26. Scalar Triple Product

Exercise 26.1

1 A. Question

Evaluate the following :
$[\hat{\mathrm{i}} \hat{\mathrm{j}} \hat{\mathrm{k}}]+[\hat{\mathrm{j}} \hat{\mathrm{k}} \hat{\mathrm{i}}]+[\hat{\mathrm{k}} \hat{\mathrm{i}} \hat{\mathrm{j}}]$

Answer

Formula: -
(i) $[\vec{a} \vec{b} \vec{c}]=\vec{a}(\vec{b} \times \vec{c})=\vec{b} .(\vec{c} \times \vec{a})=\vec{c} \cdot(\vec{a} \times \vec{b})$
(ii) $\hat{1} \cdot \hat{\mathrm{I}}=1, \hat{\mathrm{\jmath}} \cdot \hat{\mathrm{~J}}=1, \hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1$
(iii) $\vec{i} \times \vec{\jmath}=\vec{k}, \vec{j} \times \vec{k}=\vec{i}, \vec{k} \times \vec{i}=\vec{\jmath}$
we have
$[\hat{1} \hat{\jmath} \hat{\mathrm{k}}]+[\hat{\jmath} \hat{\mathrm{k}} \hat{1}]+[\hat{\mathrm{k}} \hat{\mathrm{i}}]=(\hat{\mathrm{i}} \times \hat{\mathrm{\jmath}}) \cdot \hat{\mathrm{k}}+(\hat{\mathrm{\jmath}} \times \hat{\mathrm{k}}) \cdot \hat{\mathrm{i}}+(\hat{\mathrm{k}} \times \hat{\mathrm{\imath}}) \cdot \hat{\jmath}$
using Formula(i) and (iii)
$\Rightarrow[\hat{1} \hat{\mathrm{j}} \hat{\mathrm{k}}]+[\hat{\mathrm{j} \hat{k} \hat{i} \hat{i}]+[\hat{k} \hat{\mathrm{k}}]}]=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}+\hat{\mathrm{i}} . \hat{\mathrm{i}}+\hat{\mathrm{j}} \cdot \hat{\jmath}$
$\Rightarrow[\hat{1} \hat{\mathrm{j}} \mathrm{k}]+[\hat{\mathrm{j} k} \hat{\mathrm{k}} \mathrm{i}]+[\hat{\mathrm{k} i \hat{j}}]=1+1+1=3$
therefore, using Formula (ii)
$[\hat{1} \hat{\mathrm{j}} \hat{\mathrm{k}}]+[\hat{\mathrm{j} \hat{k} \hat{1}}]+[\hat{\mathrm{k}} \hat{\mathrm{i}}]=3$

1 B. Question

Evaluate the following :
$[2 \hat{\mathrm{i}} \hat{\mathrm{j}} \hat{\mathrm{k}}]+[\hat{\mathrm{i}} \hat{\mathrm{k}} \hat{\mathrm{j}}]+[\hat{\mathrm{k}} \hat{\mathrm{j}} 2 \hat{\mathrm{i}}]$
Answer
Formula: -
(i) $[\hat{a} \hat{b} \hat{c}]=(\hat{a} \times \hat{b}) \cdot \hat{c}$
(ii) $\hat{1} \cdot \hat{1}=1, \hat{\jmath} \cdot \hat{\jmath}=1, \hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1$
(iii) $\vec{i} \times \vec{\jmath}=\vec{k}, \vec{\jmath} \times \vec{k}=\vec{i}, \vec{k} \times \vec{i}=\vec{\jmath}$

Given: -
we have
$[2 i \hat{\jmath} \hat{\mathrm{k}}]+[\hat{\mathrm{k}} \hat{\mathrm{i}} \mathrm{j}]+[\hat{\mathrm{k}} \hat{\mathrm{i}} \mathrm{j}]=(2 \hat{1} \times \hat{\jmath}) \cdot \hat{\mathrm{k}}+(\hat{\mathrm{i}} \times \hat{\mathrm{j}}) \cdot \hat{\jmath}+(\hat{\mathrm{k}} \times \hat{\mathrm{\jmath}}) \cdot 2 \hat{\mathrm{i}}$
using Formula (i)
$\Rightarrow[2 \hat{\mathrm{i}} \hat{\mathrm{k}}]+[\hat{\mathrm{i} \hat{k}} \hat{\mathrm{j}}]+[\hat{\mathrm{k}} \hat{\mathrm{i}}]=2 \hat{\mathrm{k}} \cdot \hat{\mathrm{k}}+(-\hat{\mathrm{\jmath}}) \cdot \hat{\mathrm{j}}+(-\hat{\mathrm{i}}) \cdot 2 \hat{\mathrm{i}}$
using Formula (ii)
$\Rightarrow[2 \hat{1} \hat{\mathrm{k}} \mathrm{k}]+[\hat{\mathrm{i} k} \hat{\mathrm{k}}]+[\hat{\mathrm{k} i ̂ ̀ j}]=2-1-2$
$\Rightarrow[2 \hat{1} \hat{\jmath} \hat{\mathrm{k}}]+[\hat{\mathrm{i} k} \hat{\mathrm{k}}] \mathrm{j}]+[\hat{\mathrm{k}} \hat{\mathrm{j}} \mathrm{j}]=-1$
therefore,
$[2 \hat{1} \hat{\mathrm{k}} \mathrm{k}]+[\hat{\mathrm{i} \hat{k} \hat{\jmath}]}]+[\hat{\mathrm{k} i ̂ j}]=-1$

2 A. Question

Find $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, when
$\vec{a}=2 \hat{i}-3 \hat{j}, \vec{b}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=3 \hat{i}-\hat{k}$

Answer

Formula: -
if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+$
(i) $c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{lll}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+$ $(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

Given: -
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{\imath}}-3 \hat{\mathrm{\jmath}}, \overrightarrow{\mathrm{~b}}=\hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{\imath}}-\hat{\mathrm{k}}$
using Formula(i)
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
$$

$$
+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

$=2(-1-0)+3(-1+3)$
$=-2+6$
$=4$
therefore,
$[\vec{a} \vec{b} \vec{c}]=4$

2 B. Question

Find $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$, when
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=\hat{j}+\hat{k}$

Answer

Formula: -
(i) If $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+$

$$
(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Given: -
$\overrightarrow{\mathrm{a}}=\hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\hat{\jmath}+\hat{\mathrm{k}}$
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right|$
now, using

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& \quad=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& \quad+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

$=1(1+1)+2(2+0)+3(2-0)$
$=2+4+6=12$
therefore,
$[\vec{a} \vec{b} \vec{c}]=12$

3 A. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$

Answer

Formula : -

$$
\overrightarrow{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}}=\mathrm{b}_{1} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}} \text { and } \overrightarrow{\mathrm{c}}=\mathrm{c}_{1} \hat{1}+\mathrm{c}_{2} \hat{\jmath}+
$$

(i) if $c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c} \overrightarrow{]}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+$ $(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

Given: -
$\overrightarrow{\mathrm{a}}=2 \hat{\imath}+3 \hat{\jmath}, \overrightarrow{\mathrm{~b}}=\hat{\imath}+2 \hat{\jmath}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=3 \hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}}$.
we know that the volume of parallelepiped whose three adjacent edges are
$\vec{a}, \vec{b} \vec{c}$ is equal to $\|[\vec{a} \vec{b} \vec{c}] \mid$.
we have
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$=2(4-1)-3(2+3)+4(-1-6)$
$=-37$
therefore, the volume of the parallelepiped is $[\vec{a} \vec{b} \vec{c}]=|-37|=37$ cubic unit.

