27. Direction Cosines and Directions Ratios

Exercise 27.1

1. Question

If a line makes angles of $90^{\circ}, 60^{\circ}$ and 30° with the positive direction of x, y, and z-axis respectively, find its direction cosines.

Answer

Let us assume the angles that made with the positive direction of x, y, and z-axes be α, β, γ.
Then we get,
$\Rightarrow \alpha=90^{\circ}$
$\Rightarrow \beta=60^{\circ}$
$\Rightarrow \gamma=30^{\circ}$
We know that if a line makes angles of α, β, γ with the positive x, y, and z-axes then the direction cosines of that line is the cosine of that angles made by that line with the axes.

Let us assume that $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are the direction cosines of the line. Then,
$\Rightarrow 1=\cos \alpha$
$\Rightarrow \mathrm{m}=\cos \beta$
$\Rightarrow \mathrm{n}=\cos \gamma$
We substitute the values of α, β, γ in the above equations for the values of $\mathrm{I}, \mathrm{m}, \mathrm{n}$.
$\Rightarrow \mathrm{l}=\cos \left(90^{\circ}\right)$
$\Rightarrow \mathrm{I}=0$
$\Rightarrow \mathrm{m}=\cos \left(60^{\circ}\right)$
$\Rightarrow \mathrm{m}=\frac{1}{2}$
$\Rightarrow \mathrm{n}=\cos \left(30^{\circ}\right)$
$\Rightarrow \mathrm{n}=\frac{\sqrt{3}}{2}$
\therefore The direction cosines of the given line is $0, \frac{1}{2}, \frac{\sqrt{3}}{\mathbf{2}}$.
2. Question

If a line has direction ratios $2,-1,-2$, determine its cosines.

Answer

Let us assume the direction ratios of the line be r_{1}, r_{2}, r_{3}.
Then:
$\Rightarrow r_{1}=2$
$\Rightarrow r_{2}=-1$
$\Rightarrow r_{3}=-2$
Let us assume the direction cosines for the line be $\mathrm{I}, \mathrm{m}, \mathrm{n}$
We know that for a line of direction ratios r_{1}, r_{2}, r_{3} and having direction cosines I, m, n has the following
property.
$\Rightarrow 1=\frac{r_{1}}{\sqrt{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}}}$
$\Rightarrow \mathrm{m}=\frac{\mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
$\Rightarrow \mathrm{n}=\frac{\mathrm{r}_{3}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
Let us substitute the values of r_{1}, r_{2}, r_{3} to find the values of l, m, n.
$\Rightarrow 1=\frac{2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$
$\Rightarrow 1=\frac{2}{\sqrt{4+1+4}}$
$\Rightarrow 1=\frac{2}{\sqrt{9}}$
$\Rightarrow \mathrm{l}=\frac{2}{3}$
$\Rightarrow \mathrm{m}=\frac{-1}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$
$\Rightarrow \mathrm{m}=\frac{-1}{\sqrt{4+1+4}}$
$\Rightarrow \mathrm{m}=\frac{-1}{\sqrt{9}}$
$\Rightarrow \mathrm{m}=\frac{-1}{3}$
$\Rightarrow \mathrm{n}=\frac{-2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$
$\Rightarrow \mathrm{n}=\frac{-2}{\sqrt{4+1+4}}$
$\Rightarrow \mathrm{n}=\frac{-2}{\sqrt{9}}$
$\Rightarrow \mathrm{n}=\frac{-2}{3}$
\therefore The direction cosines for the given line is $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$.

3. Question

Find the direction cosines of the line passing through two points ($-2,4,-5$) and $(1,2,3)$.

Answer

Let us assume the given two points of line be $X(-2,4,-5)$ and $Y(1,2,3)$.
Let us also assume the direction ratios for the given line be $\left(r_{1}, r_{2}, r_{3}\right)$.
We know that direction ratios for a line passing through points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2^{-}}\right.$ z_{1}).

So, using this property the direction ratios for the given line is, $\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(1-(-2), 2-4,3-(-5))$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(1+2,2-4,3+5)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(3,-2,8)$
Let us assume $1, \mathrm{~m}, \mathrm{n}$ be the direction cosines of the given line.

We know that for a line of direction ratios r_{1}, r_{2}, r_{3} and having direction cosines l, m, n has the following property.
$\Rightarrow \mathrm{l}=\frac{\mathrm{r}_{1}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
$\Rightarrow \mathrm{m}=\frac{\mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{a}^{2}}}$
$\Rightarrow^{\mathrm{n}}=\frac{\mathrm{r}_{3}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
Let us substitute the values of r_{1}, r_{2}, r_{3} to find the values of I, m, n.
$\Rightarrow \mathrm{l}=\frac{3}{\sqrt{3^{2}+(-2)^{2}+8^{2}}}$
$\Rightarrow \mathrm{l}=\frac{3}{\sqrt{9+4+64}}$
$\Rightarrow \mathrm{l}=\frac{3}{\sqrt{77}}$
$\Rightarrow \mathrm{m}=\frac{-2}{\sqrt{3^{2}+(-2)^{2}+8^{2}}}$
$\Rightarrow \mathrm{m}=\frac{-2}{\sqrt{9+4+64}}$
$\Rightarrow \mathrm{m}=\frac{-2}{\sqrt{77}}$
$\Rightarrow \mathrm{n}=\frac{8}{\sqrt{3^{2}+(-2)^{2}+8^{2}}}$
$\Rightarrow \mathrm{n}=\frac{8}{\sqrt{9+4+64}}$
$\Rightarrow \mathrm{n}=\frac{8}{\sqrt{77}}$
\therefore The Direction Cosines for the given line is $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$.

4. Question

Using direction ratios show that the points $A(2,3,-4), B(1,-2,3), C(3,8,-11)$ are collinear.

Answer

Given points are:
$\Rightarrow A=(2,3,-4)$
$\Rightarrow B=(1,-2,3)$
$\Rightarrow C=(3,8,-11)$
We know that for points D, E, F to be collinear the direction ratios of any two lines from $D E, D F, E F$ are to be proportional;

We know that direction ratios for a line passing through points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(x_{2}-x_{1}, y_{2^{-}} y_{1}, z_{2^{-}}\right.$ z_{1}).

Let us assume direction ratios for $A B$ is $\left(r_{1}, r_{2}, r_{3}\right)$ and $B C$ is $\left(r_{4}, r_{5}, r_{6}\right)$.
The proportional condition can be stated as $\frac{r_{1}}{r_{4}}=\frac{r_{2}}{r_{5}}=\frac{r_{3}}{r_{6}}=\mathrm{k}$ (constant).
Let us find the direction ratios of $A B$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(1-2,-2-3,3-(-4))$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(1-2,-2-3,3+4)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(-1,-5,7)$
Let us find the direction ratios of $B C$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(3-1,8-(-2),-11-3)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(3-1,8+2,-11-3)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(2,10,-14)$
Now
$\Rightarrow \frac{\mathrm{r}_{1}}{\mathrm{r}_{4}}=\frac{-1}{2}$
$\Rightarrow \frac{r_{2}}{r_{5}}=\frac{-5}{10}$
$\Rightarrow \frac{r_{2}}{r_{5}}=-\frac{1}{2}$
$\Rightarrow \frac{\mathrm{r}_{3}}{\mathrm{r}_{6}}=\frac{7}{-14}$
$\Rightarrow \frac{\mathrm{r}_{3}}{\mathrm{r}_{6}}=-\frac{1}{2}$
From (1),(2),(3) we get,
$\Rightarrow \frac{r_{1}}{r_{4}}=\frac{r_{2}}{r_{5}}=\frac{r_{3}}{r_{6}}=-\frac{1}{2}$
So, from the above relational we can say that points A, B, C are collinear.

5. Question

Find the directional cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2),(-5,-5,-2)$.

Answer

Let us write the given points as:
$\Rightarrow A=(3,5,-4)$
$\Rightarrow B=(-1,1,2)$
$\Rightarrow C=(-5,-5,-2)$
Let us assume the direction ratios of sides $A B$ be $\left(r_{1}, r_{2}, r_{3}\right), B C$ be $\left(r_{4}, r_{5}, r_{6}\right)$ and CA be $\left(r_{7}, r_{8}, r_{9}\right)$
We know that direction ratios for a line passing through points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(x_{2}-x_{1}, y_{2^{-}} y_{1}, z_{2^{-}}\right.$ z_{1}).

Let us find the direction ratios for the side $A B$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(-1-3,1-5,2-(-4))$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(-1-3,1-5,2+4)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(-4,-4,6)$
Let us find the direction ratios for the side $B C$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(-5-(-1),-5-1,-2-2)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(-5+1,-5-1,-2-2)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(-4,-6,-4)$
Let us find the direction ratios for the side CA
$\Rightarrow\left(r_{7}, r_{8}, r_{9}\right)=(3-(-5), 5-(-5),-4-(-2))$
$\Rightarrow\left(r_{7}, r_{8}, r_{9}\right)=(3+5,5+5,-4+2)$
$\Rightarrow\left(r_{7}, r_{8}, r_{9}\right)=(8,10,-2)$
Let us assume l_{1}, m_{1}, n_{1} be the direction cosines of line $A B, l_{2}, m_{2}, n_{2}$ be the direction cosines of line $B C$ and $\mathrm{l}_{3}, \mathrm{~m}_{3}, \mathrm{n}_{3}$ be the direction cosines of line CA.

