26. Ellipse

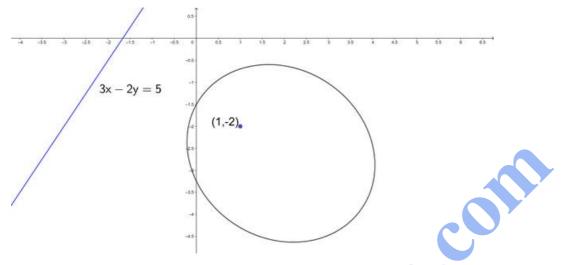
Exercise 26.1

1. Question

Find the equation of the ellipse whose focus is (1, -2), the directrix 3x - 2y + 5 = 0 and eccentricity equal to 1/2.

Answer

Given that we need to find the equation of the ellipse whose focus is S(1, -2) and directrix(M) is 3x - 2y + 5 = 0 and eccentricity(e) is equal to $\frac{1}{2}$.



Let P(x,y) be any point on the ellipse.

We know that the distance between the focus and any point on the ellipse is equal to the eccentricity times the perpendicular distance from that point to the directrix.

We know that distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

We know that the perpendicular distance from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

$$\Rightarrow SP = ePM$$

$$\Rightarrow SP^{2} = e^{2}PM^{2}$$

$$\Rightarrow (x - 1)^{2} + (y - (-2))^{2} = (\frac{1}{2})^{2} (\frac{|3x - 2y + 5|}{\sqrt{3^{2} + (-2)^{2}}})^{2}$$

$$\Rightarrow x^{2} - 2x + 1 + y^{2} + 4y + 4 = \frac{1}{4} \times \frac{(|3x - 2y + 5|)^{2}}{9 + 4}$$

$$\Rightarrow x^{2} + y^{2} - 2x + 4y + 5 = \frac{1}{52} \times (9x^{2} + 4y^{2} + 25 - 12xy - 20y + 30x)$$

$$\Rightarrow 52x^{2} + 52y^{2} - 104x + 208y + 260 = 9x^{2} + 4y^{2} - 12xy - 20y + 30x + 25$$

$$\Rightarrow 43x^{2} + 48y^{2} + 12xy - 134x + 228y + 235 = 0$$

: The equation of the ellipse is $43x^2 + 48y^2 + 12xy - 134x + 228y + 235 = 0$.

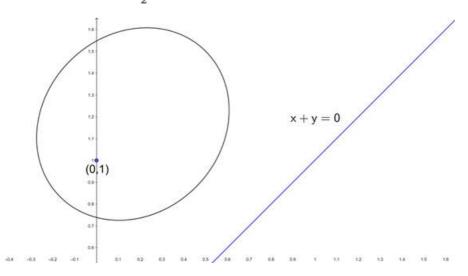
2 A. Question

Find the equation of the ellipse in the following cases:

focus is (0, 1), directrix is x + y = 0 and $e = \frac{1}{2}$.

Answer

Given that we need to find the equation of the ellipse whose focus is S(0,1) and directrix(M) is x + y = 0 and eccentricity(e) is equal to $\frac{1}{2}$.



Let P(x,y) be any point on the ellipse.

We know that the distance between the focus and any point on the ellipse is equal to the eccentricity times the perpendicular distance from that point to the directrix.

We know that distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

We know that the perpendicular distance from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

⇒ SP = ePM
⇒ SP² = e²PM²
⇒
$$(x - 0)^{2} + (y - 1)^{2} = \left(\frac{1}{2}\right)^{2} \left(\frac{|x + y|}{\sqrt{1^{2} + 1^{2}}}\right)^{2}$$

⇒ $x^{2} + y^{2} - 2y + 1 = \frac{1}{4} \times \frac{(|x + y|)^{2}}{1 + 1}$
⇒ $x^{2} + y^{2} - 2y + 1 = \frac{1}{8} \times (x^{2} + y^{2} + 2xy)$
⇒ $8x^{2} + 8y^{2} - 16y + 8 = x^{2} + y^{2} + 2xy$
⇒ $7x^{2} + 7y^{2} - 2xy - 16y + 8 = 0$

 \therefore The equation of the ellipse is $7x^2 + 7y^2 - 2xy - 16y + 8 = 0$.

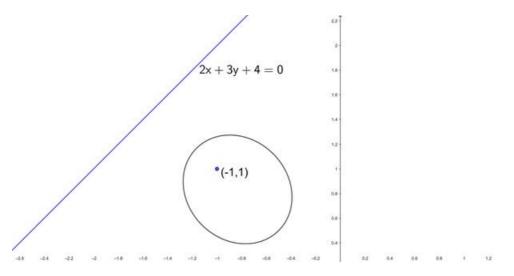
2 B. Question

Find the equation of the ellipse in the following cases:

focus is (-1, 1), directrix is x - y + 3 = 0 and $e = \frac{1}{2}$.

Answer

Given that we need to find the equation of the ellipse whose focus is S(- 1,1) and directrix(M) is x - y + 3 = 0and eccentricity(e) is equal to $\frac{1}{2}$.



Let P(x,y) be any point on the ellipse.

We know that the distance between the focus and any point on the ellipse is equal to the eccentricity times the perpendicular distance from that point to the directrix.

We know that distance between the points (x_1,y_1) and (x_2,y_2) is $\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$.

We know that the perpendicular distance from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

⇒ SP = ePM
⇒ SP² = e²PM²
⇒ (x - (-1))² + (y - 1)² =
$$\left(\frac{1}{2}\right)^{2} \left(\frac{|x-y+3|}{\sqrt{1^{2}+1^{2}}}\right)^{2}$$

⇒ x² + 2x + 1 + y² - 2y + 1 = $\frac{1}{4} \times \frac{(|x-y+3|)^{2}}{1+1}$
⇒ x² + y² + 2x - 2y + 2 = $\frac{1}{8} \times (x^{2} + y^{2} + 9 - 2xy - 6y + 6x)$
⇒ 8x² + 8y² + 16x - 16y + 16 = x² + y² - 2xy + 6x - 6y + 9
⇒ 7x² + 7y² + 2xy + 10x - 10y + 7 = 0
∴ The equation of the ellipse is 7x² + 7y² + 2xy + 10x - 10y + 7 = 0.

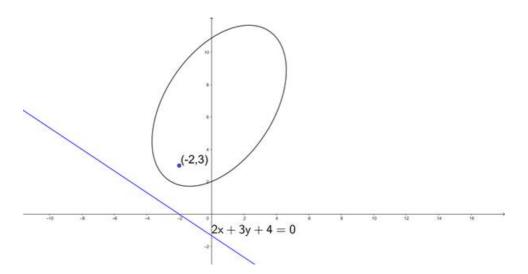
2 C. Question

Find the equation of the ellipse in the following cases:

focus is (- 2, 3), directrix is 2x + 3y + 4 = 0 and $e = \frac{4}{5}$

Answer

Given that we need to find the equation of the ellipse whose focus is S(- 2,3) and directrix(M) is 2x + 3y + 4 = 0 and eccentricity(e) is equal to $\frac{4}{5}$.



Let P(x,y) be any point on the ellipse.

We know that the distance between the focus and any point on the ellipse is equal to the eccentricity times the perpendicular distance from that point to the directrix.

We know that distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

We know that the perpendicular distance from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

⇒ SP = ePM
⇒ SP² = e²PM²
⇒
$$(x - (-2))^{2} + (y - 3)^{2} = (\frac{4}{5})^{2} (\frac{|2x + 3y + 4|}{\sqrt{2^{2} + 3^{2}}})^{2}$$

⇒ $x^{2} + 4x + 4 + y^{2} - 6y + 9 = \frac{16}{25} \times \frac{(|2x + 3y + 4|)^{2}}{4 + 9}$
⇒ $x^{2} + y^{2} + 4x - 6y + 13 = \frac{16}{325} \times (4x^{2} + 9y^{2} + 16 + 12xy + 16x + 24y)$
⇒ $325x^{2} + 325y^{2} + 1300x - 1950y + 4225 = 64x^{2} + 144y^{2} + 192xy + 256x + 384y + 256$
⇒ $261x^{2} + 181y^{2} - 192xy + 1044x - 2334y + 3969 = 0$
∴ The equation of the ellipse is $261x^{2} + 181y^{2} - 192xy + 1044x - 2334y + 3969 = 0$.

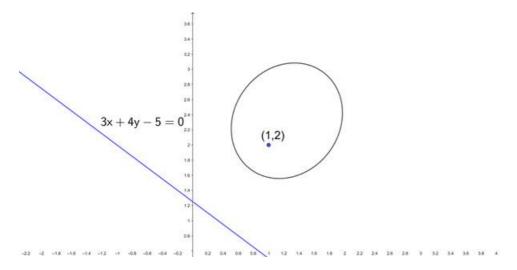
2 D. Question

Find the equation of the ellipse in the following cases:

focus is (1, 2), directrix is
$$3x + 4y - 7 = 0$$
 and $e = \frac{1}{2}$.

Answer

Given that we need to find the equation of the ellipse whose focus is S(1, 2) and directrix(M) is 3x + 4y - 5 = 0 and eccentricity(e) is equal to $\frac{1}{2}$.



Let P(x,y) be any point on the ellipse.

We know that the distance between the focus and any point on the ellipse is equal to the eccentricity times the perpendicular distance from that point to the directrix.

We know that distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

We know that the perpendicular distance from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

⇒ SP = ePM
⇒ SP² = e²PM²
⇒
$$(x-1)^{2} + (y-2)^{2} = (\frac{1}{2})^{2} (\frac{|3x+4y-5|}{\sqrt{3^{2}+4^{2}}})^{2}$$

⇒ $x^{2} - 2x + 1 + y^{2} - 4y + 4 = \frac{1}{4} \times \frac{(|3x+4y-5|)^{2}}{9+16}$
⇒ $x^{2} + y^{2} - 2x - 4y + 5 = \frac{1}{100} \times (9x^{2} + 16y^{2} + 25 + 24xy - 30x - 40y)$
⇒ $100x^{2} + 100y^{2} - 200x - 400y + 500 = 9x^{2} + 16y^{2} + 24xy - 30x - 40y + 25$
⇒ $91x^{2} + 84y^{2} - 24xy - 170x - 360y + 475 = 0$
∴ The equation of the ellipse is $91x^{2} + 84y^{2} - 24xy - 170x - 360y + 475 = 0$.

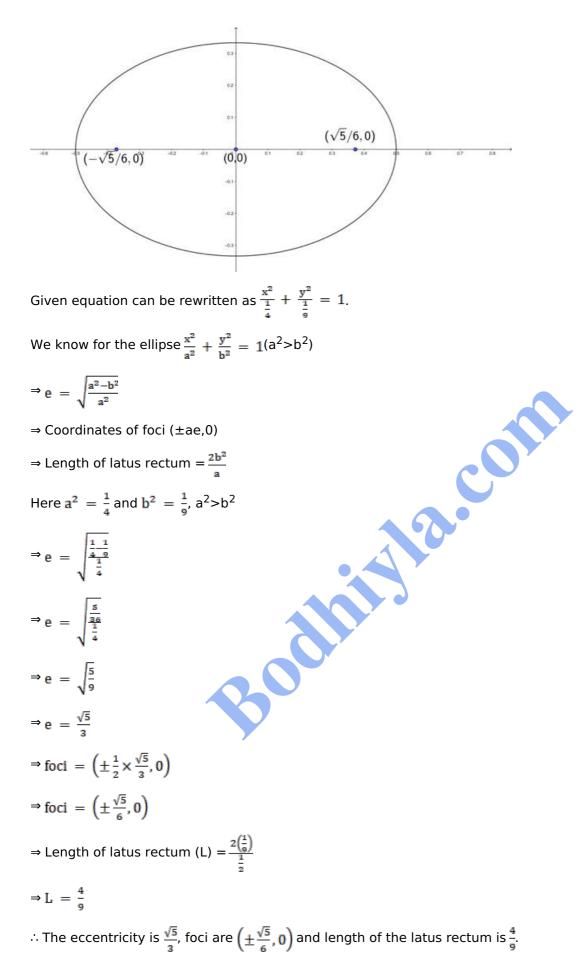
3 A. Question

Find the eccentricity, coordinates of foci, length of the latus - rectum of the following ellipse:

$$4x^2 + 9y^2 = 1$$

Answer

Given the equation of the ellipse is $4x^2 + 9y^2 = 1$.



3 B. Question

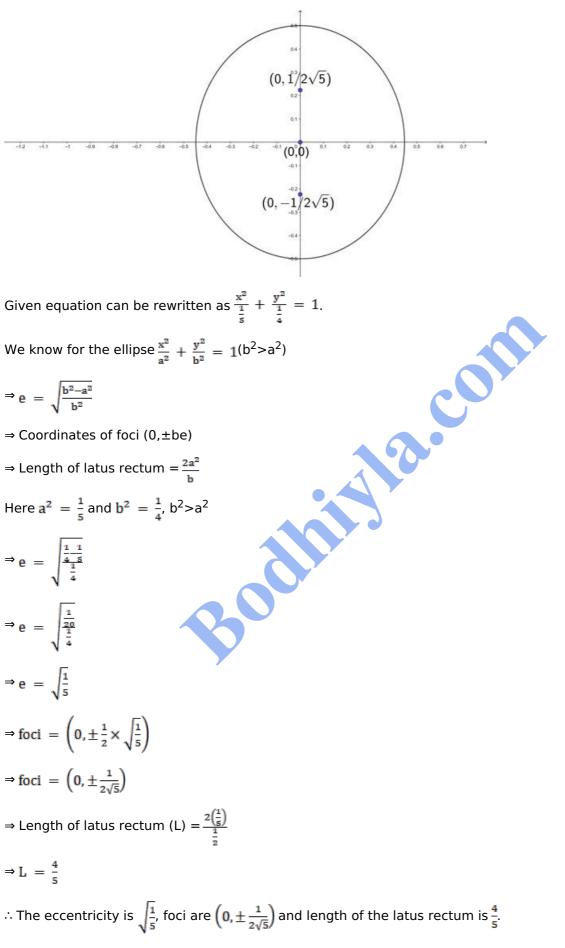
Find the eccentricity, coordinates of foci, length of the latus - rectum of the following ellipse:

 $5x^2 + 4y^2 = 1$

Answer

Given the equation of the ellipse is $5x^2 + 4y^2 = 1$.