3 B. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$

Answer

Formula : -
(i) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+$
$(-1)^{1+3} \mathrm{a}_{13} \cdot\left|\begin{array}{ll}\mathrm{a}_{21} & \mathrm{a}_{22} \\ \mathrm{a}_{31} & \mathrm{a}_{32}\end{array}\right|$
Given: -
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-3 \hat{\jmath}, \overrightarrow{\mathrm{~b}}=\hat{\imath}+2 \hat{\jmath}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\jmath}+2 \hat{\mathrm{k}}$.
we know that the volume of parallelepiped whose three adjacent edges are
$\vec{a}, \vec{b}, \vec{c}$ is equal to $|[\vec{a} \vec{b} \vec{c}]|$.
we have
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & -2\end{array}\right|$
now, using

$$
\begin{aligned}
& \left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right| \\
& \quad=(-1)^{1+1} \mathrm{a}_{11} \cdot\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} \mathrm{a}_{12} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{33}
\end{array}\right| \\
& \quad+(-1)^{1+3} \mathrm{a}_{13} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right|
\end{aligned}
$$

$=2(-4-1)-3(-2+3)+4(-1-6)$
$=-35$
therefore, the volume of the parallelepiped is $[\vec{a} \vec{b} \vec{c}]=|-35|=35$ cubic unit.

3 C. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:
$\vec{a}=11 \hat{i}, \vec{b}=2 \hat{j}, \vec{c}=13 \hat{k}$

Answer

Formula : -
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{lll}
\mathrm{a}_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Given: -
$\overrightarrow{\mathrm{a}}=11 \hat{\mathrm{i}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{j}}, \overrightarrow{\mathrm{c}}=3 \hat{\mathrm{k}}$.
we know that the volume of parallelepiped whose three adjacent edges are $\vec{a}, b \vec{c}, \vec{c}$ is equal to $\|[\vec{a} \vec{b} \vec{c}]\|$.
we have
$[\vec{a} \vec{b} \vec{b}]=\left|\begin{array}{ccc}11 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 13\end{array}\right|$
now, using

$$
\begin{aligned}
& \left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right| \\
& \quad=(-1)^{1+1} \mathrm{a}_{11} \cdot\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
a_{32} & \mathrm{a}_{33}
\end{array}\right|+(-1)^{1+2} \mathrm{a}_{12} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{33}
\end{array}\right| \\
& \\
& \quad+(-1)^{1+3} \mathrm{a}_{13} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right|
\end{aligned}
$$

$=11(26-0)+0+0=286$
therefore, the volume of the parallelepiped is $[\vec{a} \vec{b} \vec{C}]=|286|=286$ cubic unit.

3 D. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:
$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$

Answer

Formula: -
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Given: -
$\vec{a}=\hat{i}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=3 \hat{i}-\hat{\jmath}+2 \hat{k}$.
we know that the volume of parallelepiped whose three adjacent edges are
$\vec{a}, \vec{b} \vec{c}$ is equal to $|[\vec{a} \vec{b} \vec{c}]|$.
we have
$[\overrightarrow{\mathrm{a} b} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$=1(1-2)-1(-1-1)+1(2+1)$
$=4$
therefore, the volume of the parallelepiped is $[\vec{a} \vec{b} \vec{c} \vec{c}]=|4|$
$=4$ cubic unit.

4 A. Question

Show that each of the following triads of vectors is coplanar:
$\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}+7 \hat{k}, \vec{c}=5 \hat{i}+6 \hat{j}+5 \hat{k}$

Answer

Formula :-
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
(iii)Three vectors \vec{a}, \vec{b}, and \vec{c} are coplanar if and only if
$\vec{a} .(\vec{b} \times \vec{c})=0$
Given: -
$\overrightarrow{\mathrm{a}}=\hat{\imath}+2 \hat{\jmath}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=3 \hat{\imath}+2 \hat{\jmath}+7 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=5 \hat{\imath}+6 \hat{\jmath}+5 \hat{\mathrm{k}}$
we know that three vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero $[\vec{a} \vec{b} \vec{c}]=0$.
we have
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}1 & 2 & -1 \\ 3 & 2 & 7 \\ 5 & 6 & 5\end{array}\right|$
using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$=1(10-42)-2(15-35)-1(18-10)$
$=0$.
Hence, the Given vector are coplanar.

4 B. Question

Show that each of the following triads of vectors is coplanar :
$\vec{a}=-4 \hat{i}-6 \hat{j}-2 \hat{k}, \vec{b}=-\hat{i}+4 \hat{j}+3 \hat{k}, \vec{c}=-8 \hat{i}-\hat{j}+3 \hat{k}$

Answer

Formula :-
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b}, and care coplanar if and only if \vec{a}. $(\vec{b} \times \vec{c})=0$

Given: -
$\vec{a}=-4 \hat{\imath}-6 \hat{\jmath}-2 \hat{k}, \vec{b}=-\hat{\imath}+4 \hat{\jmath}+3 \hat{k}, \vec{c}=-8 \hat{\imath}-\hat{\jmath}+3 \hat{k}$
we know that three vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero
$[\vec{a} \vec{b} \vec{c}]=0$.
we have
$[\vec{a} \overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}-4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$=-4(12+13)+6(-3+24)-2(1+32)$
$=0$
hence, the Given vector are coplanar.

4 C. Question

Show that each of the following triads of vectors is coplanar :
$\hat{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \hat{b}=-2 \hat{i}+3 \hat{j}-4 \hat{k}, \hat{c}=\hat{i}-3 \hat{j}+5 \hat{k}$

Answer

Formula : -
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\ \mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\ \mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b} and \vec{c} are coplanar if and only if $\vec{a} .(\vec{b} \times \vec{c})=0$

Given: -
$\hat{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}, \hat{b}=-2 i+3 \hat{\jmath}-4 k, \hat{c}=\hat{\imath}-3 \hat{\jmath}+5 \hat{k}$
we know that three vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=0$.
we have
$[\vec{a} \vec{b} \vec{b}]=\left|\begin{array}{ccc}1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

$=1(15-12)+2(-10+4)+3(6-3)$
$=3-12+9=0$

5 A. Question

Find the value of λ so that the following vectors are coplanar.
$\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{c}=\lambda \hat{i}-\hat{j}+\lambda \hat{k}$

Answer

Formula : -
(i) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b}, and care coplanar if and only if \vec{a}. $(\vec{b} \times \vec{c})=0$

Given: -
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{\imath}}-\hat{\jmath}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{\imath}}+\hat{\jmath}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\lambda \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\lambda \hat{\mathrm{k}}$
we know that vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero
$[\vec{a} \vec{b} \vec{b}]=0$.
we have
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$\Rightarrow 0=1(\lambda-1)+1(2 \lambda+\lambda)+1(-2-\lambda)$
$\Rightarrow 0=\lambda-1+3 \lambda-2-\lambda$
$\Rightarrow 0=3 \lambda-3$
$\Rightarrow \lambda=1$

5 B. Question

Find the value of λ so that the following vectors are coplanar.
$\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}, \vec{c}=\lambda \hat{i}+\lambda \hat{j}+5 \hat{k}$

Answer

Formula : -
(i) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \mathrm{a}_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b} and care coplanar if and only if $\vec{a} .(\vec{b} \times \vec{c})=0$ Given: -
$\overrightarrow{\mathrm{a}}=2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\lambda \hat{\imath}+\lambda \hat{\jmath}+5 \hat{\mathrm{k}}$
we know that vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=0$.
we have
$[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & -3 \\ \lambda & \lambda & 5\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$\Rightarrow 0=2(10+3 \lambda)+1(5+3 \lambda)+1(\lambda-2 \lambda)$
$\Rightarrow 0=8 \lambda+25$
$\Rightarrow \lambda=\frac{-25}{8}$

5 C. Question

Find the value of λ so that the following vectors are coplanar.
$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=3 \hat{i}+\lambda \hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}+2 \hat{k}$

Answer

Formula : -
(i) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3}$ kand \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{b}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii)Three vectors \vec{a}, \vec{b} and $\overrightarrow{c a r e}$ coplanar if and only if $\vec{a} .(\vec{b} \times \vec{c})=0$