We know that for a line of direction ratios r_{1}, r_{2}, r_{3} and having direction cosines $1, m, n$ has the following property.
$\Rightarrow \mathrm{l}=\frac{\mathrm{r}_{1}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
$\Rightarrow \mathrm{m}=\frac{\mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
$\Rightarrow \mathrm{n}=\frac{\mathrm{r}_{3}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
Let us follow the above property and find the direction cosines of each side.
Now, let's find the direction cosines of side AB,
$\Rightarrow \mathrm{l}_{1}=\frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+6^{2}}}$
$\Rightarrow l_{1}=\frac{-4}{\sqrt{16+16+36}}$
$\Rightarrow l_{1}=\frac{-4}{\sqrt{64}}$
$\Rightarrow l_{1}=\frac{-4}{\sqrt{4 \times 17}}$
$\Rightarrow l_{1}=\frac{-4}{2 \times \sqrt{17}}$
$\Rightarrow l_{1}=\frac{-2}{\sqrt{17}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-4}{\sqrt{(-4)^{2}+(-4)^{2}+6^{2}}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-4}{\sqrt{16+16+36}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-4}{\sqrt{68}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-4}{\sqrt{4 \times 17}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-4}{2 \times \sqrt{17}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-2}{\sqrt{17}}$
$\Rightarrow \mathrm{n}_{1}=\frac{6}{\sqrt{(-4)^{2}+(-4)^{2}+6^{2}}}$
$\Rightarrow \mathrm{n}_{1}=\frac{6}{\sqrt{16+16+36}}$
$\Rightarrow \mathrm{n}_{1}=\frac{6}{\sqrt{68}}$
$\Rightarrow \mathrm{n}_{1}=\frac{6}{\sqrt{4 \times 17}}$
$\Rightarrow \mathrm{n}_{1}=\frac{6}{2 \times \sqrt{17}}$
$\Rightarrow \mathrm{n}_{1}=\frac{3}{\sqrt{17}}$
The direction cosines for the side $A B$ is $\left(\frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right)$.
Let's find the directional cosines for the side $B C$,
$\Rightarrow l_{2}=\frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}$
$\Rightarrow l_{2}=\frac{-4}{\sqrt{16+36+16}}$
$\Rightarrow l_{2}=\frac{-4}{\sqrt{69}}$
$\Rightarrow l_{2}=\frac{-4}{2 \times \sqrt{17}}$
$\Rightarrow l_{2}=\frac{-2}{\sqrt{17}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-6}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-6}{\sqrt{16+36+16}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-6}{\sqrt{69}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-6}{\sqrt{4 \times 17}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-6}{2 \times \sqrt{17}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-3}{\sqrt{17}}$
$\Rightarrow \mathrm{n}_{2}=\frac{-4}{\sqrt{(-4)^{2}+(-6)^{2}+(-4)^{2}}}$
$\Rightarrow \mathrm{n}_{2}=\frac{-4}{\sqrt{16+36+16}}$
$\Rightarrow \mathrm{n}_{2}=\frac{-4}{\sqrt{68}}$
$\Rightarrow \mathrm{n}_{2}=\frac{-4}{2 \times \sqrt{17}}$
$\Rightarrow \mathrm{n}_{2}=\frac{-2}{\sqrt{17}}$
The direction cosines for the sides BC is $\left(\frac{-2}{\sqrt{17}}, \frac{-3}{\sqrt{17}}, \frac{-2}{\sqrt{17}}\right)$.
Let's find the direction cosines for the side CA,
$\Rightarrow 1_{3}=\frac{8}{\sqrt{8^{2}+10^{2}+(-2)^{2}}}$
$\Rightarrow l_{3}=\frac{8}{\sqrt{64+100+4}}$
$\Rightarrow l_{3}=\frac{8}{\sqrt{168}}$
$\Rightarrow l_{3}=\frac{8}{\sqrt{4 \times 42}}$
$\Rightarrow l_{3}=\frac{8}{2 \times \sqrt{42}}$
$\Rightarrow l_{3}=\frac{4}{\sqrt{42}}$
$\Rightarrow \mathrm{m}_{3}=\frac{10}{\sqrt{8^{2}+10^{2}+(-2)^{2}}}$
$\Rightarrow \mathrm{m}_{3}=\frac{10}{\sqrt{64+100+4}}$
$\Rightarrow \mathrm{m}_{3}=\frac{10}{\sqrt{168}}$
$\Rightarrow \mathrm{m}_{3}=\frac{10}{\sqrt{4 \times 42}}$
$\Rightarrow \mathrm{m}_{3}=\frac{10}{2 \times \sqrt{42}}$
$\Rightarrow \mathrm{m}_{3}=\frac{5}{\sqrt{42}}$
$\Rightarrow \mathrm{n}_{3}=\frac{-2}{\sqrt{8^{2}+10^{2}+(-2)^{2}}}$
$\Rightarrow \mathrm{n}_{3}=\frac{-2}{\sqrt{64+100+4}}$
$\Rightarrow \mathrm{n}_{3}=\frac{-2}{\sqrt{169}}$
$\Rightarrow \mathrm{n}_{3}=\frac{-2}{\sqrt{4 \times 42}}$
$\Rightarrow \mathrm{n}_{3}=\frac{-2}{2 \times \sqrt{42}}$
$\Rightarrow \mathrm{n}_{3}=\frac{-1}{\sqrt{42}}$
The direction cosines for the sides CA is $\left(\frac{4}{\sqrt{42}}, \frac{5}{\sqrt{42}}, \frac{-1}{\sqrt{42}}\right)$.

6. Question

Find the angle between the vectors with direction ratios proportional to $1,-2,1$ and $4,3,2$.

Answer

Let us assume the direction ratios of vectors be $\left(r_{1}, r_{2}, r_{3}\right)$ and $\left(r_{4}, r_{5}, r_{6}\right)$.
Then,
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(1,-2,1)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(4,3,2)$
We know that the angle between the vectors with direction ratios proportional to $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the vectors.
Let α be the angle between the two vectors given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{(1 \times 4)+(-2 \times 3)+(1 \times 2)}{\sqrt{1^{2}+(-2)^{2}+1^{2}} \sqrt{4^{2}+3^{2}+2^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{4-6+2}{\sqrt{1+4+1} \sqrt{16+9+4}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{0}{\sqrt{6} \sqrt{29}}\right)$
$\Rightarrow \alpha=\cos ^{-1}(0)$
$\Rightarrow \alpha=\frac{\pi}{2}$
\therefore The angle between two given vectors is $\frac{\pi}{2}$ or 90°.

7. Question

Find the angle between the vectors with direction ratios proportional to $2,3,-6$ and $3,-4,5$.

Answer

Let us assume the direction ratios of vectors be $\left(r_{1}, r_{2}, r_{3}\right)$ and $\left(r_{4}, r_{5}, r_{6}\right)$.
Then,
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(2,3,-6)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(3,-4,5)$
We know that the angle between the vectors with direction ratios proportional to $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the vectors.
Let α be the angle between the two vectors given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{(2 \times 3)+(3 \times-4)+(-6 \times 5)}{\sqrt{2^{2}+3^{2}+(-6)^{2}} \sqrt{3^{2}+(-4)^{2}+5^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{6-12-30}{\sqrt{4+9+36} \sqrt{9+16+25}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{-36}{\sqrt{49} \sqrt{50}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{-36}{7 \sqrt{2 \times 25}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{-36}{7 \times 5 \times \sqrt{2}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{-18 \sqrt{2}}{35}\right)$
\therefore The angle between two given vectors is $\boldsymbol{\operatorname { c o s }}^{-1}\left(\frac{-18 \sqrt{2}}{35}\right)$.

8. Question

Find the acute angle between the lines whose direction ratios are proportional to 2:3:6 and 1:2:2.

Answer

Given that the direction ratios of the lines are proportional to 2:3:6 and 1:2:2.
Let us denote the lines in the form of vectors as \mathbf{A} and \mathbf{B}.
Let's write the vectors:
$\Rightarrow \mathbf{A}=2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}$
$\Rightarrow \mathbf{B}=1 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$
We know that the angle between the vectors $a_{1} \mathbf{i}+b_{1} \mathbf{j}+c_{1} \mathbf{k}$ and $a_{2} \mathbf{i}+b_{2} \mathbf{j}+c_{2} \mathbf{k}$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Let's assume the angle between the vectors \mathbf{A} and \mathbf{B} be α,
Using the given formula we find the value of α.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{(2 \times 1)+(3 \times 2)+(6 \times 2)}{\sqrt{2^{2}+3^{2}+6^{2}} \sqrt{1^{2}+2^{2}+2^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{2+6+12}{\sqrt{4+9+36} \sqrt{1+4+4}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{20}{\sqrt{49} \sqrt{9}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{20}{7 \times 3}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{20}{21}\right)$
The acute angle between the two vectors is given by $\boldsymbol{\operatorname { c o s }}^{-\mathbf{1}}\left(\frac{\mathbf{2 0}}{\mathbf{2 1}}\right)$.

9. Question

Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

Answer

Let us indicate given points with A, B and C.
$\Rightarrow A=(2,3,4)$
$\Rightarrow B=(-1,-2,1)$
$\Rightarrow C=(5,8,7)$
We know that for points D, E, F to be collinear the direction ratios of any two lines from $D E, D F, E F$ are to be proportional;

We know that direction ratios for a line passing through points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(x_{2}-x_{1}, y_{2^{-}} y_{1}, z_{2^{-}}\right.$ z_{1}).