We need to find the eccentricity, coordinates of foci and length of latus rectum.



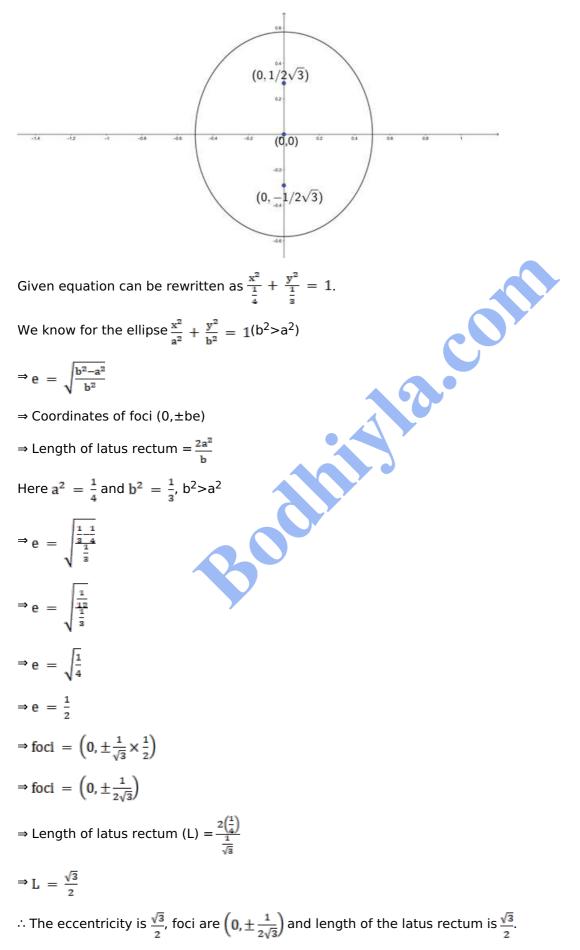
3 C. Question

Find the eccentricity, coordinates of foci, length of the latus - rectum of the following ellipse:

$$4x^2 + 3y^2 = 1$$

Answer

Given the equation of the ellipse is $4x^2 + 3y^2 = 1$.



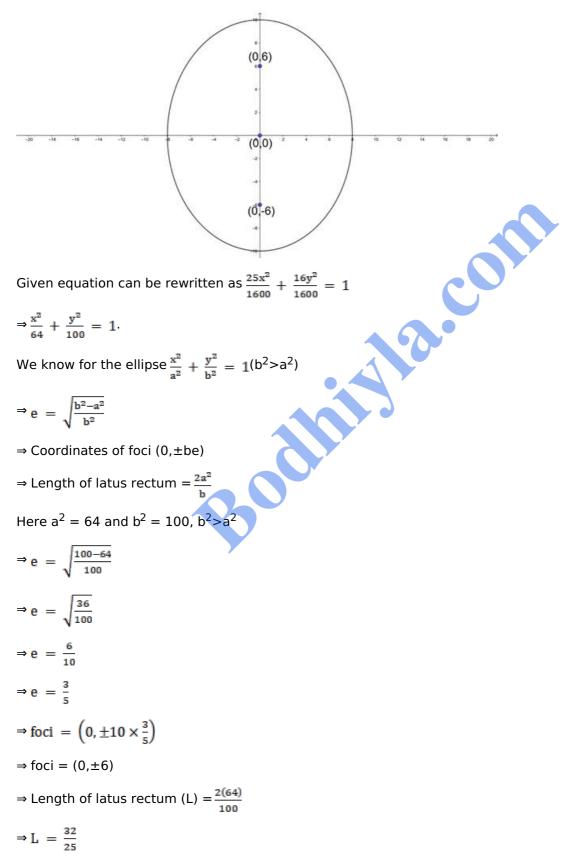
3 D. Question

Find the eccentricity, coordinates of foci, length of the latus - rectum of the following ellipse:

 $25x^2 + 16y^2 = 1600$

Answer

Given the equation of the ellipse is $25x^2 + 16y^2 = 1600$.



 \therefore The eccentricity is $\frac{3}{5}$, foci are (0,±6) and length of the latus rectum is $\frac{32}{25}$.

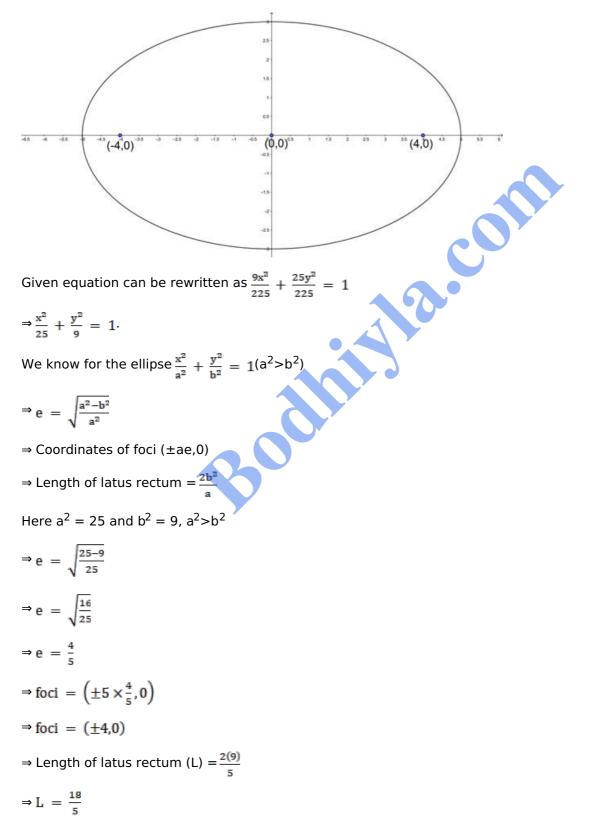
3 E. Question

Find the eccentricity, coordinates of foci, length of the latus - rectum of the following ellipse:

 $9x^2 + 25y^2 = 225$

Answer

Given the equation of the ellipse is $9x^2 + 25y^2 = 225$.



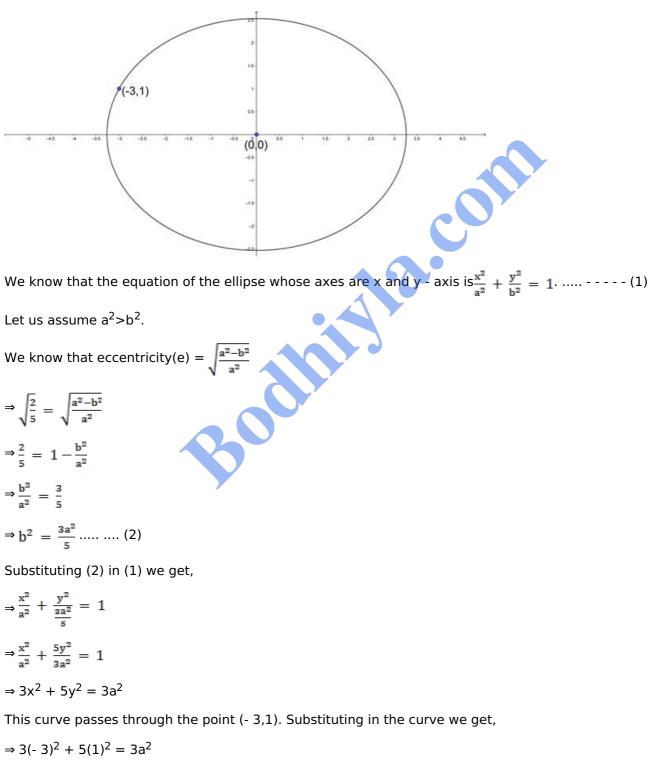
 \therefore The eccentricity is $\frac{4}{5}$, foci are (±4,0) and length of the latus rectum is $\frac{18}{5}$.

4. Question

Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (- 3, 1) and has eccentricity $\sqrt{\frac{2}{5}}$.

Answer

Given that we need to find the equation of the ellipse (whose axes are x = 0 and y = 0) which passes through the point (- 3,1) and has eccentricity $\sqrt{\frac{2}{5}}$.



$$\Rightarrow 3(9) + 5 = 3a^2$$
$$\Rightarrow 32 = 3a^2$$

$$\Rightarrow a^{2} = \frac{32}{3}$$
$$\Rightarrow b^{2} = \frac{3\left(\frac{32}{3}\right)}{5}$$
$$\Rightarrow b^{2} = \frac{32}{5}$$

The equation of the ellipse is:

$$\Rightarrow \frac{x^2}{\frac{32}{3}} + \frac{y^2}{\frac{32}{5}} = 1$$
$$\Rightarrow \frac{3x^2}{32} + \frac{5y^2}{32} = 1$$
$$\Rightarrow 3x^2 + 5y^2 = 32$$

 \therefore The equation of the ellipse is $3x^2 + 5y^2 = 32$.

5 A. Question

find the equation of the ellipse in the following cases:

eccentricity
$$e = \frac{1}{2}$$
 and foci (± 2, 0)

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\frac{1}{2}$ and foci (±2,0).

Let us assume the equation of the ellipse as
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (a²>b²).

We know that eccentricity(e) =
$$\sqrt{\frac{a^2-b^2}{a^2}}$$

 $\Rightarrow \frac{1}{2} = \sqrt{\frac{a^2-b^2}{a^2}}$
 $\Rightarrow \frac{1}{4} = 1 - \frac{b^2}{a^2}$
 $\Rightarrow b^2 = \frac{3a^2}{4}$
We know that foci = (±ae,0)
 $\Rightarrow ae = 2$

$$\Rightarrow a\left(\frac{1}{2}\right) = 2$$

$$\Rightarrow a = 4$$

$$\Rightarrow a^{2} = 16$$

$$\Rightarrow b^{2} = \frac{3(16)}{4}$$

$$\Rightarrow b^{2} = 12$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{16} + \frac{y^2}{12} = 1$$
$$\Rightarrow \frac{3x^2 + 4y^2}{48} = 1$$
$$\Rightarrow 3x^2 + 4y^2 = 48$$

 \therefore The equation of the ellipse is $3x^2 + 4y^2 = 48$.

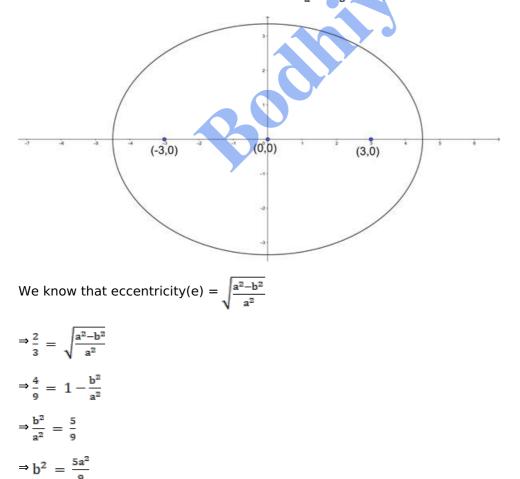
5 B. Question

find the equation of the ellipse in the following cases:

eccentricity $e = \frac{2}{3}$ and length of latus - rectum = 5

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\frac{2}{3}$ and length of latus rectum is 5.



We know that the length of the latus rectum is $\frac{2b^2}{a}$.

$$\Rightarrow \frac{2b^2}{a} = 5$$
$$\Rightarrow b^2 = \frac{5a}{2}$$
$$\Rightarrow \frac{5a^2}{9} = \frac{5a}{2}$$
$$\Rightarrow \frac{a}{9} = \frac{1}{2}$$
$$\Rightarrow a = \frac{9}{2}$$
$$\Rightarrow a^2 = \frac{81}{4}$$
$$\Rightarrow b^2 = \frac{5\left(\frac{81}{4}\right)}{9}$$
$$\Rightarrow b^2 = \frac{45}{4}$$

The equation of the ellipse is

$$\Rightarrow \frac{x^{2}}{\frac{81}{4}} + \frac{y^{2}}{\frac{45}{4}} = 1$$
$$\Rightarrow \frac{4x^{2}}{81} + \frac{4y^{2}}{45} = 1$$
$$\Rightarrow \frac{(20x^{2} + 36y^{2})}{405} = 1$$

 $\Rightarrow 20x^2 + 36y^2 = 405$

 \therefore The equation of the ellipse is $20x^2 + 36y^2 = 405$.

5 C. Question

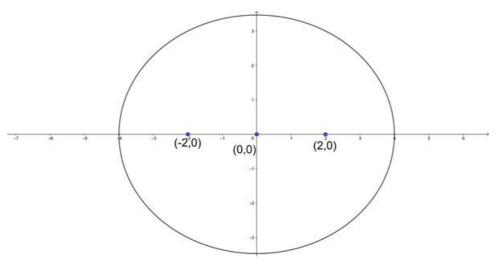
find the equation of the ellipse in the following cases:

eccentricity $e = \frac{1}{2}$ and semi - major axis = 4

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\frac{1}{2}$ and the semi - major axis is 4.

