^{2}+z^{2}$
$\Rightarrow y^{2}=y^{2}+9-6 y$
$\Rightarrow 6 y=9$
$\Rightarrow y=\frac{9}{6}$
$\Rightarrow \mathrm{y}=\frac{3}{2}$
As $\mathrm{PO}^{2}=\mathrm{PC}^{2}$
$x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+(z-8)^{2}$
$\Rightarrow z^{2}=z^{2}+64-16 x$
$\Rightarrow 16 z=64$
$\Rightarrow z=4$
Hence point $\mathbf{P}\left(\mathbf{1}, \frac{3}{2}, \mathbf{4}\right)$ is equidistant from given points

## 16. Question

If $\mathrm{A}(-2,2,3)$ and $\mathrm{B}(13,-3,13)$ are two pints. Find the locus of a point P which moves in such a way that $3 \mathrm{PA}=$ 2PB.

Answer
Given: Points are $\mathrm{A}(-2,2,3)$ and $\mathrm{B}(13,-3,13)$
To find: the locus of point $P$ which moves in such a way that $3 P A=2 P B$
Let the required point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
According to the question:
$3 \mathrm{PA}=2 \mathrm{~PB}$
$\Rightarrow 9 \mathrm{PA}^{2}=4 \mathrm{~PB}^{2}$

## Formula used:

The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{A}(-2,2,3)$ is PA ,
$=\sqrt{(x-(-2))^{2}+(y-2)^{2}+(z-3)^{2}}$
$=\sqrt{(\mathrm{x}+2)^{2}+(\mathrm{y}-2)^{2}+(\mathrm{z}-3)^{2}}$
The distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{B}(13,-3,13)$ is PB ,
$=\sqrt{(x-13)^{2}+(y-(-3))^{2}+(z-13)^{2}}$
$=\sqrt{(\mathrm{x}-13)^{2}+(\mathrm{y}+3)^{2}+(\mathrm{z}-13)^{2}}$
As $9 \mathrm{PA}^{2}=4 \mathrm{~PB}^{2}$
$9\left\{(x+2)^{2}+(y-2)^{2}+(z-3)^{2}\right\}=4\left\{(x-13)^{2}+(y+3)^{2}+(z-13)^{2}\right\}$
$\Rightarrow 9\left\{x^{2}+4+4 x+y^{2}+4-4 y+z^{2}+9-6 z\right\}=4\left\{x^{2}+169-26 x+y^{2}+9+6 y+z^{2}+169-26 z\right\}$
$\Rightarrow 9\left\{x^{2}+4 x+y^{2}-4 y+z^{2}-6 z+17\right\}=4\left\{x^{2}-26 x+y^{2}+6 y+z^{2}-26 z+347\right\}$
$\Rightarrow 9 x^{2}+36 x+9 y^{2}-36 y+9 z^{2}-54 z+153=4 x^{2}-104 x+4 y^{2}+24 y+4 z^{2}-104 z+1388$
$\Rightarrow 9 x^{2}+36 x+9 y^{2}-36 y+9 z^{2}-54 z+153-4 x^{2}+104 x-4 y^{2}-24 y-4 z^{2}+104 z-1388=0$
$\Rightarrow 5 x^{2}+5 y^{2}+5 z^{2}+140 x-60 y+50 z-1235=0$
Hence locus of point $P$ is $\mathbf{5} \mathbf{x}^{\mathbf{2}}+\mathbf{5} \mathbf{y}^{\mathbf{2}}+\mathbf{5} z^{2}+\mathbf{1 4 0 x}-\mathbf{6 0} \mathrm{y}+\mathbf{5 0 z - 1 2 3 5 = 0}$

## 17. Question

Find the locus of $P$ if $P A^{2}+P B^{2}=2 k^{2}$, where $A$ and $B$ are the points $(3,4,5)$ and $(-1,3,-7)$.

Given: Points are $A(3,4,5)$ and $B(-1,3,-7)$
To find: the locus of point $P$ which moves in such a way that $P A^{2}+P B^{2}=2 k^{2}$
Let the required point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $P(x, y, z)$ and $A(3,4,5)$ is $P A$,
$=\sqrt{(x-3)^{2}+(y-4)^{2}+(z-5)^{2}}$
Distance between $P(x, y, z)$ and $B(-1,3,-7)$ is $P B$,
$=\sqrt{(\mathrm{x}-(-1))^{2}+(\mathrm{y}-3)^{2}+(\mathrm{z}-(-7))^{2}}$
$=\sqrt{(x+1)^{2}+(y-3)^{2}+(z+7)^{2}}$
According to question:
$P A^{2}+\mathrm{PB}^{2}=2 \mathrm{k}^{2}$
$\Rightarrow(x-3)^{2}+(y-4)^{2}+(z-5)^{2}+(x+1)^{2}+(y-3)^{2}+(z+7)^{2}=2 k^{2}$
$\Rightarrow x^{2}+9-6 x+y^{2}+16-8 y+z^{2}+25-10 z+x^{2}+1+2 x+y^{2}+9-6 y+z^{2}+49+14 z=2 k^{2}$
$\Rightarrow 2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109=2 k^{2}$
$\Rightarrow 2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109-2 k^{2}=0$
Hence locus of point $P$ is $2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109-2 k^{2}=0$

## 18. Question

Show that the points $(a, b, c),(b, c, a)$ and $(c, a, b)$ are the vertices of an equilateral triangle.

## Answer

Given: Points are $A(a, b, c), B(b, C, a)$ and $C(c, a, b)$
To prove: the triangle formed by given points is an equilateral triangle
An equilateral triangle is a triangle whose all sides are equal
So we need to prove $A B=B C=A C$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $A(a, b, c)$ and $B(b, c, a)$ is $A B$,
$=\sqrt{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}$
$=\sqrt{a^{2}+b^{2}-2 a b+b^{2}+c^{2}-2 b c+c^{2}+a^{2}-2 a c}$
$=\sqrt{2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 a c}$

The distance between $B(b, c, a)$ and $C(c, a, b)$ is $A B$,
$=\sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}$
$=\sqrt{b^{2}+c^{2}-2 b c+c^{2}+a^{2}-2 a c+a^{2}+b^{2}-2 a b}$
$=\sqrt{2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}+2 \mathrm{c}^{2}-2 \mathrm{ab}-2 \mathrm{bc}-2 \mathrm{ac}}$
The distance between $A(a, b, c)$ and $C(c, a, b)$ is $A B$,
$=\sqrt{(a-c)^{2}+(b-a)^{2}+(c-b)^{2}}$
$=\sqrt{c^{2}+a^{2}-2 a c+a^{2}+b^{2}-2 a b+b^{2}+c^{2}-2 b c}$
$=\sqrt{2 a^{2}+2 b^{2}+2 c^{2}-2 a b-2 b c-2 a c}$
Clearly,
$A B=B C=A C$

## Thus, $\triangle A B C$ is a equilateral triangle

## Hence Proved

## 19. Question

Are the points $A(3,6,9), B(10,20,30)$ and $C(25,-41,5)$, the vertices of a right-angled triangle?

## Answer

Given: Points are $A(3,6,9), B(10,20,30)$ and $C(25,-41,5)$
To check: the triangle formed by given points is a right-angled triangle or not A right-angled triangle is a triangle which satisfies Pythagoras Theorem

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $A(3,6,9)$ and $B(10,20,30)$ is $A B$,
$=\sqrt{(3-10)^{2}+(6-20)^{2}+(9-30)^{2}}$
$=\sqrt{(-7)^{2}+(-14)^{2}+(-21)^{2}}$
$=\sqrt{49+196+441}$
$=\sqrt{686}$
Distance between $B(10,20,30)$ and $C(25,-41,5)$ is $B C$,
$=\sqrt{(10-25)^{2}+(20-(-41))^{2}+(30-5)^{2}}$
$=\sqrt{(-15)^{2}+61^{2}+25^{2}}$
$=\sqrt{225+3721+625}$
$=\sqrt{4571}$
Distance between $A(3,6,9)$ and $C(25,-41,5)$ is $A C$,
$=\sqrt{(3-25)^{2}+(6-(-41))^{2}+(9-5)^{2}}$
$=\sqrt{(-22)^{2}+47^{2}+4^{2}}$
$=\sqrt{484+2209+16}$
$=\sqrt{2709}$
$A B^{2}+B C^{2}$
$=(\sqrt{686})^{2}+(\sqrt{4571})^{2}$
$=686+4571$
$=5257$
$\neq A C^{2}$
$A B^{2}+A C^{2}$
$=(\sqrt{686})^{2}+(\sqrt{2709})^{2}$
$=686+2709$
$=3395$
$\neq B C^{2}$
$A C^{2}+B C^{2}$
$=(\sqrt{2709})^{2}+(\sqrt{4571})^{2}$
$=2709+4571$
$=7280$
$\neq A B^{2}$
As, $A B^{2}+B C^{2} \neq A C^{2}$
$A C^{2}+B C^{2} \neq A B^{2}$
$A B^{2}+A C^{2} \neq B C^{2}$
Thus, $\triangle A B C$ is not a right angled triangle

## 20 A. Question

Verify the following:
$(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are vertices of an isosceles triangle.

## Answer

Given: Points are $A(0,7,-10), B(1,6,-6)$ and $C(4,9,-6)$
To prove: the triangle formed by given points is an isosceles triangle Isosceles right-angled triangle is a triangle whose two sides are equal

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$

Therefore,
Distance between $A(0,7,-10)$ and $B(1,6,-6)$ is $A B$,
$=\sqrt{(0-1)^{2}+(7-6)^{2}+(-10-(-6))^{2}}$
$=\sqrt{(-1)^{2}+1^{2}+(-4)^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=3 \sqrt{2}$

Distance between $\mathrm{B}(1,6,-6)$ and $\mathrm{C}(4,9,-6)$ is BC ,
$=\sqrt{(1-4)^{2}+(6-9)^{2}+(-6-(-6))^{2}}$
$=\sqrt{(-3)^{2}+(-3)^{2}+0^{2}}$
$=\sqrt{9+9}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Distance between $A(0,7,-10)$ and $C(4,9,-6)$ is $A C$,
$=\sqrt{(0-4)^{2}+(7-9)^{2}+(-10-(-6))^{2}}$
$=\sqrt{(-4)^{2}+(-2)^{2}+(-4)^{2}}$
$=\sqrt{16+4+16}$
$=\sqrt{36}$
$=6$
Clearly,
$A B=B C$
Thus, $\triangle A B C$ is an isosceles triangle

## Hence Proved

## 20 B. Question

Verify the following:
$(0,7,10),(-1,6,6)$ and $(2,-3,4)$ are vertices of a right-angled triangle

## Answer

Given: Points are $A(0,7,10), B(-1,6,6)$ and $C(-4,9,6)$
To prove: the triangle formed by given points is a right-angled triangle
Right-angled triangle satisfies Pythagoras Theorem

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,

Distance between $A(0,7,10)$ and $B(-1,6,6)$ is $A B$,
$=\sqrt{(0-(-1))^{2}+(7-6)^{2}+(10-6)^{2}}$
$=\sqrt{1^{2}+1^{2}+4^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Distance between $B(-1,6,6)$ and $C(-4,9,6)$ is $B C$,
$=\sqrt{(-1-(-4))^{2}+(6-9)^{2}+(6-6)^{2}}$
$=\sqrt{3^{2}+(-3)^{2}+0^{2}}$
$=\sqrt{9+9}$
$=\sqrt{18}$
$=3 \sqrt{2}$
Distance between $A(0,7,10)$ and $C(-4,9,6)$ is $A C$,
$=\sqrt{(0-(-4))^{2}+(7-9)^{2}+(10-6)^{2}}$
$=\sqrt{4^{2}+(-2)^{2}+4^{2}}$
$=\sqrt{16+4+16}$
$=\sqrt{36}$
$=6$
$A B^{2}+B C^{2}$
$=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}$
$=18+18$
$=36$
$=A C^{2}$
As, $A B^{2}+B C^{2}=A C^{2}$
Thus, $\triangle A B C$ is a right angled triangle

## Hence Proved

## 20 C. Question

Verify the following:
$(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are vertices of a parallelogram.

## Answer

Given: Points are $A(-1,2,1), B(1,-2,5), C(4,-7,8)$ and $D(2,-3,4)$
To prove: the quadrilateral formed by these 4 points is a parallelogram Opposite sides of a parallelogram are equal, but diagonals are not equal

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(-1,2,1)$ and $B(1,-2,5)$ is $A B$,
$=\sqrt{(-1-1)^{2}+(2-(-2))^{2}+(1-5)^{2}}$
$=\sqrt{(-2)^{2}+4^{2}+(-4)^{2}}$
$=\sqrt{4+16+16}$
$=\sqrt{36}$
$=6$
Distance between $B(1,-2,5)$ and $C(4,-7,8)$ is $B C$,
$=\sqrt{(1-4)^{2}+(-2-(-7))^{2}+(5-8)^{2}}$
$=\sqrt{(-3)^{2}+5^{2}+(-3)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
Distance between $C(4,-7,8)$ and $D(2,-3,4)$ is $C D$,
$=\sqrt{(4-2)^{2}+(-7-(-3))^{2}+(8-4)^{2}}$
$=\sqrt{2^{2}+(-4)^{2}+4^{2}}$
$=\sqrt{4+16+16}$
$=\sqrt{36}$
$=6$
Distance between $A(-1,2,1)$ and $D(2,-3,4)$ is $A D$,
$=\sqrt{(-1-2)^{2}+(2-(-3))^{2}+(1-4)^{2}}$
$=\sqrt{(-3)^{2}+5^{2}+(-3)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
Clearly,
$A B=C D$
$B C=A D$
Opposite sides are equal
Now, we will find the length of diagonals
Distance between $A(-1,2,1)$ and $C(4,-7,8)$ is $A C$,
$=\sqrt{(-1-4)^{2}+(2-(-7))^{2}+(1-8)^{2}}$
$=\sqrt{(-5)^{2}+9^{2}+(-7)^{2}}$
$=\sqrt{25+81+49}$
$=\sqrt{155}$
Distance between $B(1,-2,5)$ and $D(2,-3,4)$ is $B D$,
$=\sqrt{(1-2)^{2}+(-2-(-3))^{2}+(5-4)^{2}}$
$=\sqrt{(-1)^{2}+1^{2}+1^{2}}$
$=\sqrt{1+1+1}$
$=\sqrt{3}$
Clearly,
$A C \neq B D$
The diagonals are not equal, but opposite sides are equal
Thus, Quadrilateral formed by ABCD is a parallelogram

## Hence Proved

## 20 D. Question

Verify the following:
$(5,-1,1),(7,-4,7),(1,-6,10)$ and $(-1,-3,4)$ are the vertices of a rhombus.