Let us assume direction ratios for $A B$ is $\left(r_{1}, r_{2}, r_{3}\right)$ and $B C$ is $\left(r_{4}, r_{5}, r_{6}\right)$.
The proportional condition can be stated as $\frac{r_{1}}{r_{4}}=\frac{r_{2}}{r_{5}}=\frac{r_{3}}{r_{6}}=\mathrm{k}$ (constant).
Let us find the direction ratios of $A B$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(-1-2,-2-3,1-4)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(-3,-5,-3)$
Let us find the direction ratios of $B C$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(5-(-1), 8-(-2), 7-1)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(5+1,8+2,7-1)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(6,10,6)$
Now
$\Rightarrow \frac{r_{1}}{r_{4}}=\frac{-3}{6}$
$\Rightarrow \frac{r_{1}}{r_{4}}=\frac{-1}{2}$
$\Rightarrow \frac{r_{2}}{r_{5}}=\frac{-5}{10}$
$\Rightarrow \frac{r_{2}}{r_{5}}=-\frac{1}{2}$
$\Rightarrow \frac{r_{3}}{r_{6}}=\frac{6}{-12}$
$\Rightarrow \frac{r_{3}}{r_{6}}=-\frac{1}{2}$
From (1),(2),(3) we get,
$\Rightarrow \frac{r_{1}}{r_{4}}=\frac{r_{2}}{r_{5}}=\frac{r_{3}}{r_{6}}=-\frac{1}{2}$
So, from the above relational we can say that points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

10. Question

Show that the line through points $(4,7,8)$ and $(2,3,4)$ is parallel to the line through the points $(-1,-2,1)$ and $(1,2,5)$.

Answer

Let us denote the points as follows:
$\Rightarrow A=(4,7,8)$
$\Rightarrow B=(2,3,4)$
$\Rightarrow C=(-1,-2,1)$
$\Rightarrow D=(1,2,5)$
If two lines are said to be parallel the directional ratios of two lines need to be proportional.
Let us assume the direction ratios for line $A B$ be $\left(r_{1}, r_{2}, r_{3}\right)$ and $C D$ be $\left(r_{4}, r_{5}, r_{6}\right)$
We know that direction ratios for a line passing through points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-\right.$ z_{1}).

Let's find the direction ratios for the line $A B$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(2-4,3-7,4-8)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(-2,-4,-4)$
Let's find the direction ratios for the line $C D$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(1-(-1), 2-(-2), 5-1)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(1+1,2+2,5-1)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(2,4,4)$
The proportional condition can be stated as $\frac{r_{1}}{r_{4}}=\frac{r_{2}}{r_{5}}=\frac{r_{a}}{r_{6}}=\mathrm{k}$ (constant).
Let check whether the directional ratios are proportional or not,
$\Rightarrow \frac{r_{1}}{r_{4}}=\frac{-2}{2}$
$\Rightarrow \frac{r_{1}}{r_{4}}=-1$
$\Rightarrow \frac{r_{2}}{r_{5}}=\frac{-4}{4}$
$\Rightarrow \frac{\mathrm{r}_{2}}{\mathrm{r}_{\mathrm{s}}}=-1$
$\Rightarrow \frac{r_{3}}{r_{6}}=\frac{-4}{4}$
$\Rightarrow \frac{\mathrm{r}_{3}}{\mathrm{r}_{6}}=-1$
From (1),(2),(3) we can say that the direction ratios of the lines are proportional. So, the lines are parallel to each other.

11. Question

Show that the line through points $(1,-1,2)$ and $(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and ($3,5,6$).

Answer

Let us denote the points as follows:
$\Rightarrow A=(1,-1,2)$
$\Rightarrow B=(3,4,-2)$
$\Rightarrow C=(0,3,2)$
$\Rightarrow D=(3,5,6)$
If two lines of direction ratios $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ are said to be perpendicular to each other. Then the following condition is need to be satisfied:
$\Rightarrow a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+c_{1} \cdot c_{2}=0$ \qquad
Let us assume the direction ratios for line $A B$ be (r_{1}, r_{2}, r_{3}) and CD be $\left(r_{4}, r_{5}, r_{6}\right)$
We know that direction ratios for a line passing through points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is $\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-\right.$ z_{1}).

Let's find the direction ratios for the line $A B$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(3-1,4-(-1),-2-2)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(3-1,4+1,-2-2)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(2,5,-4)$
Let's find the direction ratios for the line CD
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(3-0,5-3,6-2)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(3,2,4)$
Let us check whether the lines are perpendicular or not using (1)
$\Rightarrow r_{1} \cdot r_{4}+r_{2} \cdot r_{5}+r_{3} \cdot r_{6}=(2 \times 3)+(5 \times 2)+(-4 \times 4)$
$\Rightarrow r_{1} \cdot r_{4}+r_{2} \cdot r_{5}+r_{3} \cdot r_{6}=6+10-16$
$\Rightarrow r_{1} \cdot r_{4}+r_{2} \cdot r_{5}+r_{3} \cdot r_{6}=0$
Since the condition is clearly satisfied, we can say that the given lines are perpendicular to each other.

12. Question

Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$ and $(4,3,-1)$.

Answer

Let us denote the points as follows:
$\Rightarrow \mathrm{O}=(0,0,0)$
$\Rightarrow A=(2,1,1)$
$\Rightarrow B=(3,5,-1)$
$\Rightarrow C=(4,3,-1)$
If two lines of direction ratios $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ are said to be perpendicular to each other. Then the following condition is need to be satisfied:
$\Rightarrow a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+c_{1} \cdot c_{2}=0$ \qquad
Let us assume the direction ratios for line $O A$ be (r_{1}, r_{2}, r_{3}) and $B C$ be $\left(r_{4}, r_{5}, r_{6}\right)$
We know that direction ratios for a line passing through points (x_{1}, y_{1}, z_{1}) and (x_{2}, y_{2}, z_{2}) is ($x_{2}-x_{1}, y_{2}-y_{1}, z_{2^{-}}$ z_{1}).

Let's find the direction ratios for the line OA
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(2-0,1-0,1-0)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(2,1,1)$
Let's find the direction ratios for the line $B C$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(4-3,3-5,-1-(-1))$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(4-3,3-5,-1+1)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(1,-2,0)$
Let us check whether the lines are perpendicular or not using (1)
$\Rightarrow r_{1} \cdot r_{4}+r_{2} \cdot r_{5}+r_{3} \cdot r_{6}=(2 \times 1)+(1 \times-2)+(1 \times 0)$
$\Rightarrow r_{1} \cdot r_{4}+r_{2} \cdot r_{5}+r_{3} \cdot r_{6}=2-2+0$
$\Rightarrow r_{1} \cdot r_{4}+r_{2} \cdot r_{5}+r_{3} \cdot r_{6}=0$
Since the condition is clearly satisfied, we can say that the given lines are perpendicular to each other.

13. Question

Find the angle between the lines whose direction ratios are proportional to $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{b}-\mathrm{c}, \mathrm{c}-\mathrm{a}, \mathrm{a}-\mathrm{b}$.

Answer

Let us assume the direction ratios of vectors be (r_{1}, r_{2}, r_{3}) and (r_{4}, r_{5}, r_{6}).
Then,
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(a, b, c)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(b-c, c-a, a-b)$
We know that the angle between the lines with direction ratios proportional to $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the lines.
Let α be the angle between the two lines given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{(\mathrm{a} \times(\mathrm{b}-\mathrm{c}))+(\mathrm{b} \times(\mathrm{c}-\mathrm{a}))+(\mathrm{c} \times(\mathrm{a}-\mathrm{b}))}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} \sqrt{(\mathrm{~b}-\mathrm{c})^{2}+(\mathrm{c}-\mathrm{a})^{2}+(\mathrm{a}-\mathrm{b})^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{a b-a c+b c-a b+a c-b c}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{b^{2}+c^{2}-2 b c+c^{2}+a^{2}-2 a c+a^{2}+b^{2}-2 a b}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{0}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} \sqrt{2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}+2 \mathrm{c}^{2}-2 \mathrm{ac}-2 \mathrm{bc}-2 \mathrm{ca}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}(0)$
$\Rightarrow \alpha=\frac{\pi}{2}$
\therefore The angle between two given vectors is $\frac{\pi}{2}$ or 90^{0}.

14. Question

If the coordinates of the points A, B, C, D are $(1,2,3),(4,5,7),(-4,3,-6),(2,9,2)$, then find the angle between $A B$ and CD.

Answer

Given points are:
$\Rightarrow A=(1,2,3)$
$\Rightarrow B=(4,5,7)$
$\Rightarrow C=(-4,3,-6)$
$\Rightarrow D=(2,9,2)$
Let us assume the direction ratios for line AB be (r_{1}, r_{2}, r_{3}) and CD be (r_{4}, r_{5}, r_{6})
We know that direction ratios for a line passing through points (x_{1}, y_{1}, z_{1}) and (x_{2}, y_{2}, z_{2}) is ($x_{2}-x_{1}, y_{2}-y_{1}, z_{2^{-}}$ z_{1}).

Let's find the direction ratios for the line $A B$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(4-1,5-2,7-3)$
$\Rightarrow\left(r_{1}, r_{2}, r_{3}\right)=(3,3,4)$
Let's find the direction ratios for the line $C D$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(2-(-4), 9-3,2-(-6))$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(2+4,9-3,2+6)$
$\Rightarrow\left(r_{4}, r_{5}, r_{6}\right)=(6,6,8)$
We know that the angle between the vectors with direction ratios proportional to $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right)$ and $\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right)$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the vectors.
Let α be the angle between the two vectors given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{(3.6)+(3.6)+(4.8)}{\sqrt{3^{2}+3^{2}+4^{2}} \sqrt{6^{2}+6^{2}+8^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{18+18+32}{\sqrt{9+9+16} \sqrt{36+36+64}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{68}{\sqrt{34} \sqrt{136}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{68}{\sqrt{34 \times 136}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{68}{\sqrt{4624}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{68}{68}\right)$
$\Rightarrow \alpha=\cos ^{-1}(1)$
$\Rightarrow \alpha=0^{\circ}$
\therefore The angle between the given two vectors is $\mathbf{0}^{\mathbf{0}}$.