2.01



We know that eccentricity(e) = $\sqrt{\frac{a^2-b^2}{a^2}}$

$$\Rightarrow \frac{1}{2} = \sqrt{\frac{a^2 - b^2}{a^2}}$$
$$\Rightarrow \frac{1}{4} = 1 - \frac{b^2}{a^2}$$
$$\Rightarrow \frac{b^2}{a^2} = \frac{3}{4}$$
$$\Rightarrow b^2 = \frac{3a^2}{4}$$

We know that the length of the semi - major axis is a

 $\Rightarrow a = 4$ $\Rightarrow a^{2} = 16$ $\Rightarrow b^{2} = \frac{3(16)}{4}$ $\Rightarrow b^{2} = 12$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{16} + \frac{y^2}{12} = 1$$
$$\Rightarrow \frac{3x^2 + 4y^2}{48} = 1$$
$$\Rightarrow 3x^2 + 4y^2 = 48$$

 \therefore The equation of the ellipse is $3x^2 + 4y^2 = 48$.

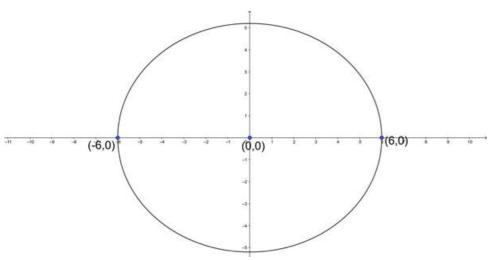
5 D. Question

find the equation of the ellipse in the following cases:

eccentricity $e = \frac{1}{2}$ and major axis = 12

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\frac{1}{2}$ and the major axis is 12.



We know that eccentricity(e) = $\sqrt{\frac{a^2-b^2}{a^2}}$

$$\Rightarrow \frac{1}{2} = \sqrt{\frac{a^2 - b^2}{a^2}}$$
$$\Rightarrow \frac{1}{4} = 1 - \frac{b^2}{a^2}$$
$$\Rightarrow \frac{b^2}{a^2} = \frac{3}{4}$$
$$\Rightarrow b^2 = \frac{3a^2}{4}$$

We know that length of ,ajor axis is 2a.

 $\Rightarrow 2a = 12$ $\Rightarrow a = 6$ $\Rightarrow a^{2} = 36$ $\Rightarrow b^{2} = \frac{3(36)}{4}$ $\Rightarrow b^{2} = 27$ The equation

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{36} + \frac{y^2}{27} = 1$$
$$\Rightarrow \frac{3x^2 + 4y^2}{108} = 1$$

$$\Rightarrow 3x^2 + 4y^2 = 108$$

 \therefore The equation of the ellipse is $3x^2 + 4y^2 = 108$.

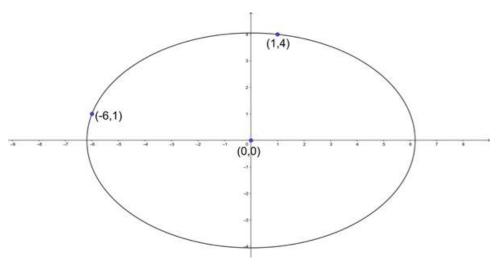
5 E. Question

find the equation of the ellipse in the following cases:

The ellipse passes through (1, 4) and (-6, 1)

Answer

Given that we need to find the equation of the ellipse passing through the points (1,4) and (- 6,1).



Substituting the point (1,4) in (1) we get

 $\Rightarrow \frac{1^2}{n^2} + \frac{4^2}{n^2} = 1$ $\Rightarrow \frac{1}{a^2} + \frac{16}{b^2} = 1$ $\Rightarrow \frac{b^2 + 16a^2}{a^2b^2} = 1$ $\Rightarrow b^{2} + 16a^{2} = a^{2}b^{2}.... - - (2)$ Substituting the point (- 6,1) in (1) we get $\Rightarrow \frac{(-6)^2}{c^2} + \frac{1^2}{b^2} = 1$ $\Rightarrow \frac{36}{n^2} + \frac{1}{n^2} = 1$ $\Rightarrow \frac{36b^2 + a^2}{a^2b^2} = 1$ $\Rightarrow a^{2} + 36b^{2} = a^{2}b^{2} \dots - - (3)$ $(3) \times 16 - (2)$ $\Rightarrow (16a^2 + 576b^2) - (b^2 + 16a^2) = (16a^2b^2 - a^2b^2)$ $\Rightarrow 575b^2 = 15a^2b^2$ $\Rightarrow 15a^2 = 575$ $\Rightarrow a^2 = \frac{115}{3}$ From (2) $\Rightarrow b^2 + 16\left(\frac{115}{3}\right) = b^2\left(\frac{115}{3}\right)$ $\Rightarrow b^2\left(\frac{112}{2}\right) = \frac{1840}{2}$ $\Rightarrow b^2 = \frac{115}{7}$ The equation of the ellipse is $\Rightarrow \frac{x^2}{\frac{115}{2}} + \frac{y^2}{\frac{115}{2}} = 1$ $\Rightarrow \frac{3x^2}{115} + \frac{7y^2}{115} = 1$

 $\Rightarrow 3x^2 + 7y^2 = 115$

 \therefore The equation of the ellipse is $3x^2 + 7y^2 = 115$.

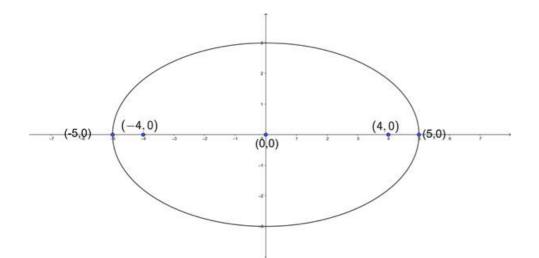
5 F. Question

find the equation of the ellipse in the following cases:

Vertices (± 5, 0), foci (± 4, 0)

Answer

Given that we need to find the equation of the ellipse whose vertices are $(\pm 5,0)$ and foci $(\pm 4,0)$.



We know that vertices of the ellipse are $(\pm a, 0)$

⇒ a = 5

 $\Rightarrow a^2 = 25$

We know that foci = $(\pm ae, 0)$

 \Rightarrow ae = 4

⇒ 5e = 4

$$\Rightarrow e = \frac{4}{5}$$

We know that eccentricity $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

$$\Rightarrow \frac{4}{5} = \sqrt{\frac{25-b^2}{25}}$$
$$\Rightarrow \frac{16}{25} = 1 - \frac{b^2}{25}$$
$$\Rightarrow \frac{b^2}{25} = \frac{9}{25}$$
$$\Rightarrow b^2 = 9$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{25} + \frac{y^2}{9} = 1$$
$$\Rightarrow \frac{9x^2 + 25y^2}{225} = 1$$

 $\Rightarrow 9x^2 + 25y^2 = 225$

 \therefore The equation of the ellipse is $9x^2 + 25y^2 = 225$.

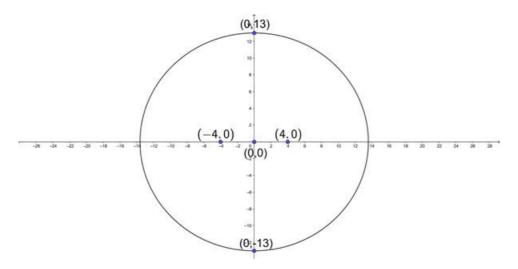
5 G. Question

find the equation of the ellipse in the following cases:

Vertices (0, ±13), foci (±4, 0)

Answer

Given that we need to find the equation of the ellipse whose vertices are $(0,\pm 13)$ and foci $(\pm 4,0)$.



We know that vertices of the ellipse are $(0, \pm b)$

⇒ b = 13

 $\Rightarrow b^2 = 169$

We know that foci = $(\pm ae, 0)$

We know that eccentricity $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

$$\Rightarrow 4 = a\sqrt{\frac{a^2-169}{a^2}}$$

$$\Rightarrow 16 = a^2 - 169$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{185} + \frac{y^2}{169} = 1$$

 \therefore The equation of the ellipse is $\frac{x^2}{185}$

5 H. Question

find the equation of the ellipse in the following cases:

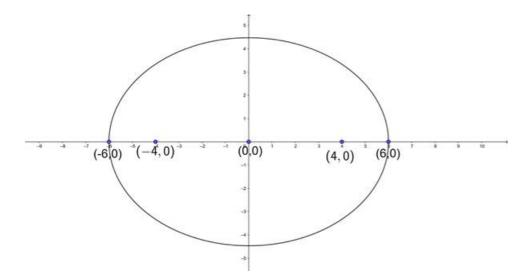
Vertices (± 6, 0), foci (± 4, 0)

Answer

Given that we need to find the equation of the ellipse whose vertices are $(\pm 6,0)$ and foci $(\pm 4,0)$.

Let us assume the equation of the ellipse as $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a²>b²).

165



We know that vertices of the ellipse are $(\pm a, 0)$

⇒ a = 6

$$\Rightarrow a^2 = 36$$

We know that foci = $(\pm ae, 0)$

$$\Rightarrow$$
 ae = 4

⇒ 6e = 4

$$\Rightarrow e = \frac{2}{3}$$

We know that eccentricity $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

$$\Rightarrow \frac{2}{3} = \sqrt{\frac{36-b^2}{36}}$$
$$\Rightarrow \frac{4}{9} = 1 - \frac{b^2}{36}$$
$$\Rightarrow \frac{b^2}{36} = \frac{5}{9}$$
$$\Rightarrow b^2 = 20$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{36} + \frac{y^2}{20} = 1$$
$$\Rightarrow \frac{5x^2 + 9y^2}{180} = 1$$

 $\Rightarrow 5x^2 + 9y^2 = 180$

 \therefore The equation of the ellipse is $5x^2 + 9y^2 = 180$.

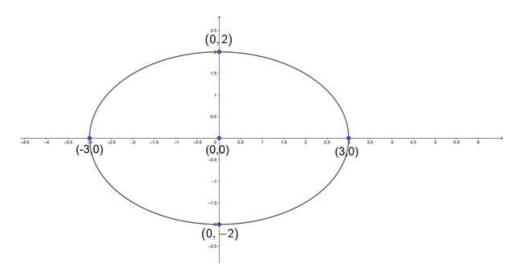
5 I. Question

find the equation of the ellipse in the following cases:

Ends of the major axis $(\pm 3, 0)$, and of the minor axis $(0, \pm 2)$

Answer

Given that we need to find the equation of the ellipse whose ends of the major axis is $(\pm 3,0)$ and ends of the minor axis is $(0, \pm 2)$.



We know that ends of the major axis of the ellipse are (±a,0)

⇒ a = 3

 $\Rightarrow a^2 = 9$

We know that ends of minor axis of the ellipse are $(0,\pm b)$

$$\Rightarrow b^2 = 4$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{9} + \frac{y^2}{4} = 1$$
$$\Rightarrow \frac{4x^2 + 9y^2}{36} = 1$$

 $\Rightarrow 4x^2 + 9y^2 = 36$

 \therefore The equation of the ellipse is $4x^2 + 9y^2 = 36$.

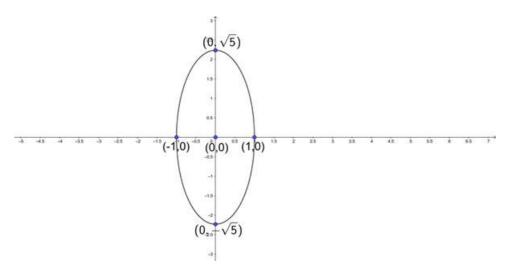
5 J. Question

find the equation of the ellipse in the following cases:

Ends of the major axis (0, $\pm \sqrt{5}$), ends of the minor axis (±1,0)

Answer

Given that we need to find the equation of the ellipse whose ends of major axis $are(0, \pm \sqrt{5})$ and ends of the minor axis are (±1,0).



We know that ends of the major axis of the ellipse are $(0,\pm b)$

- \Rightarrow b = $\sqrt{5}$
- $\Rightarrow b^2 = 5$

We know that ends of the minor axis of the ellipse are $(\pm a, 0)$

$$\Rightarrow a^2 = 1$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{1} + \frac{y^2}{5} = 1$$
$$\Rightarrow \frac{5x^2 + y^2}{5} = 1$$

 $\Rightarrow 5x^2 + y^2 = 5$

 \therefore The equation of the ellipse is $5x^2 + y^2 = 5$.

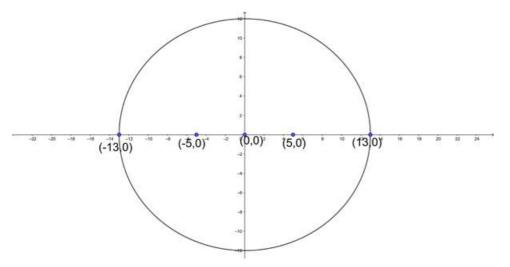
5 K. Question

find the equation of the ellipse in the following cases:

Length of major axis 26, foci $(\pm 5, 0)$

Answer

Given that we need to find the equation of the ellipse whose length of major axis is 26 and foci $(\pm 5,0)$.