## Answer

Given: Points are $A(5,-1,1), B(7,-4,7), C(1,-6,10)$ and $D(-1,-3,4)$
To prove: the quadrilateral formed by these 4 points is a rhombus
All sides of both square and rhombus are equal
But diagonals of a rhombus are not equal whereas they are equal for square

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(5,-1,1)$ and $B(7,-4,7)$ is $A B$,
$=\sqrt{(5-7)^{2}+(-1-(-4))^{2}+(1-7)^{2}}$
$=\sqrt{(-2)^{2}+3^{2}+(-6)^{2}}$
$=\sqrt{4+9+36}$
$=\sqrt{49}$
$=7$
Distance between $B(7,-4,7)$ and $C(1,-6,10)$ is $B C$,
$=\sqrt{(7-1)^{2}+(-4-(-6))^{2}+(7-10)^{2}}$
$=\sqrt{6^{2}+2^{2}+(-3)^{2}}$
$=\sqrt{36+4+9}$
$=\sqrt{49}$
$=7$
Distance between $C(1,-6,10)$ and $D(-1,-3,4)$ is $C D$,
$=\sqrt{(1-(-1))^{2}+(-6-(-3))^{2}+(10-4)^{2}}$
$=\sqrt{2^{2}+(-3)^{2}+6^{2}}$
$=\sqrt{36+4+9}$
$=\sqrt{49}$
$=7$
Distance between $A(5,-1,1)$ and $D(-1,-3,4)$ is $A D$,
$=\sqrt{(5-(-1))^{2}+(-1-(-3))^{2}+(1-4)^{2}}$
$=\sqrt{6^{2}+2^{2}+(-3)^{2}}$
$=\sqrt{36+4+9}$
$=\sqrt{49}$
$=7$
Clearly,
$A B=B C=C D=A D$
All sides are equal
Now, we will find length of diagonals
Distance between $\mathrm{A}(5,-1,1)$ and $\mathrm{C}(1,-6,10)$ is AC ,
$=\sqrt{(5-1)^{2}+(-1-(-6))^{2}+(1-10)^{2}}$
$=\sqrt{6^{2}+5^{2}+(-9)^{2}}$
$=\sqrt{36+25+81}$
$=\sqrt{142}$
Distance between $B(7,-4,7)$ and $D(-1,-3,4)$ is $B D$,
$=\sqrt{(7-(-1))^{2}+(-4-(-3))^{2}+(7-4)^{2}}$
$=\sqrt{8^{2}+(-1)^{2}+3^{2}}$
$=\sqrt{64+1+9}$
$=\sqrt{74}$
Clearly,
$A C \neq B D$

The diagonals are not equal, but all sides are equal

## Thus, Quadrilateral formed by ABCD is a rhombus

## Hence Proved

## 21. Question

Find the locus of the points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

## Answer

Given: Points are $A(1,2,3)$ and $B(3,2,-1)$
To find: the locus of points which are equidistant from the given points
Let the required point $P(x, y, z)$
According to the question:
$P A=P B$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $P(x, y, z)$ and $A(1,2,3)$ is PA,
$=\sqrt{(x-1)^{2}+(y-2)^{2}+(z-3)^{2}}$
The distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{B}(3,2,-1)$ is PB
$=\sqrt{(\mathrm{x}-3)^{2}+(\mathrm{y}-2)^{2}+(\mathrm{z}-(-1))^{2}}$
$=\sqrt{(x-3)^{2}+(y-2)^{2}+(z+1)^{2}}$
As $\mathrm{PA}^{2}=\mathrm{PB}^{2}$
$(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=(x-3)^{2}+(y-2)^{2}+(z+1)^{2}$
$\Rightarrow x^{2}+1-2 x+y^{2}+4-4 y+z^{2}+9-6 z=x^{2}+9-6 x+y^{2}+4-4 y+z^{2}+1+2 z$
$\Rightarrow x^{2}+1-2 x+y^{2}+4-4 y+z^{2}+9-6 z-x^{2}-9+6 x-y^{2}-4+4 y-z^{2}-1-2 z=0$
$\Rightarrow 4 \mathrm{x}-8 \mathrm{z}=0$
$\Rightarrow 4(x-2 z)=0$
$\Rightarrow x-2 z=0$
Hence locus of point $\mathbf{P}$ is $\mathbf{x - 2 z}=\mathbf{0}$

## 22. Question

Find the locus of the point, the sum of whose distances from the points $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10.

Answer
Given: Points are $A(4,0,0)$ and $B(-4,0,0)$
To find: the locus of point $P$, the sum of whose distances from the given points is equal to 10 , i.e. $\mathrm{PA}+\mathrm{PB}=$ 10

Let the required point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $P(x, y, z)$ and $A(4,0,0)$ is $P A$,
$=\sqrt{(x-4)^{2}+(y-0)^{2}+(z-0)^{2}}$
$=\sqrt{(x-4)^{2}+y^{2}+z^{2}}$
Distance between $P(x, y, z)$ and $B(-4,0,0)$ is $P B$,
$=\sqrt{(\mathrm{x}-(-4))^{2}+(\mathrm{y}-0)^{2}+(\mathrm{z}-0)^{2}}$
$=\sqrt{(x+4)^{2}+y^{2}+z^{2}}$
According to question:
$P A+P B=10$
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=10$
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}=10-\sqrt{(x+4)^{2}+y^{2}+z^{2}}$
Squaring both sides:
$\Rightarrow(x-4)^{2}+y^{2}+z^{2}=100+(x+4)^{2}+y^{2}+z^{2}-2 \sqrt{(x+4)^{2}+y^{2}+z^{2}}$
$\Rightarrow x^{2}+16-8 x=100+x^{2}+16+8 x-2 \sqrt{(x+4)^{2}+y^{2}+z^{2}}$
$\Rightarrow-8 \mathrm{x}-8 \mathrm{x}-100=-20 \sqrt{(\mathrm{x}+4)^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
$\Rightarrow-4(4 x-25)=-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}}$
$\Rightarrow 4 x-25=5 \sqrt{(x+4)^{2}+y^{2}+z^{2}}$
Squaring both sides:
$\Rightarrow 16 x^{2}+625-100 x=25\left\{(x+4)^{2}+y^{2}+z^{2}\right\}$
$\Rightarrow 16 x^{2}+625-100 x=25 x^{2}+400+200 x+25 y^{2}+25 z^{2}$
$\Rightarrow 16 x^{2}+625-100 x-25 x^{2}-400-200 x-25 y^{2}-25 z^{2}=0$
$\Rightarrow-9 x^{2}-25 y^{2}-25 z^{2}-300 x+225=0$
$\Rightarrow 9 x^{2}+25 y^{2}+25 z^{2}+300 x-225=0$
Hence locus of point $P$ is $9 x^{2}+25 y^{2}+25 z^{2}+300 x-225=0$

## 23. Question

Show that the point $A(1,2,3), B(-1,-2,-1), C(2,3,2)$ and $D(4,7,6)$ are the vertices of a parallelogram $A B C D$, but not a rectangle.

## Answer

Given: Points are $A(1,2,3), B(-1,-2,-1), C(2,3,2)$ and $D(4,7,6)$
To prove: the quadrilateral formed by these 4 points is a parallelogram but not a rectangle Opposite sides of both parallelogram and rectangle are equal

But diagonals of a parallelogram are not equal whereas they are equal for rectangle

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(1,2,3)$ and $B(-1,-2,-1)$ is $A B$,
$=\sqrt{(1-(-1))^{2}+(2-(-2))^{2}+(3-(-1))^{2}}$
$=\sqrt{2^{2}+4^{2}+4^{2}}$
$=\sqrt{4+16+16}$
$=\sqrt{36}$
$=6$

Distance between $\mathrm{B}(-1,-2,-1)$ and $\mathrm{C}(2,3,2)$ is BC ,
$=\sqrt{(-1-2)^{2}+(-2-3)^{2}+(-1-2)^{2}}$
$=\sqrt{(-3)^{2}+(-5)^{2}+(-3)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
Distance between $C(2,3,2)$ and $D(4,7,6)$ is $C D$,
$=\sqrt{(2-4)^{2}+(3-7)^{2}+(2-6)^{2}}$
$=\sqrt{(-2)^{2}+(-4)^{2}+(-4)^{2}}$
$=\sqrt{4+16+16}$
$=\sqrt{36}$
$=6$
The distance between $A(1,2,3)$ and $D(4,7,6)$ is $A D$,
$=\sqrt{(1-4)^{2}+(2-7)^{2}+(3-6)^{2}}$
$=\sqrt{(-3)^{2}+(-5)^{2}+(-3)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
Clearly,
$A B=C D$
$B C=A D$
Opposite sides are equal
Now, we will find the length of diagonals
The distance between $A(1,2,3)$ and $C(2,3,2)$ is $A C$,
$=\sqrt{(1-2)^{2}+(2-3)^{2}+(3-2)^{2}}$
$=\sqrt{(-1)^{2}+(-1)^{2}+1^{2}}$
$=\sqrt{1+1+1}$
$=\sqrt{3}$
Distance between $B(-1,-2,-1)$ and $D(4,7,6)$ is $B D$,
$=\sqrt{(-1-4)^{2}+(-2-7)^{2}+(-1-6)^{2}}$
$=\sqrt{(-5)^{2}+(-9)^{2}+(-5)^{2}}$
$=\sqrt{25+81+25}$
$=\sqrt{131}$
Clearly,
$A C \neq B D$
The diagonals are not equal, but opposite sides are equal
Thus, Quadrilateral formed by ABCD is a parallelogram but not a rectangle

## Hence Proved

## 24. Question

Find the equation of the set of the points $P$ such that its distances from the points $A(3,4,-5)$ and $B(-2,1,4)$ are equal.

## Answer

Given: Points are $A(3,4,-5)$ and $B(-2,1,4)$
To find: the equation of the set of the points, i.e. locus of points which are equidistant from the given points Let the required point $P(x, y, z)$

According to the question:
$P A=P B$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $P(x, y, z)$ and $A(3,4,-5)$ is PA,
$=\sqrt{(x-3)^{2}+(y-4)^{2}+(z-(-5))^{2}}$
$=\sqrt{(x-3)^{2}+(y-4)^{2}+(z+5)^{2}}$
The distance between $P(x, y, z)$ and $B(-2,1,4)$ is $P B$,
$=\sqrt{(x-(-2))^{2}+(y-1)^{2}+(z-4)^{2}}$
$=\sqrt{(x+2)^{2}+(y-1)^{2}+(z-4)^{2}}$

As $\mathrm{PA}^{2}=\mathrm{PB}^{2}$
$(x-3)^{2}+(y-4)^{2}+(z+5)^{2}=(x+2)^{2}+(y-1)^{2}+(z-4)^{2}$
$\Rightarrow x^{2}+9-6 x+y^{2}+16-8 y+z^{2}+25+10 z=x^{2}+4+4 x+y^{2}+1-2 y+z^{2}+16-8 z$
$\Rightarrow x^{2}+9-6 x+y^{2}+16-8 y+z^{2}+25+10 z-x^{2}-4-4 x-y^{2}-1+2 y-z^{2}-16+8 z=0$
$\Rightarrow-6 x-6 y+18 z+29=0$
$\Rightarrow 6 x+6 y-18 z-29=0$
Hence locus of point $P$ is $\mathbf{6 x}+\mathbf{6 y} \mathbf{- 1 8 z - 2 9 = 0}$

## Exercise 28.3

## 1. Question

The vertices of the triangle are $A(5,4,6), B(1,-1,3)$ and $C(4,3,2)$. The internal bisector of angle $A$ meets $B C$ at $D$. Find the coordinates of $D$ and the length $A D$.

## Answer

Given: The vertices of the triangle are $A(5,4,6), B(1,-1,3)$ and $C(4,3,2)$
To find: the coordinates of $D$ and the length $A D$

## Formula used:

## Distance Formula:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$

## Section Formula:

$A$ line $A B$ is divided by $C$ in m:n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by, $\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$

We know angle bisector divides opposite side in the ratio of the other two sides.
As $A D$ is angle bisector of $A$ and meets $B C$ at $D$
$\Rightarrow B D: D C=A B: B C$


Distance between $A(5,4,6)$ and $B(1,-1,3)$ is $A B$,
$=\sqrt{(5-1)^{2}+(4-(-1))^{2}+(6-3)^{2}}$
$=\sqrt{4^{2}+5^{2}+3^{2}}$
$=\sqrt{16+25+9}$
$=\sqrt{50}$
$=5 \sqrt{2}$
The distance between $\mathrm{A}(5,4,6)$ and $\mathrm{C}(4,3,2)$ is AC ,
$=\sqrt{(5-4)^{2}+(4-3)^{2}+(6-2)^{2}}$
$=\sqrt{1^{2}+1^{2}+4^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=3 \sqrt{2}$
$\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{5 \sqrt{2}}{3 \sqrt{2}}=\frac{5}{3}$
$A B: A C=5: 3$
$\Rightarrow B D: D C=5: 3$
Therefore, $\mathrm{m}=5$ and $\mathrm{n}=3$
$B(1,-1,3)$ and $C(4,3,2)$


Coordinates of $D$ using section formula:
$=\left(\frac{3(1)+5(4)}{5+3}, \frac{3(-1)+5(3)}{5+3}, \frac{3(3)+5(2)}{5+3}\right)$
$=\left(\frac{3+20}{8}, \frac{-3+15}{8}, \frac{9+10}{8}\right)$
$=\left(\frac{23}{8}, \frac{12}{8}, \frac{19}{8}\right)$
$=\left(\frac{23}{8}, \frac{3}{2}, \frac{19}{8}\right)$
The distance between $\mathrm{A}(5,4,6)$ and $\mathrm{D}\left(\frac{23}{8}, \frac{3}{2}, \frac{19}{8}\right)$ is AD ,
$=\sqrt{\left(5-\frac{23}{8}\right)^{2}+\left(4-\frac{3}{2}\right)^{2}+\left(6-\frac{19}{8}\right)^{2}}$
$=\sqrt{\left(\frac{40-23}{8}\right)^{2}+\left(\frac{8-3}{2}\right)^{2}+\left(\frac{48-19}{8}\right)^{2}}$
$=\sqrt{\left(\frac{17}{8}\right)^{2}+\left(\frac{5}{2}\right)^{2}+\left(\frac{29}{8}\right)^{2}}$
$=\sqrt{\frac{289}{64}+\frac{25}{4}+\frac{361}{64}}$
$=\sqrt{\frac{289+400+841}{64}}$
$=\sqrt{\frac{1530}{64}}$
$=\sqrt{\frac{765}{32}}$ units
Hence, Coordinates of $D$ are $\left(\frac{23}{8}, \frac{3}{2}, \frac{19}{8}\right)$ and the length of $A D$ is $\sqrt{\frac{765}{32}}$ units

## 2. Question

A point $C$ with $z$-coordinate 8 lies on the line segment joining the points $A(2,-3,4)$ and $B(8,0,10)$. Find the coordinates.