Given: -
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\jmath}-3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
we know that vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero
$[\vec{a} \vec{b} \vec{c}]=0$.
we have
$[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}1 & 2 & -3 \\ 3 & \lambda & 1 \\ 1 & 2 & 2\end{array}\right|$
now, using

$$
\begin{aligned}
& \left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right| \\
& \quad=(-1)^{1+1} \mathrm{a}_{11} \cdot\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+(-1)^{1+2} \mathrm{a}_{12} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{33}
\end{array}\right| \\
& \\
& \quad+(-1)^{1+3} \mathrm{a}_{13} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right|
\end{aligned}
$$

$\Rightarrow 0=1(2 \lambda-2)-2(6-1)-3(6-\lambda)$
$\Rightarrow 0=5 \lambda-30$
$\Rightarrow \lambda=6$

5 D. Question

Find the value of λ so that the following vectors are coplanar.
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}=5 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\lambda \hat{\mathrm{i}}-\hat{\mathrm{j}}$

Answer

Formula :-
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b}, and care coplanar if and only if $\vec{a} .(\vec{b} \times \vec{c})=0$

Given: -
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+3 \hat{\jmath}, \overrightarrow{\mathrm{~b}}=5 \hat{\mathrm{k}}, \vec{c}=\lambda \hat{\mathrm{i}}-\hat{\jmath}$
we know that vector $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \vec{c}$ are coplanar if their scalar triple product is zero
$[\vec{a} \vec{b} \vec{c}]=0$.
we have
$[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}1 & 3 & 0 \\ 0 & 0 & 5 \\ \lambda & -1 & 0\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{32} & a_{32}\end{array}\right|$
$\Rightarrow 0=1(0+5)-3(0-5 \lambda)+0$
$\Rightarrow 0=5+15 \lambda$
$\Rightarrow \lambda=\frac{-1}{3}$

6. Question

Show that the four points having position vectors $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}, 2 \hat{i}+5 \hat{j}+10 \hat{k}$ are not coplanar.

Answer

Formula :-
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) if $\overrightarrow{O A}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\overrightarrow{O B}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$, then $O B-O A=\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
(iv) Three vectors \vec{a}, \vec{b}, and care coplanar if and only if \vec{a}. $(\vec{b} \times \vec{c})=0$

Given: -
$\overrightarrow{O A}=6 \hat{i}-7 \hat{\jmath}, \overrightarrow{O B}=16 \hat{\imath}-19 \hat{\jmath}-4 \hat{k}, \overrightarrow{O C}=3 \hat{\jmath}-6 \hat{k}, \overrightarrow{O D}=2 \hat{\imath}+5 \hat{\jmath}+10 \hat{k}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=10 \hat{\mathrm{i}}-12 \hat{\jmath}-4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=-6 \hat{\imath}+10 \hat{\jmath}-6 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OA}}=-4 \hat{i}+12 \hat{j}+10 \hat{k}$
The four points are coplaner if vector $A B, A C, A D$ are coplanar.
$[\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}]=\left|\begin{array}{ccc}10 & -12 & -4 \\ -6 & 10 & -6 \\ -4 & 12 & 10\end{array}\right|$
now, using

$$
\begin{aligned}
&\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
&=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
&+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

$=10(100+72)+12(-60-24)-4(-72+40)=840$
$\neq 0$.
hence the point are not coplanar

7. Question

Show that the points $A(-1,4,-3), B(3,2,-5), C(-3,8,-5)$ and $D(-3,2,1)$ are coplanar.

Answer

Formula: -
(i)if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{22} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b}, and care coplanar if and only if $\vec{a} .(\vec{b} \times \vec{c})=0$
(iv)ifOA $=a_{1 \hat{i}}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\overrightarrow{O B}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$, then $O B-O A$

$$
=\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}
$$

Given: -
$A B=$ position vector of $B-$ position vector of A
$=4 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$A C=$ position vector of $c-$ position vector of A
$=-2 \hat{\mathbf{\imath}}+4 \hat{\mathrm{j}}-2 \hat{\mathbf{k}}$
$A D=$ position vector of $c-$ position vector of A
$=-2 \hat{\mathrm{i}}-2 \hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}$
The four pint are coplanar if the vector are coplanar.
thus,
$[\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}]=\left|\begin{array}{ccc}4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4\end{array}\right|$
now, using

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =4(16-4)+2(-8-4)-2(-4+8)=0
\end{aligned}
$$

hence proved.

8. Question

Show that four points whose position vectors are $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{i}-6 \hat{k}, 2 \hat{i}-5 \hat{j}+10 \hat{k}$ are coplanar.

Answer

Formula :-
(i) if $\overrightarrow{O A}=a_{1 \hat{i}}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\overrightarrow{O B}=b_{1 \hat{i}}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ then $\overrightarrow{O B}-\overrightarrow{O A}=\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
(iii) Three vectors $\overrightarrow{\mathrm{a}}, \mathrm{b} \overrightarrow{ }$, and \vec{c} are coplanar if and only if $\vec{a} \cdot(\vec{b} \times \vec{c})=0$
(iv) If $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{b}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ let
$\overrightarrow{O A}=6 \hat{\imath}-7 \hat{\jmath}, \overrightarrow{O B}=16 \hat{\imath}-19 \hat{\jmath}-4 \hat{k}, \overrightarrow{O C}=3 \hat{\jmath}-6 \hat{k}, O D=2 \hat{\imath}-5 \hat{\jmath}+10 \hat{k}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=10 \hat{\mathrm{\imath}}-12 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=-6 \hat{\mathrm{\imath}}+10 \hat{\jmath}-6 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OA}}=-4 \hat{\imath}+2 \hat{\jmath}+10 \hat{k}$
The four points are coplanar if the vector $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AD}}, \overrightarrow{\mathrm{AC}}$ are coplanar.
$[\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}]=\left|\begin{array}{ccc}10 & -12 & -4 \\ -6 & 10 & -6 \\ -4 & 2 & 10\end{array}\right|$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$=10(100+12)+12(-60-24)-4(-12+40)=0$.
hence the point are coplanar
9. Question

Find the value of for which the four points with position vectors $-\hat{j}-\hat{k}, 4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}, 3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ and $-4 \hat{i}+4 \hat{j}+4 \hat{k}$ are coplanar.

Answer

Formula : -
(i)if $\overrightarrow{O A}=a 1 \hat{\imath}+\mathrm{a} 2 \hat{\jmath}+\mathrm{a} 3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{OB}}=\mathrm{b}_{1 \hat{\mathrm{i}}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \widehat{\mathrm{k}}$ then $\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=\left(\mathrm{b}_{1}-\mathrm{a}_{1}\right) \hat{1}+\left(\mathrm{b}_{2}-\mathrm{a}_{2}\right) \hat{\jmath}+\left(\mathrm{b}_{3}-\mathrm{a}_{3}\right) \hat{\mathrm{k}}$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ $=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$ $+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
(iii) Three vectors \vec{a}, \vec{b}, and \vec{c} are coplanar if and only if $\vec{a} \cdot(\vec{b} \times \vec{c})=0$
(iv) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{e}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