We know that length of the major axis is 2a

 $\Rightarrow 2a = 26$ $\Rightarrow a = 13$ $\Rightarrow a^{2} = 169$ We know that foci = (±ae,0) $\Rightarrow ae = 5$ $\Rightarrow 13e = 5$ $\Rightarrow e = \frac{5}{13}$ We know that eccentricity $e = \sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$

$$\Rightarrow \frac{5}{13} = \sqrt{\frac{169-b^2}{169}}$$
$$\Rightarrow \frac{25}{169} = 1 - \frac{b^2}{169}$$
$$\Rightarrow \frac{b^2}{169} = \frac{144}{169}$$

$$\Rightarrow b^2 = 144$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{169} + \frac{y^2}{144} = 1$$

 \therefore The equation of the ellipse is $\frac{x^2}{169}+\frac{y^2}{144}=\ 1\cdot$

5 L. Question

find the equation of the ellipse in the following cases:

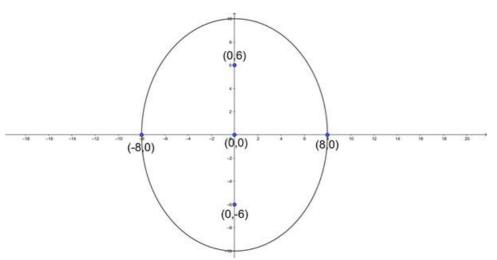
Length of minor axis 16 foci $(0, \pm 6)$

Answer

Given that we need to find the equation of the ellipse whose length of the minor axis is 16 and foci $(0, \pm 6)$.

va. con

Let us assume the equation of the ellipse as $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (b²>a²).



We know that the length of the minor axis of the ellipse is 2a,

⇒ a = 8

 $\Rightarrow a^2 = 64$

We know that foci = $(0, \pm be)$

We know that eccentricity $e = \sqrt{\frac{b^2 - a^2}{b^2}}$

$$\Rightarrow 6 = b\sqrt{\frac{b^2-64}{b^2}}$$

$$\Rightarrow b^2 = 100$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{64} + \frac{y^2}{100} = 1$$

: The equation of the ellipse is $\frac{x^2}{64} + \frac{y^2}{100} = 1$.

5 M. Question

find the equation of the ellipse in the following cases:

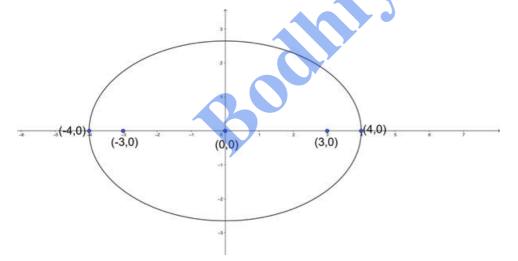
Foci (± 3, 0), a = 4

Answer

Given that we need to find the equation of the ellipse whose foci are $(\pm 3,0)$ and a = 4.

.0N

Let us assume the equation of the ellipse as $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a²>b²).



⇒ a = 4

 $\Rightarrow a^2 = 16$

We know that foci = $(\pm ae, 0)$

⇒ ae = 3

$$\Rightarrow e = \frac{3}{4}$$

We know that eccentricity $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

$$\Rightarrow \frac{3}{4} = \sqrt{\frac{16-b^2}{16}}$$
$$\Rightarrow \frac{9}{16} = 1 - \frac{b^2}{16}$$
$$\Rightarrow \frac{b^2}{16} = \frac{7}{16}$$
$$\Rightarrow b^2 = 7$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{16} + \frac{y^2}{7} = 1$$
$$\Rightarrow \frac{7x^2 + 16y^2}{112} = 1$$
$$\Rightarrow 7x^2 + 16y^2 = 112$$

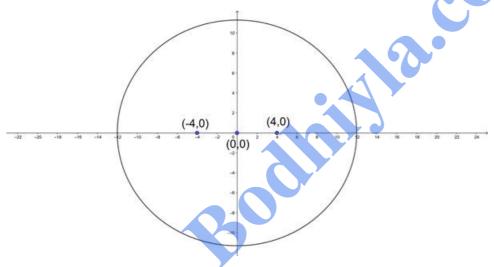
 \therefore The equation of the ellipse is $7x^2 + 16y^2 = 112$.

6. Question

Find the equation of the ellipse whose foci are (4, 0) and (-4, 0), eccentricity = 1/3.

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\frac{1}{2}$ and foci (±4,0).



Let us assume the equation of the ellipse as $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a²>b²).

We know that eccentricity(e) = $\sqrt{\frac{a^2-b^2}{a^2}}$

$$\Rightarrow \frac{1}{3} = \sqrt{\frac{a^2 - b^2}{a^2}}$$
$$\Rightarrow \frac{1}{9} = 1 - \frac{b^2}{a^2}$$
$$\Rightarrow \frac{b^2}{a^2} = \frac{8}{9}$$
$$\Rightarrow b^2 = \frac{8a^2}{9}$$

We know that foci = $(\pm ae, 0)$

⇒ ae = 4

$$\Rightarrow a\left(\frac{1}{3}\right) = 4$$
$$\Rightarrow a = 12$$
$$\Rightarrow a^{2} = 144$$
$$\Rightarrow b^{2} = \frac{8(144)}{9}$$
$$\Rightarrow b^{2} = 128$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{144} + \frac{y^2}{128} = 1$$

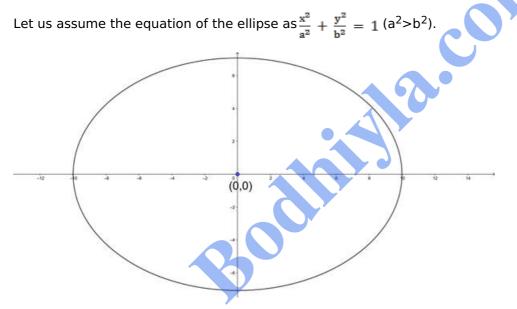
 \therefore The equation of the ellipse is $\frac{x^2}{144} + \frac{y^2}{128} = 1$.

7. Question

Find the equation of the ellipse in the standard form whose minor axis is equal to the distance between foci and whose latus - rectum is 10.

Answer

Given that we need to find the equation of the ellipse whose minor axis is equal to the distance between foci and length of latus rectum is 10.



We know that length of the minor axis is 2b and distance between the foci is 2ae.

We know that the length of the latus rectum is $\frac{2b^2}{a}$.

$$\Rightarrow \frac{2b^2}{a} = 10$$

From (1)

 $\Rightarrow \frac{a^2}{a} = 10$ $\Rightarrow a = 10$ $\Rightarrow a^2 = 100$ $\Rightarrow b^2 = \frac{100}{2}$ $\Rightarrow b^2 = 50$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{100} + \frac{y^2}{50} = 1$$
$$\Rightarrow \frac{x^2 + 2y^2}{100} = 1$$
$$\Rightarrow x^2 + 2y^2 = 100$$

 \therefore The equation of the ellipse is $x^2 + 2y^2 = 100$.

8. Question

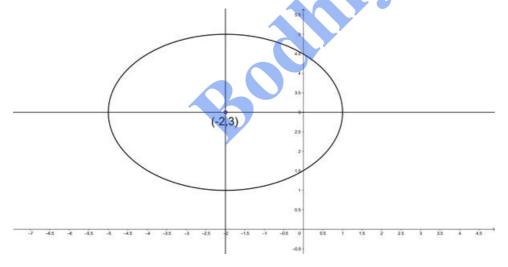
Find the equation of the ellipse whose centre is (- 2, 3) and whose semi - axis are 3 and 2 when the major axis is (i) parallel to x - axis (ii) parallel to the y - axis.

Answer

Given that we need to find the equation of the ellipse whose centre is (- 2,3) and whose semi - axis are 3 and 2.

(i) If major axis is parallel to the x - axis.

We know that the equation of the ellipse with centre (p,q) is given by $\frac{(x-p)^2}{p^2} + \frac{(y-q)^2}{p^2} = 1$.



Since major axis is parallel to x - axis $a^2 > b^2$.

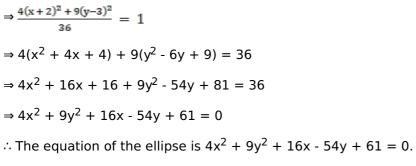
So, a = 3 and b = 2.

 $\Rightarrow a^2 = 9$

 $\Rightarrow b^2 = 4$

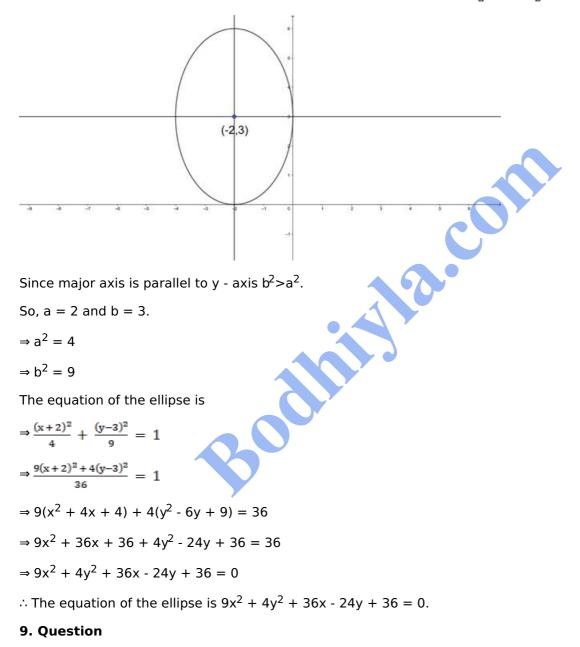
The equation of the ellipse is

 $\Rightarrow \frac{(x+2)^2}{9} + \frac{(y-3)^2}{4} = 1$



(ii) If major axis is parallel to the y - axis.

We know that the equation of the ellipse with centre (p,q) is given by $\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$.



Find the eccentricity of an ellipse whose latus - rectum is

- (i) Half of its minor axis
- (ii) Half of its major axis

Answer

Given that we need to find the eccentricity of an ellipse.

(i) If latus - rectum is half of its minor axis

We know that the length of the semi - minor axis is b and the length of the latus - rectum is $\frac{2b^2}{a}$.

$$\Rightarrow \frac{2b^2}{a} = b$$
$$\Rightarrow a = 2b \dots (1)$$

We know that eccentricity of an ellipse is $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

From (1)

$$\Rightarrow e = \sqrt{\frac{a^2 - b^2}{a^2}}$$
$$\Rightarrow e = \sqrt{\frac{(2b)^2 - b^2}{(2b)^2}}$$
$$\Rightarrow e = \sqrt{\frac{4b^2 - b^2}{4b^2}}$$
$$\Rightarrow e = \sqrt{\frac{3}{4}}$$

$$\Rightarrow e = \frac{\sqrt{3}}{2}$$
.

(ii) If latus - rectum is half of its major axis

We know that the length of the semi - major axis is a and the length of the latus - rectum is $\frac{2b^2}{a}$.

$$\Rightarrow \frac{2b^2}{a} = a$$
$$\Rightarrow a^2 = 2b^2 \dots (1)$$

We know that eccentricity of an ellipse is \mathbf{r}

From (1)

$$\Rightarrow e = \sqrt{\frac{a^2 - b^2}{a^2}}$$
$$\Rightarrow e = \sqrt{\frac{2b^2 - b^2}{2b^2}}$$
$$\Rightarrow e = \sqrt{\frac{b^2}{2b^2}}$$

$$\Rightarrow e = \sqrt{\frac{1}{2}}$$

$\Rightarrow e = \frac{1}{\sqrt{2}}$

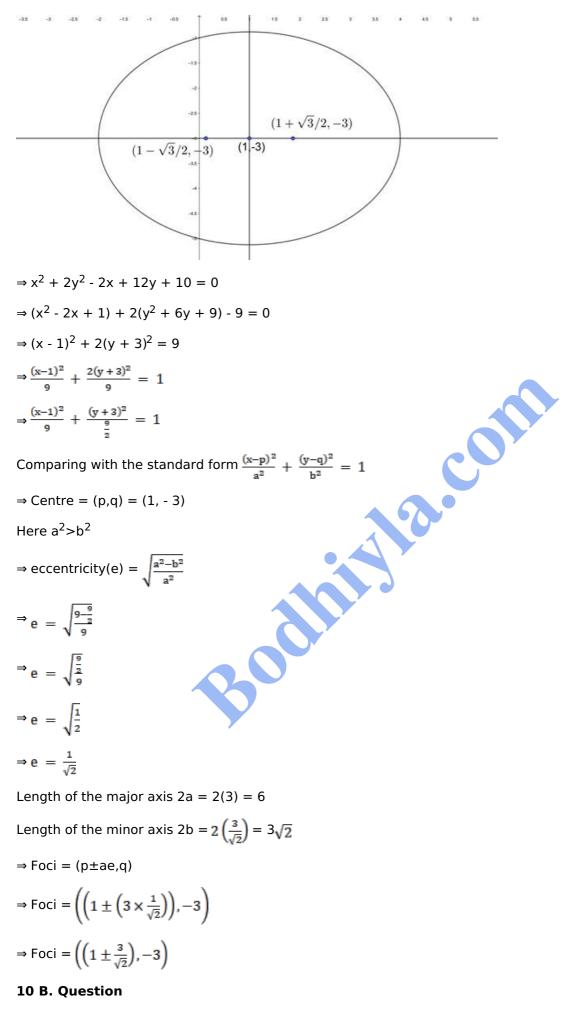
10 A. Question

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

 $x^2 + 2y^2 - 2x + 12y + 10 = 0$

Answer

Given that we need to find the centre, lengths of axes, eccentricity and foci of the ellipse $x^2 + 2y^2 - 2x + 12y + 10 = 0$.