## Answer

Given: A point $C$ with $z$-coordinate 8 lies on the line segment joining the points $A(2,-3,4)$ and $B(8,0,10)$
To find: the coordinates of C

## Formula used:

## Section Formula:

A line $A B$ is divided by $C$ in $m: n$ where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of C is given by,
$\left(\frac{n \mathrm{x}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let Point $C(x, y, 8)$, and $C$ divides $A B$ in ratio $k: 1$
Therefore, $m=k$ and $n=1$
$A(2,-3,4)$ and $B(8,0,10)$


Coordinates of C using section formula:
$\Rightarrow(\mathrm{x}, \mathrm{y}, 8)=\left(\frac{\mathrm{k}(8)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}(0)+1(-3)}{\mathrm{k}+1}, \frac{\mathrm{k}(10)+1(4)}{\mathrm{k}+1}\right)$
$\Rightarrow(x, y, 8)=\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 \mathrm{k}+4}{\mathrm{k}+1}\right)$
On comparing:
$\frac{10 k+4}{k+1}=8$
$\Rightarrow 10 \mathrm{k}+4=8(\mathrm{k}+1)$
$\Rightarrow 10 \mathrm{k}+4=8 \mathrm{k}+8$
$\Rightarrow 10 \mathrm{k}-8 \mathrm{k}=8-4$
$\Rightarrow 2 \mathrm{k}=4$
$\Rightarrow \mathrm{k}=\frac{4}{2} \Rightarrow \mathrm{k}=2$
Here $C$ divides $A B$ in ratio 2:1
$\mathrm{x}=\frac{8 \mathrm{k}+2}{\mathrm{k}+1}$
$\Rightarrow x=\frac{8(2)+2}{2+1}$
$\Rightarrow x=\frac{16+2}{3}$
$\Rightarrow x=\frac{18}{3}$
$\Rightarrow x=6$
$y=\frac{-3}{k+1}$
$\Rightarrow y=\frac{-3}{2+1}$
$\Rightarrow y=\frac{-3}{3}$
$\Rightarrow \mathrm{y}=-1$

## Hence, Coordinates of C are (6, -1, 8)

## 3. Question

Show that the three points $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$ are collinear and find the ratio in which $C$ divides AB.

## Answer

Given: $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$
To prove: $A, B$ and $C$ are collinear
To find: the ratio in which $C$ divides $A B$

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of C is given by,
$\left(\frac{n \mathrm{n}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let $C$ divides $A B$ in ratio $k$ : 1
Three points are collinear if the value of $k$ is the same for $x, y$ and $z$ coordinates Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$\mathrm{A}(2,3,4), \mathrm{B}(-1,2,-3)$ and $\mathrm{C}(-4,1,-10)$


Coordinates of C using section formula:
$\Rightarrow(-4,1,-10)=\left(\frac{\mathrm{k}(-1)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}(2)+1(3)}{\mathrm{k}+1}, \frac{\mathrm{k}(-3)+1(4)}{\mathrm{k}+1}\right)$
$\Rightarrow(-4,1,-10)=\left(\frac{-\mathrm{k}+2}{\mathrm{k}+1}, \frac{2 \mathrm{k}+3}{\mathrm{k}+1}, \frac{-3 \mathrm{k}+4}{\mathrm{k}+1}\right)$
On comparing:
$\frac{-\mathrm{k}+2}{\mathrm{k}+1}=-4$
$\Rightarrow-k+2=-4(k+1)$
$\Rightarrow-\mathrm{k}+2=-4 \mathrm{k}-4$
$\Rightarrow 4 \mathrm{k}-\mathrm{k}=-2-4$
$\Rightarrow 3 \mathrm{k}=-6$
$\Rightarrow k=\frac{-6}{3} \Rightarrow k=-2$
$\frac{2 \mathrm{k}+3}{\mathrm{k}+1}=1$
$\Rightarrow 2 \mathrm{k}+3=\mathrm{k}+1$
$\Rightarrow 2 \mathrm{k}-\mathrm{k}=1$ - 3
$\Rightarrow \mathrm{k}=-2$
$\frac{-3 \mathrm{k}+4}{\mathrm{k}+1}=-10$
$\Rightarrow-3 \mathrm{k}+4=-10(\mathrm{k}+1)$
$\Rightarrow-3 \mathrm{k}+4=-10 \mathrm{k}-10$
$\Rightarrow-3 \mathrm{k}+10 \mathrm{k}=-10-4$
$\Rightarrow 7 \mathrm{k}=-14$
$\Rightarrow k=\frac{-14}{7} \Rightarrow k=-2$

The value of $k$ is the same in all three times

## Hence, A, B and C are collinear

As $k=-2$

## C divides AB externally in ratio 2:1

## 4. Question

Find the ratio in which the line joining $(2,4,5)$ and $(3,5,4)$ is divided by the yz-plane.

## Answer

Given: points $A(2,4,5)$ and $B(3,5,4)$
To find: the ratio in which the line joining given points is divided by the yz-plane

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{n x+m a}{m+n}, \frac{n y+m b}{m+n}, \frac{n z+m c}{m+n}\right)$
$X$ coordinate is always 0 on yz-plane
Let Point $C(0, y, z)$, and $C$ divides $A B$ in ratio $k$ : 1
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A(2,4,5)$ and $B(3,5,4)$


Coordinates of $C$ using section formula:
$\Rightarrow(0, y, z)=\left(\frac{\mathrm{k}(3)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}(5)+1(4)}{\mathrm{k}+1}, \frac{\mathrm{k}(4)+1(5)}{\mathrm{k}+1}\right)$
$\Rightarrow(0, \mathrm{y}, \mathrm{z})=\left(\frac{3 \mathrm{k}+2}{\mathrm{k}+1}, \frac{5 \mathrm{k}+4}{\mathrm{k}+1}, \frac{4 \mathrm{k}+5}{\mathrm{k}+1}\right)$
On comparing:
$\frac{3 k+2}{k+1}=0$
$\Rightarrow 3 \mathrm{k}+2=0(\mathrm{k}+1)$
$\Rightarrow 3 \mathrm{k}+2=0$
$\Rightarrow 3 \mathrm{k}=-2$
$\Rightarrow \mathrm{k}=\frac{-2}{3}$

## 5. Question

Find the ratio in which the line segment joining the points $(2,-1,3)$ and $(-1,2,1)$ is divided by the plane $x+y$ $+z=5$.

## Answer

Given: $A(2,-1,3)$ and $B(-1,2,1)$
To find: the ratio in which the line segment $A B$ is divided by the plane $x+y+z=5$

## Formula used:

## Section Formula:

A line $A B$ is divided by $C$ in $m: n$ where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let $C(x, y, z)$ be any point on the given plane and $C$ divides $A B$ in ratio $k: 1$


Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A(2,-1,3)$ and $B(-1,2,1)$
Coordinates of $C$ using section formula:
$\Rightarrow(x, y, z)=\left(\frac{\mathrm{k}(-1)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}(2)+1(-1)}{\mathrm{k}+1}, \frac{\mathrm{k}(-1)+1(3)}{\mathrm{k}+1}\right)$
$\Rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{-\mathrm{k}+2}{\mathrm{k}+1}, \frac{2 \mathrm{k}-1}{\mathrm{k}+1}, \frac{-\mathrm{k}+3}{\mathrm{k}+1}\right)$
On comparing:
$\frac{-\mathrm{k}+2}{\mathrm{k}+1}=\mathrm{x} ; \frac{2 \mathrm{k}-1}{\mathrm{k}+1}=\mathrm{y} ; \frac{-\mathrm{k}+3}{\mathrm{k}+1}=\mathrm{z}$
Since, $x+y+z=5$
$\Rightarrow \frac{-\mathrm{k}+2}{\mathrm{k}+1}+\frac{2 \mathrm{k}-1}{\mathrm{k}+1}+\frac{-\mathrm{k}+3}{\mathrm{k}+1}=5$
$\Rightarrow \frac{-\mathrm{k}+2+2 \mathrm{k}-1-\mathrm{k}+3}{\mathrm{k}+1}=5$
$\Rightarrow \frac{4}{k+1}=5$
$\Rightarrow 5(k+1)=4$
$\Rightarrow 5 \mathrm{k}+5=4$
$\Rightarrow 5 \mathrm{k}=4-5$
$\Rightarrow 5 \mathrm{k}=-1$
$\Rightarrow \mathrm{k}=\frac{-1}{5}$

## Hence, the plane divides AB externally in ratio 1:5

## 6. Question

If the points $A(3,2,-4), B(9,8,-10)$ and $C(5,4,-6)$ are collinear, find the ratio in which $C$ divided $A B$.

## Answer

Given: $A(3,2,-4), B(9,8,-10)$ and $C(5,4,-6)$
To prove: $\mathrm{A}, \mathrm{B}$ and C are collinear
To find: the ratio in which $C$ divides $A B$
Formula used:

## Section Formula:

A line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by, $\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$

Let $C$ divides $A B$ in ratio $k$ : 1
Three points are collinear if the value of $k$ is the same for $x, y$ and $z$ coordinates
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A(3,2,-4), B(9,8,-10)$ and $C(5,4,-6)$


Coordinates of $C$ using section formula:
$\Rightarrow(5,4,-6)=\left(\frac{\mathrm{k}(9)+1(3)}{\mathrm{k}+1}, \frac{\mathrm{k}(8)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}(-10)+1(-4)}{\mathrm{k}+1}\right)$
$\Rightarrow(5,4,-6)=\left(\frac{9 \mathrm{k}+3}{\mathrm{k}+1}, \frac{8 \mathrm{k}+2}{\mathrm{k}+1}, \frac{-10 \mathrm{k}-4}{\mathrm{k}+1}\right)$
On comparing:
$\frac{9 k+3}{k+1}=5$
$\Rightarrow 9 \mathrm{k}+3=5(\mathrm{k}+1)$
$\Rightarrow 9 \mathrm{k}+3=5 \mathrm{k}+5$
$\Rightarrow 9 \mathrm{k}-5 \mathrm{k}=5-3$
$\Rightarrow 4 \mathrm{k}=2$
$\Rightarrow \mathrm{k}=\frac{2}{4} \Rightarrow \mathrm{k}=\frac{1}{2}$
$\frac{8 k+2}{k+1}=4$
$\Rightarrow 8 \mathrm{k}+2=4(\mathrm{k}+1)$
$\Rightarrow 8 \mathrm{k}+2=4 \mathrm{k}+4$
$\Rightarrow 8 \mathrm{k}-4 \mathrm{k}=4-2$
$\Rightarrow 4 \mathrm{k}=2$
$\Rightarrow \mathrm{k}=\frac{2}{4} \Rightarrow \mathrm{k}=\frac{1}{2}$
$\frac{-10 k-4}{k+1}=-6$
$\Rightarrow-10 \mathrm{k}-4=-6(\mathrm{k}+1)$
$\Rightarrow-10 \mathrm{k}-4=-6 \mathrm{k}-6$
$\Rightarrow-10 k+6 k=4-6$
$\Rightarrow-4 \mathrm{k}=-2$
$\Rightarrow \mathrm{k}=\frac{-2}{-4} \Rightarrow \mathrm{k}=\frac{1}{2}$
The value of $k$ is the same in all three times
Hence, A, B and C are collinear
As, $k=\frac{1}{2}$

## C divides AB externally in ratio 1:2

## 7. Question

The mid-points of the sides of a triangle $A B C$ are given by $(-2,3,5),(4,-1,7)$ and $(6,5,3)$. Find the coordinates of $A, B$ and $C$.