Given: -
$\mathrm{OA}=-\hat{\jmath}-\hat{\mathrm{k}}, \mathrm{OB}=4 \hat{\mathrm{\imath}}+5 \hat{\jmath}-\lambda \hat{\mathrm{k}}, \mathrm{OC}=3 \hat{\mathrm{i}}+9 \hat{\jmath}+4 \hat{\mathrm{k}}, \mathrm{OD}=-4 \hat{\mathrm{\imath}}-4 \hat{\jmath}+4 \hat{\mathrm{k}}$
$\mathrm{AB}=\mathrm{OB}-\mathrm{OA}=4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+(\lambda+1) \hat{\mathrm{k}}$
$A C=O C-O A=3 \hat{\imath}+10 \hat{\jmath}+5 \hat{k}$
$\mathrm{AD}=\mathrm{OD}-\mathrm{OA}=-4 \hat{\imath}+5 \hat{\jmath}+5 \hat{\mathrm{k}}$
The four points are coplaner if vector $A B, A C, A D$ are coplanar.
$\left[A B^{\vec{~}}, \mathrm{AC}^{\overrightarrow{ }}, \mathrm{AD}^{\overrightarrow{ }]}=\left|\begin{array}{ccc}4 & 6 & (\lambda+1) \\ 3 & 10 & 5 \\ -4 & 5 & 5\end{array}\right|\right.$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
$\Rightarrow 4(50-25)-6(15+20)+(\lambda+1)(15+40)=0$.
$\Rightarrow \lambda=1$
hence the point are coplanar

10. Question

Prove that:-
$(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}) \cdot\{(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}) \times(\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}})\}=0$

Answer

Formula: -
(i) $[\vec{a} \vec{b} \vec{c}]=\vec{a}(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})=\vec{c} \cdot(\vec{a} \times \vec{b})$
(ii) $\vec{a} \times \vec{a}=\vec{b} \times \vec{b}=\vec{c} \times \vec{c}=0$
taking L.H.S
$(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=[(\vec{a}-\vec{b})(\vec{b}-\vec{c})(\vec{c}-\vec{a})]$
using Formula (i)
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=(\vec{a} \times \vec{b}-\vec{a} \times \vec{c}-\vec{b} \times \vec{b}+\vec{b} \times \vec{c}) \cdot(\vec{c}-\vec{a})$
using Formula(ii)
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=(\vec{a} \times \vec{b}-\vec{a} \times \vec{c}-0+\vec{b} \times \vec{c}) \cdot(\vec{c}-\vec{a})$
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}$
$=(\vec{a} \times \vec{b}) \cdot \vec{c}-(\vec{a} \times \vec{b}) \cdot \vec{a}+(\vec{c} \times a) \cdot \vec{c}-(\vec{c} \times \vec{a}) \cdot \vec{a}+(\vec{b} \times \vec{c}) \cdot \vec{c}$ $-(\vec{b} \times \vec{c}) \cdot \vec{a}$
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]-[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{a}}]+[\overrightarrow{\mathrm{c} a \vec{c}}]-[\overrightarrow{\mathrm{c} a} \vec{a}]+[\overrightarrow{\mathrm{b}} \vec{c} \vec{c}]-[\overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}} \vec{a}]$
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=[\vec{a} \vec{b} \vec{c}]-[\vec{b} \vec{c} \vec{a}]$
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=0$
$\Rightarrow(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})\}=0$
L.H.S = R.H.S

11. Question

\vec{a}, \vec{b} and \vec{c} are the position vectors of points A, B and C respectively, prove that $: \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a vector perpendicular to the plane of triangle $A B C$.

Answer

if \vec{a} represents the sides $A B$,
if \vec{b} represent the sides $B C$,
if \vec{c} respresent the sides $A C$ of triangle $A B C$
$\vec{a} \times \vec{b}$ is perpendicular to plane of triangle $A B C$.

$\vec{b} \times \vec{c}$ is perpendicular to plane of triangle $A B C$.
$\vec{c} \times \vec{a}$ is perpendicular to plane of triangle ABC
adding all the (i) + (ii) + (iii)
hence $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a vector perpendicular to the plane of the triangle $A B C$

12 A. Question

Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\hat{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then,
If $c_{1}=-1$ and $c_{2}=2$, find c_{3} which makes \vec{a}, \vec{b} and \vec{c} coplanar.

Answer

Formula: -
(i) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(ii) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(iii) Three vectors \vec{a}, \vec{b}, and care coplanarif and only if \vec{a}. $(\vec{b} \times \vec{c})=0$

Given: -
$\vec{a}, \vec{b}, \vec{c}$ are coplanar if
$[\vec{a} \vec{b} \vec{c}]=0$
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ c_{1} & c_{2} & c_{3}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & c_{3}\end{array}\right|=0$
now, using
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

$\Rightarrow 0-1\left(c_{3}\right)+1(2)=0$
$\Rightarrow C_{3}=2$

12 B. Question

Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}$ and $\hat{\mathrm{c}}={c_{1}}^{\hat{\mathrm{i}}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}$. Then,
If $c_{1}=-1$ and $c_{3}=1$, show that no value of c_{1} can make \vec{a}, \vec{b} and \vec{c} coplanar.

Answer

Formula: -
(i) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\ \mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\ \mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}\end{array}\right|$

$$
=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
$$

$$
+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

(iii)Three vectors \vec{a}, \vec{b}, and \vec{c} are coplanar if and only if \vec{a}. $(\vec{b} \times \vec{c})=0$
we know that $\vec{a}, \vec{b}, \vec{c}$ are coplanar if
$[\vec{a} \vec{b} \vec{c}]=0$
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ c_{1} & c_{2} & c_{3}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ -1 & c_{2} & 1\end{array}\right|=0$
now, using

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& \quad=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& \quad+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

$\Rightarrow 0-1\left(c_{3}\right)+1(2)=0$
$\Rightarrow c_{3}=2$

13. Question

Find for which the points $A(3,2,1), B(4, \lambda, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

Answer

Formula: -
(i) if $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$ then, $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b} and \vec{c} are coplanar if and only if $\vec{a} .(\vec{b} \times \vec{c})=0$
(iv)if $\overrightarrow{O A}=a_{1 \hat{i}}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\overrightarrow{O B}=b_{1 \hat{i}}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ then $O B-O A$

$$
=\left(\mathrm{b}_{1}-\mathrm{a}_{1}\right) \hat{\imath}+\left(\mathrm{b}_{2}-\mathrm{a}_{2}\right) \hat{\jmath}+\left(\mathrm{b}_{3}-\mathrm{a}_{3}\right) \hat{\mathrm{k}}
$$

let position vector of
$\mathrm{OA}=3 \hat{\mathrm{i}}+2 \hat{\jmath}+\hat{\mathrm{k}}$
position vector of
$\mathrm{OB}=4 \hat{\mathrm{i}}+\lambda \hat{\jmath}+5 \hat{\mathrm{k}}$
position vector of
$O C=4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}$
position vector of
$\mathrm{OD}=6 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
The four points are coplanar if the vector $A \vec{B}, \overrightarrow{A C}, A \vec{D}$ are coplanar
$\overrightarrow{\mathrm{AB}}=\hat{\imath}+(\lambda-2) \hat{\jmath}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AC}}=\hat{\imath}+0 \hat{\jmath}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AD}}=3 \hat{i}+3 \hat{\jmath}-2 \hat{k}$
$\left|\begin{array}{ccc}1 & (\lambda-2) & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2\end{array}\right|=0$
now, using

$$
\begin{aligned}
& \left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right| \\
& \quad=(-1)^{1+1} \mathrm{a}_{11} \cdot\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+(-1)^{1+2} \mathrm{a}_{12} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{33}
\end{array}\right| \\
& \\
& \quad+(-1)^{1+3} \mathrm{a}_{13} \cdot\left|\begin{array}{ll}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right|
\end{aligned}
$$

$\Rightarrow 1(9)-(\lambda-2)(-2+9)+4(3-0)=0$
$\Rightarrow 7 \lambda=35$
$\Rightarrow \lambda=5$

14. Question

If four points A, B, C and D with position vectors $4 \hat{i}+3 \hat{j}+3 \hat{k}, 5 \hat{i}+x \hat{j}+7 \hat{k}, 5 \hat{i}+3 \hat{j}$ and $7 \hat{i}+6 \hat{j}+\hat{k}$ respectively are coplanar, then find the value of x.