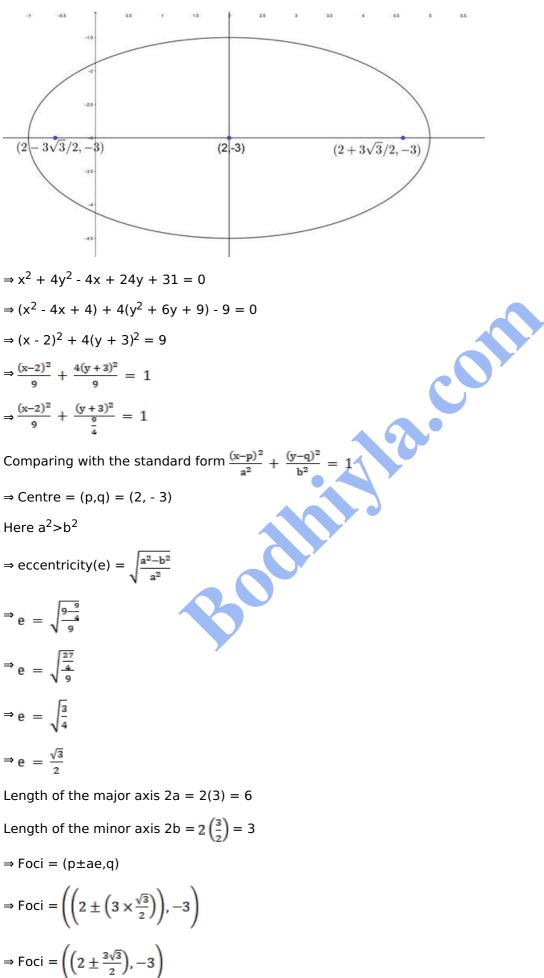


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

 $x^2 + 4y^2 - 4x + 24y + 31 = 0$

Answer

Given that we need to find the centre, lengths of axes, eccentricity and foci of the ellipse $x^2 + 4y^2 - 4x + 24y + 31 = 0$.



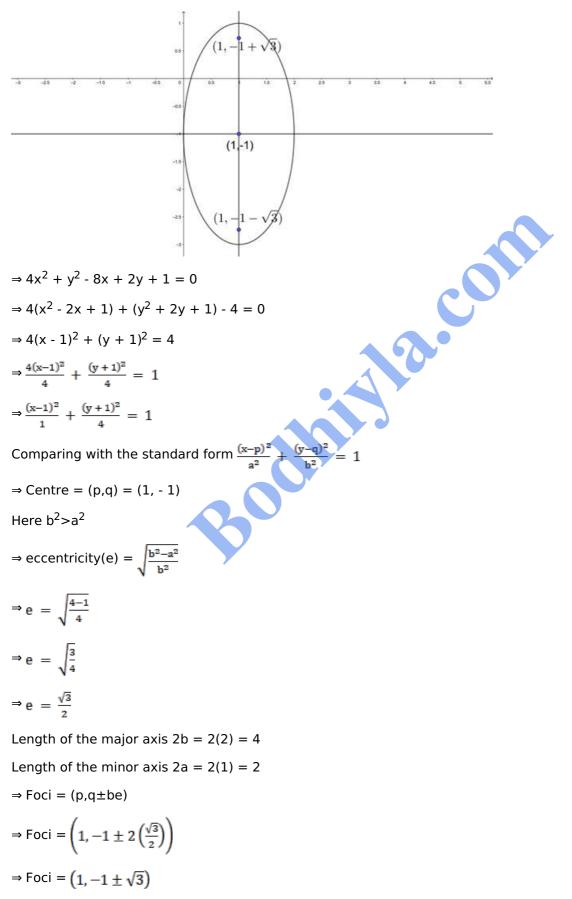
10 C. Question

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

 $4x^2 + y^2 - 8x + 2y + 1 = 0$

Answer

Given that we need to find the centre, lengths of axes, eccentricity and foci of the ellipse $4x^2 + y^2 - 8x + 2y + 1 = 0$.



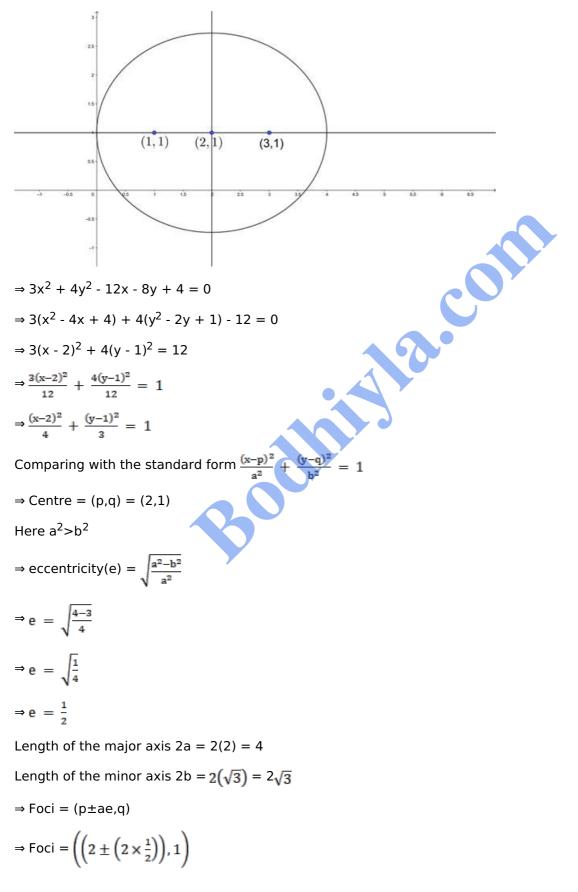
10 D. Question

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

 $3x^2 + 4y^2 - 12x - 8y + 4 = 0$

Answer

Given that we need to find the centre, lengths of axes, eccentricity and foci of the ellipse $3x^2 + 4y^2 - 12x - 8y + 4 = 0$.



 \Rightarrow Foci = $((2 \pm 1), 1)$

 \Rightarrow Foci = (3,1) and (1,1)

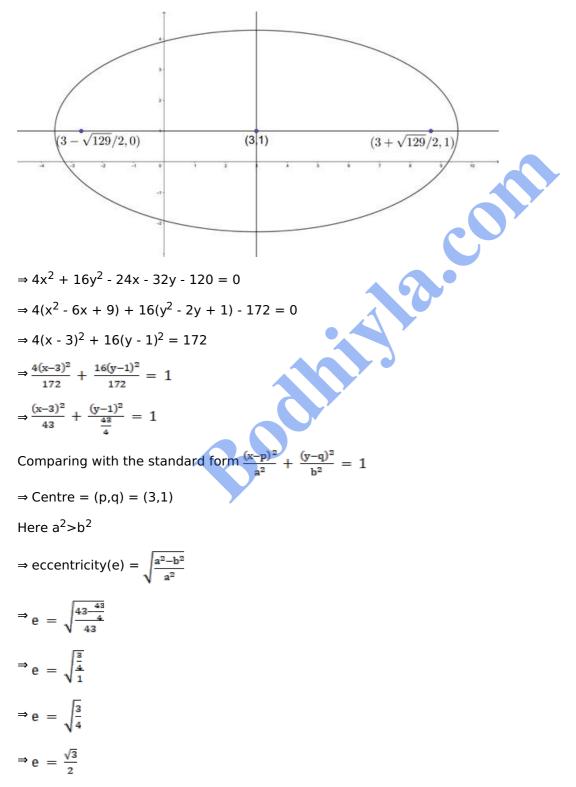
10 E. Question

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

 $4x^2 + 16y^2 - 24x - 32y - 12 = 0$

Answer

Given that we need to find the centre, lengths of axes, eccentricity and foci of the ellipse $4x^2 + 16y^2 - 24x - 32y - 120 = 0$.



Length of the major axis $2a = 2(\sqrt{43}) = 2\sqrt{43}$

Length of the minor axis $2b = 2\left(\frac{\sqrt{43}}{2}\right) = \sqrt{43}$

⇒ Foci = (p±ae,q) ⇒ Foci = $\left(\left(3 \pm \left(\sqrt{43} \times \frac{\sqrt{3}}{2}\right)\right), 1\right)$ ⇒ Foci = $\left(\left(3 \pm \frac{\sqrt{129}}{2}\right), 1\right)$

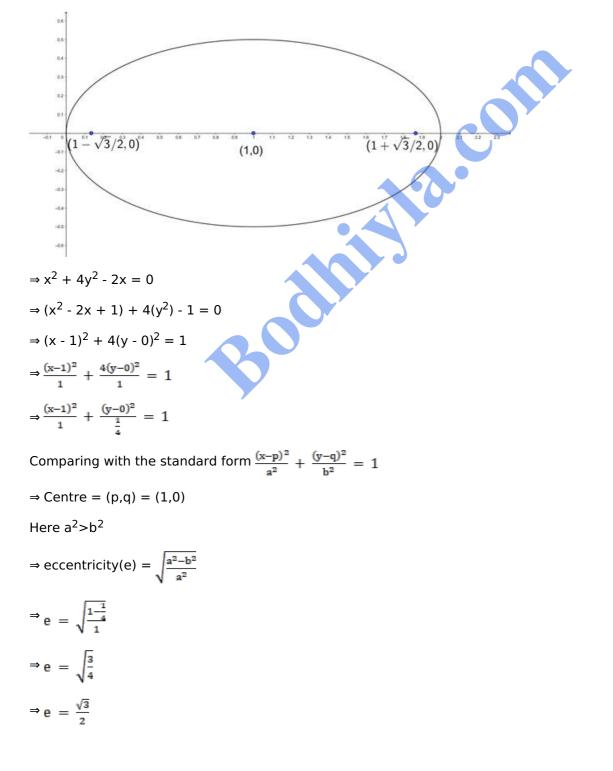
10 F. Question

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

 $x^2 + 4y^2 - 2x = 0$

Answer

Given that we need to find the centre, lengths of axes, eccentricity and foci of the ellipse $x^2 + 4y^2 - 2x = 0$.



Length of the major axis 2a = 2(1) = 2

Length of the minor axis $2b = 2\left(\frac{1}{2}\right) = 1$

 \Rightarrow Foci = (p±ae,q)

$$\Rightarrow \operatorname{Foci} = \left(\left(1 \pm \left(1 \times \frac{\sqrt{3}}{2} \right) \right), 0 \right)$$

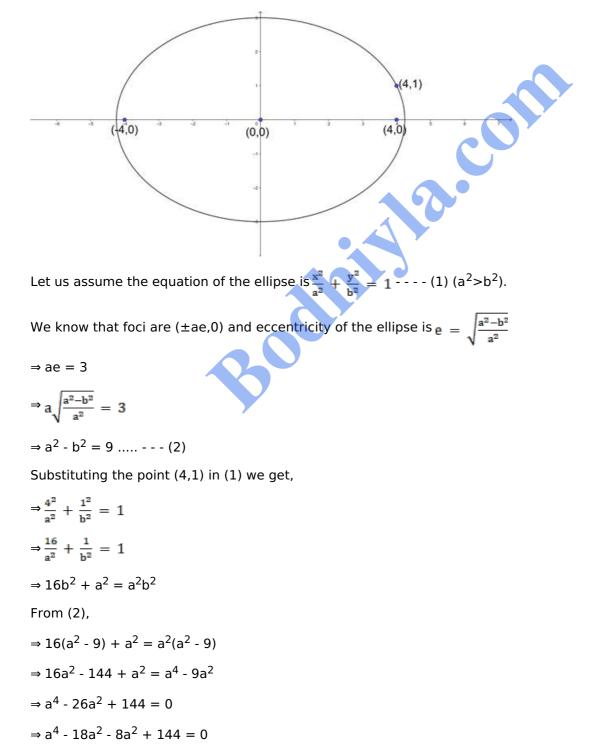
$$\Rightarrow \operatorname{Foci} = \left(\left(1 \pm \frac{3}{\sqrt{2}} \right), 0 \right)$$

11. Question

Find the equation of an ellipse whose foci are $at(\pm 3, 0)$ and which passes through (4, 1).

Answer

Given that we need to find the equation of the ellipse whose foci are at $(\pm 4,0)$ and passes through (4,1).



 $\Rightarrow a^{2}(a^{2} - 18) - 8(a^{2} - 18) = 0$ $\Rightarrow (a^{2} - 8)(a^{2} - 18) = 0$ $\Rightarrow a^{2} - 8 = 0 \text{ (or) } a^{2} - 18 = 0$ $\Rightarrow a^{2} = 8 \text{ (or) } a^{2} = 18$ $\Rightarrow b^{2} = 18 - 9(\text{since } b^{2} > 0)$ $\Rightarrow b^{2} = 9.$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{18} + \frac{y^2}{9} = 1$$
$$\Rightarrow \frac{x^2 + 2y^2}{18} = 1$$
$$\Rightarrow x^2 + 2y^2 = 18$$

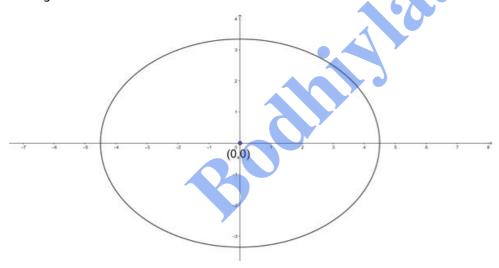
: The equation of the ellipse is $x^2 + 2y^2 = 18$.

12. Question

Find the equation of an ellipse whose eccentricity is 2/3, the latus - rectum is 5 and the centre is at the origin.

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\frac{2}{3}$, latus - rectum is 5 and centre is at origin.



Let us assume the equation of the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - - - (1) (a^2 > b^2)$ since centre is at origin.