## Answer

Given: The mid-points of the sides of the triangle are $P(-2,3,5), Q(4,-1,7)$ and $R(6,5,3)$.
To find: the coordinates of vertices $A, B$ and $C$

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{n \mathrm{n}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
We know the mid-point divides side in the ratio of 1:1.
Therefore,
The coordinates of C is given by,
$\left(\frac{x+a}{2}, \frac{y+b}{2}, \frac{z+c}{2}\right)$

$P(-2,3,5)$ is mid-point of $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ Therefore,
$(-2,3,5)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
$\Rightarrow(-4,6,10)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)$
$Q(4,-1,7)$ is mid-point of $B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$
Therefore,
$(4,-1,7)=\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}, \frac{z_{2}+z_{3}}{2}\right)$
$\Rightarrow(8,-2,14)=\left(x_{3}+x_{3}, y_{3}+y_{3}, z_{3}+z_{3}\right)$.
$R(6,5,3)$ is mid-point of $A\left(x_{1}, y_{1}, z_{1}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$
Therefore,
$(6,5,3)=\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}, \frac{z_{1}+z_{3}}{2}\right)$
$\Rightarrow(12,10,6)=\left(\mathrm{x}_{1}+\mathrm{x}_{3}, \mathrm{y}_{1}+\mathrm{y}_{3}, \mathrm{z}_{1}+\mathrm{z}_{3}\right)$.
$x_{1}+x_{2}=-4$.
$x_{2}+x_{3}=8$.
$x_{1}+x_{3}=12$.
Adding (4), (5) and (6):
$\Rightarrow x_{1}+x_{2}+x_{2}+x_{3}+x_{1}+x_{3}=8+12-4$
$\Rightarrow 2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+2 \mathrm{x}_{3}=16$
$\Rightarrow 2\left(x_{1}+x_{2}+x_{3}\right)=16$
$\Rightarrow x_{1}+x_{2}+x_{3}=8$

Subtract (4), (5) and (6) from (7) separately:
$x_{1}+x_{2}+x_{3}-x_{1}-x_{2}=8-(-4)$
$\Rightarrow x_{3}=12$
$x_{1}+x_{2}+x_{3}-x_{2}-x_{3}=8-8$
$\Rightarrow \mathrm{x}_{1}=0$
$x_{1}+x_{2}+x_{3}-x_{1}-x_{3}=8-12$
$\Rightarrow x_{2}=-4$
$y_{1}+y_{2}=6$.
$y_{2}+y_{3}=-2$.
$y_{1}+y_{3}=10$.
Adding (8), (9) and (10):
$\Rightarrow \mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{1}+\mathrm{y}_{3}=10+6-2$
$\Rightarrow 2 \mathrm{y}_{1}+2 \mathrm{y}_{2}+2 \mathrm{y}_{3}=14$
$\Rightarrow 2\left(y_{1}+y_{2}+y_{3}\right)=14$
$\Rightarrow y_{1}+y_{2}+y_{3}=7$.
Subtract (8), (9) and (10) from (11) separately:
$y_{1}+y_{2}+y_{3}-y_{1}-y_{2}=7-6$
$\Rightarrow y_{3}=1$
$y_{1}+y_{2}+y_{3}-y_{2}-y_{3}=7-(-2)$
$\Rightarrow y_{1}=9$
$y_{1}+y_{2}+y_{3}-y_{1}-y_{3}=7-10$
$\Rightarrow y_{2}=-3$
$z_{1}+z_{2}=10$.
$z_{2}+z_{3}=14$.
$z_{1}+z_{3}=6$
Adding (12), (13) and (14):
$\Rightarrow z_{1}+z_{2}+z_{2}+z_{3}+z_{1}+z_{3}=6+14+10$
$\Rightarrow 2 z_{1}+2 z_{2}+2 z_{3}=30$
$\Rightarrow 2\left(z_{1}+z_{2}+z_{3}\right)=30$
$\Rightarrow z_{1}+z_{2}+z_{3}=15$.
Subtract (8), (9) and (10) from (11) separately:
$z_{1}+z_{2}+z_{3}-z_{1}-z_{2}=15-10$
$\Rightarrow z_{3}=5$
$z_{1}+z_{2}+z_{3}-z_{2}-z_{3}=15-14$
$\Rightarrow \mathrm{z}_{1}=1$
$z_{1}+z_{2}+z_{3}-z_{1}-z_{3}=15-6$
$\Rightarrow \mathrm{z}_{2}=9$
Hence, vertices of sides are $A(0,9,1) B(-4,-3,9)$ and $C(12,1,5)$

## 8. Question

$A(1,2,3), B(0,4,1), C(-1,-1,-3)$ are the vertices of a triangle $A B C$. Find the point in which the bisector of the angle $\angle B A C$ meets $B C$.

## Answer

Given: The vertices of the triangle are $A(1,2,3), B(0,4,1)$ and $C(-1,-1,-3)$
To find: the coordinates of $D$

## Formula used:

## Distance Formula:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$

## Section Formula:

A line $A B$ is divided by $C$ in m:n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
We know angle bisector divides opposite side in the ratio of the other two sides.
As $A D$ is angle bisector of $A$ and meets $B C$ at $D$
$\Rightarrow B D: D C=A B: B C$


Distance between $A(1,2,3)$ and $B(0,4,1)$ is $A B$,
$=\sqrt{(1-0)^{2}+(2-4)^{2}+(3-1)^{2}}$
$=\sqrt{1^{2}+(-2)^{2}+2^{2}}$
$=\sqrt{1+4+4}$
$=\sqrt{9}$
$=3$
Distance between $\mathrm{A}(1,2,3)$ and $\mathrm{C}(-1,-1,-3)$ is AC ,
$=\sqrt{(1-(-1))^{2}+(2-(-1))^{2}+(3-(-3))^{2}}$
$=\sqrt{2^{2}+3^{2}+6^{2}}$
$=\sqrt{4+9+36}$
$=\sqrt{49}$
$=7$
$\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{3}{7}$
$A B: A C=3: 7$
$\Rightarrow B D: D C=3: 7$
Therefore, $\mathrm{m}=3$ and $\mathrm{n}=7$
$B(0,4,1)$ and $C(-1,-1,-3)$
Coordinates of $D$ using section formula:
$=\left(\frac{7(0)+3(-1)}{7+3}, \frac{7(4)+3(-1)}{7+3}, \frac{7(1)+3(-3)}{7+3}\right)$
$=\left(\frac{0-3}{10}, \frac{28-3}{10}, \frac{7-9}{10}\right)$
$=\left(\frac{-3}{10}, \frac{25}{10}, \frac{-2}{10}\right)$
$=\left(\frac{-3}{10}, \frac{5}{2}, \frac{-1}{5}\right)$

## Hence, Coordinates of $D$ are $\left(\frac{-3}{10}, \frac{5}{2}, \frac{-1}{5}\right)$

## 9. Question

Find the ratio in which the sphere $x^{2}+y^{2}+z^{2}=504$ divides the line joining the point ( $12,-4,8$ ) and (27, -9 , 18).

Answer
Given: $\mathrm{A}(12,-4,8)$ and $\mathrm{B}(27,-9,18)$
To find: the ratio in which the line segment $A B$ is divided by the sphere $x^{2}+y^{2}+z^{2}=504$

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{n \mathrm{x}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let $C(x, y, z)$ be any point on given plane and $C$ divides $A B$ in ratio $k: 1$


Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$\mathrm{A}(12,-4,8)$ and $\mathrm{B}(27,-9,18)$
Coordinates of C using section formula:
$\Rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{\mathrm{k}(27)+1(12)}{\mathrm{k}+1}, \frac{\mathrm{k}(-9)+1(-4)}{\mathrm{k}+1}, \frac{\mathrm{k}(18)+1(8)}{\mathrm{k}+1}\right)$
$\Rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{27 \mathrm{k}+12}{\mathrm{k}+1}, \frac{-9 \mathrm{k}-4}{\mathrm{k}+1}, \frac{18 \mathrm{k}+8}{\mathrm{k}+1}\right)$
On comparing:
$\frac{27 \mathrm{k}+12}{\mathrm{k}+1}=\mathrm{x} ; \frac{-9 \mathrm{k}-4}{\mathrm{k}+1}=\mathrm{y} ; \frac{18 \mathrm{k}+8}{\mathrm{k}+1}=\mathrm{z}$
Since, $x^{2}+y^{2}+z^{2}=504$
$\Rightarrow\left(\frac{27 \mathrm{k}+12}{\mathrm{k}+1}\right)^{2}+\left(\frac{-9 \mathrm{k}-4}{\mathrm{k}+1}\right)^{2}+\left(\frac{18 \mathrm{k}+8}{\mathrm{k}+1}\right)^{2}=504$
$\Rightarrow \frac{3^{2}(9 \mathrm{k}+4)^{2}+(-1)^{2}(9 \mathrm{k}+4)^{2}+2^{2}(9 \mathrm{k}+4)^{2}}{(\mathrm{k}+1)^{2}}=504$
$\Rightarrow \frac{(9+1+4)(9 \mathrm{k}+4)^{2}}{(\mathrm{k}+1)^{2}}=504$
$\Rightarrow \frac{14\left(81 \mathrm{k}^{2}+16+72 \mathrm{k}\right)}{(\mathrm{k}+1)^{2}}=504$
$\Rightarrow \frac{81 \mathrm{k}^{2}+16+72 \mathrm{k}}{\mathrm{k}^{2}+1+2 \mathrm{k}}=\frac{504}{14}$
$\Rightarrow \frac{81 \mathrm{k}^{2}+16+72 \mathrm{k}}{\mathrm{k}^{2}+1+2 \mathrm{k}}=36$
$\Rightarrow 81 \mathrm{k}^{2}+16+72 \mathrm{k}=36\left(\mathrm{k}^{2}+1+2 \mathrm{k}\right)$
$\Rightarrow 81 \mathrm{k}^{2}+16+72 \mathrm{k}=36 \mathrm{k}^{2}+36+72 \mathrm{k}$
$\Rightarrow 81 \mathrm{k}^{2}+16+72 \mathrm{k}-36 \mathrm{k}^{2}-36-72 \mathrm{k}=0$
$\Rightarrow 45 \mathrm{k}^{2}-20=0$
$\Rightarrow 45 \mathrm{k}^{2}=20$
$\Rightarrow \mathrm{k}^{2}=\frac{20}{45}$
$\Rightarrow \mathrm{k}^{2}=\frac{4}{9}$
$\Rightarrow \mathrm{k}=\frac{2}{3}$

## Hence, the sphere divides AB in ratio 2:3

## 10. Question

Show that the plane $a x+b y+c z+d=0$ divides the line joining the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $-\frac{a x_{1}+b y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d}$.

## Answer

Given: $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$
To prove: the ratio in which the line segment $A B$ is divided by the plane $a x+b y+c z+d=0$ is $-\frac{\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz} z_{1}+\mathrm{d}}{\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{cz} z_{2}+\mathrm{d}}$

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in m:n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let $C(x, y, z)$ be any point on given plane and $C$ divides $A B$ in ratio $k$ : 1


Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$
Coordinates of $C$ using section formula:
$\Rightarrow(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{\mathrm{k}\left(\mathrm{x}_{1}\right)+1\left(\mathrm{x}_{2}\right)}{\mathrm{k}+1}, \frac{\mathrm{k}\left(\mathrm{x}_{2}\right)+1\left(\mathrm{y}_{2}\right)}{\mathrm{k}+1}, \frac{\mathrm{k}\left(\mathrm{z}_{1}\right)+1\left(\mathrm{z}_{2}\right)}{\mathrm{k}+1}\right)$
$\Rightarrow(x, y, z)=\left(\frac{x_{1} k+x_{2}}{k+1}, \frac{y_{1} k+y_{2}}{k+1}, \frac{z_{1} k+z_{2}}{k+1}\right)$
On comparing:
$\frac{\mathrm{x}_{1} \mathrm{k}+\mathrm{x}_{2}}{\mathrm{k}+1}=\mathrm{x} ; \frac{\mathrm{y}_{1} \mathrm{k}+\mathrm{y}_{2}}{\mathrm{k}+1}=\mathrm{y} ; \frac{\mathrm{z}_{1} \mathrm{k}+\mathrm{z}_{2}}{\mathrm{k}+1}=\mathrm{z}$
Since, $a x+b y+c z+d=0$
$\Rightarrow \mathrm{a}\left(\frac{\mathrm{x}_{1} \mathrm{k}+\mathrm{x}_{2}}{\mathrm{k}+1}\right)+\mathrm{b}\left(\frac{\mathrm{y}_{1} \mathrm{k}+\mathrm{y}_{2}}{\mathrm{k}+1}\right)+\mathrm{c}\left(\frac{\mathrm{z}_{1} \mathrm{k}+\mathrm{z}_{2}}{\mathrm{k}+1}\right)+\mathrm{d}=0$
$\Rightarrow \frac{\mathrm{a}\left(\mathrm{x}_{1} \mathrm{k}+\mathrm{x}_{2}\right)+\mathrm{b}\left(\mathrm{y}_{1} \mathrm{k}+\mathrm{y}_{2}\right)+\mathrm{c}\left(\mathrm{z}_{1} \mathrm{k}+\mathrm{z}_{2}\right)+\mathrm{d}(\mathrm{k}+1)}{\mathrm{k}+1}=0$
$\Rightarrow a x_{1} \mathrm{k}+a \mathrm{x}_{2}+\mathrm{by}_{1} \mathrm{k}+\mathrm{by}_{2}+\mathrm{cz}_{1} \mathrm{k}+\mathrm{cz}_{2}+\mathrm{dk}+\mathrm{d}=0$
$\Rightarrow \mathrm{k}\left(\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz}_{1}+\mathrm{d}\right)=-\left(\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{cz}_{2}+\mathrm{d}\right)$
$\Rightarrow \mathrm{k}=-\frac{\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{cz}_{2}+\mathrm{d}}{\left(\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz}_{1}+\mathrm{d}\right)}$
The plane divides $A B$ in the ratio $-\frac{\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{cz}_{2}+\mathrm{d}}{\left(\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{cz} z_{1}+\mathrm{d}\right)}$

## Hence Provedco

## 11. Question

Find the centroid of a triangle, mid-points of whose are (1, 2, -3 ), ( $3,0,1$ ) and ( $-1,1,-4$ ).