Answer

Formula: -
(i)ifa $=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ and \vec{c}

$$
=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \text { then, }[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

(ii) $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& =(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

(iii) Three vectors \vec{a}, \vec{b}, and \vec{c} are coplanar if and only if $\vec{a} .(\vec{B} \times \vec{C})=0$
(iv) if $\overrightarrow{O A}=a_{1 \hat{i}}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\overrightarrow{O B}=b_{1 \hat{i}}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ then $O B-O A$

$$
=\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}
$$

let position vector of
$\mathrm{OA}=4 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
position vector of
$O B=5 \hat{\imath}+x \hat{\jmath}+7 \hat{k}$
position vector of
$O C=5 \hat{\imath}+3 \hat{j}$
position vector of
$O D=7 \hat{\imath}+6 \hat{\jmath}+\hat{k}$
The four points are coplanar if the vector $\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$ are coplanar
$\overrightarrow{A B}=\hat{\imath}+(x-3) \hat{\jmath}+4 k$,
$\overrightarrow{\mathrm{AC}}=\hat{\imath}+0 \hat{\jmath}-3 \hat{\mathrm{k}}$,
$\overrightarrow{\mathrm{AD}}=3 \hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}}$
$\left|\begin{array}{ccc}1 & (x-2) & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2\end{array}\right|=0$
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$=(-1)^{1+1} a_{11} \cdot\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|$
$+(-1)^{1+3} a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{32}\end{array}\right|$
$\Rightarrow 1(9)-(x-2)(-2+9)+4(3)=0$
$\Rightarrow 9-7 x+14+12=0$
$\Rightarrow 35=7 x$
$\Rightarrow x=5$

Very short answer

1. Question

Write the value of $[2 \hat{i} 3 \hat{j} 4 \hat{k}]$.

Answer

The meaning of the notation $[\vec{a} \vec{b} \vec{c}$] is the scalar triple product of the three vectors; which is computed as $\vec{a} .(\vec{b} \times \vec{c})$

So we have $2 \hat{\imath} .(3 \hat{\jmath} \times 4 \hat{k})=2 \hat{\imath} .12 \hat{\imath}=24(\hat{\jmath} \times \hat{k}=\hat{\imath})$

2. Question

Write the value of $[\hat{i}+\hat{j} \hat{j}+\hat{k} \hat{k}-\hat{i}]$

Answer

Here we have $\vec{a}=\hat{\imath}+\hat{\jmath}, \vec{b}=\hat{\jmath}+\hat{k}, \vec{c}=\hat{k}-\hat{\imath}$
$\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1\end{array}\right|=0$

3. Question

Write the value of $[\hat{i}-\hat{j} \hat{j}-\hat{k} \hat{k}-\hat{i}]$.

Answer

The value of the above product is the value of the matrix $\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1\end{array}\right|=0$

4. Question

Find the values of 'a' for which the vectors $\vec{\alpha}=\hat{i}+2 \hat{j}+\hat{k}, \vec{\beta}=a \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{\gamma}=\hat{i}+2 \hat{j}+a \hat{k}$ are coplanar.

Answer

Three vectors are coplanar iff (if and only if) $\vec{a} \cdot(\vec{b} \times \vec{c})=0$
Hence we have value of the matrix $\left|\begin{array}{lll}1 & 2 & 1 \\ a & 1 & 2 \\ 1 & 2 & a\end{array}\right|=0$
We have $2 a^{2}-3 a+1=0$
$2 a^{2}-2 a-a+1=0$
Solving this quadratic equation we get $a=1, a=\frac{1}{2}$

5. Question

Find the volume of the parallelepiped with its edges represented by vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}$ and $\hat{i}+\hat{j}+\pi \hat{k}$.

Answer

Volume of the parallelepiped with its edges represented by the vectors $\vec{a}, \vec{b}, \vec{c}$ is $[\vec{a} \vec{b} \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})$
$=\left|\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & \pi\end{array}\right|=\pi$

6. Question

If \vec{a}, \vec{b} are non-collinear vectors, then find the value of $[\vec{a} \vec{b} \hat{i}] \hat{i}+[\vec{a} \vec{b} \hat{j}]+[\vec{a} \vec{b} \hat{k}] \hat{k}$.

Answer

for any vector \vec{r}
We have $\vec{r}=(\vec{r} \cdot \hat{\imath}) \hat{\imath}+(\vec{r} \cdot \hat{\jmath}) \hat{\jmath}+(\vec{r} \cdot \hat{k}) \hat{k}$
Replacing $(\vec{r})=\vec{a} \times \vec{b}$
$\vec{a} \times \vec{b}=(\vec{a} \times \vec{b} \cdot \hat{\imath}) \hat{\imath}+(\vec{a} \times \vec{b} \cdot \hat{\jmath}) \hat{\jmath}+(\vec{a} \times \vec{b} \cdot \hat{k}) \hat{k}$
$\vec{a} \times \vec{b}=[\vec{a} \vec{b} \hat{\imath}] \hat{\imath}+[\vec{a} \vec{b} \hat{\jmath}] \hat{\jmath}+[\vec{a} \vec{b} \hat{k}] \hat{k}$

7. Question

If the vectors $\left(\sec ^{2} A\right) \hat{i}+\hat{j}+\hat{k}, \hat{i}+\left(\sec ^{2} B\right) \hat{j}+\hat{k}, \hat{i}+\hat{j}+\left(\sec ^{2} C\right) \hat{k}$ are coplanar, then find the value of $\operatorname{cosec}^{2} A A+\operatorname{cosec}^{2} B+\operatorname{cosec}^{2} C$.

Answer

For three vectors to be coplanar we have $\left|\begin{array}{ccc}\sec ^{2} A & 1 & 1 \\ 1 & \sec ^{2} B & 1 \\ 1 & 1 & \sec ^{2} C\end{array}\right|=$
Which gives $\sec ^{2} A \sec ^{2} B \sec ^{2} C-\sec ^{2} A-\sec ^{2} B-\sec ^{2} C+2=0$
$\sec ^{2} \theta=\frac{\operatorname{cosec}^{2} \theta-2}{\operatorname{cosec}^{2} \theta-1} \ldots \ldots .$. (2)
Substituting equation 2 in 1 we have

$$
\begin{gathered}
\frac{\left(\operatorname{cosec}^{2} A-2\right)\left(\operatorname{cosec}^{2} B-2\right)\left(\operatorname{cosec}^{2} C-2\right)}{\left(\operatorname{cosec}^{2} A-1\right)\left(\operatorname{cosec}^{2} B-1\right)\left(\operatorname{cosec}^{2} C-1\right)}-\frac{\operatorname{cosec}^{2} A-2}{\operatorname{cosec}^{2} A-1}-\frac{\operatorname{cosec}^{2} B-2}{\operatorname{cosec}^{2} B-1} \\
-\frac{\operatorname{cosec}^{2} C-2}{\operatorname{cosec}^{2} B-1}+2=0
\end{gathered}
$$

Let $\operatorname{cosec}^{2} A=x \operatorname{cosec}^{2} B=y$ and $\operatorname{cosec}^{2} C=z$
So we have $\frac{(x-2)(y-2)(z-2)}{(x-1)(y-1)(z-1)}-\frac{x-2}{x-1}-\frac{y-2}{y-1}-\frac{z-2}{z-1}+2=0$
$=(x-2)(y-2)(z-2)-(x-2)(y-1)(z-1)-(x-1)(y-2)(z-1)-(x-1)(y-1)(z-2)+2(x-1)(y-1)(z-1)=0$
Solving we have $x+y+z=4$
Hence $\operatorname{cosec}^{2} A+\operatorname{cosec}^{2} B+\operatorname{cosec}^{2} C=4$

8. Question

For any two vectors of \vec{a} and \vec{b} of magnitudes 3 and 4 respectively, write the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]+(\vec{a} \cdot \vec{b})^{2}$.