We know that eccentricity of the ellipse is $e~=\sqrt{\frac{a^2-b^2}{a^2}}$

(2)

$$\Rightarrow \sqrt{\frac{a^2 - b^2}{a^2}} = \frac{2}{3}$$
$$\Rightarrow \frac{a^2 - b^2}{a^2} = \frac{4}{9}$$
$$\Rightarrow 9(a^2 - b^2) = 4a^2$$
$$\Rightarrow 5a^2 = 9b^2$$
$$\Rightarrow b^2 = \frac{5a^2}{2} \dots \dots$$

We know that length of the latus - rectum is $\frac{2b^2}{a}$

$$\Rightarrow \frac{2b^2}{a} = 5$$
$$\Rightarrow \frac{2\left(\frac{sa^2}{9}\right)}{a} = 5$$
$$\Rightarrow \frac{10a}{9} = 5$$
$$\Rightarrow a = \frac{9}{2}$$
$$\Rightarrow a^2 = \frac{81}{4}$$
From (2),
$$\Rightarrow 12^{-5}\left(\frac{81}{3}\right)$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{\frac{81}{4}} + \frac{y^2}{\frac{45}{4}} = 1$$
$$\Rightarrow \frac{4x^2}{81} + \frac{4y^2}{45} = 1$$
$$\Rightarrow \frac{20x^2 + 36y^2}{405} = 1$$

 $\Rightarrow 20x^2 + 36y^2 = 405$

 \therefore The equation of the ellipse is $20x^2 + 36y^2 = 405$.

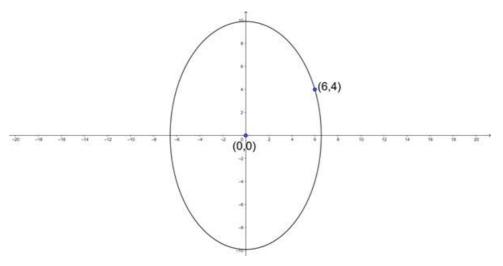
13. Question

Find the equation of an ellipse with its foci on y - axis, eccentricity 3/4, centre at the origin and passing through (6, 4).

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\frac{3}{4}$, centre at the origin and passes through (6,4).

va. con



Let us assume the equation of the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - - - (1)$ (a²<b²), since centre is at origin and foci on y - axis.

We know that eccentricity of the ellipse is $e = \sqrt{\frac{b^2 - a^2}{b^2}}$

$$\Rightarrow \sqrt{\frac{b^2 - a^2}{b^2}} = \frac{3}{4}$$
$$\Rightarrow \frac{b^2 - a^2}{b^2} = \frac{9}{16}$$
$$\Rightarrow 16b^2 - 16a^2 = 9b^2$$
$$\Rightarrow 7b^2 = 16a^2$$
$$\Rightarrow a^2 = \frac{7b^2}{16} \dots - - (2)$$

Substituting the point (6,4) in (1) we get,

$$\frac{3}{a^{2}} + \frac{4^{2}}{b^{2}} = 1$$

$$\frac{36}{7b^{2}} + \frac{16}{b^{2}} = 1$$

$$\frac{376}{7b^{2}} + \frac{16}{b^{2}} = 1$$

$$\frac{576 + 112}{7b^{2}} = 1$$

 $\Rightarrow 16x^2 + 7y^2 = 688$

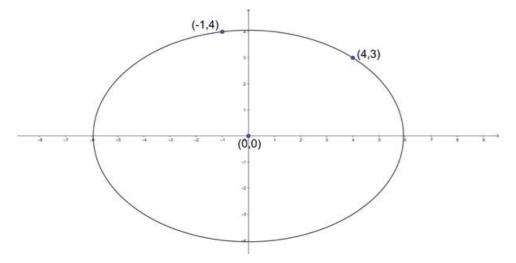
 \therefore The equation of the ellipse is $16x^2 + 7y^2 = 688$.

14. Question

Find the equation of an ellipse whose axes lie along coordinates axes and which passes through (4, 3) and (-1, 4).

Answer

Given that we need to find the equation of the ellipse passing through the points (4,3) and (-1,4).



Let us assume the equation of the ellipse as $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a²>b²). - - - (1)

Substituting the point (4,3) in (1) we get

 $\Rightarrow \frac{4^2}{a^2} + \frac{3^2}{b^2} = 1$ $\Rightarrow \frac{16}{n^2} + \frac{9}{n^2} = 1$ $\Rightarrow \frac{16b^2 + 9a^2}{a^2b^2} = 1$ $\Rightarrow 16b^2 + 9a^2 = a^2 b^2 \dots - - (2)$ Substituting the point (-1,4) in (1) we get $\Rightarrow \frac{(-1)^2}{a^2} + \frac{4^2}{b^2} = 1$ $\Rightarrow \frac{1}{a^2} + \frac{16}{b^2} = 1$ $\Rightarrow \frac{b^2 + 16a^2}{a^2b^2} = 1$ $\Rightarrow b^{2} + 16a^{2} = a^{2}b^{2} \dots - - (3)$ (3)×16 - (2) $\Rightarrow (16b^2 + 256a^2) - (9a^2 + 16b^2) = (16a^2b^2 - a^2b^2)$ $\Rightarrow 247a^2 = 15a^2b^2$ $\Rightarrow 15b^2 = 247$ $\Rightarrow b^2 = \frac{247}{15}$ From (3) $\Rightarrow \frac{247}{15} + 16a^2 = a^2 \left(\frac{247}{15}\right)$ $\Rightarrow a^2 \left(\frac{247 - 240}{15} \right) = \frac{247}{15}$ $\Rightarrow a^2 \left(\frac{7}{15}\right) = \frac{247}{15}$ $\Rightarrow a^2 = \frac{247}{7}$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{\frac{247}{7}} + \frac{y^2}{\frac{247}{15}} = 1$$
$$\Rightarrow \frac{7x^2}{247} + \frac{15y^2}{247} = 1$$
$$\Rightarrow 7x^2 + 15y^2 = 247$$

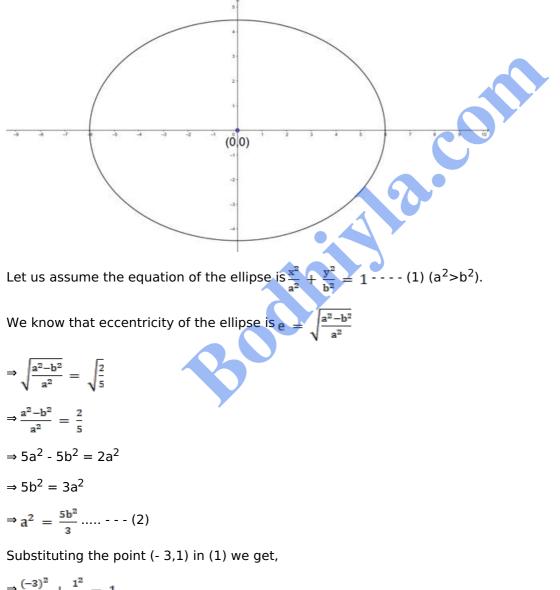
 \therefore The equation of the ellipse is $7x^2 + 15y^2 = 247$.

15. Question

Find the equation of an ellipse whose axes lie along the coordinates axes, which passes through the point (-3, 1) and has eccentricity equal to $\sqrt{2/5}$.

Answer

Given that we need to find the equation of the ellipse whose eccentricity is $\sqrt{\frac{2}{5}}$ and passes through (- 3,1).



$$\Rightarrow \frac{(-3)^2}{a^2} + \frac{1^2}{b^2} = 1$$
$$\Rightarrow \frac{9}{\frac{5b^2}{3}} + \frac{1}{b^2} = 1$$
$$\Rightarrow \frac{27}{5b^2} + \frac{1}{b^2} = 1$$
$$\Rightarrow \frac{27+5}{5b^2} = 1$$

 $\Rightarrow 5b^2 = 32$ $\Rightarrow b^2 = \frac{32}{5}$

From (2),

$$\Rightarrow a^{2} = \frac{5\left(\frac{32}{5}\right)}{3}$$
$$\Rightarrow a^{2} = \frac{32}{3}$$

The equation of the ellipse is

$$\Rightarrow \frac{x^{2}}{\frac{32}{3}} + \frac{y^{2}}{\frac{32}{5}} = 1$$
$$\Rightarrow \frac{3x^{2}}{32} + \frac{5y^{2}}{32} = 1$$
$$\Rightarrow \frac{3x^{2} + 5y^{2}}{32} = 1$$
$$\Rightarrow 3x^{2} + 5y^{2} = 32$$

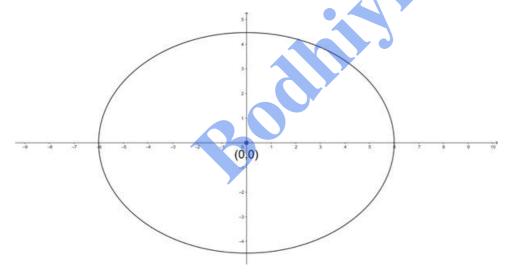
 \therefore The equation of the ellipse is $3x^2 + 5y^2 = 32$.

16. Question

Find the equation of an ellipse, the distance between the foci is 8 units and the distance between the directrices is 18 units.

Answer

Given that we need to find the equation of the ellipse whose distance between the foci is 8 units and distance between the directrices is 18 units.



We know that the distance between the foci is 2ae.

⇒2ae = 8

⇒ ae = 4 - (1)

We know that the distance between the directrices is $\frac{2a}{a}$.

$$\Rightarrow \frac{2a}{e} = 18$$
$$\Rightarrow \frac{a}{e} = 9 \dots - (2)$$
$$(1) \times (2)$$

⇒ ae ×
$$\frac{a}{e}$$
 = 4 × 9
⇒ a² = 36 (3)
⇒ a = 6

We know that eccentricity of an ellipse is $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

$$\Rightarrow a \sqrt{\frac{a^2 - b^2}{a^2}} = 4$$
$$\Rightarrow 36 - b^2 = 16$$
$$\Rightarrow b^2 = 20 \dots (4)$$

The equation of the ellipse is,

$$\Rightarrow \frac{x^2}{36} + \frac{y^2}{20} = 1$$
$$\Rightarrow \frac{5x^2 + 9y^2}{180} = 1$$
$$\Rightarrow 5x^2 + 9y^2 = 180$$

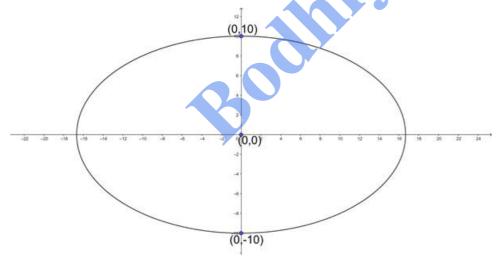
 \therefore The equation of the ellipse is $5x^2 + 9y^2 = 180$.

17. Question

Find the equation of an ellipse whose vertices are (0, ± 10) and eccentricity $e = \frac{4}{5}$.

Answer

Given that we need to find the equation of the ellipse whose vertices are (0,±10) and eccentricity $e = \frac{4}{5}$.



Let us assume the equation of the ellipse as $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - - - (1) (a^2 > b^2).$

We know that vertices of the ellipse are $(0,\pm b)$

⇒ b = 10

 $\Rightarrow b^2 = 100$

We know that eccentricity $e = \sqrt{\frac{a^2-b^2}{a^2}}$

$$\Rightarrow \frac{4}{5} = \sqrt{\frac{a^2 - 100}{a^2}}$$
$$\Rightarrow \frac{16}{25} = 1 - \frac{100}{a^2}$$
$$\Rightarrow \frac{100}{a^2} = \frac{9}{25}$$
$$\Rightarrow a^2 = \frac{2500}{a}$$

The equation of the ellipse is

$$\Rightarrow \frac{x^2}{2500} + \frac{y^2}{100} = 1$$
$$\Rightarrow \frac{9x^2}{2500} + \frac{y^2}{100} = 1$$
$$\Rightarrow \frac{9x^2 + 25y^2}{2500} = 1$$
$$\Rightarrow 9x^2 + 25y^2 = 2500$$

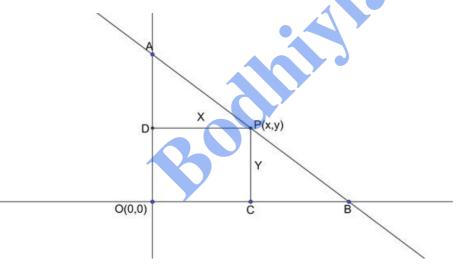
 \therefore The equation of the ellipse is $9x^2 + 25y^2 = 2500$.

18. Question

A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x - axis.

Answer

Given that we need to find the locus of the point on the rod whose ends always touching the coordinate axes.



We need to the equation of locus of point P on the rod, which is 3 cm from the end in contact with x - axis.

Let us assume AB be the rod of length 12 cm and P(x,y) be the required point.

From the figure using similar triangles DAP and CBP we get,

$$\Rightarrow \frac{AD}{PC} = \frac{AP}{PB}$$
$$\Rightarrow \frac{q}{y} = \frac{9}{3}$$
$$\Rightarrow q = 3y \dots (1)$$
$$\Rightarrow \frac{DP}{CB} = \frac{AP}{PB}$$
$$\Rightarrow \frac{x}{z} = \frac{9}{2}$$

$$\Rightarrow p = \frac{x}{3} \dots (2)$$
Now OB = OC + CB

$$\Rightarrow OB = x + \frac{x}{3}$$

$$\Rightarrow OB = \frac{4x}{3} \dots (3)$$

$$\Rightarrow OA = OD + DA$$

$$\Rightarrow OA = y + 3y$$

$$\Rightarrow OA = 4y \dots (4)$$
Since OAB is a right angled triangle,

$$\Rightarrow OA^{2} + OB^{2} = AB^{2}$$

$$\Rightarrow (4y)^{2} + \left(\frac{4x}{3}\right)^{2} = (12)^{2}$$

$$\Rightarrow 16y^{2} + \frac{16x^{2}}{9} = 144$$

$$\Rightarrow y^{2} + \frac{x^{2}}{9} = 9$$

$$\Rightarrow \frac{9y^{2} + x^{2}}{9} = 9$$

$$\Rightarrow x^{2} + 9y^{2} = 81$$

$$\therefore$$
 The equation of the ellipse is $x^{2} + 9y^{2} = 81$.