## Answer

Given: The mid-points of the sides of the triangle are $P(1,2,-3), Q(3,0,1)$ and $R(-1,1,-4)$.
To find: the coordinates of the centroid

## Formula used:

Centroid of triangle $A B C$ whose vertices are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ is given by, $\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m: n$ where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by, $\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$

We know the mid-point divides side in the ratio of $1: 1$.
Therefore,
The coordinates of $C$ is given by,
$\left(\frac{\mathrm{x}+\mathrm{a}}{2}, \frac{\mathrm{y}+\mathrm{b}}{2}, \frac{\mathrm{z}+\mathrm{c}}{2}\right)$

$P(1,2,-3)$ is mid-point of $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$
Therefore,
$(1,2,-3)=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}\right)$
$\Rightarrow(2,4,-6)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}, \mathrm{z}_{1}+\mathrm{z}_{2}\right)$
$Q(3,0,1)$ is mid-point of $B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$
Therefore,
$(3,0,1)=\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}, \frac{z_{2}+z_{3}}{2}\right)$
$\Rightarrow(6,0,2)=\left(\mathrm{x}_{3}+\mathrm{x}_{3}, \mathrm{y}_{3}+\mathrm{y}_{3}, \mathrm{z}_{3}+\mathrm{z}_{3}\right)$
$R(-1,1,-4)$ is mid-point of $A\left(x_{1}, y_{1}, z_{1}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$
Therefore,
$(-1,1,-4)=\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}, \frac{z_{1}+z_{3}}{2}\right)$
$\Rightarrow(-2,2,-8)=\left(\mathrm{x}_{1}+\mathrm{x}_{3}, \mathrm{y}_{1}+\mathrm{y}_{3}, \mathrm{z}_{1}+\mathrm{z}_{3}\right)$
$x_{1}+x_{2}=2$.
$x_{2}+x_{3}=6$.
$x_{1}+x_{3}=-2$
Adding (1), (2) and (3):
$\Rightarrow x_{1}+x_{2}+x_{2}+x_{3}+x_{1}+x_{3}=2+6-2$
$\Rightarrow 2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+2 \mathrm{x}_{3}=6$
$\Rightarrow 2\left(x_{1}+x_{2}+x_{3}\right)=6$
$\Rightarrow x_{1}+x_{2}+x_{3}=3$
$y_{1}+y_{2}=4$.
$y_{2}+y_{3}=0$.
$y_{1}+y_{3}=2$.
Adding (4), (5) and (6):
$\Rightarrow \mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{1}+\mathrm{y}_{3}=4+0+2$
$\Rightarrow 2 \mathrm{y}_{1}+2 \mathrm{y}_{2}+2 \mathrm{y}_{3}=6$
$\Rightarrow 2\left(y_{1}+y_{2}+y_{3}\right)=6$
$\Rightarrow \mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}=3$
$z_{1}+z_{2}=-6$
$z_{2}+z_{3}=2$
$z_{1}+z_{3}=-8$
Adding (7), (8) and (9):
$\Rightarrow z_{1}+z_{2}+z_{2}+z_{3}+z_{1}+z_{3}=-6+2-8$
$\Rightarrow 2 z_{1}+2 z_{2}+2 z_{3}=-12$
$\Rightarrow 2\left(z_{1}+z_{2}+z_{3}\right)=-12$
$\Rightarrow z_{1}+z_{2}+z_{3}=-6$
Centroid of the triangle
$=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$
$=\left(\frac{3}{3}, \frac{3}{3}, \frac{-6}{3}\right)$
$=(1,1,-2)$

## Hence, the centroid of the triangle is (1, 1, -2)

## 12. Question

The centroid of a triangle $A B C$ is at the point $(1,1,1)$. If the coordinates of $A$ and $B$ are $(3,-5,7)$ and $(-1,7,-$ 6 ) respectively, find the coordinates of the point $C$.

## Answer

Given: The coordinates of the $A$ and $B$ of the triangle $A B C$ are $(3,-5,7)$ and $(-1,7,-6)$ respectively. The centroid of the triangle is $(1,1,1)$

To find: the coordinates of vertex $C$

## Formula used:

Centroid of triangle $A B C$ whose vertices are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ is given by,
$\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$
Here $A(3,-5,7)$ and $B(-1,7,-6)$
Centroid of the triangle
$(1,1,1)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$
$\Rightarrow(1,1,1)=\left(\frac{3-1+x_{3}}{3}, \frac{-5+7+y_{3}}{3}, \frac{7-6+z_{3}}{3}\right)$
$\Rightarrow(1,1,1)=\left(\frac{2+\mathrm{x}_{3}}{3}, \frac{2+\mathrm{y}_{3}}{3}, \frac{1+\mathrm{z}_{3}}{3}\right)$
On comparing:
$\frac{2+x_{3}}{3}=1$
$\Rightarrow 2+x_{3}=3$
$\Rightarrow x_{3}=3-2$
$\Rightarrow x_{3}=1$
$\frac{2+y_{3}}{3}=1$
$\Rightarrow 2+y_{3}=3$
$\Rightarrow y_{3}=3-2$
$\Rightarrow y_{3}=1$
$\frac{1+z_{3}}{3}=1$
$\Rightarrow 1+z_{3}=3$
$\Rightarrow z_{3}=3-1$
$\Rightarrow z_{3}=2$

## Hence, coordinates of vertex $C(1,1,2)$

## 13. Question

Find the coordinates of the points which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16$, $6)$.

## Answer

Given: Points $\mathrm{P}(4,2,-6)$ and $\mathrm{Q}(10,-16,6)$
To find: the coordinates of points which trisect the line PQ

## Formula used:

## Section Formula:

A line $A B$ is divided by $C$ in m:n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let Point $R(x, y, z)$ and Point $S(a, b, c)$ trisects line $P Q$
So, PR : RS : SQ = 1: 1: 1


Now, we will firstly apply section formula on $P Q$ and find coordinates of $R$
Therefore, $\mathrm{m}=1$ and $\mathrm{n}=2$
$P(4,2,-6)$ and $Q(10,-16,6)$
Coordinates of R using section formula:
$\Rightarrow(x, y, z)=\left(\frac{2(4)+1(10)}{2+1}, \frac{2(2)+1(-16)}{2+1}, \frac{2(-6)+1(6)}{2+1}\right)$
$\Rightarrow(x, y, z)=\left(\frac{8+10}{3}, \frac{4-16}{3}, \frac{-12+6}{3}\right)$
$\Rightarrow(x, y, z)=\left(\frac{18}{3}, \frac{-12}{3}, \frac{-6}{3}\right)$
$\Rightarrow(x, y, z)=(6,-4,-2)$
Now, we will apply section formula on PQ and find coordinates of S
Therefore, $\mathrm{m}=2$ and $\mathrm{n}=1$
$P(4,2,-6)$ and $Q(10,-16,6)$
Coordinates of R using section formula:
$\Rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{c})=\left(\frac{1(4)+2(10)}{2+1}, \frac{1(2)+2(-16)}{2+1}, \frac{1(-6)+2(6)}{2+1}\right)$
$\Rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{c})=\left(\frac{4+20}{3}, \frac{2-32}{3}, \frac{-6+12}{3}\right)$
$\Rightarrow(a, b, c)=\left(\frac{24}{3}, \frac{-30}{3}, \frac{6}{3}\right)$
$\Rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{c})=(8,-10,2)$
Hence, Coordinates of $R$ and $S$ are (6, -4, -2) and ( $8,-10,2$ ) respectively

## 14. Question

Using section formula, show that the points $\mathrm{A}(2,-3,4), \mathrm{B}(-1,2,1)$ and $\mathrm{C}(0,1 / 3,2)$ are collinear.

## Answer

Given: $\mathrm{A}(2,-3,4), \mathrm{B}(-1,2,1)$ and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$
To prove: A, B and C are collinear

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m: n$ where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of C is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let $C$ divides $A B$ in ratio $k: 1$
Three points are collinear if the value of $k$ is the same for $x, y$ and $z$ coordinates
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$\mathrm{A}(2,-3,4), \mathrm{B}(-1,2,1)$ and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$


Coordinates of $C$ using section formula:
$\Rightarrow(-1,2,1)=\left(\frac{\mathrm{k}(0)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}\left(\frac{1}{3}\right)+1(-3)}{\mathrm{k}+1}, \frac{\mathrm{k}(2)+1(4)}{\mathrm{k}+1}\right)$
$\Rightarrow(-1,2,1)=\left(\frac{2}{\mathrm{k}+1}, \frac{\frac{\mathrm{k}}{3}-3}{\mathrm{k}+1}, \frac{2 \mathrm{k}+4}{\mathrm{k}+1}\right)$
On comparing:
$\frac{2}{k+1}=-1$
$\Rightarrow 2=-1(k+1)$
$\Rightarrow 2=-k-1$
$\Rightarrow \mathrm{k}=-1-2$
$\Rightarrow \mathrm{k}=-3$
$\frac{\frac{k}{3}-3}{k+1}=2$
$\Rightarrow \frac{\mathrm{k}-9}{3}=2(\mathrm{k}+1)$
$\Rightarrow \mathrm{k}-9=6(\mathrm{k}+1)$
$\Rightarrow \mathrm{k}-9=6 \mathrm{k}+6$
$\Rightarrow \mathrm{k}-6 \mathrm{k}=6+9$
$\Rightarrow-5 k=15$
$\Rightarrow \mathrm{k}=-3$
$\frac{2 k+4}{k+1}=1$
$\Rightarrow 2 \mathrm{k}+4=1(\mathrm{k}+1)$
$\Rightarrow 2 \mathrm{k}+4=\mathrm{k}+1$
$\Rightarrow 2 \mathrm{k}-\mathrm{k}=1-4$
$\Rightarrow \mathrm{k}=-3$
The value of $k$ is the same in all three times
Hence, A, B and C are collinear

## 15. Question

Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which $Q$ divides PR.

## Answer

Given: $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ and $P, Q$ and $R$ are collinear
To find: the ratio in which $Q$ divides $P R$

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let Q divides PR in ratio k : 1
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$


Coordinates of Q using section formula:
$\Rightarrow(5,4,-6)=\left(\frac{\mathrm{k}(9)+1(3)}{\mathrm{k}+1}, \frac{\mathrm{k}(8)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}(-10)+1(-4)}{\mathrm{k}+1}\right)$
$\Rightarrow(5,4,-6)=\left(\frac{9 \mathrm{k}+3}{\mathrm{k}+1}, \frac{8 \mathrm{k}+2}{\mathrm{k}+1}, \frac{-10 \mathrm{k}-4}{\mathrm{k}+1}\right)$
On comparing:
$\frac{9 k+3}{k+1}=5$
$\Rightarrow 9 \mathrm{k}+3=5(\mathrm{k}+1)$
$\Rightarrow 9 \mathrm{k}+3=5 \mathrm{k}+5$
$\Rightarrow 9 \mathrm{k}-5 \mathrm{k}=5-3$
$\Rightarrow 4 \mathrm{k}=2$
$\Rightarrow \mathrm{k}=\frac{2}{4} \Rightarrow \mathrm{k}=\frac{1}{2}$

## Q divides PR externally in ratio 1:2

## 16. Question

Find the ratio in which the line segment joining the points $(4,8,10)$ and $(6,10,-8)$ is divided by the yz-plane.

## Answer

Given: points $A(4,8,10)$ and $B(6,10,-8)$
To find: the ratio in which the line joining given points is divided by the yz-plane

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
the $x$ coordinate is always 0 on $y z-$ plane
Let Point $C(0, y, z)$, and $C$ divides $A B$ in ratio $k$ : 1
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A(4,8,10)$ and $B(6,10,-8)$


Coordinates of C using section formula:
$\Rightarrow(0, y, z)=\left(\frac{k(6)+1(4)}{k+1}, \frac{k(10)+1(8)}{k+1}, \frac{k(-8)+1(10)}{k+1}\right)$
$\Rightarrow(0, \mathrm{y}, \mathrm{z})=\left(\frac{6 \mathrm{k}+4}{\mathrm{k}+1}, \frac{10 \mathrm{k}+8}{\mathrm{k}+1}, \frac{-8 \mathrm{k}+10}{\mathrm{k}+1}\right)$
On comparing:
$\frac{6 k+4}{k+1}=0$
$\Rightarrow 6 \mathrm{k}+4=0(\mathrm{k}+1)$
$\Rightarrow 6 \mathrm{k}+4=0$
$\Rightarrow 6 \mathrm{k}=-4$
$\Rightarrow \mathrm{k}=\frac{-4}{6}$
$\Rightarrow \mathrm{k}=\frac{-2}{3}$
Hence, C divides AB externally in ratio 2:3

## Very Short Answer

## 1. Question

Write the distance of the point $P(2,3,5)$ from the $x y$-plane.

## Answer

Given: Points $P(2,3,5)$
To find: the distance of the point $P$ from $x y$-plane
As we know $z=0$ in $x y$-plane.
The shortest distance of the plane will be the z-coordinate of the point

Hence, the distance of point $\mathbf{P}$ from $x y$-plane is 5 units

## 2. Question

Write the distance of the point $P(3,4,5)$ from the $z$-axis.

## Answer

Given: point $P(3,4,5)$
To find: distance of the point $P$ from the $z$-axis

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As, $x$ and $y$ coordinate on $z$-axis are zero
Let point $D$ on $z$-axis is ( $0,0, z$ )
Direction cosines of $z$-axis are $(0,0,1)$
Direction cosines of PD are $(3-0,4-0,5-z)=(3,4,5-z)$
Let $\overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{b}_{2}}$ are two vectors as shown in the figure:


The dot product of perpendicular vectors is always zero
Therefore, $\overrightarrow{\mathrm{b}_{1}}, \overrightarrow{\mathrm{~b}_{2}}=0$
$\Rightarrow 3 \times 0+4 \times 0+(5-z) \times 1=0$
$\Rightarrow 0+0+5-z=0$
$\Rightarrow z=5$
Hence point $D(0,0,5)$
Distance between point $P(3,4,5)$ and $D(0,0,5)$ is $d$
$=\sqrt{(3-0)^{2}+(4-0)^{2}+(5-5)^{2}}$
$=\sqrt{3^{2}+4^{2}+0^{2}}$
$=\sqrt{9+16+0}$
$=\sqrt{25}$
$=5$
Hence, the distance of the point $\mathbf{P}$ from $\mathbf{z}$-axis is 5 units

## 3. Question

If the distance between the points $P(a, 2,1)$ and $Q(1,-1,1)$ is 5 units, find the value of $a$.