15. Question

Find the direction cosines of the lines, connected by the relations: $1+m+n=0$ and $21 m+21 n-m n=0$.

Answer

Given relations are:
$\Rightarrow 21 \mathrm{~m}+2 \mathrm{ln}-\mathrm{mn}=0$
$\Rightarrow 1+\mathrm{m}+\mathrm{n}=0$
$\Rightarrow \mathrm{I}=(-\mathrm{m}-\mathrm{n})$
Substituting (2) in (1) we get,
$\Rightarrow 2(-m-n) m+2(-m-n) n-m n=0$
$\Rightarrow 2\left(-m^{2}-m n\right)+2\left(-m n-n^{2}\right)-m n=0$
$\Rightarrow-2 m^{2}-2 m n-2 m n-2 n^{2}-m n=0$
$\Rightarrow-2 m^{2}-5 m n-2 n^{2}=0$
$\Rightarrow 2 m^{2}+5 m n+2 n^{2}=0$
$\Rightarrow 2 \mathrm{~m}^{2}+4 \mathrm{mn}+\mathrm{mn}+2 \mathrm{n}^{2}=0$
$\Rightarrow 2 m(m+2 n)+n(m+2 n)=0$
$\Rightarrow(2 m+n)(m+2 n)=0$
$\Rightarrow 2 \mathrm{~m}+\mathrm{n}=0$ or $\mathrm{m}+2 \mathrm{n}=0$
$\Rightarrow 2 \mathrm{~m}=-\mathrm{n}$ or $\mathrm{m}=-2 \mathrm{n}$
$\Rightarrow \mathrm{m}=\frac{-\mathrm{n}}{2}$ or $\mathrm{m}=-2 \mathrm{n}$
Substituting the values of (3) in eq(2), we get
For $1^{\text {st }}$ line:
$\Rightarrow \mathrm{l}=-\left(\frac{-\mathrm{n}}{2}\right)-\mathrm{n}$
$\Rightarrow \mathrm{l}=\frac{\mathrm{n}}{2}-\mathrm{n}$
$\Rightarrow \mathrm{l}=\frac{-\mathrm{n}}{2}$
The direction ratios for the first line is $\left(\frac{-n}{2}, \frac{-n}{2}, n\right)$.
Let us assume I_{1}, m_{1}, n_{1} be the direction cosines of $1^{\text {st }}$ line.
We know that for a line of direction ratios r_{1}, r_{2}, r_{3} and having direction cosines l, m, n has the following property.
$\Rightarrow \mathrm{l}=\frac{\mathrm{r}_{1}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{2}^{2}}}$
$\Rightarrow \mathrm{m}=\frac{\mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
$\Rightarrow \mathrm{n}=\frac{\mathrm{r}_{3}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
Using the above formulas we get,
$\Rightarrow l_{1}=\frac{\frac{-n}{2}}{\sqrt{\left(\frac{-n}{2}\right)^{2}+\left(\frac{-n}{2}\right)^{2}+n^{2}}}$
$\Rightarrow l_{1}=\frac{\frac{-n}{2}}{\sqrt{\frac{n^{2}+n^{2}}{4}+n^{2}}}$
$\Rightarrow \mathrm{l}_{1}=\frac{\frac{-\mathrm{n}}{2}}{\sqrt{\frac{3 \mathrm{n}^{2}}{2}}}$
$\Rightarrow l_{1}=\frac{-1}{\sqrt{6}}$
$\Rightarrow \mathrm{m}_{1}=\frac{\frac{-\mathrm{n}}{2}}{\sqrt{\left(\frac{-\mathrm{n}}{2}\right)^{2}+\left(\frac{-\mathrm{n}}{2}\right)^{2}+\mathrm{n}^{2}}}$
$\Rightarrow \mathrm{m}_{1}=\frac{\frac{-\mathrm{n}}{2}}{\sqrt{\frac{\mathrm{n}^{2}}{4}+\frac{\mathrm{n}^{2}}{4}+\mathrm{n}^{2}}}$
$\Rightarrow \mathrm{m}_{1}=\frac{\frac{-\mathrm{n}}{2}}{\sqrt{\frac{3 \mathrm{n}^{2}}{2}}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-1}{\sqrt{6}}$
$\Rightarrow \mathrm{n}_{1}=\frac{\mathrm{n}}{\sqrt{\left(\frac{\mathrm{n}}{2}\right)^{2}+\left(\frac{-\mathrm{n}}{2}\right)^{2}+\mathrm{n}^{2}}}$
$\Rightarrow \mathrm{n}_{1}=\frac{\mathrm{n}}{\sqrt{\frac{\mathrm{n}^{2}}{4}+\frac{n^{2}}{4}+\mathrm{n}^{2}}}$
$\Rightarrow \mathrm{n}_{1}=\frac{\mathrm{n}}{\sqrt{\frac{\mathrm{n}^{2}}{2}}}$
$\Rightarrow \mathrm{n}_{1}=\sqrt{\frac{2}{3}}$
The Direction cosines for the $1^{\text {st }}$ line is $\left(\frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)$
For $2^{\text {nd }}$ line:
$\Rightarrow I=-(-2 n)-n$
$\Rightarrow \mathrm{I}=2 \mathrm{n}-\mathrm{n}$
$\Rightarrow \mathrm{I}=\mathrm{n}$
The direction ratios for the second line is $(n,-2 n, n)$.
Let us assume I_{2}, m_{2}, n_{2} be the direction cosines of $1^{\text {st }}$ line.
We know that for a line of direction ratios r_{1}, r_{2}, r_{3} and having direction cosines $1, m, n$ has the following property.
$\Rightarrow 1=\frac{r_{1}}{\sqrt{r_{1}^{2}+r_{2}^{2}+r_{3}^{2}}}$
$\Rightarrow \mathrm{m}=\frac{\mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+r_{2}^{2}+r_{3}^{2}}}$
$\Rightarrow \mathrm{n}=\frac{\mathrm{r}_{3}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{3}^{2}}}$
Using the above formulas we get,
$\Rightarrow l_{2}=\frac{n}{\sqrt{n^{2}+(-2 n)^{2}+n^{2}}}$
$\Rightarrow l_{2}=\frac{n}{\sqrt{n^{2}+4 n^{2}+n^{2}}}$
$\Rightarrow l_{2}=\frac{\mathrm{n}}{\sqrt{6 \mathrm{n}^{2}}}$
$\Rightarrow \mathrm{l}_{2}=\frac{\mathrm{n}}{(\sqrt{6} \mathrm{n})}$
$\Rightarrow l_{2}=\frac{1}{\sqrt{6}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{n}}{\sqrt{\mathrm{n}^{2}+(-2 \mathrm{n})^{2}+\mathrm{n}^{2}}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{n}}{\sqrt{\mathrm{n}^{2}+4 \mathrm{n}^{2}+\mathrm{n}^{2}}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{n}}{\sqrt{6 \mathrm{n}^{2}}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{n}}{(\sqrt{6} \mathrm{n})}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2}{\sqrt{6}}$
$\Rightarrow n_{2}=\frac{n}{\sqrt{n^{2}+(-2 n)^{2}+n^{2}}}$
$\Rightarrow \mathrm{n}_{2}=\frac{\mathrm{n}}{\sqrt{\mathrm{n}^{2}+4 \mathrm{n}^{2}+\mathrm{n}^{2}}}$
$\Rightarrow \mathrm{n}_{2}=\frac{\mathrm{n}}{\sqrt{6 \mathrm{n}^{2}}}$
$\Rightarrow \mathrm{n}_{2}=\frac{\mathrm{n}}{(\sqrt{6} \mathrm{n})}$
$\Rightarrow \mathrm{n}_{2}=\frac{1}{\sqrt{6}}$
The Direction Cosines for the $2^{\text {nd }}$ line is $\left(\frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$.

16 A. Question

Find the angle between the lines whose direction cosines are given by the equations:
$1+m+n=0$ and $1^{2}+m^{2}-n^{2}=0$

Answer

Given relations are:
$\left.\Rightarrow\right|^{2}+m^{2}-n^{2}=0$
$\Rightarrow \mid+m+n=0$
$\Rightarrow \mid=-m-n$

Substituting (2) in (1) we get,
$\Rightarrow(-m-n)^{2}+m^{2}-n^{2}=0$
$\Rightarrow m^{2}+n^{2}+2 m n+m^{2}-n^{2}=0$
$\Rightarrow 2 \mathrm{~m}^{2}+2 \mathrm{mn}=0$
$\Rightarrow 2 \mathrm{~m}(\mathrm{~m}+\mathrm{n})=0$
$\Rightarrow 2 \mathrm{~m}=0$ or $\mathrm{m}+\mathrm{n}=0$
$\Rightarrow \mathrm{m}=0$ or $\mathrm{m}=-\mathrm{n}$
Substituting value of m from(3) in (2)
For the $1^{\text {st }}$ line:
$\Rightarrow I=-0-n$
$\Rightarrow \mid=-n$
The Direction Ratios for the first line is $(-n, 0, n)$
For the $2^{\text {nd }}$ line:
$\Rightarrow \mid=-(-n)-n$
$\Rightarrow \mathrm{l}=\mathrm{n}-\mathrm{n}$
$\Rightarrow \mid=0$
The Direction Ratios for the second line is $(0,-n, n)$
We know that the angle between the lines with direction ratios proportional to $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the lines.
Let α be the angle between the two lines given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{(-\mathrm{n} .0)+(0,-\mathrm{n})+(\mathrm{n} . \mathrm{n})}{\sqrt{(-\mathrm{n})^{2}+0^{2}+\mathrm{n}^{2}} \sqrt{0^{2}+(-\mathrm{n})^{2}+\mathrm{n}^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{0+0+\mathrm{n}^{2}}{\sqrt{2 \mathrm{n}^{2}} \sqrt{2 \mathrm{n}^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{\mathrm{n}^{2}}{2 \mathrm{n}^{2}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{1}{2}\right)$
$\Rightarrow \alpha=\frac{\pi}{3}$
\therefore The angle between given two lines is $\frac{\pi}{3}$ or 60°.