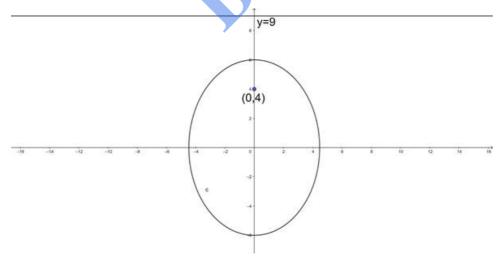
: The equation of the ellipse is $x^2 + 9y^2 = 81$.

19. Question

Find the equation of the set of all points whose distances from (0, 4) are $\frac{2}{3}$ of their distances from the line y = 9.

Answer

Given that we need to find the equation of set of all points whose distances from S(0,4) are $\frac{2}{3}$ of their distances from the line(M) y = 9.



Let P(x,y) be any point from the set of all points.

We know that distance between the points (x_1,y_1) and (x_2,y_2) is $\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$.

We know that the perpendicular distance from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

 $\Rightarrow SP = \left(\frac{2}{3}\right)PM$ $\Rightarrow SP^{2} = \frac{4}{9}PM^{2}$ $\Rightarrow (x-0)^{2} + (y-4)^{2} = \frac{4}{9}\left(\frac{|y-9|}{\sqrt{1^{2}}}\right)^{2}$ $\Rightarrow x^{2} + y^{2} - 8y + 16 = \frac{4}{9} \times \frac{(|y-9|)^{2}}{1}$ $\Rightarrow x^{2} + y^{2} - 8y + 16 = \frac{4}{9} \times (y^{2} - 18y + 81)$ $\Rightarrow 9x^{2} + 9y^{2} - 72y + 144 = 4y^{2} - 72y + 324$ $\Rightarrow 9x^{2} + 5y^{2} = 180$

 \therefore The equation of the ellipse is $9x^2 + 5y^2 = 180$.

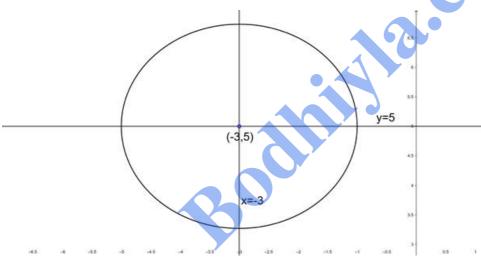
Very Short Answer

1. Question

If the lengths of semi - major and semi - minor axes of an ellipse are 2 and $\sqrt{3}$ and their corresponding equations are y - 5 = 0 and x + 3 = 0, then write the equation of the ellipse.

Answer

Given that we need to find the equation of the ellipse whose semi - major and semi - minor axes are 2 and $\sqrt{3}$ and their corresponding equations of equations of axes are y - 5 = 0 and x + 3 = 0.



We know that the centre is the point of intersection of both axes. So, on solving these axes we get the centre to be (- 3,5).

⇒ Semi - major axis(a) = 2

 $\Rightarrow a^2 = 4$

⇒ Semi - minor axis(b) = $\sqrt{3}$

We know that the equation of the ellipse whose centre is (p,q) and the length of semi - major axis is a and semi - minor axis is b is $\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$.

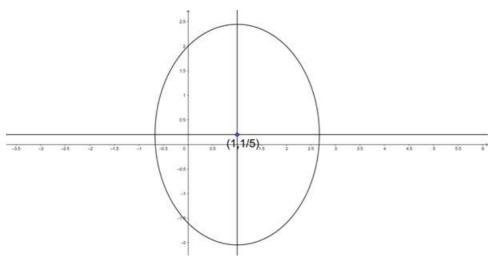
: The equation of the ellipse is $\frac{(x+3)^2}{4} + \frac{(y-5)^2}{3} = 1$.

2. Question

Write the eccentricity of the ellipse $9x^2 + 5y^2 - 18x - 2y - 16 = 0$

Given the equation of the ellipse is $9x^2 + 5y^2 - 18x - 2y - 16 = 0$.

We need to find the eccentricity.



Given equation can be rewritten as

Given equation can be rewritten as

$$\Rightarrow 9(x^2 - 2x + 1) + 5\left(y^2 - \frac{2}{5}y + \frac{1}{25}\right) = \frac{126}{5}$$

$$\Rightarrow 9(x - 1)^2 + 5\left(y - \frac{1}{5}\right)^2 = \frac{126}{5}$$

$$\Rightarrow \frac{9(x - 1)^2}{\frac{126}{5}} + \frac{5\left(y - \frac{1}{5}\right)^2}{\frac{126}{5}} = 1$$

$$\Rightarrow \frac{(x - 1)^2}{\frac{126}{45}} + \frac{\left(y - \frac{2}{5}\right)^2}{\frac{126}{25}} = 1$$
We know for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(b^2 > a^2)$

$$\Rightarrow e = \sqrt{\frac{b^2 - a^2}{b^2}}$$

Here $a^2 = \frac{126}{45}$ and $b^2 = \frac{126}{25}$, $b^2 > a$

$$\Rightarrow e = \sqrt{\frac{\frac{126}{25} + \frac{126}{45}}{\frac{126}{25}}}$$

$$\stackrel{\Rightarrow}{=} e = \sqrt{\frac{\frac{4}{225}}{\frac{126}{25}}}$$

$$\Rightarrow e = \sqrt{\frac{2}{567}}$$

$$\Rightarrow e = \frac{\sqrt{14}}{63}$$

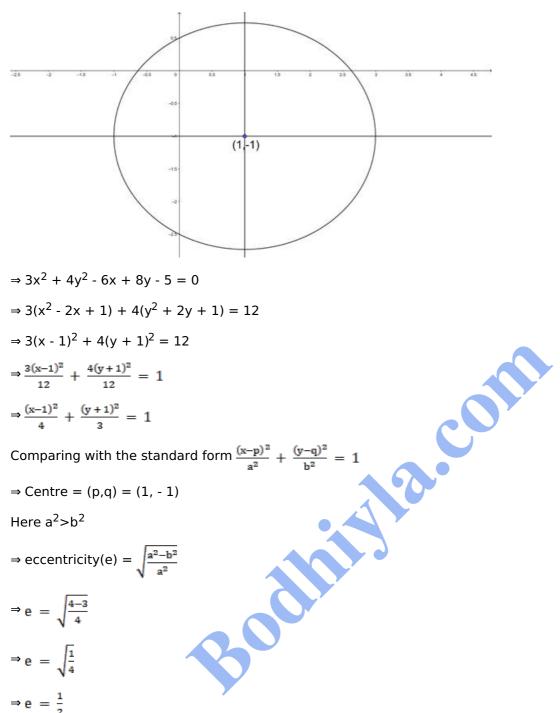
 \therefore The eccentricity is $\frac{\sqrt{14}}{63}$

3. Question

Write the centre and eccentricity of the ellipse $3x^2 + 4y^2 - 6x + 8y - 5 = 0$

Answer

Given that we need to find the centre and eccentricity of the ellipse $3x^2 + 4y^2 - 6x + 8y - 5 = 0$.



4. Question

PSQ is focal chord of the ellipse $4x^2 + 9y^2 = 36$ such that SP = 4. If S' is the another focus, write the value of S'Q.

Answer

Given that PSQ is the focal chord of the ellipse $4x^2 + 9y^2 = 36$.

It is also given that SP = 4. We need to find the value of S'Q, where S and S' are foci.

Given ellipse is rewritten as $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

We got $a^2 = 9$, a = 3 and $b^2 = 4$.

We know that semi latus rectum is the harmonic mean of any two segments of focal chord.

$$\Rightarrow \frac{\frac{2}{b^2}}{\frac{a}{a}} = \frac{1}{SP} + \frac{1}{SQ}$$

$$\Rightarrow \frac{2 \times 3}{4} = \frac{1}{4} + \frac{1}{SQ}$$
$$\Rightarrow \frac{5}{4} = \frac{1}{SQ}$$
$$\Rightarrow SQ = \frac{4}{5}$$
We know that SQ + S'Q = 2a
$$\Rightarrow \frac{4}{5} + S'Q = 2(3)$$
$$\Rightarrow S'Q = 6 - \frac{4}{5}$$

5

$$\Rightarrow S'Q = \frac{26}{5}$$

5. Question

Write the eccentricity of an ellipse whose latus - rectum is one half of the minor axis.

Answer

Given that we need to find the eccentricity of the ellipse whose latus - rectum is one half of the minor axis.

We know that length of latus rectum is $\frac{2b^2}{a}$ and length of minor axis is 2b.

$$\Rightarrow \frac{2b^2}{a} = b$$

$$\Rightarrow$$
 a = 2b.

We know that eccentricity of the ellipse is $_{e}\,=\,$

$$\Rightarrow e = \sqrt{\frac{(2b)^2 - b^2}{(2b)^2}}$$
$$\Rightarrow e = \sqrt{\frac{3b^2}{4b^2}}$$

$$\Rightarrow e = \frac{\sqrt{3}}{2}$$

6. Question

If the distance between the foci of an ellipse is equal to the length of the latus - rectum, write the eccentricity of the ellipse.

Answer

Given that we need to find the eccentricity of the ellipse whose latus - rectum is equal to the distance between the foci.

We know that length of latus rectum is $\frac{2b^2}{a}$ and distance between foci is 2ae.

$$\Rightarrow \frac{2b^2}{a} = 2ae$$

$$\Rightarrow b^2 = a^2 e$$

We know that eccentricity of the ellipse is $b^2 = a^2(1 - e^2)$

$$\Rightarrow a^{2}(1 - e^{2}) = a^{2}e$$
$$\Rightarrow e^{2} + e - 1 = 0$$

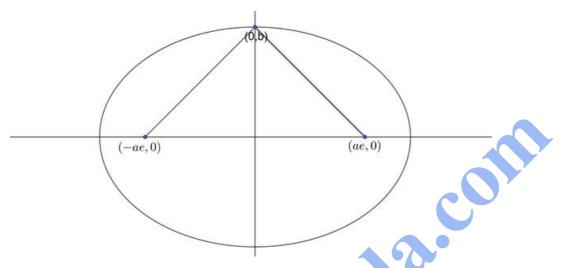
$$\Rightarrow e = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2}$$
$$\Rightarrow e = \frac{\sqrt{5} - 1}{2} (\text{since } e > 0)$$

7. Question

If S and S' are two foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and B is an end of the minor axis such that Δ BSS' is equilateral, then write the eccentricity of the ellipse.

Answer

Given that S and S' are the foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.



It is told that $\Delta BSS'$ is equilateral, where B is the end of the minor axis. We need to find the eccentricity of the ellipse.

Let us assume that B = (0,b)

We know that foci of the ellipse are $(\pm ae, 0)$.

We know that the distance between the foci is 2ae.

Let us find the distance SB

We know that the distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

$$\Rightarrow SB = \sqrt{(ae-0)^2 + (0-b)^2}$$

 $\Rightarrow SB = \sqrt{a^2e^2 + b^2}.$

We know that sides of an equilateral triangle are equal.

$$\Rightarrow SB = 2ae$$

$$\Rightarrow SB^{2} = 4a^{2}e^{2}$$

$$\Rightarrow a^{2}e^{2} + b^{2} = 4a^{2}e^{2}$$

We know that $b^{2} = a^{2}(1 - e^{2})$,

$$\Rightarrow a^{2}e^{2} + a^{2} - a^{2}e^{2} = 4a^{2}e^{2}$$

$$\Rightarrow a^{2} = 4a^{2}e^{2}$$

 $\Rightarrow e^2 = \frac{1}{4}$

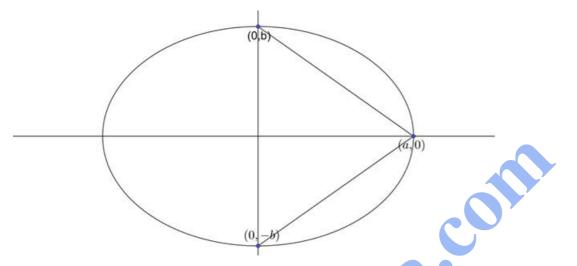
$$\Rightarrow \mathbf{e} = \sqrt{\frac{1}{4}}$$
$$\Rightarrow \mathbf{e} = \frac{1}{2}.$$

8. Question

If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse.

Answer

Given that the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis. We need to find the eccentricity of the ellipse.



Let us assume that ends of minor axis be B = (0,b) and C(0, -b) and end of major axis be A(a,0)

We know that the distance between the ends of minor axis is 2b.

Let us find the distance AB

We know that the distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

$$\Rightarrow AB = \sqrt{(a-0)^2 + (0-b)^2}$$

$$\Rightarrow AB = \sqrt{a^2 + b^2}$$

We know that sides of an equilateral triangle are equal.

$$\Rightarrow AB = 2b$$
$$\Rightarrow AB^{2} = 4b^{2}$$
$$\Rightarrow a^{2} + b^{2} = 4b^{2}$$

We know that
$$b^2 = a^2(1 - e^2)$$
,

$$\Rightarrow a^{2} + a^{2} - a^{2}e^{2} = 4a^{2} - 4a^{2}e^{2}$$

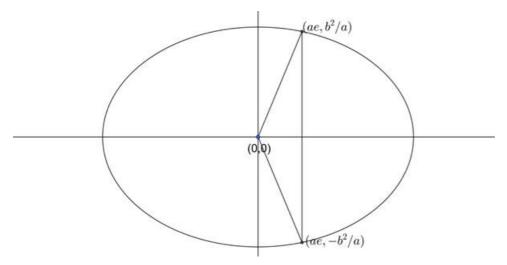
$$\Rightarrow 2a^2 = 3a^2e^2$$

$$\Rightarrow e^2 = \frac{2}{3}$$
$$\Rightarrow e = \sqrt{\frac{2}{3}}.$$

9. Question

If a latus - rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse.