Answer

$[\vec{a} \vec{b} \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{a} \times(\vec{b} \cdot \vec{c})$ the dot and cross can be interchanged in scalar triple product.
Let the angle between \vec{a} and \vec{b} vector be θ
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=12 \cos \theta$
$\lceil\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}\rceil+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})^{2}=\vec{a} \cdot(\vec{b} \times(\vec{a} \times \vec{b}))$
$=\vec{a} \times(\vec{b} \cdot(\vec{a} \times \vec{b}))$
$=(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b})$
$=|(\vec{a} \times \vec{b})||(\vec{a} \times \vec{b})| \cos 0$
$=(|\vec{a}||\vec{b}| \sin \theta)^{2}$
$=144 \sin ^{2} \theta+144 \cos ^{2} \theta$
$=144(1)$
$=144$

9. Question

If $[3 \vec{a} 7 \vec{b} \vec{c} \vec{d}]=\lambda[\vec{a} \vec{b} \vec{c}]+\mu[\vec{b} \vec{c} \vec{d}]$, then find the value of $\lambda+\mu$.

Answer

$[3 \vec{a} 7 \vec{b} \vec{c} \vec{d}]=\lambda\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}]+\mu\left[\begin{array}{ll}\vec{b} & \vec{c} \\ d\end{array}\right], ~\end{array}\right.$
$3 \vec{a}=\lambda \vec{a}$
$\lambda=3$
$\vec{c}=\mu \vec{c}$
$\mu=1$
So, $\lambda+\mu=3+1$
$=4$

10. Question

If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors, then find the value of $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{\vec{b} \cdot(\vec{a} \times \vec{c})}{\vec{c} \cdot(\vec{a} \times \vec{b})}$.

Answer

$[\vec{a} \vec{b} \vec{c}]=\vec{a} .(\vec{b} \times \vec{c})=\vec{a} \times(\vec{b} \cdot \vec{c})$ the dot and cross can be interchanged in scalar triple product.
Also $[\vec{a} \vec{b} \vec{c}]=\left[\begin{array}{ll}\vec{c} & \vec{a} \\ \vec{b}\end{array}\right]=\left[\begin{array}{ll}\vec{b} & \vec{c} \\ \vec{a}\end{array}\right]$ (cyclic permutation of three vectors does not change the value of the scalar triple product)
$\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]=-[\vec{a} \vec{c} \vec{b}]$
Using these results $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{\vec{b} \cdot(\vec{a} \times \vec{c})}{\vec{c} \cdot(\vec{a} \times \vec{b})}=\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{-\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}=0$
11. Question

Find $\vec{a} \cdot(\vec{b} \times \vec{c})$, if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$.

Answer

$\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right|=-10$

MCQ

1. Question

Mark the correct alternative in each of the following:
If \bar{a} lies in the plane of vectors \bar{b} and \bar{c}, then which of the following is correct?
A. $[\bar{a} \bar{b} \bar{c}]=0$
B. $[\bar{a} \bar{b} \bar{c}]=1$
C. $[\bar{a} \bar{b} \bar{c}]=3$
D. $[\bar{b} \bar{c} \bar{a}]=1$

Answer

Here, \vec{a} lies in the plane of vectors \vec{b} and \vec{c}, which means \vec{a}, \vec{b} and \vec{c} are coplanar.
We know that $\vec{b} \times \vec{c}$ is perpendicular to \vec{b} and \vec{c}.
Also dot product of two perpendicular vector is zero.
Since, $\vec{a}, \vec{b}, \vec{c}$ are coplanar, $\vec{b} X \vec{c}$ is perpendicular to \vec{a}.
So, $\vec{a} \cdot(\vec{b} \times \vec{c})=0$
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=0$

2. Question

Mark the correct alternative in each of the following:
The value of $[\bar{a}-\bar{b} \bar{b}-\bar{c} \bar{c}-\bar{a}]$, where $|\bar{a}|=1,|\vec{b}|=5,|\bar{c}|=3$ is
A. 0
B. 1
C. 6
D. none of these

Answer

$[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=[\vec{a} \vec{b}-\vec{c} \vec{c}-\vec{a}]-[\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]$
$=[\vec{a} \vec{b} \vec{c}-\vec{a}]-[\vec{b} \vec{c} \vec{c}-\vec{a}]-[\vec{b} \vec{b} \vec{c}-\vec{a}]+[\vec{b} \vec{b} \vec{c}-\vec{a}]$
$=[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{a}]-[\vec{b} \vec{c} \vec{c}]-[\vec{b} \vec{c} \vec{a}]-0+0$
$=[\vec{a} \vec{b} \vec{c}]-0-0-[\vec{b} \vec{c} \vec{a}]$
$=[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]$
$=0$

3. Question

Mark the correct alternative in each of the following:
If $\bar{a}, \bar{b}, \bar{c}$ are three non-coplanar mutually perpendicular unit vectors, then $[\bar{a} \bar{b} \bar{c}]$ is
A. ± 1
B. 0
C. -2
D. 2

Answer
Here, $\vec{a} \perp \vec{b} \perp \vec{c}$ and $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$.
$\Rightarrow \vec{a} X \vec{b}|\mid \vec{c}$
\Rightarrow angle between $\vec{a} X \vec{b}$ and \vec{c} is $\theta=0^{\circ}$ or $\theta=180^{\circ}$.
$[\vec{a} \vec{b} \vec{c}]=(\vec{a} \times \vec{b}) \cdot \vec{c}$
$=|\vec{a}||\vec{b}| \sin \theta \hat{n} \cdot \vec{c}$
$=1 \cdot 1 \cdot 1 \hat{n} \cdot \vec{c}$
$=|\hat{n}||\vec{c}| \cos \theta$
$=1 \cdot 1 \cos \theta$
$= \pm 1$

4. Question

Mark the correct alternative in each of the following:
If $\bar{r}, \vec{a}=\bar{r} . \vec{b}=\bar{r}, \bar{c}=0$ for some non-zero vector \bar{r}, then the value of $[\bar{a} \vec{b} \bar{c}]$, is
A. 2
B. 3
C. 0
D. none of these

Answer
Here, $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$
$\Rightarrow \vec{r} \perp \vec{a}, \vec{r} \perp \vec{b}, \vec{r} \perp \vec{c}$
$\Rightarrow \vec{a}, \vec{b}$ and \vec{c} are coplanar.
$\Rightarrow[\vec{a} \vec{b} \vec{c}]=0$

5. Question

Mark the correct alternative in each of the following:
For any three vector $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ the expression $(\bar{a}-\bar{b}) \cdot\{(\bar{b}-\bar{c}) \times(\bar{c}-\bar{a})\}$ equals
A. $[\bar{a} \bar{b} \bar{c}]$
B. $2[\bar{a} \bar{b} \bar{c}]$
C. $[\bar{a} \bar{b} \bar{c}]^{2}$
D. none of these

Answer
$(\vec{a}-\vec{b}) \cdot\{(\vec{b}-\vec{c}) X(\vec{c}-\vec{a})\}=[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]$
$=[\vec{a} \vec{b}-\vec{c} \vec{c}-\vec{a}]-[\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]$
$=[\vec{a} \vec{b} \vec{c}-\vec{a}]-[\vec{b} \vec{c} \vec{c}-\vec{a}]-[\vec{b} \vec{b} \vec{c}-\vec{a}]+[\vec{b} \vec{b} \vec{c}-\vec{a}]$
$=[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{a}]-[\vec{b} \vec{c} \vec{c}]-[\vec{b} \vec{c} \vec{a}]-0+0$
$=[\vec{a} \vec{b} \vec{c}]-0-0-[\vec{b} \vec{c} \vec{a}]$
$=\left[\begin{array}{ll}\vec{a} \vec{b} & \vec{c}]-[\vec{a} \vec{b} \vec{c}]\end{array}\right.$
$=0$

6. Question

Mark the correct alternative in each of the following:
If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors, then $\frac{\bar{a} \cdot(b-X \bar{c})}{(\bar{c} X \bar{a}) \cdot \bar{b}}+\frac{\bar{b} \cdot(\bar{a} X \bar{c})}{\bar{c} \cdot(\bar{a} X \bar{b})}$ is
A. 0
B. 2
C. 1
D. none of these