16 B. Question

Find the angle between the lines whose direction cosines are given by the equations:
$2 \mathrm{l}-\mathrm{m}+2 \mathrm{n}=0$ and $\mathrm{mn}+\mathrm{nl}+\mathrm{Im}=0$

Answer

Given relations are:
$\Rightarrow \mathrm{mn}+\mathrm{nl}+\mathrm{lm}=0$
$\Rightarrow 2 \mathrm{l}-\mathrm{m}+2 \mathrm{n}=0$
$\Rightarrow \mathrm{m}=2 \mathrm{I}+2 \mathrm{n}$
Substituting (2) in (1) we get,
$\Rightarrow(2 \mathrm{l}+2 \mathrm{n}) \mathrm{n}+\mathrm{nl}+\mathrm{l}(2 \mathrm{l}+2 \mathrm{n})=0$
$\Rightarrow 2\left|n+2 n^{2}+n\right|+\left.2\right|^{2}+2 \mid n=0$
$\Rightarrow 2 n^{2}+5 \ln +\left.2\right|^{2}=0$
$\Rightarrow 2 n^{2}+4\left|n+|n+2|^{2}=0\right.$
$\Rightarrow 2 \mathrm{n}(\mathrm{n}+2 \mathrm{I})+\mathrm{I}(\mathrm{n}+2 \mathrm{I})=0$
$\Rightarrow(2 \mathrm{n}+\mathrm{I})(\mathrm{n}+2 \mathrm{I})=0$
$\Rightarrow 2 \mathrm{n}+\mathrm{l}=0$ or $\mathrm{n}+2 \mathrm{l}=0$
$\Rightarrow \mid=-2 n$ or $2 \mid=-n$
Substituting the values of(3) in (2) we get,
For the $1^{\text {st }}$ line:
$\Rightarrow \mathrm{m}=2(-2 \mathrm{n})+2 \mathrm{n}$
$\Rightarrow \mathrm{m}=-4 \mathrm{n}+2 \mathrm{n}$
$\Rightarrow \mathrm{m}=-2 \mathrm{n}$
The direction ratios for the $1^{\text {st }}$ line is $(-2 n,-2 n, n)$
For the $2^{\text {nd }}$ line:
$\Rightarrow \mathrm{m}=-\mathrm{n}+2 \mathrm{n}$
$\Rightarrow \mathrm{m}=\mathrm{n}$
The direction ratios for the $2^{\text {nd }}$ line is $\left(\frac{-n}{2}, n, n\right)$
We know that the angle between the lines with direction ratios proportional to $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the lines.
Let α be the angle between the two lines given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{\left(-2 \mathrm{n} \times \frac{-\mathrm{n}}{2}\right)+(-2 \mathrm{n} \times \mathrm{n})+(\mathrm{n} \times \mathrm{n})}{\sqrt{(-2 \mathrm{n})^{2}+(-2 \mathrm{n})^{2}+\mathrm{n}^{2}} \sqrt{\left(\frac{\mathrm{n}}{2}\right)^{2}+(\mathrm{n})^{2}+\mathrm{n}^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{n^{2}-2 n^{2}+n^{2}}{\sqrt{4 n^{2}+4 n^{2}+n^{2}} \sqrt{\frac{n^{2}}{4}+n^{2}+n^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{0}{\sqrt{9 \mathrm{n}^{2}} \sqrt{\frac{\mathrm{n}^{2}}{4}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}(0)$
$\Rightarrow \alpha=\frac{\pi}{2}$
\therefore the angle between two lines is $\frac{\pi}{2}$ or 90°.

16 C. Question

Find the angle between the lines whose direction cosines are given by the equations:
$I+2 m+3 n=0$ and $3 l m-4 \ln +m n=0$

Answer

Given relations are:
$\Rightarrow 31 \mathrm{~m}-4 \mathrm{In}+\mathrm{mn}=0$
$\Rightarrow I+2 m+3 n=0$
$\Rightarrow \mid=-2 m-3 n$
Substituting (2) in (1) we get,
$\Rightarrow 3(-2 m-3 n) m-4(-2 m-3 n) n+m n=0$
$\Rightarrow 3\left(-2 m^{2}-3 m n\right)-4\left(-2 m n-3 n^{2}\right)+m n=0$
$\Rightarrow-6 m^{2}-9 m n+8 m n+12 n^{2}+m n=0$
$\Rightarrow 12 n^{2}-6 m^{2}=0$
$\Rightarrow \mathrm{m}^{2}-2 \mathrm{n}^{2}=0$
$\Rightarrow(\mathrm{m}-\sqrt{2} \mathrm{n})(\mathrm{m}+\sqrt{2} \mathrm{n})=0$
$\Rightarrow \mathrm{m}-\sqrt{2} \mathrm{n}=0$ or $\mathrm{m}+\sqrt{2} \mathrm{n}=0$
$\Rightarrow \mathrm{m}=\sqrt{2} \mathrm{n}$ or $\mathrm{m}=-\sqrt{2} \mathrm{n}$
Substituting the values of (3) in (2) we get,
For the $1^{\text {st }}$ line:
$\Rightarrow \mathrm{l}=-2(\sqrt{2} \mathrm{n})-3 \mathrm{n}$
$\Rightarrow \mathrm{l}=-(3+2 \sqrt{2}) \mathrm{n}$
The Direction Ratios for the $1^{\text {st }}$ line is $(-(3+2 \sqrt{2}) n, \sqrt{2} n, n)$.
For the $2^{\text {nd }}$ line:
$\Rightarrow \mathrm{l}=-2(-\sqrt{2} \mathrm{n})-3 \mathrm{n}$
$\Rightarrow \mathrm{l}=(2 \sqrt{2}-3) \mathrm{n}$
The Direction Ratios for the $2^{\text {nd }}$ line is $((2 \sqrt{2}-3) n,-\sqrt{2} n, n)$.
We know that the angle between the lines with direction ratios proportional to $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ is given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the lines.
Let α be the angle between the two lines given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{((-(3+2 \sqrt{2}) \mathrm{n}) \times((2 \sqrt{2}-3) \mathrm{n}))+(\sqrt{2} \mathrm{n} \times-\sqrt{2} \mathrm{n})+(\mathrm{n} \times \mathrm{n})}{\sqrt{(-(3+2 \sqrt{2}) \mathrm{n})^{2}+(\sqrt{2} \mathrm{n})^{2}+\mathrm{n}^{2}} \sqrt{((2 \sqrt{2}-3) \mathrm{n})^{2}+(-\sqrt{2} \mathrm{n})^{2}+\mathrm{n}^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{\mathrm{n}^{2}(9-8-2+1)}{\sqrt{9 \mathrm{n}^{2}+8 \mathrm{n}^{2}+12 \sqrt{2} \mathrm{n}^{2}+2 \mathrm{n}^{2}+\mathrm{n}^{2}} \sqrt{9 \mathrm{n}^{2}+8 \mathrm{n}^{2}-12 \sqrt{2} \mathrm{n}^{2}+2 \mathrm{n}^{2}+\mathrm{n}^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{0 \mathrm{n}^{2}}{\sqrt{20 \mathrm{n}^{2}+12 \sqrt{2} \mathrm{n}^{2}} \sqrt{20 \mathrm{n}^{2}-12 \sqrt{2 \mathrm{n}^{2}}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}(0)$
$\Rightarrow \alpha=\frac{\pi}{2}$
\therefore The angle between two lines is $\frac{\pi}{2}$ or 90°.

16 D. Question

Find the angle between the lines whose direction cosines are given by the equations:
$2 I+2 m-n=0$ and $m n+I n+I m=0$