## Answer

Given: distance between the points $\mathrm{P}(\mathrm{a}, 2,1)$ and $\mathrm{Q}(1,-1,1)$ is 5 units
To find: the value of $a$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
$P Q=5$ units
The distance between points $\mathrm{P}(\mathrm{a}, 2,1)$ and $\mathrm{Q}(1,-1,1)$ is PQ
$\Rightarrow \sqrt{(a-1)^{2}+(2-(-1))^{2}+(1-1)^{2}}=5$
$\Rightarrow \sqrt{(a-1)^{2}+3^{2}+0^{2}}=5$
$\Rightarrow \sqrt{\mathrm{a}^{2}+1-2 \mathrm{a}+9+0}=5$
$\Rightarrow \sqrt{a^{2}-2 a+10}=5$
Squaring both sides:
$\Rightarrow a^{2}-2 a+10=25$
$\Rightarrow a^{2}-2 a+10-25=0$
$\Rightarrow a^{2}-2 a-15=0$
$\Rightarrow a^{2}-5 a+3 a-15=0$
$\Rightarrow a(a-5)+3(a-5)=0$
$\Rightarrow(a-5)(a+3)=0$
$\Rightarrow \mathrm{a}=5$ or -3
Hence, the value of a is 5 or -3

## 4. Question

The coordinates of the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$ are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$ respectively. Write the coordinates of its centroid.

## Answer

Given: The mid-points of the sides of the triangle are $P(1,2,-3), Q(3,0,1)$ and $R(-1,1,-4)$.
To find: the coordinates of the centroid

## Formula used:

Centroid of triangle $A B C$ whose vertices are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ is given by,
$\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of C is given by, $\left(\frac{n \mathrm{n}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$

We know the mid-point divides side in the ratio of 1:1.
Therefore,
The coordinates of C is given by,

$$
\left(\frac{x+a}{2}, \frac{y+b}{2}, \frac{z+c}{2}\right)
$$


$P(1,2,-3)$ is mid-point of $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$
Therefore,
$(1,2,-3)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}\right)$
$\Rightarrow(2,4,-6)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)$
$Q(3,0,1)$ is mid-point of $B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$
Therefore,
$(3,0,1)=\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}, \frac{z_{2}+z_{3}}{2}\right)$
$\Rightarrow(6,0,2)=\left(x_{3}+x_{3}, y_{3}+y_{3}, \mathrm{z}_{3}+\mathrm{z}_{3}\right)$
$R(-1,1,-4)$ is mid-point of $A\left(x_{1}, y_{1}, z_{1}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$
Therefore,
$(-1,1,-4)=\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}, \frac{z_{1}+z_{3}}{2}\right)$
$\Rightarrow(-2,2,-8)=\left(x_{1}+x_{3}, y_{1}+y_{3}, z_{1}+z_{3}\right)$
$x_{1}+x_{2}=2$.
$x_{2}+x_{3}=6$.
$x_{1}+x_{3}=-2$
Adding (1), (2) and (3):
$\Rightarrow x_{1}+x_{2}+x_{2}+x_{3}+x_{1}+x_{3}=2+6-2$
$\Rightarrow 2 x_{1}+2 x_{2}+2 x_{3}=6$
$\Rightarrow 2\left(x_{1}+x_{2}+x_{3}\right)=6$
$\Rightarrow x_{1}+x_{2}+x_{3}=3$
$y_{1}+y_{2}=4$
$y_{2}+y_{3}=0$.
$y_{1}+y_{3}=2$
Adding (4), (5) and (6):
$\Rightarrow y_{1}+y_{2}+y_{2}+y_{3}+y_{1}+y_{3}=4+0+2$
$\Rightarrow 2 \mathrm{y}_{1}+2 \mathrm{y}_{2}+2 \mathrm{y}_{3}=6$
$\Rightarrow 2\left(y_{1}+y_{2}+y_{3}\right)=6$
$\Rightarrow \mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}=3$
$z_{1}+z_{2}=-6$
$z_{2}+z_{3}=2$
$z_{1}+z_{3}=-8$
Adding (7), (8) and (9):
$\Rightarrow z_{1}+z_{2}+z_{2}+z_{3}+z_{1}+z_{3}=-6+2-8$
$\Rightarrow 2 z_{1}+2 z_{2}+2 z_{3}=-12$
$\Rightarrow 2\left(z_{1}+z_{2}+z_{3}\right)=-12$
$\Rightarrow z_{1}+z_{2}+z_{3}=-6$
Centroid of the triangle
$=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$
$=\left(\frac{3}{3}, \frac{3}{3}, \frac{-6}{3}\right)$
$=(1,1,-2)$

## Hence, the centroid of the triangle is (1, 1, -2)

## 5. Question

Write the coordinates of the foot of the perpendicular from the point $P(1,2,3)$ on the $y$-axis.

## Answer

Given: point $\mathrm{P}(1,2,3)$
To find: coordinates of the foot of the perpendicular from the point on the $y$-axis

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As $x$ and $z$ coordinate on the $y$-axis is zero
Let point $D$ is the point of the foot of perpendicular on the $y$-axis from point $P$ be $(0, y, 0)$

Direction cosines of $y$-axis are $(0,1,0)$
Direction cosines of PD are $(1-0,2-y, 3-0)=(1,2-y, 3)$
Let $\overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{b}_{2}}$ are two vectors as shown in the figure:


The dot product of perpendicular vectors is always zero
Therefore, $\overrightarrow{\mathrm{b}_{1}} \cdot \overrightarrow{\mathrm{~b}_{2}}=0$
$\Rightarrow 1 \times 0+(2-y) \times 1+3 \times 0=0$
$\Rightarrow 0+0+2-\mathrm{y}=0$
$\Rightarrow y=2$
Hence, coordinates of point $\mathbf{D}$ are ( $\mathbf{0}, \mathbf{2}, \mathbf{0}$ )

## 6. Question

Write the length of the perpendicular drawn from the point $P(3,5,12)$ on the $x$-axis.

## Answer

Given: point $\mathrm{P}(3,5,12)$
To find: length of the perpendicular drawn from the point $P$ from the $x$-axis

## Formula used:

The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As, $y$ and $z$ coordinate on $x$-axis are zero
Let point $D$ on $x$-axis is ( $\mathrm{x}, 0,0$ )
Direction cosines of $z$-axis are ( $1,0,0$ )
Direction cosines of PD are $(3-x, 5-0,12-0)=(3-x, 5,12)$
Let $\overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{b}_{2}}$ are two vectors as shown in the figure:


The dot product of perpendicular vectors is always zero
Therefore, $\overrightarrow{\mathrm{b}_{1}} \cdot \overrightarrow{\mathrm{~b}_{2}}=0$
$\Rightarrow(3-x) \times 1+5 \times 0+12 \times 0=0$
$\Rightarrow 3-x+0+0=0$
$\Rightarrow x=3$
Hence point $D(3,0,0)$
Distance between point $P(3,5,12)$ and $D(3,0,0)$ is $d$
$=\sqrt{(3-3)^{2}+(5-0)^{2}+(12-0)^{2}}$
$=\sqrt{0^{2}+5^{2}+12^{2}}$
$=\sqrt{0+25+144}$
$=\sqrt{169}$
$=13$
Hence, the distance of the point $P$ from $x$-axis is 13 units

## 7. Question

Write the coordinates of the third vertex of a triangle having centroid at the origin and two vertices at (3, -5 , 7) and (3, 0, 1).

## Answer

Given: The coordinates of the $A$ and $B$ of the triangle $A B C$ are $(3,-5,7)$ and $(3,0,1)$ respectively. The centroid of the triangle is $(0,0,0)$

To find: the coordinates of vertex $C$

## Formula used:

Centroid of triangle $A B C$ whose vertices are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ is given by, $\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$

Here $A(3,-5,7)$ and $B(3,0,1)$
Centroid of the triangle
$(0,0,0)=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$
$\Rightarrow(0,0,0)=\left(\frac{3+3+x_{3}}{3}, \frac{-5+0+y_{3}}{3}, \frac{7+1+z_{3}}{3}\right)$
$\Rightarrow(0,0,0)=\left(\frac{6+\mathrm{x}_{3}}{3}, \frac{-5+\mathrm{y}_{3}}{3}, \frac{8+\mathrm{z}_{3}}{3}\right)$
On comparing:
$\frac{6+x_{3}}{3}=0$
$\Rightarrow 6+x_{3}=0$
$\Rightarrow x_{3}=-6$
$\frac{-5+y_{3}}{3}=0$
$\Rightarrow-5+y_{3}=0$
$\Rightarrow y_{3}=5$
$\frac{8+z_{3}}{3}=0$
$\Rightarrow 8+z_{3}=0$
$\Rightarrow z_{3}=-8$
Hence, coordinates of vertex $C(-6,5,-8)$

## 8. Question

What is the locus of a point $(x, y, z)$ for which $y=0, z=0$ ?

## Answer

Locus is a moving point which satisfies given conditions
Here, conditions are $y=0$ and $z=0$
Hence, locus for this is $x$-axis whose equation is $y=z=0$

## 9. Question

Find the ratio in which the line segment joining the points $(2,4,5)$ and $(3,-5,4)$ is divided by the yz-plane.

## Answer

Given: points $\mathrm{A}(2,4,5)$ and $\mathrm{B}(3,-5,4)$
To find: the ratio in which the line joining given points is divided by the yz-plane

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m: n$ where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of C is given by,
$\left(\frac{n x+m a}{m+n}, \frac{n y+m b}{m+n}, \frac{n z+m c}{m+n}\right)$
the x coordinate is always 0 on yz -plane Let Point $C(0, y, z)$, and $C$ divides $A B$ in ratio $k: 1$

Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$\mathrm{A}(2,4,5)$ and $\mathrm{B}(3,-5,4)$


Coordinates of C using section formula:
$\Rightarrow(0, y, z)=\left(\frac{k(3)+1(2)}{k+1}, \frac{k(-5)+1(4)}{k+1}, \frac{\mathrm{k}(4)+1(5)}{\mathrm{k}+1}\right)$
$\Rightarrow(0, y, z)=\left(\frac{3 \mathrm{k}+2}{\mathrm{k}+1}, \frac{-5 \mathrm{k}+4}{\mathrm{k}+1}, \frac{4 \mathrm{k}+5}{\mathrm{k}+1}\right)$
On comparing:
$\frac{3 \mathrm{k}+2}{\mathrm{k}+1}=0$
$\Rightarrow 3 \mathrm{k}+2=0(\mathrm{k}+1)$
$\Rightarrow 3 \mathrm{k}+2=0$
$\Rightarrow 3 \mathrm{k}=-2$
$\Rightarrow \mathrm{k}=\frac{-2}{3}$
Hence, C divides AB externally in ratio 2:3

## 10. Question

Find the point on $y$-axis which is at a distance of $\sqrt{10}$ units from the point $(1,2,3)$.

## Answer

Given: point $P(1,2,3)$
To find: coordinates of the foot of the perpendicular from the point on the $y$-axis

## Formula used:

The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As $x$ and $z$ coordinate on the $y$-axis is zero
Let point D any point on y -axis be $(0, y, 0)$
$\mathrm{PD}=\sqrt{10}$
$\Rightarrow P D^{2}=10$
Distance between $\mathrm{P}(1,2,3)$ and $\mathrm{D}(0, \mathrm{y}, 0)$ is PD ,
$=\sqrt{(1-0)^{2}+(2-y)^{2}+(3-0)^{2}}$
$=\sqrt{1^{2}+(2-y)^{2}+3^{2}}$
$=\sqrt{1+(2-y)^{2}+9}$
$=\sqrt{10+(2-y)^{2}}$
Now,
$10+(2-y)^{2}=10$
$\Rightarrow(2-\mathrm{y})^{2}=10-10$
$\Rightarrow(2-y)^{2}=0$
$\Rightarrow 2-\mathrm{y}=0$
$\Rightarrow y=2$
Hence, coordinates of point $D$ are (0, 2, 0)

## 11. Question

Find the point on $x$-axis which is equidistant from the points $A(3,2,2)$ and $B(5,5,4)$.

## Answer

Given: points $A(3,2,2)$ and $B(5,5,4)$
To find coordinates of a point on $x$-axis which is equidistant from given points.

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As, $y$ and $z$ coordinate on $x$-axis are zero
Let point $D$ any point on $x$-axis be $(x, 0,0)$
$A D=B D$
Distance between $B(5,5,4)$ and $D(x, 0,0)$ is $B D$,
$=\sqrt{(5-x)^{2}+(5-0)^{2}+(4-0)^{2}}$
$=\sqrt{5^{2}+(5-x)^{2}+4^{2}}$
$=\sqrt{25+(5-x)^{2}+16}$
$=\sqrt{41+(5-x)^{2}}$
Distance between $A(3,2,2)$ and $D(x, 0,0)$ is $B D$,
$=\sqrt{(3-x)^{2}+(2-0)^{2}+(2-0)^{2}}$
$=\sqrt{2^{2}+(3-x)^{2}+2^{2}}$
$=\sqrt{4+(3-x)^{2}+4}$
$=\sqrt{8+(3-x)^{2}}$
As, $A D=B D$
$\Rightarrow A D^{2}=B D^{2}$
$8+(3-x)^{2}=41+(5-x)^{2}$
$\Rightarrow 8+9+x^{2}-6 x=41+25+x^{2}-10 x$
$\Rightarrow 17-6 x=66-10 x$
$\Rightarrow 10 x-6 x=66-17$
$\Rightarrow 4 \mathrm{x}=49$
$\Rightarrow x=\frac{49}{4}$
Hence, coordinates of point $D$ are $\left(\frac{49}{4}, 0,0\right)$

## 12. Question

Find the coordinates of a point equidistant from the origin and points $A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$.