Answer
$\frac{\vec{a} \cdot\left(b^{\rightarrow} X \vec{c}\right)}{\overrightarrow{(c} X \vec{a}) \cdot b^{\rightarrow}}+\frac{\vec{b} \cdot(\vec{a} \times \vec{c})}{\vec{c} \cdot(\vec{a} \times \vec{b})}=\frac{[\vec{a} \vec{b} \vec{c}]}{[\vec{c} \vec{a} \vec{b}]}+\frac{[\vec{b} \vec{a} \vec{c}]}{[\vec{c} \vec{a} \vec{b}]}$
$=\frac{[\vec{a} \vec{b} \vec{c}]+[\vec{b} \quad \vec{a} \vec{c}]}{[\vec{c} \vec{a} \vec{b}]}$
$=\frac{[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]}{[\vec{c} \vec{a} \vec{b}]}$
$=0$

7. Question

Mark the correct alternative in each of the following:
Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
A. 0
B. 1
C. $\left(\frac{1}{4}\right)|\vec{a}|^{2}|\vec{b}|^{2}$
D. $\left(\frac{3}{4}\right)|\vec{a}|^{2}|\vec{b}|^{2}$

Answer

$\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]^{2}=[\vec{a} \vec{b} \vec{c}]^{2}$
$=[(\vec{a} X \vec{b}) \cdot \vec{c}]^{2}$
$=\left[|\vec{a}||\vec{b}| \sin \left(\frac{\pi}{6}\right) \cdot \vec{c}\right]^{2}$
$=|\vec{a}|^{2}|\vec{b}|^{2}\left(\frac{1}{4}\right) \cdot \vec{c}^{2}$
$=|\vec{a}|^{2}|\vec{b}|^{2}\left(\frac{1}{4}\right) \cdot|\vec{c}|^{2} \cos 0(\because \vec{c}$ is perpendicular to a and $\vec{b} \Rightarrow$ angle is 0$)$
$=|\vec{a}|^{2}|\vec{b}|^{2}\left(\frac{1}{4}\right) \cdot|\vec{c}|^{2}$
$=|\vec{a}|^{2}|\vec{b}|^{2}\left(\frac{1}{4}\right)(\because \vec{c}$ is unit vector $)$
$=\left(\frac{1}{4}\right)|\vec{a}|^{2}|\vec{b}|^{2}$

8. Question

Mark the correct alternative in each of the following:
If $\vec{a}=2 \hat{i}-3 \hat{j}+5 \hat{k}, \vec{b}=3 \hat{i}-4 \hat{j}+5 \vec{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}-2 \hat{k}$, then the volume of the parallelepiped with conterminous edges $\bar{a}+\bar{b}, \bar{b}+\bar{c}, \bar{c}+\bar{a}$ is
A. 2
B. 1
C. -1
D. 0

Answer

Let $\vec{e}=\vec{a}+\vec{b}=5 \hat{\imath}-7 \hat{\jmath}+10 \hat{k}$
$\vec{f}=\vec{b}+\vec{c}=8 \hat{\imath}-7 \hat{\jmath}+3 \hat{k}$
$\vec{g}=\vec{c}+\vec{a}=7 \hat{\imath}-6 \hat{\jmath}+3 \hat{k}$
Now, the volume of the parallelepiped with conterminous edges $\vec{e}, \vec{f}, \vec{g}$ is given by
$V=[\vec{e} \vec{f} \vec{g}]$
$=\left[\begin{array}{lll}e_{1} & e_{2} & e_{3} \\ f_{1} & f_{2} & f_{3} \\ g_{1} & g_{2} & g_{3}\end{array}\right]=\left[\begin{array}{llc}5 & -7 & 10 \\ 8 & -7 & 3 \\ 7 & -6 & 3\end{array}\right]$
$=5 \times(-21+18)+7 \times(24-21)+10 \times(-48+49) \times$
$=5 \times(-3)+7 \times 3+10 \times 1$
$=-15+21+10$
$=16$

9. Question

Mark the correct alternative in each of the following:
If $[2 \bar{a}+4 \bar{b} \bar{c} \bar{d}]=\lambda[\bar{a} \bar{c} \bar{d}]+\mu[\bar{b} \bar{c} \bar{d}]$ then $\lambda+\mu=$
A. 6
B. -6
C. 10
D. 8

Answer
$\lambda[\vec{a} \vec{c} \vec{d}]+\mu[\vec{b} \vec{c} \vec{d}]=[2 \vec{a}+4 \vec{b} \vec{c} \vec{d}]$
$=[2 \vec{a} \vec{c} \vec{d}]+[4 \vec{b} \vec{c} \vec{d}]$
$=2[\vec{a} \vec{c} \vec{d}]+4[\vec{b} \vec{c} \vec{d}]$
Now, comparing the coefficient of Ihs and rhs we get, $\lambda=2$ and $\mu=4$
$\therefore \lambda+\mu=2+4$
$=6$

10. Question

Mark the correct alternative in each of the following:
$[\bar{a} \bar{b} \bar{a} X \bar{b}]+(\bar{a} \cdot \bar{b})^{2}$
A. $|\bar{a}|^{2}|\bar{b}|^{2}$
B. $|\bar{a}+\bar{b}|^{2}$
C. $|\bar{a}|^{2}+|\bar{b}|^{2}$
D. $2|\bar{a}|^{2}+|\bar{b}|^{2}$

Answer

$[\vec{a} \vec{b} \vec{a} \times \vec{b}]+(\vec{a} \cdot \vec{b})^{2}=(\vec{a} X \vec{b}) \cdot(\vec{a} X \vec{b})+(\vec{a} \cdot \vec{b})^{2}$
$=(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}$
$=|a|^{2}|b|^{2} \sin ^{2} \theta+|a|^{2}|b|^{2} \cos ^{2} \theta$
$=|a|^{2}|b|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=|a|^{2}|b|^{2}$

11. Question

Mark the correct alternative in each of the following:
If the vectors $4 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}+\mathrm{m} \hat{\mathrm{k}}, 7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$ and $\hat{\mathrm{i}}+5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ are coplanar, then $m=$
A. 0
B. 38
C. -10
D. 10

Answer
$\vec{a}=(411 m)$
$\vec{b}=(7026)$
$\vec{c}=(1054)$
Here, vector a, b, and c are coplanar. So, $[\vec{a} \vec{b} \vec{c}]=0$.
$\therefore\left[\begin{array}{ccc}4 & 11 & m \\ 7 & 2 & 6 \\ 1 & 5 & 4\end{array}\right]=0$
$\therefore 4(8-30)-11(28-6)+\mathrm{m}(35-2)=0$
$\therefore 4(-22)-11(22)+33 m=0$
$\therefore-88-242+33 m=0$
$\therefore 33 \mathrm{~m}=330$
$\therefore \mathrm{m}=10$

12. Question

Mark the correct alternative in each of the following:
For non-zero vectors \vec{a}, \vec{b} and \vec{c} the relation $|(\vec{a} \times \vec{b}) . \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds good, if
A. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=0$
B. $\vec{a} \cdot \vec{b}=0=\vec{c} \cdot \vec{a}$
C. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
D. $\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