Answer

Given relations are:
$\Rightarrow \mathrm{mn}+\ln +\mathrm{Im}=0$
$\Rightarrow 2 \mathrm{I}+2 \mathrm{~m}-\mathrm{n}=0$
$\Rightarrow \mathrm{n}=2 \mathrm{I}+2 \mathrm{~m}$
Substituting (2) in (1) we get,
$\Rightarrow \mathrm{m}(2 \mathrm{l}+2 \mathrm{~m})+\mathrm{l}(2 \mathrm{l}+2 \mathrm{~m})+\mathrm{lm}=0$
$\Rightarrow 2 l m+2 m^{2}+\left.2\right|^{2}+2 I m+1 m=0$
$\Rightarrow 2 m^{2}+5|m+2|^{2}=0$
$\Rightarrow 2 m^{2}+4\left|m+|m+2|^{2}=0\right.$
$\Rightarrow 2 \mathrm{~m}(\mathrm{~m}+2 \mathrm{I})+\mathrm{l}(\mathrm{m}+2 \mathrm{I})=0$
$\Rightarrow(2 m+1)(m+2 l)=0$
$\Rightarrow 2 \mathrm{~m}+\mathrm{l}=0$ or $\mathrm{m}+2 \mathrm{l}=0$
$\Rightarrow 2 \mathrm{~m}=-\mid$ or $2 \mid=-\mathrm{m}$
Substituting the values of (3) in (2), we get
For the $1^{\text {st }}$ line:
$\Rightarrow \mathrm{n}=2 \mathrm{l}-\mathrm{I}$
$\Rightarrow \mathrm{n}=1$
The Direction Ratios for the first line is $\left(1,-\frac{1}{2}, 1\right)$
For the $2^{\text {nd }}$ line:
$\Rightarrow \mathrm{n}=-\mathrm{m}+2 \mathrm{~m}$
$\Rightarrow \mathrm{n}=\mathrm{m}$
The Direction Ratios for the second line is $\left(\frac{-\mathrm{m}}{2}, \mathrm{~m}, \mathrm{~m}\right)$
We know that the angle between the lines with direction ratios proportional to $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ is
given by:
$\Rightarrow \theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)$
Using the above formula we calculate the angle between the lines.
Let α be the angle between the two lines given in the problem.
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{\left(1 \times \frac{-m}{2}\right)+\left(\frac{-1}{2} \times m\right)+(1 \times m)}{\sqrt{1^{2}+\left(\frac{-1}{2}\right)^{2}+1^{2}} \sqrt{\left(\frac{-m}{2}\right)^{2}+\mathrm{m}^{2}+\mathrm{m}^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{\frac{-1 m}{2}-\frac{\mathrm{m}}{2}+\operatorname{lm}}{\sqrt{1^{2}+\frac{1^{2}}{4}+1^{2}} \sqrt{\frac{2 m^{2}}{4}+m^{2}+m^{2}}}\right)$
$\Rightarrow \alpha=\cos ^{-1}\left(\frac{0}{\sqrt{\frac{91^{2}}{4}} \sqrt{\frac{9 \mathrm{~m}^{2}}{4}}}\right)$
$\Rightarrow \alpha=\frac{\pi}{2}$
\therefore the angle between two lines is $\frac{\pi}{2}$ or 90°.
Very Short Answer

1. Question

Define direction cosines of a directed line.

Answer

The direction cosines of a directed line can be defined as cosine values of the angles made by the directed line with the x-axis, y-axis and z-axis respectively.

Explanation:
Consider a directed line $\overrightarrow{O A}$, in the three dimensional space.
If α, β and γ be the angles made by the directed line $\overrightarrow{O A}$ with the x-axis, y-axis and z-axis respectively.

In the above figure, the direction cosines of line $O A$ are:
$\operatorname{Cos} \alpha=$ cosine of the angle between x-axis (OX) and the directed line $\overrightarrow{O A}$.
$\cos \beta=$ cosine of the angle between y-axis (OY) and the directed $\operatorname{lin} € \overrightarrow{O A}$.
$\operatorname{Cos} \gamma=$ cosine of the angle between z-axis $(O Z)$ and the directed lin $\overrightarrow{\varrho A}$.

2. Question

What are the direction cosines of X -axis?

Answer

As per the definition of direction cosines, the cosine values of the angles formed by the directed line with the x-axis, y-axis and z-axis.

Here we consider the directed line to be the x-axis.
So from the below figure, we can say,
$\alpha=$ the angle formed by the x-axis with x-axis $=0^{\circ}$
$\beta=$ the angle formed by the x-axis with y-axis $=90^{\circ}$
$Y=$ the angle formed by the x-axis with y-axis $=90^{\circ}$

Therefore,
$\cos \alpha=\cos 0^{\circ}=1$
$\cos \beta=\cos 90^{\circ}=0$
$\cos \gamma=\cos 90^{\circ}=0$
Hence the direction cosines of x-axis are 1, 0,0 .

3. Question

What are the direction cosines of Y-axis?

Answer

As per the definition of direction cosines, the cosine values of the angles formed by the directed line with the x-axis, y-axis and z-axis.

Here we consider the directed line to be the y-axis.
So from the below figure, we can say,
$\alpha=$ the angle formed by the y-axis with x-axis $=90^{\circ}$
$\beta=$ the angle formed by the y-axis with y-axis $=0^{\circ}$
$Y=$ the angle formed by the y-axis with y-axis $=90^{\circ}$

Therefore,
$\cos \alpha=\cos 90^{\circ}=0$
$\cos \beta=\cos 0^{\circ}=1$
$\cos \gamma=\cos 90^{\circ}=0$
Hence the direction cosines of y-axis are $0,1,0$.

4. Question

What are the direction cosines of Z-axis?

Answer

As per the definition of direction cosines, the cosine values of the angles formed by the directed line with the x-axis, y-axis and z-axis.

Here we consider the directed line to be the z-axis.
So from the below figure, we can say,
$\alpha=$ the angle formed by the z-axis with x-axis $=90^{\circ}$
$\beta=$ the angle formed by the z-axis with y-axis $=90^{\circ}$
$Y=$ the angle formed by the x-axis with y-axis $=0^{\circ}$

Therefore,
$\cos \alpha=\cos 90^{\circ}=0$
$\cos \beta=\cos 90^{\circ}=0$
$\cos \gamma=\cos 0^{\circ}=1$
Hence the direction cosines of y-axis are $0,0,1$.

5. Question

Write the distance of the point $(3,-2,3)$ from $X Y, Y Z$ and $X Z$ planes.

Answer

From the given information, A is a point with co-ordinates ($3,-2,3$).

If you consider the projection of $A(3,-2,3)$ on the $X Y$-plane is $H(3,-2,0)$ where the z-coordinate will not exist on XY-plane.

Similarly projection of $A(3,-2,3)$ on the $Y Z$-plane is $T(0,-2,3)$ where the x-coordinate will not exist on YZ-plane.
The projection of $A(3,-2,3)$ on the XZ-plane is $T(3,0,3)$ where the x-coordinate will not exist on XZ-plane.
Now, the distance between A and XY-plane = Distance between points A\&H
Distance between two points is given by $\sqrt{\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2}+\left(c_{2}-c_{1}\right)^{2}}$
Using this formula,
Distance of point A from $X Y=\sqrt{(3-3)^{2}+(-2-(-2))^{2}+(0-3)^{2}}$
$=\sqrt{(0)^{2}+(0)^{2}+(0-3)^{2}}$
$=\sqrt{ } 3^{2}$
$=3$
Distance of point A from $Y Z=\sqrt{(3-0)^{2}+(-2-(-2))^{2}+(3-3)^{2}}$
$=\sqrt{(3)^{2}+(0)^{2}+(0)^{2}}$
$=\sqrt{ } 3^{2}$
$=3$
Distance of point A from $X Z=\sqrt{(3-3)^{2}+(-2-0)^{2}+(3-3)^{2}}$
$=\sqrt{(0)^{2}+(-2)^{2}+(0)^{2}}$
$=\sqrt{ } 2^{2}$
$=2$

6. Question

Write the distance of the point $(3,-5,12)$ from X-axis?

Answer

From the given information, A is a point with co-ordinates (3, $-5,12$).

From the figure, we can say that the projection of point A on x-axis will be point $H(3,0,0)$ as the y-coordinate and z-coordinate will be zeros.

Distance between two points is given by $\sqrt{\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2}+\left(c_{2}-c_{1}\right)^{2}}$
Using this formula,
Distance of point A from x-axis (point H)
$=\sqrt{(3-3)^{2}+(0-(-5))^{2}+(0-12)^{2}}$
$=\sqrt{(0)^{2}+(5)^{2}+(12)^{2}}$
$=\sqrt{0+25+144}$
$=\sqrt{ } 169$
$=13$

7. Question

Write the ratio in which YZ-plane divides the segment joining $P(-2,5,9)$ and $Q(3,-2,4)$.

Answer

Given the points $\mathrm{P}(-2,5,9)$ and $\mathrm{Q}(3,-2,4)$
Let the plane YZ-plane divide line segment PQ at point $G(0, y, z)$ in the ratio m:n.

The coordinates of the point G which divides the line joining points $A\left(x_{1}, \nu_{\underline{1}}, z_{1}\right)$ and $B\left(x_{\underline{2}}, y_{\underline{2}}, z_{2}\right)$ in the ratio m :n is given by
$=\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
Here, we have m:n
$x_{1}=-2 y_{1}=5 z_{1}=9$
$x_{2}=3 y_{2}=-2 z_{2}=4$
By using the above formula, we get,
$=\left(\frac{\mathrm{m} \times(3)+\mathrm{n} \times(-2)}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{m} \times(-2)+\mathrm{n} \times(5)}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{m} \times(4)+\mathrm{m} \times(9)}{\mathrm{m}+\mathrm{n}}\right)$
$=\left(\frac{3 m-2 n}{m+n}, \frac{-2 m+5 n}{m+n}, \frac{4 m+9 m}{m+n}\right)$
Now, this is the same point as $G(0, y, z)$,
As the x-coordinate is zero,
$\frac{3 m-2 n}{m+n}=0$
[Cross Multiplying]
$3 m-2 n=0 \times(m+n)$
$3 \mathrm{~m}-2 \mathrm{n}=0$
$3 \mathrm{~m}=2 \mathrm{n}$
$\frac{\mathrm{m}}{\mathrm{n}}=\frac{2}{3}$
Therefore, the ratio in which the plane-YZ divides the line joining A \& B is 2:3

8. Question

A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z axis.

Answer

Given that, the line makes angles

- 60° with the x-axis.
- 60° with the y-axis.

Let the angle made by the line with z-axis be α.
Now, as per the relation between direction cosines of a line, $\underline{R}^{\underline{2}}+\mathrm{m}^{\underline{2}}+\mathrm{n}^{\underline{2}}=1$ where $1, m, n$ are the direction cosines of a line from x-axis, y-axis and z-axis respectively.