## Answer

Given: Points are $O(0,0,0), A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$
To find: the coordinates of point which is equidistant from the points
Let required point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
According to question:
$P A=P B=P C=P O$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}=\mathrm{PC}^{2}=\mathrm{PO}^{2}$

## Formula used:

Distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{O}(0,0,0)$ is PO ,
$=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}}$
$=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Distance between $P(x, y, z)$ and $A(a, 0,0)$ is PA,
$=\sqrt{(x-a)^{2}+(y-0)^{2}+(z-0)^{2}}$
$=\sqrt{(x-a)^{2}+y^{2}+z^{2}}$
Distance between $P(x, y, z)$ and $B(0, b, 0)$ is $P B$,
$=\sqrt{(\mathrm{x}-0)^{2}+(\mathrm{y}-\mathrm{b})^{2}+(\mathrm{z}-0)^{2}}$
$=\sqrt{x^{2}+(y-b)^{2}+z^{2}}$
Distance between $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\mathrm{C}(0,0, c)$ is PC ,
$=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-c)^{2}}$
$=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}-\mathrm{c})^{2}}$
As $\mathrm{PO}^{2}=\mathrm{PA}^{2}$
$x^{2}+y^{2}+z^{2}=(x-a)^{2}+y^{2}+z^{2}$
$\Rightarrow x^{2}=x^{2}+a^{2}-2 a x$
$\Rightarrow 2 a x=a^{2}$
$\Rightarrow x=\frac{a}{2}$
As $\mathrm{PO}^{2}=\mathrm{PB}^{2}$
$x^{2}+y^{2}+z^{2}=x^{2}+(y-b)^{2}+z^{2}$
$\Rightarrow y^{2}=y^{2}+b^{2}-2 b y$
$\Rightarrow 2 \mathrm{by}=\mathrm{b}^{2}$
$\Rightarrow \mathrm{y}=\frac{\mathrm{b}}{2}$
As $\mathrm{PO}^{2}=\mathrm{PC}^{2}$
$x^{2}+y^{2}+z^{2}=x^{2}+y^{2}+(z-c)^{2}$
$\Rightarrow \mathrm{z}^{2}=\mathrm{z}^{2}+\mathrm{c}^{2}-2 \mathrm{cz}$
$\Rightarrow 2 c z=c^{2}$
$\Rightarrow \mathrm{z}=\frac{\mathrm{c}}{2}$
Hence point $\mathbf{P}\left(\frac{\mathbf{a}}{\mathbf{2}}, \frac{\mathbf{b}}{\mathbf{2}}, \frac{\mathbf{c}}{\mathbf{2}}\right)$ is equidistant from given points

## 13. Question

Write the coordinates of the point $P$ which is five-sixth of the way from $A(-2,0,6)$ to $B(10,-6,-12)$.

## Answer

Given: Points $A(-2,0,6)$ and $B(10,-6,-12)$
To find: the coordinates of points $P$ which is five-sixth of $A B$

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
Let $A B=6$ units and Point $C(x, y, z)$ is fifth-sixth of $A B$
$\Rightarrow \mathrm{AC}=\frac{5}{6} \times 6=5$
$\Rightarrow C B=6-5=1$
Hence, $A C$ : $C B=5: 1$


Now, we will firstly apply section formula on $A B$ and find coordinates of $C$
Therefore, $\mathrm{m}=5$ and $\mathrm{n}=1$
$A(-2,0,6)$ and $B(10,-6,-12)$
Coordinates of $R$ using section formula:
$\Rightarrow(x, y, z)=\left(\frac{5(10)+1(-2)}{5+1}, \frac{5(-6)+1(0)}{5+1}, \frac{5(-12)+1(6)}{5+1}\right)$
$\Rightarrow(x, y, z)=\left(\frac{50-2}{6}, \frac{-30+0}{6}, \frac{-60+6}{6}\right)$
$\Rightarrow(x, y, z)=\left(\frac{48}{6}, \frac{-30}{6}, \frac{-54}{6}\right)$
$\Rightarrow(x, y, z)=(8,-5,-9)$

## Hence, Coordinates of C are (8, -5, -9)

## 14. Question

If a parallelepiped is formed by the planes drawn through the points $(2,3,5)$ and $(5,9,7)$ parallel to the coordinates planes, then write the lengths of edges of the parallelepiped and length of the diagonal.

## Answer

Given: a parallelepiped is formed by the planes drawn through the points $(2,3,5)$ and $(5,9,7)$ parallel to the coordinates planes.

To find: length of edges of parallelepiped and length of diagonal
Planes parallel to $(2,3,5)$ are:
$x=2, y=3$ and $z=5$
Similarly, planes parallel to $(5,9,7)$ are:
$x=5, y=9$ and $z=7$
Now, let the length of the parallelepiped are $L_{1}, L_{2}$ and $L_{3}$
$L_{1}$ is the length of edge between planes $x=2$ and $x=5$


Clearly, $L_{1}=5-3=2$
$L_{2}$ is the length of an edge between planes $y=3$ and $y=9$


Clearly, $L_{2}=9-3=6$
$L_{3}$ is the length of an edge between planes $z=5$ and $z=7$


Clearly, $L_{3}=7-5=2$

## 15. Question

Determine the point on yz-plane which is equidistant from points $A(2,0,3), B(0,3,2)$ and $C(0,0,1)$.

## Answer

Given: Points $A(2,0,3), B(0,3,2)$ and $C(0,0,1)$
To find: the point on yz-plane which is equidistant from the points
As we know $x=0$ in yz-plane.
Let $\mathrm{Q}(0, y, z)$ any point in yz-plane
According to the question:
$\mathrm{QA}=\mathrm{QB}=\mathrm{QC}$
$\Rightarrow \mathrm{QA}^{2}=\mathrm{QB}^{2}=\mathrm{QC}^{2}$

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
The distance between $Q(0, y, z)$ and $A(2,0,3)$ is $Q A$,
$=\sqrt{(0-2)^{2}+(y-0)^{2}+(z-3)^{2}}$
$=\sqrt{2^{2}+y^{2}+(z-3)^{2}}$
$=\sqrt{4+\mathrm{y}^{2}+(\mathrm{z}-3)^{2}}$
The distance between $Q(0, y, Z)$ and $B(0,3,2)$ is $Q B$,
$=\sqrt{(0-0)^{2}+(y-3)^{2}+(z-2)^{2}}$
$=\sqrt{(z-2)^{2}+(y-3)^{2}}$
Distance between $\mathrm{Q}(0, \mathrm{y}, \mathrm{z})$ and $\mathrm{C}(0,0,1)$ is QC ,
$=\sqrt{(0-0)^{2}+(y-0)^{2}+(z-1)^{2}}$
$=\sqrt{(\mathrm{z}-1)^{2}+\mathrm{y}^{2}}$
As $\mathrm{QA}^{2}=\mathrm{QB}^{2}$
$4+(z-3)^{2}+y^{2}=(z-2)^{2}+(y-3)^{2}$
$\Rightarrow z^{2}+9-6 z+y^{2}+4=z^{2}+4-4 z+y^{2}+9-6 y$
$\Rightarrow-6 z=-4 z-6 y$
$\Rightarrow 6 y-6 z+4 z=0$
$\Rightarrow 6 y-2 z=0$
$\Rightarrow 6 y=2 z$
$\Rightarrow z=\frac{6 y}{2}$
$\Rightarrow z=3 y$
As $\mathrm{QA}^{2}=\mathrm{QC}^{2}$
$4+(z-3)^{2}+y^{2}=(z-1)^{2}+y^{2}$
$\Rightarrow z^{2}+9-6 z+y^{2}+4=z^{2}+1-2 z+y^{2}$
$\Rightarrow 13-6 z=1-2 z$
$\Rightarrow 13-1=6 z-2 z$
$\Rightarrow 4 z=12$
$\Rightarrow z=3$
Put the value of $z$ from (1):
$\Rightarrow \mathrm{y}=\frac{\mathrm{z}}{3}$
$\Rightarrow y=\frac{3}{3}$
$\Rightarrow y=1$
Hence point $\mathbf{Q}(\mathbf{0}, \mathbf{1}, \mathbf{3})$ in yz-plane is equidistant from $A, B$ and $C$

## 6. Question

If the origin is the centroid of a triangle $A B C$ having vertices $A(a, 1,3), B(-2, b,-5)$ and $C(4,7, c)$, find the values of $a, b, c$.

## Answer

Given: The coordinates of the $A, B$ and $C$ of the triangle $A B C$ are $(a, 1,3),(-2, b,-5)$ and $(4,7, c)$ respectively. The centroid of the triangle is $(0,0,0)$

To find: the values of $a, b, c$

## Formula used:

Centroid of triangle $A B C$ whose vertices are $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ is given by,
$\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$
Here $A(a, 1,3), B(-2, b,-5)$ and $C(4,7, c)$
Centroid of the triangle
$(0,0,0)=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}}{3}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}}{3}\right)$
$\Rightarrow(0,0,0)=\left(\frac{a-2+4}{3}, \frac{-2+b+7}{3}, \frac{3-5+c}{3}\right)$
$\Rightarrow(0,0,0)=\left(\frac{a+2}{3}, \frac{b+5}{3}, \frac{c-2}{3}\right)$
On comparing:
$\frac{a+2}{3}=0$
$\Rightarrow a+2=0$
$\Rightarrow a=-2$
$\frac{b+5}{3}=0$
$\Rightarrow b+5=0$
$\Rightarrow \mathrm{b}=-5$
$\frac{c-2}{3}=0$
$\Rightarrow \mathrm{c}-2=0$
$\Rightarrow \mathrm{c}=2$
Hence, values of $a, b$ and $c$ are -2,-5, 2

## MCQ

## 1. Question

The ratio in which the line joining $(2,4,5)$ and $(3,5,-9)$ is divided by the yz-plane is
A. $2: 3$
B. $3: 2$
C. $-2: 3$
D. $4:-3$

## Answer

Given: points $A(2,4,5)$ and $B(3,5,-9)$
To find: the ratio in which the line joining given points is divided by the yz-plane

## Formula used:

## Section Formula:

A line $A B$ is divided by $C$ in m:n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
$x$ coordinate is always 0 on yz-plane
Let Point $C(0, y, z)$ and $C$ divides $A B$ in ratio $k: 1$
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A(2,4,5)$ and $B(3,5,-9)$


Coordinates of $C$ using section formula:
$\Rightarrow(0, y, z)=\left(\frac{\mathrm{k}(3)+1(2)}{\mathrm{k}+1}, \frac{\mathrm{k}(5)+1(4)}{\mathrm{k}+1}, \frac{\mathrm{k}(-9)+1(5)}{\mathrm{k}+1}\right)$
$\Rightarrow(0, y, z)=\left(\frac{3 \mathrm{k}+2}{\mathrm{k}+1}, \frac{5 \mathrm{k}+4}{\mathrm{k}+1}, \frac{-9 \mathrm{k}+5}{\mathrm{k}+1}\right)$
On comparing:
$\frac{3 \mathrm{k}+2}{\mathrm{k}+1}=0$
$\Rightarrow 3 \mathrm{k}+2=0(\mathrm{k}+1)$
$\Rightarrow 3 \mathrm{k}+2=0$
$\Rightarrow 3 \mathrm{k}=-2$
$\Rightarrow \mathrm{k}=\frac{-2}{3}$
Hence, C divides AB externally in ratio 2:3

## 2. Question

The ratio in which the line joining the points $(a, b, c)$ and $(-1,-c,-b)$ is divided by the xy-plane is
A. $a: b$
B. b:c
C. c:a
D. $c: b$

## Answer

Given: points $A(a, b, c)$ and $B(-1,-c,-b)$

To find: the ratio in which the line joining given points is divided by the $x y$-plane

## Formula used:

## Section Formula:

A line $A B$ is divided by $C$ in m:n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by,
$\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
z coordinate is always 0 on $x y$-plane
Let Point $C(x, y, 0)$, and $C$ divides $A B$ in ratio $k$ : 1
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A(a, b, c)$ and $B(-1,-c,-b)$


Coordinates of $C$ using section formula:
$\Rightarrow(x, y, 0)=\left(\frac{k(-1)+1(\mathrm{a})}{\mathrm{k}+1}, \frac{\mathrm{k}(-\mathrm{c})+1(\mathrm{~b})}{\mathrm{k}+1}, \frac{\mathrm{k}(-\mathrm{b})+1(\mathrm{c})}{\mathrm{k}+1}\right)$
$\Rightarrow(\mathrm{x}, \mathrm{y}, 0)=\left(\frac{-\mathrm{k}+\mathrm{a}}{\mathrm{k}+1}, \frac{-\mathrm{ck}+\mathrm{b}}{\mathrm{k}+1}, \frac{-\mathrm{bk}+\mathrm{c}}{\mathrm{k}+1}\right)$
On comparing:
$\frac{-\mathrm{bk}+\mathrm{c}}{\mathrm{k}+1}=0$
$\Rightarrow-b k+c=0(k+1)$
$\Rightarrow-b k=-c$
$\Rightarrow \mathrm{k}=\frac{-\mathrm{c}}{-\mathrm{b}}=\frac{\mathrm{c}}{\mathrm{b}}$
Hence, $\mathbf{C}$ divides $\mathbf{A B}$ internally in ratio $\mathbf{c}$ : $\mathbf{b}$

## 3. Question

If $P(0,1,2), Q(4,-2,1)$ and $O(0,0,0)$ are three points, then $\angle P O Q=$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

## Answer

Given: Points are $P(0,1,2), Q(4,-2,1)$ and $O(0,0,0)$
To check: the value of $\angle P O Q$

## Formula used:

Distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $\mathrm{P}(0,1,2)$ and $\mathrm{Q}(4,-2,1)$ is PQ ,
$=\sqrt{(0-4)^{2}+(1-(-2))^{2}+(2-1)^{2}}$
$=\sqrt{(-4)^{2}+3^{2}+1^{2}}$
$=\sqrt{16+9+1}$
$=\sqrt{26}$
Distance between $\mathrm{Q}(4,-2,1)$ and $\mathrm{O}(0,0,0)$ is QO ,
$=\sqrt{(4-0)^{2}+(-2-0)^{2}+(1-0)^{2}}$
$=\sqrt{4^{2}+(-2)^{2}+1^{2}}$
$=\sqrt{16+4+1}$
$=\sqrt{21}$
Distance between $\mathrm{P}(0,1,2)$ and $\mathrm{O}(0,0,0)$ is PO ,
$=\sqrt{(0-0)^{2}+(1-0)^{2}+(2-0)^{2}}$
$=\sqrt{0^{2}+1^{2}+2^{2}}$
$=\sqrt{0+1+4}$
$=\sqrt{5}$
Now,
$\mathrm{PO}^{2}=5$
$Q^{2}=21$
$\mathrm{PQ}^{2}=26$
Clearly,
$\mathrm{PO}^{2}+\mathrm{QO}^{2}=\mathrm{PQ}^{2}$
A right-angled triangle is a triangle which satisfies Pythagoras Theorem
These points satisfy Pythagoras Theorem
Thus, $\angle \mathbf{P O Q}=\frac{\pi}{2}$