Answer

Let $\vec{e}=\vec{a} \times b^{\vec{~}}$
$|\vec{e}|=|\vec{a}||\vec{b}| \sin \alpha------(1)(\because \alpha$ is angle between \vec{a} and $\vec{b})$
Then $|(\vec{a} X \vec{b}) \cdot \vec{c}|=|\vec{e} \cdot \vec{c}|$
$=|\vec{e}||\vec{c}| \cos \theta(\because \theta$ is angle between \vec{e} and $\vec{c} \Rightarrow \theta$ is angle between $\vec{a} \times \vec{b}$ and $\vec{c})$
$=|\vec{a}||\vec{b}||\vec{c}| \cos \theta \sin \alpha(\because$ using (1))
Hence, $\mid \overrightarrow{(a} \times \vec{b}) \cdot \vec{c}=|\vec{a}||\vec{b}||\vec{c}|$ if and only if $\cos \theta \sin \alpha=1$
if and only if $\cos \theta=1$ and $\sin \alpha=1$
if and only if $\theta=0$ and $\alpha=\frac{\pi}{2}$
$\alpha=\frac{\pi}{2} \Rightarrow \vec{a}$ and \vec{b} are perpendicular.
Also \vec{e} is perpendicular to both \vec{a} and \vec{b}.
$\theta=0 \Rightarrow \vec{C}$ is perpendicular to both \vec{a} and \vec{b}
$\therefore \vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular.
$\therefore \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

13. Question

Mark the correct alternative in each of the following:
$(\bar{a}+\bar{b}) \cdot(\bar{b}+\bar{c}) X(\bar{a}+\bar{b}+\bar{c})=$
A. 0
B. $-[\bar{a} \bar{b} \bar{c}]$
C. $2[\bar{a} \bar{b} \bar{c}]$
D. $[\bar{a} \bar{b} \bar{c} \bar{c}]$

Answer

$(\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{c}) X(\vec{a}+\vec{b}+\vec{c})=[(\vec{a}+\vec{b})(\vec{b}+\vec{c})(\vec{a}+\vec{b}+\vec{c})]$
$=[\vec{a} \vec{b}+\vec{c} \vec{a}+\vec{b}+\vec{c}]+[\vec{b} \vec{b}+\vec{c} \vec{a}+\vec{b}+\vec{c}]$
$=[\vec{a} \vec{b} \vec{a}+\vec{b}+\vec{c}]+[\vec{a} \vec{c} \vec{a}+\vec{b}+\vec{c}]+[\vec{b} \vec{b} \vec{a}+\vec{b}+\vec{c}]+[\vec{b} \vec{c} \vec{a}+\vec{b}+\vec{c}]$
$=[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{b} \vec{a}]+[\vec{a} \vec{b} \vec{b}]+[\vec{a} \vec{c} \vec{c}]+[\vec{a} \vec{c} \vec{b}]+[\vec{a} \vec{c} \vec{a}]+0+[\vec{b} \vec{c} \vec{a}]$ $+[\vec{b} \vec{c} \vec{b}]+[\vec{b} \vec{c} \vec{c}]$
$=[\vec{a} \vec{b} \vec{c}]+0+0+0+[\vec{a} \vec{c} \vec{b}]+0+[\vec{b} \vec{c} \vec{a}]+0+0$
$=[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{c} \vec{b}]-[\vec{a} \vec{c} \vec{b}]$
$=[\vec{a} \vec{b} \vec{c}]$

14. Question

Mark the correct alternative in each of the following:
If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c})[[(\bar{a}+\bar{b}) X(\bar{a}+\bar{c})]$ equal.
A. 0
B. $[\bar{a} \bar{b} \bar{c}]$
C. $2[\bar{a} \bar{b} \bar{c}]$
D. $-[\bar{a} \bar{b} \bar{c}]$

Answer

$(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{a}+\vec{b}) X(\vec{a}+\vec{c})]=[(\vec{a}+\vec{b}+\vec{c})(\vec{a}+\vec{b})(\vec{a}+\vec{c})]$
$=[\vec{a}+\vec{b}+\vec{c} \vec{a} \vec{a}+\vec{c}]+[\vec{a}+\vec{b}+\vec{c} \vec{b} \vec{a}+\vec{c}]$
$=[\vec{a}+\vec{b}+\vec{c} \vec{a} \vec{a}]+[\vec{a}+\vec{b}+\vec{c} \vec{a} \vec{c}]+[\vec{a}+\vec{b}+\vec{c} \vec{b} \vec{a}]+[\vec{a}+\vec{b}+\vec{c} \vec{b} \vec{c}]$
$=[\vec{a} \vec{a} \vec{a}]+[\vec{b} \vec{a} \vec{a}]+[\vec{c} \vec{a} \vec{a}]+[\vec{a} \vec{a} \vec{c}]+[\vec{b} \vec{a} \vec{c}]+[\vec{c} \vec{a} \vec{c}]+[\vec{a} \vec{b} \vec{a}]+$
$[\vec{b} \vec{b} \vec{a}]+[\vec{c} \vec{b} \vec{a}]+[\vec{a} \vec{b} \vec{c}]+[\vec{b} \vec{b} \vec{c}]$
$=0+0+0+0+[\vec{b} \vec{a} \vec{c}]+0+0+0+[\vec{c} \vec{b} \vec{a}]+[\vec{a} \vec{b} \vec{c}]+0+0$
$=2[\vec{a} \vec{b} \vec{c}]$

15. Question

Mark the correct alternative in each of the following:
$(\bar{a}+2 \bar{b}-\bar{c}) \cdot\{(\bar{a}-\bar{b}) X(\bar{a}-\bar{b}-\bar{c})\}$ is equal to
A. $[\bar{a} \bar{b} \bar{c}]$
B. $2[\bar{a} \bar{b} \bar{c}]$
C. $3[\bar{a} \bar{b} \bar{c}]$
D. 0

Answer

$$
\begin{aligned}
& (\vec{a}+2 \vec{b}-\vec{c}) \cdot\{(\vec{a}-\vec{b}) \times(\vec{a}-\vec{b}-\vec{c})\}=[\vec{a}+2 \vec{b}-\vec{c} \vec{a}-\vec{b} \vec{a}-\vec{b}-\vec{c}] \\
& =[\vec{a} \vec{a}-\vec{b} \vec{a}-\vec{b}-\vec{c}]+[2 \vec{b} \vec{a}-\vec{b} \vec{a}-\vec{b}-\vec{c}]-[\vec{c} \vec{a}-\vec{b} \vec{a}-\vec{b}-\vec{c}] \\
& =[\vec{a} \vec{a} \vec{a}-\vec{b}-\vec{c}]-[\vec{a} \vec{b} \vec{a}-\vec{b}-\vec{c}]+[2 \vec{b} \vec{a} \vec{a}-\vec{b}-\vec{c}]-[2 \vec{b} \vec{b} \vec{a}-\vec{b}-\vec{c}] \\
& \quad-[\vec{c} \vec{a} \vec{a}-\vec{b}-\vec{c}]+[\vec{c} \vec{b} \vec{a}-\vec{b}-\vec{c}] \\
& =0-[\vec{a} \vec{b} \vec{a}]-[\vec{a} \vec{b} \vec{b}]-[\vec{a} \vec{b} \vec{c}]+[2 \vec{b} \vec{a} \vec{a}]-[2 \vec{b} \vec{a} \vec{b}]-[2 \vec{b} \vec{a} \vec{c}]-[2 \vec{b} \vec{b} \vec{a}] \\
& \quad+[2 \vec{b} \vec{b} \vec{b}]+[2 \vec{b} \vec{b} \vec{c}]-[\vec{c} \vec{a} \vec{a}]+[\vec{c} \vec{a} \vec{b}]+[\vec{c} \vec{a} \vec{c}]+[\vec{c} \vec{b} \vec{a}] \\
& \\
& \quad-[\vec{c} \vec{b} \vec{b}]-[[\vec{c} \vec{b} \vec{c}]
\end{aligned}
$$

$=0-0-0-[\vec{a} \vec{b} \vec{c}]+0-0-2[\vec{b} \vec{a} \vec{c}]-0+0+0-0+[\vec{c} \vec{a} \vec{b}]+0+[\vec{c} \vec{b} \vec{a}]$

$$
-0-0
$$

$=-[\vec{a} \vec{b} \vec{c}]+2[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}]$
$=[\vec{a} \vec{b} \vec{c}]$