From the problem,
$I=\cos 60^{\circ}=\frac{1}{2}$
$m=\cos 60^{\circ}=\frac{1}{2}$
$\mathrm{n}=\cos \alpha$
By using the formula,
$\mathrm{r}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \alpha=1$
[As $\cos 60^{\circ}$ value is $\frac{1}{2}$]
$\frac{1}{4}+\frac{1}{4}+\cos ^{2} \alpha=1$
$\frac{1}{2}+\cos ^{2} \alpha=1$
$\cos ^{2} \alpha=1-\frac{1}{2}$
$\cos ^{2} \alpha=\frac{1}{2}$
$\cos \alpha=\frac{1}{\sqrt{2}}$
$\left[\right.$ As $\cos 45^{\circ}=\frac{1}{\sqrt{2}}$]
$\alpha=45^{\circ}$
Therefore, the angle made by the line with z-axis is 45°

9. Question

If a line makes angles α, β and γ with the coordinate axes, find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.

Answer

Given, the line makes the angles α, β and γ respectively with x-axis, y-axis and z-axis.
As per the relation between direction cosines of a line, $\underline{\underline{2}}+\underline{m} \underline{\underline{2}}+\underline{n} \underline{\underline{2}}=1$ where $1, m, n$ are the direction cosines of a line from x-axis, y-axis and z-axis respectively.

So, we can say that,
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
Now, we should find the value for
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$
$\cos 2 \alpha$ can be written as $2 \cos ^{2} \alpha-1$,
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=\left(2 \cos ^{2} \alpha-1\right)+\left(2 \cos ^{2} \beta-1\right)+\left(2 \cos ^{2} \gamma-1\right)$
$=2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)-3$
$=2(1)-3$
[From Equation (1)]
$=-1$
Therefore,
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$

10. Question

Write the ratio in which the line segment joining (a, b, c) and $(-a,-c,-b)$ is divided by the xy-plane.

Answer

Given,
The line segment is formed by P and Q points where
Point $P=(a, b, c)$
Point $Q=(-a,-c,-b)$

From the figure, we can clearly see that, the line segment joining points P and Q is meeting the plane $X Y$ at point G.

Let Point G be ($x, y, 0$) as the z-coordinate on $x y$ plane does not exist.
Also let point G divides the line segment joining P and Q in the ratio m :n.
The coordinates of the point G which divides the line joining points $A\left(x_{1}, y_{1_{1}}, z_{1}\right)$ and $B\left(x_{2_{2}}, y_{2}, z_{2}\right)$ in the ratio m :n is given by
$=\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{mz}_{2}+\mathrm{nz}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
Here, we have m:n
$\mathrm{x}_{1}=\mathrm{a} \mathrm{y}_{1}=\mathrm{b} \mathrm{z}_{1}=\mathrm{c}$
$x_{2}=-a y_{2}=-c z_{2}=-b$
By using the above formula, we get,
$=\left(\frac{\mathrm{m} \times(-\mathrm{a})+\mathrm{n} \times(\mathrm{a})}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{m} \times(-\mathrm{c})+\mathrm{n} \times(\mathrm{b})}{\mathrm{m}+\mathrm{n}}, \frac{\mathrm{m} \times(-\mathrm{b})+\mathrm{m} \times(\mathrm{c})}{\mathrm{m}+\mathrm{n}}\right)$
$=\left(\frac{-\mathrm{am}+\mathrm{an}}{\mathrm{m}+\mathrm{n}}, \frac{-\mathrm{cm}+\mathrm{bn}}{\mathrm{m}+\mathrm{n}}, \frac{-\mathrm{bm}+\mathrm{cm}}{\mathrm{m}+\mathrm{n}}\right)$
Now, this is the same point as $G(x, y, 0)$,
As the x -coordinate is zero,
$\frac{-\mathrm{bm}+\mathrm{cn}}{\mathrm{m}+\mathrm{n}}=0$
[Cross Multiplying]
$-\mathrm{bm}+\mathrm{cn}=0 \times(\mathrm{m}+\mathrm{n})$
$-\mathrm{bm}+\mathrm{cn}=0$
$-\mathrm{bm}=-\mathrm{cn}$
$\frac{\mathrm{m}}{\mathrm{n}}=\frac{\mathrm{c}}{\mathrm{b}}$
Therefore, the ratio in which the plane-XY divides the line joining $P \& Q$ is $c: b$

11. Question

Write the inclination of a line with Z-axis, if its direction ratios are proportional to $0,1,-1$.

Answer

Given, the direction ratios of the line are proportional to ($0,1,-1$)

Therefore, consider the direction ratios of the give line can be
$a=0 \times k, b=1 \times k, c=(-1) \times k$
[where k is some proportionality constant]
Now the direction ratios of the line are
$a=0, b=k, c=-k$
As we know the direction cosine of z-axis can be given by
$\cos \gamma=n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$ where γ is the angle made by the line with the z-axis.
By using the above formula:
$\cos \gamma=\frac{-\mathrm{k}}{\sqrt{0^{2}+(\mathrm{k})^{2}+(-\mathrm{k})^{2}}}$
$\cos \gamma=\frac{-\mathrm{k}}{\sqrt{2 \mathrm{k}^{2}}}$
$\cos \gamma=\frac{-\mathrm{k}}{\mathrm{k} \sqrt{2}}$
$\cos \gamma=\frac{-1}{\sqrt{2}}$
[As cosine function is negative, the angle become 135° instead of 45°].
$\gamma=\frac{3 \pi}{4}$
The inclination of the line with z-axis is $\frac{3 \pi}{4}$

12. Question

Write the angle between the lines whose direction ratios are proportional to $1,-2,1$ and $4,3,2$.

Answer

Given,

- Direction Ratios of Line1 are proportional to (1,-2,1)
- Direction Ratios of Line2 are proportional to $(4,3,2)$

So we can say that,
Direction ratios of linel
$\mathrm{a}_{1}=1 \times \mathrm{k}, \mathrm{b}_{1}=(-2) \times \mathrm{k}$ and $\mathrm{c}_{1}=1 \times \mathrm{k}$
$\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=-2 \mathrm{k}$ and $\mathrm{c}_{1}=\mathrm{k}$
Direction ratios of line 2
$a_{2}=4 \times p, b_{2}=3 \times p$ and $c_{2}=2 \times p$
$a_{2}=4 p, b_{2}=3 p$ and $c_{2}=2 p$
Now, the angle between the lines with direction ratios a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} is given by
$\cos \theta=\frac{\left|a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right|}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}$
By using this formula,
$\cos \theta=\frac{|(\mathrm{k} \times 4 \mathrm{p})+(-2 \mathrm{k} \times 3 \mathrm{p})+(\mathrm{k} \times 2 \mathrm{p})|}{\sqrt{\mathrm{k}^{2}+(-2 \mathrm{k})^{2}+\mathrm{k}^{2}} \sqrt{(4 \mathrm{p})^{2}+(3 \mathrm{p})^{2}+(2 \mathrm{p})^{2}}}$
$\cos \theta=\frac{|4 \mathrm{kp}-6 \mathrm{kp}+2 \mathrm{kp}|}{\sqrt{\mathrm{k}^{2}+4 \mathrm{k}^{2}+\mathrm{k}^{2}} \sqrt{16 \mathrm{p}^{2}+9 \mathrm{p}^{2}+4 \mathrm{p}^{2}}}$
$\cos \theta=\frac{|0|}{\sqrt{\mathrm{k}^{2}+4 \mathrm{k}^{2}+\mathrm{k}^{2}} \sqrt{16 \mathrm{p}^{2}+9 \mathrm{p}^{2}+4 \mathrm{p}^{2}}}$
$\cos \theta=0$
$\theta=90^{\circ}$
The angle between the lines is 90°.

13. Question

Write the distance of the point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from XOY plane.

Answer

Given point $P(x, y, z)$

From the figure, we can say that Point $E(x, y, 0)$ is the projection of Point P on the $X Y$-plane (the z-coordinate remains zero on XY-plane).

Distance between two points is given by $\sqrt{\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2}+\left(c_{2}-c_{1}\right)^{2}}$
Here the distance between Point $P \& E$ will give the distance of the point P from the $X Y$-plane.
Here $a_{1}=x, b_{1}=y, c_{1}=z$
$a_{2}=x, b_{2}=y, c_{2}=0$
Distance from P to $\mathrm{E}=$
$\sqrt{(x-x)^{2}+(y-y)^{2}+(0-z)^{2}}$
$=\sqrt{ }(-z)^{2}$
$=\sqrt{ }(z)^{2}$
= z
Therefore, the distance between the XY plane and point P is z units.

14. Question

Write the coordinates of the projection of point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on XOZ-plane.

Answer

Given, point $P(x, y, z)$

From the figure, we can clearly see the projection of point P on the XOZ plane.

The projection of P on the x-axis will be $(x, 0,0)$
The projection of P on the z-axis will be $(0,0, z)$
By this we can say that, if we are considering the projection of P on the XOZ plane, the coordinates of Y-axis will be zero,

Hence the projection of point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ on the XOZ plane will be point $E(x, o, z)$.

15. Question

Write the coordinates of the projection of the point $P(2,-3,5)$ on Y-axis.

Answer

Given Point P is $(2,-3,5)$

From the figure, we can see that Point E is the projection of $P(2,-3,5)$ on the Y-axis.
All the points on the y-axis are of the form $(0, y, 0)$.
Hence, the projection of point P on y-axis will be $(0,-3,0)$.

16. Question

Find the distance of the point $(2,3,4)$ from the x-axis.

Answer

Given,
The point is $(2,3,4)$. Let this point be P.

From the figure, point $E(2,0,0)$ is the projection of point $P(2,3,4)$ on the x-axis.
The distance between the points P \& E will give the distance of the point P from x-axis.