## 4. Question

If the extremities of the diagonal of a square are $(1,-2,3)$ and $(2,-3,5)$, then the length of the side is
A. $\sqrt{6}$
B. $\sqrt{3}$
C. $\sqrt{5}$ D. $\sqrt{7}$

## Answer

Given: Extremities of the diagonal of a square are $P(1,-2,3)$ and $Q(2,-3,5)$
To find: Length of the diagonal

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $P(1,-2,3)$ and $Q(2,-3,5)$ is
$=\sqrt{(1-2)^{2}+(-2-(-3))^{2}+(3-5)^{2}}$
$=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}$
$=\sqrt{1+1+4}$
$=\sqrt{6}$
Hence, Length of the diagonal is $\sqrt{6}$ units

## 5. Question

The points $(5,-4,2),(4,-3,1),(7,6,4)$ and $(8,-7,5)$ are the vertices of
A. a rectangle
B. a square
C. a parallelogram
D. none of these

## Answer

Given: Points are $A(5,-4,2), B(4,-3,1), C(7,6,4)$ and $D(8,-7,5)$
To find: name of the quadrilateral formed by these 4 points

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $A(5,-4,2)$ and $B(4,-3,1)$ is $A B$,
$=\sqrt{(5-4)^{2}+(-4-(-3))^{2}+(2-1)^{2}}$
$=\sqrt{1^{2}+(-1)^{2}+1^{2}}$
$=\sqrt{1+1+1}$
$=\sqrt{3}$
Distance between $B(4,-3,1)$ and $C(7,6,4)$ is $B C$,
$=\sqrt{(4-7)^{2}+(-3-6)^{2}+(1-4)^{2}}$
$=\sqrt{(-3)^{2}+(-9)^{2}+(-3)^{2}}$
$=\sqrt{9+81+9}$
$=\sqrt{99}$
$=3 \sqrt{11}$
The distance between $C(7,6,4)$ and $D(8,-7,5)$ is $C D$,
$=\sqrt{(7-8)^{2}+(6-(-7))^{2}+(4-5)^{2}}$
$=\sqrt{1^{2}+13^{2}+(-1)^{2}}$
$=\sqrt{1+169+1}$
$=\sqrt{171}$
Distance between $A(5,-4,2)$ and $D(8,-7,5)$ is $A D$,
$=\sqrt{(5-8)^{2}+(-4-(-7))^{2}+(2-5)^{2}}$
$=\sqrt{(-3)^{2}+3^{2}+(-3)^{2}}$
$=\sqrt{9+9+9}$
$=3 \sqrt{3}$
Clearly,
No two sides are equal
So, it cannot be square, rectangle or parallelogram .

## 6. Question

In a three dimensional space the equation $x^{2}-5 x+6=0$ represents
A. points
B. planes
C. curves
D. pair of straight lines

## Answer

Given: $x^{2}-5 x+6=0$
$x^{2}-5 x+6=0$
$\Rightarrow x^{2}-3 x-2 x+6=0$
$\Rightarrow x(x-3)-2(x-3)=0$
$\Rightarrow(x-3)(x-2)=0$
$\Rightarrow(x-3)=0$ or $(x-2)=0$
$\Rightarrow \mathrm{x}=3$ or $\mathrm{x}=2$
Both the results represents planes which are parallel to yz-plane
Hence, $\mathbf{x}^{\mathbf{2}}-5 x+6=\mathbf{0}$ represents planes

## 7. Question

Let $(3,4,-1)$ and $(-1,2,3)$ be the endpoints of a diameter of a sphere. Then, the radius of the sphere is equal to
A. 2
B. 3
C. 6
B. 7

## Answer

Given: $P(3,4,-1)$ and $Q(-1,2,3)$ represents diameter of sphere
To find: Radius of the sphere
Formula used:
The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
Therefore,
Distance between $P(3,4,-1)$ and $Q(-1,2,3), P Q$ is
$=\sqrt{(3-(-1))^{2}+(4-2)^{2}+(-1-3)^{2}}$
$=\sqrt{4^{2}+2^{2}+(-4)^{2}}$
$=\sqrt{16+4+16}$
$=\sqrt{36}$
$=6$
So, Diameter $=6$
We know that Diameter $=2$ Radius
$\Rightarrow$ Radius $=\frac{\text { Diameter }}{2}$
$\Rightarrow$ Radius $=\frac{6}{2}=3$
Hence, Radius of the sphere is $\mathbf{3}$ units

## 8. Question

XOZ-plane divides the join of $(2,3,1)$ and $(6,7,1)$
A. $3: 7$
B. $2: 7$
C. $-3: 7$
D. $-2: 7$

## Answer

Given: points $A(2,3,1)$ and $B(6,7,1)$
To find: the ratio in which the line joining given points is divided by the XOZ-plane

## Formula used:

## Section Formula:

$A$ line $A B$ is divided by $C$ in $m$ :n where $A(x, y, z)$ and $B(a, b, c)$.


The coordinates of $C$ is given by, $\left(\frac{\mathrm{nx}+\mathrm{ma}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{ny}+\mathrm{mb}}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{nz}+\mathrm{mc}}{\mathrm{m}+\mathrm{n}}\right)$
the y coordinate is always 0 on XOZ-plane
Let Point $C(x, 0, z)$, and $C$ divides $A B$ in ratio $k$ : 1
Therefore, $\mathrm{m}=\mathrm{k}$ and $\mathrm{n}=1$
$A(2,3,1)$ and $B(6,7,1)$


Coordinates of $C$ using section formula:
$\Rightarrow(x, 0, z)=\left(\frac{k(6)+1(2)}{k+1}, \frac{k(7)+1(3)}{k+1}, \frac{k(1)+1(1)}{k+1}\right)$
$\Rightarrow(\mathrm{x}, 0, \mathrm{z})=\left(\frac{6 \mathrm{k}+2}{\mathrm{k}+1}, \frac{7 \mathrm{k}+3}{\mathrm{k}+1}, \frac{\mathrm{k}+1}{\mathrm{k}+1}\right)$
On comparing:
$\frac{7 k+3}{k+1}=0$
$\Rightarrow 7 \mathrm{k}+3=0(\mathrm{k}+1)$
$\Rightarrow 7 \mathrm{k}+3=0$
$\Rightarrow 7 \mathrm{k}=-3$
$\Rightarrow \mathrm{k}=\frac{-3}{7}$
Hence, C divides AB externally in ratio 3: 7

## 9. Question

What is the locus of a point for which $y=0, z=0$ ?
A. $x$-axis
B. $y$-axis
C. $z$-axis
D. yz-plane

## Answer

Locus is a moving point which satisfies given conditions
Here, conditions are $y=0$ and $z=0$
Hence, locus for this is x -axis whose equation is $\mathrm{y}=\mathrm{z}=0$

## 10. Question

the coordinates of the foot of the perpendicular drawn from the point $\mathrm{P}(3,4,5)$ on the yz-plane are
A. $(3,4,0)$
B. $(0,4,5)$
C. $(3,0,5)$
D. $(3,0,0)$

## Answer

Given: Points $\mathrm{P}(3,4,5)$
To find: the coordinates of the foot of the perpendicular drawn from the point $P$ on yz-plane As we know $\mathrm{x}=0$ in yz -plane.

But $y$ and $z$ coordinates will remain the same for the foot of perpendicular.


Hence, the coordinates of the foot of the perpendicular from point $P$ on yz-plane are ( $0,4,5$ )

## 11. Question

The coordinates of the foot of the perpendicular from a point $P(6,7,8)$ on the $x$-axis are
A. $(6,0,0)$
B. $(0,7,0)$
C. $(0,0,8)$
D. $(0,7,8)$

## Answer

Given: point $P(6,7,8)$

To find: coordinates of the foot of the perpendicular from a point $P$ from the $x$-axis

## Formula used:

The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As, $y$ and $z$ coordinate on $x$-axis are zero
Let point $D$ on $x$-axis is ( $x, 0,0$ )
Direction cosines of $z$-axis are ( $1,0,0$ )
Direction cosines of PD are $(6-x, 7-0,8-0)=(6-x, 7,8)$
Let $\overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{b}_{2}}$ are two vectors as shown in the figure:


The dot product of perpendicular vectors is always zero
Therefore, $\overrightarrow{\mathrm{b}_{1}} \cdot \overrightarrow{\mathrm{~b}_{2}}=0$
$\Rightarrow(6-x) \times 1+7 \times 0+8 \times 0=0$
$\Rightarrow 6-\mathrm{x}+0+0=0$
$\Rightarrow x=6$
Hence, coordinates of the foot of the perpendicular i.e. point $D(6,0,0)$

## 12. Question

The perpendicular distance of the point $\mathrm{P}(6,7,8)$ from $x y$-plane is
A. 8
B. 7
C. 6
D. 10

Answer
Given: Points $\mathrm{P}(6,7,8)$
To find: the perpendicular distance of the point $P$ from $x y$-plane
As we know $z=0$ in $x y$-plane.
The shortest distance of the plane will be the $z$-coordinate of the point
Hence, the distance of point $\mathbf{P}$ from $\mathbf{x y}$-plane is $\mathbf{8}$ units

## 13. Question

The length of the perpendicular drawn from the point $P(3,4,5)$ on the $y$-axis is
A. 10
B. $\sqrt{34}$
C. $\sqrt{113}$
D. $5 \sqrt{2}$

## Answer

Given: point $P(3,4,5)$
To find: length of the perpendicular from the point on the $y$-axis

## Formula used:

The distance between any two points ( $a, b, c$ ) and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As $x$ and $z$ coordinate on the $y$-axis is zero
Let point $D$ is the point of the foot of perpendicular on the $y$-axis from point $P$ be ( $0, y, 0$ )
Direction cosines of $y$-axis are ( $0,1,0$ )
Direction cosines of PD are (3-0,4-y,5-0)=(3,4-y,5)
Let $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ are two vectors as shown in the figure:


The dot product of perpendicular vectors is always zero
Therefore, $\overrightarrow{\mathrm{b}_{1}} \cdot \overrightarrow{\mathrm{~b}_{2}}=0$
$\Rightarrow 3 \times 0+(4-y) \times 1+5 \times 0=0$
$\Rightarrow 0+0+4-\mathrm{y}=0$
$\Rightarrow y=4$
Hence point D(0, 4, 0)
Distance between point $P(3,4,5)$ and $D(0,4,0)$ is $d$
$=\sqrt{(3-0)^{2}+(4-4)^{2}+(5-0)^{2}}$
$=\sqrt{3^{2}+0^{2}+5^{2}}$
$=\sqrt{9+0+25}$
$=\sqrt{34}$
Hence, the distance of the point $\mathbf{P}$ from $y$-axis is $\sqrt{\mathbf{3 4}}$ units

## 14. Question

The perpendicular distance of the point $P(3,3,4)$ from the $x$-axis is
A. $3 \sqrt{2}$
B. 5
C. 3
D. 4

## Answer

Given: point $P(3,3,4)$
To find: length of the perpendicular drawn from the point $P$ from the $x$-axis

## Formula used:

The distance between any two points $(a, b, c)$ and $(m, n, o)$ is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As, $y$ and $z$ coordinate on $x$-axis are zero
Let point $D$ on $x$-axis is $(x, 0,0)$
Direction cosines of $z$-axis are $(1,0,0)$
Direction cosines of PD are $(3-x, 3-0,4-0)=(3-x, 3,4)$
Let $\overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{b}_{2}}$ are two vectors as shown in the figure:


The dot product of perpendicular vectors is always zero
Therefore, $\overrightarrow{\mathrm{b}_{1}}, \overrightarrow{\mathrm{~b}_{2}}=0$
$\Rightarrow(3-x) \times 1+3 \times 0+4 \times 0=0$
$\Rightarrow 3-x+0+0=0$
$\Rightarrow x=3$

Hence point $D(3,0,0)$
Distance between point $P(3,3,4)$ and $D(3,0,0)$ is $d$
$=\sqrt{(3-3)^{2}+(3-0)^{2}+(4-0)^{2}}$
$=\sqrt{0^{2}+3^{2}+4^{2}}$
$=\sqrt{0+9+16}$
$=\sqrt{25}$
$=5$
Hence, the distance of the point $\mathbf{P}$ from $\mathbf{x}$-axis is 5 units

## 15. Question

The length of the perpendicular drawn from the point $P(a, b, c)$ from $z$-axis is
A. $\sqrt{a^{2}+b^{2}}$
B. $\sqrt{b^{2}+c^{2}}$
C. $\sqrt{\mathrm{a}^{2}+\mathrm{c}^{2}}$
D. $\sqrt{a^{2}+b^{2}+c^{2}}$

## Answer

Given: point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
To find: distance of the point $P$ from the $z$-axis

## Formula used:

The distance between any two points $(a, b, c)$ and ( $m, n, o$ ) is given by,
$\sqrt{(a-m)^{2}+(b-n)^{2}+(c-o)^{2}}$
As, $x$ and $y$ coordinate on $z$-axis are zero
Let point $D$ on $z$-axis is $(0,0, z)$
Direction cosines of $z$-axis are $(0,0,1)$
Direction cosines of PD are $(a-0, b-0, c-z)=(a, b, c-z)$
Let $\overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{b}_{2}}$ are two vectors as shown in the figure:


The dot product of perpendicular vectors is always zero
Therefore, $\overrightarrow{\mathrm{b}_{1}} \cdot \overrightarrow{\mathrm{~b}_{2}}=0$
$\Rightarrow \mathrm{a} \times 0+\mathrm{b} \times 0+(\mathrm{c}-\mathrm{z}) \times 1=0$
$\Rightarrow 0+0+c-z=0$
$\Rightarrow \mathrm{z}=\mathrm{c}$
Hence point $D(0,0, c)$
Distance between point $P(a, b, c)$ and $D(0,0, c)$ is $d$
$=\sqrt{(a-0)^{2}+(b-0)^{2}+(c-c)^{2}}$
$=\sqrt{a^{2}+b^{2}+0^{2}}$
$=\sqrt{a^{2}+b^{2}}$
Hence, the distance of the point $\mathbf{P}$ from $\mathbf{z}$-axis is $\sqrt{\mathbf{a}^{2}+b^{2}}$ units