Distance between two points is given by $\sqrt{\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2}+\left(c_{2}-c_{1}\right)^{2}}$
Here
$a_{1}=2, b_{1}=3, c_{1}=4$ and $a_{2}=2, b_{2}=0, c_{2}=0$
Distance between P and x-axis is
$=\sqrt{(2-2)^{2}+(0-3)^{2}+(0-4)^{2}}$
$=\sqrt{(0)^{2}+(-3)^{2}+(-4)^{2}}$
$=\sqrt{9+16}$
$=\sqrt{ } 25$
$=5$
Therefore the distance between, the x-axis and the Point $P(2,3,4)$ is 5 units.

17. Question

If a line has direction ratios proportional to $2,-1,-2$, then what are its direction consines?

Answer

Given, the direction ratios of the line are proportional to ($2,-1,-2$)
Therefore, consider the direction ratios of the give line can be $a=2 \times k, b=(-1) \times k, c=(-2) \times k$
[where k is some proportionality constant]
Now the direction ratios of the line are
$a=2 k, b=-k, c=-2 k$
As we know the direction cosine ae given by
$\cos \alpha=I=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \cos \beta=m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \cos \gamma=n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
Where α, β and γ are the angles formed by the line with the three axes.
By using the above formula:
$I=\cos \alpha=$
$=\frac{2 \mathrm{k}}{\sqrt{(2 \mathrm{k})^{2}+(-\mathrm{k})^{2}+(-2 \mathrm{k})^{2}}}$
$=\frac{2 \mathrm{k}}{\sqrt{4 \mathrm{k}^{2}+\mathrm{k}^{2}+4 \mathrm{k}^{2}}}$
$=\frac{2 \mathrm{k}}{\sqrt{9 \mathrm{k}^{2}}}$
$=\frac{2 \mathrm{k}}{3 \mathrm{k}}$
Therefore $\cos \alpha=\frac{2}{3}$
$m=\cos \beta=$
$=\frac{-\mathrm{k}}{\sqrt{(2 \mathrm{k})^{2}+(-\mathrm{k})^{2}+(-2 \mathrm{k})^{2}}}$
$=\frac{-\mathrm{k}}{\sqrt{4 \mathrm{k}^{2}+\mathrm{k}^{2}+4 \mathrm{k}^{2}}}$
$=\frac{-\mathrm{k}}{\sqrt{9 \mathrm{k}^{2}}}$
$=\frac{-\mathrm{k}}{3 \mathrm{k}}$
$\cos \beta=\frac{-1}{3}$
$n=\cos \gamma=$
$=\frac{-2 \mathrm{k}}{\sqrt{(2 \mathrm{k})^{2}+(-\mathrm{k})^{2}+(-2 \mathrm{k})^{2}}}$
$=\frac{-2 \mathrm{k}}{\sqrt{4 \mathrm{k}^{2}+\mathrm{k}^{2}+4 \mathrm{k}^{2}}}$
$=\frac{-2 \mathrm{k}}{\sqrt{9 \mathrm{k}^{2}}}$
$=\frac{-2 \mathrm{k}}{3 \mathrm{k}}$
$\cos \gamma=-\frac{2}{3}$
Therefore, the direction cosines are $\frac{2}{3},-\frac{1}{3}-\frac{2}{3}$

18. Question

Write direction cosines of a line parallel to z-axis.

Answer

Given
The line is parallel to z - axis.
So the line would be perpendicular to both x-axis and y-axis.
Hence, the angles formed by the line with x-axis \& y-axis are 90° and 90° respectively.
Also the angle formed by the line with z-axis is 0°.
The direction cosines of a line are given by, $\cos \alpha, \cos \beta, \cos \gamma$. Where α, β and γ are angles formed by the line with the x, y and z axes respectively.

Here
$\alpha=90^{\circ}, \beta=90^{\circ}$ and $\gamma=0^{\circ}$
$\alpha=\cos 90^{\circ}=0$
$\beta=\cos 90^{\circ}=0$
$y=\cos 0^{\circ}=1$
Therefore the direction cosines of the line parallel to z-axis are $(0,0,1)$.

19. Question

If a unit vector $\overrightarrow{\mathrm{a}}$ makes an angle $\frac{\pi}{3}$ with $\hat{\mathrm{i}}, \frac{\pi}{4}$ with $\hat{\mathrm{j}}$ and an acute angle θ with $\hat{\mathrm{k}}$, then find the value of θ.
Answer

Given the unit vector makes,

- an angle of $\frac{\pi}{3}$ with x-axis
- an angle of $\frac{\pi}{4}$ with y-axis
- an angle of θ with z-axis
- θ is acute angle

Let the unit vector $\vec{a} b e: x \hat{\imath}+y \hat{y}+z \hat{k}$
As given it is a unit vector,
Therefore $|\vec{a}|=1$
As the angle between in \vec{a} and x-axis is $\frac{\pi}{3}$, the scalar product of the vectors can be performed.
The scalar product of the two vectors is given by
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\overrightarrow{\mathrm{a}} \cdot \hat{\imath}=|\overrightarrow{\mathrm{a}}||\hat{1}| \cos \frac{\pi}{3}$
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot \hat{\imath}=1 \times 1 \times \cos \frac{\pi}{3}$
[as both the vectors are of magnitude 1].
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(1 \hat{\imath}+0 \hat{\jmath}+0 \hat{k})=1 \times 1 \times \cos \frac{\pi}{3}$
$(x \times 1)+(y \times 0)+(z \times 0)=\frac{1}{2}$
$x=\frac{1}{2}$
As the angle between in \vec{a} and y-axis is $\frac{\pi}{4}$, the scalar product of the vectors can be performed.
$\vec{a} \cdot \hat{\jmath}=|\vec{a}||\hat{\jmath}| \cos \frac{\pi}{4}$
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot \hat{\jmath}=1 \times 1 \times \cos \frac{\pi}{4}$
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(0 \hat{\imath}+1 \hat{\jmath}+0 \hat{k})=1 \times 1 \times \cos \frac{\pi}{4}$
$(x \times 0)+(y \times 1)+(z \times 0)=\frac{1}{\sqrt{2}}$
$y=\frac{1}{\sqrt{2}}$
Similarly the angle between in \vec{a} and y-axis is θ, the scalar product of the vectors can be performed.
$\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{k}}=|\overrightarrow{\mathrm{a}}||\hat{\mathrm{k}}| \cos \frac{\pi}{4}$
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot \hat{k}=1 \times 1 \times \cos \theta$
$(x \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{zk}) \cdot(0 \hat{\imath}+0 \hat{\mathrm{j}}+1 \hat{\mathrm{k}})=1 \times 1 \times \cos \theta$
$(\mathrm{x} \times 0)+(\mathrm{y} \times 0)+(\mathrm{z} \times 1)=\cos \theta$
$\mathrm{z}=\cos \theta$

The magnitude of a vector $x \underline{\underline{i}}+y \hat{\underline{i}}+z \hat{\underline{k}}$ is given by $\sqrt{x^{2}+y^{2}+z^{2}}$.

Now consider the magnitude of the vector \vec{a}
$1=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\cos ^{2} \theta}$
$1=\sqrt{\frac{1}{4}+\frac{1}{2}+\cos ^{2} \theta}$
[Squaring on both sides]
$1=\frac{3}{4}+\cos ^{2} \theta$
$\cos ^{2} \theta=1-\frac{3}{4}$
$\cos ^{2} \theta=\frac{1}{4}$
$\cos \theta= \pm \sqrt{\frac{1}{4}}$
$\cos \theta= \pm \frac{1}{2}$
As given in the question θ is acute angle, so θ belongs to $1^{\text {st }}$ quadrant and is positive.
Therefore $\theta=\frac{\pi}{3}$

20. Question

Write the distance of a point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from x -axis.

Answer

Given,
The point is (a, b, c). Let this point be P.

From the figure, point $\mathrm{E}(\mathrm{a}, 0,0)$ is the projection of point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ on the x -axis.
The distance between the points $P \& E$ will give the distance of the point P from x-axis.
Distance between two points is given by $\sqrt{\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{1}\right)^{2}+\left(c_{2}-c_{1}\right)^{2}}$
Here
$a_{1}=a, b_{1}=b, c_{1}=c$ and $a_{2}=a, b_{2}=0, c_{2}=0$
Distance between P and x -axis is
$=\sqrt{(a-a)^{2}+(0-b)^{2}+(0-c)^{2}}$
$=\sqrt{(0)^{2}+(-b)^{2}+(-c)^{2}}$
$=\sqrt{b^{2}+c^{2}}$
Therefore the distance between, the x-axis and the Point $P(a, b, c)$ is $\sqrt{b^{2}+c^{2}}$ units.

21. Question

If a line makes angle 90° and 60° respectively with positive directions of x an y axe, find the angle which it makes with the positive direction of z-axis.

Answer

Given a line makes,

- an angle of 90° with x-axis
- an angle of 60° with y-axis

So, let the angle made by the line with z-axis is θ
Now, as per the relation between direction cosines of a line, $\underline{R}+m \underline{\underline{2}}+n \underline{2}=1$ where $1, m, n$ are the direction cosines of a line from x-axis, y-axis and z-axis respectively.

From the problem,
$I=\cos 90^{\circ}=0$
$\mathrm{m}=\cos 60^{\circ}=\frac{1}{2}$
$\mathrm{n}=\cos \theta$
By using the formula,
$\mathrm{r}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$0^{2}+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \theta=1$
$\frac{1}{4}+\cos ^{2} \theta=1$
$\cos ^{2} \theta=1-\frac{1}{4}$
$\cos ^{2} \theta=\frac{3}{4}$
$\cos \theta= \pm \frac{\sqrt{3}}{2}$
As the angle made by the line with positive z-axis, so the cosine angle is positive.
Therefore, $\cos \theta=\frac{\sqrt{3}}{2}$
Hence $\theta=30^{\circ}$.