Given that the latus rectum of an ellipse subtends an right angle with centre of the ellipse. We need to find the eccentricity of the ellipse.



Let us assume that the equation of the ellipse $be_{a^2}^{x^2} + \frac{y^2}{b^2} = 1$ (a²>b²) such that the centre is O(0,0).

We know that the ends A and B of the latus rectum are $\left(ae, \pm \frac{b^2}{a}\right)$.

Let us find the $slope(m_1)$ of the OA.

We know that the slope of the line joining points (x_1, y_1) and (x_2, y_2) is $\frac{y_2-y_3}{x_1-x_2}$

$$\stackrel{\Rightarrow}{=} m_1 = \frac{\frac{b^2}{a} - 0}{ae - 0}$$
$$\stackrel{\Rightarrow}{=} m_1 = \frac{b^2}{a^2 a}$$

Let us find the $slope(m_2)$ of the OB.

We know that the slope of the line joining points (x_1, y_1) and (x_2, y_2) is $\frac{y_2 - y_1}{x_2 - x_1}$

$$\stackrel{\Rightarrow}{\rightarrow} \mathbf{m}_2 = \frac{\frac{-\mathbf{b}^2}{\mathbf{a}} - \mathbf{0}}{\mathbf{a}\mathbf{e} - \mathbf{0}}$$
$$\stackrel{\Rightarrow}{\rightarrow} \mathbf{m}_2 = \frac{-\mathbf{b}^2}{\mathbf{a}^2 \mathbf{e}}$$

We know that the product of the slopes of the perpendicular is - 1.

$$\Rightarrow m_1 \cdot m_2 = -1$$

$$\Rightarrow \left(\frac{b^2}{a^2 e}\right) \cdot \left(\frac{-b^2}{a^2 e}\right) = -1$$

$$\Rightarrow b^4 = a^4 e^2$$

$$\Rightarrow e^2 = \frac{b^4}{a^4}$$

$$\Rightarrow e = \frac{b^2}{a^2}$$

MCQ

1. Question

For the ellipse $12x^2 + 4y^2 + 24x - 16y + 25 = 0$

A. Centre is (- 1,2)

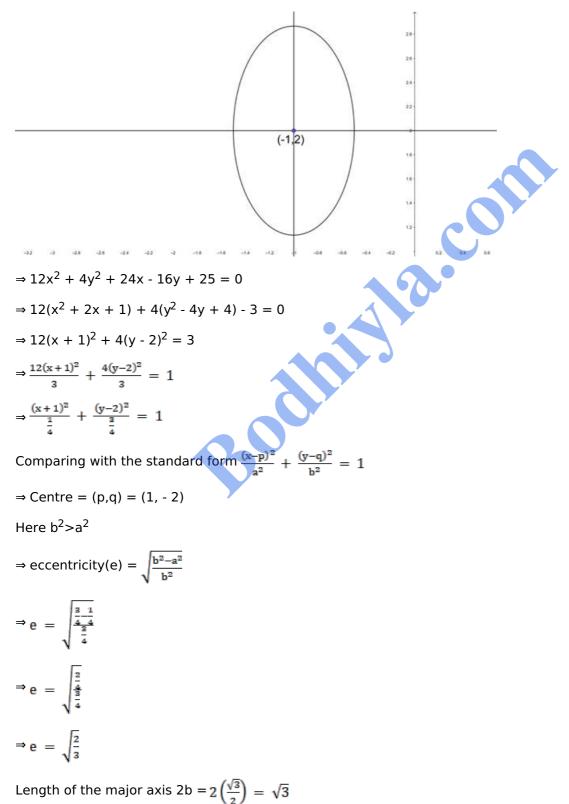
B. Lengths of the axes are $\sqrt{3}$ and 1

C. Eccentricity = $\sqrt{\frac{2}{3}}$

D. All of these

Answer

Given that we need to find the centre, lengths of axes, eccentricity and foci of the ellipse $12x^2 + 4y^2 + 24x - 16y + 25 = 0$.



Length of the minor axis $2a = 2\left(\frac{1}{2}\right) = 1$

 \therefore The correct option is D

2. Question

The equation of ellipse with focus (-1, 1), directrix x - y + 3 = 0 and eccentricity 1/2 is

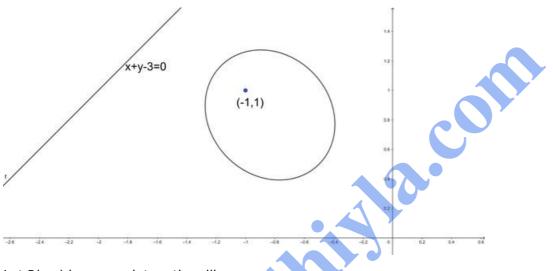
A.
$$7x^{2} + 2xy + 7y^{2} + 10x + 10y + 7 = 0$$

B. $7x^{2} + 2xy + 7y^{2} + 10x - 10y + 7 = 0$
C. $7x^{2} + 2xy + 7y^{2} + 10x - 10y - 7 = 0$

D. None of these

Answer

Given that we need to find the equation of the ellipse whose focus is S(- 1,1) and directrix(M) is x - y + 3 = 0 and eccentricity(e) is equal to $\frac{1}{2}$.



Let P(x,y) be any point on the ellipse.

We know that the distance between the focus and any point on ellipse is equal to the eccentricity times the perpendicular distance from that point to the directrix.

We know that distance between the points (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

We know that the perpendicular distance from the point (x_1, y_1) to the line ax + by + c = 0 is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

$$\Rightarrow$$
 SP = ePM

 \Rightarrow SP² = e²PM²

$$\Rightarrow (x - (-1))^{2} + (y - 1)^{2} = \left(\frac{1}{2}\right)^{2} \left(\frac{|x - y + 3|}{\sqrt{1^{2} + (-1)^{2}}}\right)^{2}$$

$$\Rightarrow x^{2} + 2x + 1 + y^{2} - 2y + 1 = \frac{1}{4} \times \frac{(|x - y + 3|)^{2}}{1 + 1}$$

$$\Rightarrow x^{2} + y^{2} + 2x - 2y + 2 = \frac{1}{8} \times (x^{2} + y^{2} + 9 - 2xy - 6y + 6x)$$

$$\Rightarrow 8x^{2} + 8y^{2} + 16x - 16y + 16 = x^{2} + y^{2} - 2xy - 6y + 6x + 9$$

$$\Rightarrow 7x^{2} + 7y^{2} + 2xy + 10x - 10y + 7 = 0$$

$$\therefore \text{ The correct option is B}$$

3. Question

The equation of the circle drawn with the two foci of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ as the end - points of a diameter is

A.
$$x^{2} + y^{2} = a^{2} + b^{2}$$

B. $x^{2} + y^{2} = a^{2}$
C. $x^{2} + y^{2} = 2a^{2}$
D. $x^{2} + y^{2} = a^{2} - b^{2}$

Answer

Given that we need to find the equation of the circle whose end points of diameter are the foci of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

We know that foci of ellipse are $(\pm ae, 0)$.

We know that (0,0) is the centre of the ellipse and midpoint of the foci.

We know that distance between centre and any focus is ae.

So, we have with centre at (0,0) and radius ae.

We know that eccentricity of the ellipse $e = \sqrt{\frac{a^2-b^2}{a^2}}$

We know that the equation of the circle whose centre is (p,q) and radius (r) is $(x - p)^2 + (y - q)^2 = r^2$

$$\Rightarrow (x - 0)^{2} + (y - 0)^{2} = (ae)^{2}$$

$$\Rightarrow x^2 + y^2 = a^2 e^2$$

$$\Rightarrow x^{2} + y^{2} = a^{2} \left(\frac{a^{2} - b^{2}}{a^{2}} \right)$$

$$\Rightarrow x^2 + y^2 = a^2 - b^2$$

 \therefore The correct option is D

4. Question

The eccentricity of the ellipse $\frac{x}{1} = 1$ if its latus - rectum is equal to one half of its minor axis, is

A.
$$\frac{1}{\sqrt{2}}$$

B. $\frac{\sqrt{3}}{2}$

C.
$$\frac{1}{2}$$

D. none of these

Answer

Given that we need to find the eccentricity of the ellipse whose latus - rectum is one half of the minor axis. We know that length of latus rectum is $\frac{2b^2}{2}$ and length of minor axis is 2b.

$$\Rightarrow \frac{2b^2}{a} = b$$

 \Rightarrow a = 2b.

We know that eccentricity of the ellipse is $e = \sqrt{\frac{a^2 - b^2}{a^2}}$

$$\Rightarrow e = \sqrt{\frac{(2b)^2 - b^2}{(2b)^2}}$$
$$\Rightarrow e = \sqrt{\frac{3b^2}{4b^2}}$$
$$\Rightarrow e = \frac{\sqrt{3}}{2}$$

 \therefore The correct option is A

5. Question

The eccentricity of the ellipse, if the distance between the foci is equal to the length of the latus - rectum is

con

A.
$$\frac{\sqrt{5}-1}{2}$$

B. $\frac{\sqrt{5}+1}{2}$
C. $\frac{\sqrt{5}-1}{2}$

D. none of these

4

Answer

Given that we need to find the eccentricity of the ellipse whose latus - rectum is equal to the distance between the foci.

We know that length of latus rectum is $\frac{2b^2}{2}$ and distance between foci is 2ae.

$$\Rightarrow \frac{2b^2}{a} = 2ae$$

 \Rightarrow b² = a²e.

We know that eccentricity of the ellipse is $b^2 = a^2(1 - e^2)$

$$\Rightarrow a^2(1 - e^2) = a^2 e^2$$

 $\Rightarrow e^2 + e - 1 = 0$

$$\stackrel{\Rightarrow}{=} e = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2}$$

⇒ e =
$$\frac{\sqrt{5}-1}{2}$$
(since e>0)

 \div The correct option is A

6. Question

The eccentricity of the ellipse, if the minor axis is equal to the distance between the foci is

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{2}{\sqrt{3}}$$

C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{2}}{3}$

Given that we need to find the eccentricity of the ellipse whose minor axis is equal to the distance between the foci.

2.01

We know that distance between foci is 2ae and length of minor axis is 2b.

 $\Rightarrow 2ae = 2b$ $\Rightarrow b = ae$ $\Rightarrow b^{2} = a^{2}e^{2}$ We know that b² = a²(1 - e²) $\Rightarrow a^{2}(1 - e^{2}) = a^{2}e^{2}$ $\Rightarrow a^{2} = 2a^{2}e^{2}$ $\Rightarrow e^{2} = \frac{1}{2}$ $\Rightarrow e = \frac{1}{\sqrt{2}}$ ∴ The correct option is C

7. Question

The difference between the lengths of the major axis and the latus - rectum of an ellipse is

A. ae

B. 2ae

 $C. ae^2$

D. 2ae²

Answer

Given that we need to find the difference between the lengths of major axis and length of latus rectum of an ellipse.

We know that the length of major axis is 2a and latus rectum is $\frac{2b^2}{a}$ for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$.

Let d be the difference.

$$\Rightarrow d = 2a - \frac{2b^2}{a}$$
$$\Rightarrow d = \frac{2a^2 - 2b^2}{a}$$

We know that $b^2 = a^2(1 - e^2)$

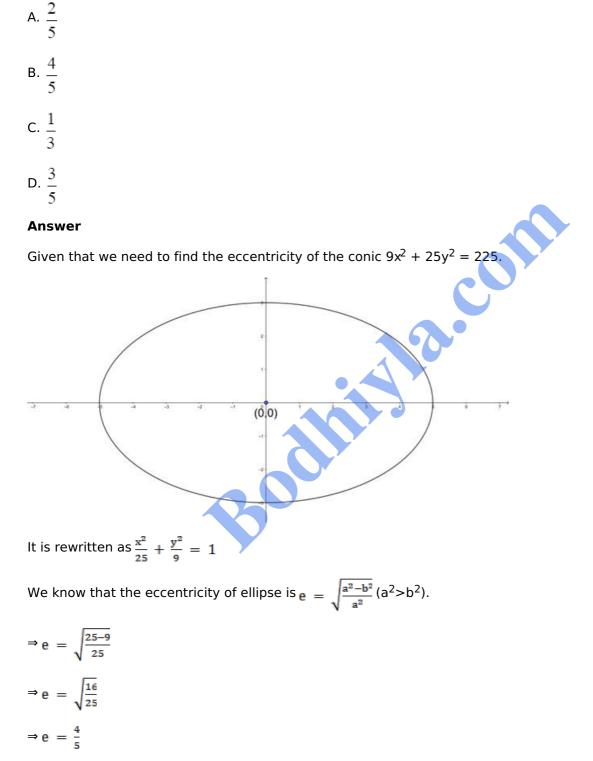
$$\Rightarrow d = \frac{2a^2 - 2a^2(1 - e^2)}{a}$$

$$\Rightarrow d = \frac{2a^2e^2}{a}$$
$$\Rightarrow d = 2ae^2$$

 \therefore The correct option is D

8. Question

The eccentricity of the conic $9x^2 + 25y^2 = 225$ is



 \therefore The correct option is B

9. Question

The latus - rectum of the conic $3x^2 + 4y^2 - 6x + 8y - 5 = 0$ is

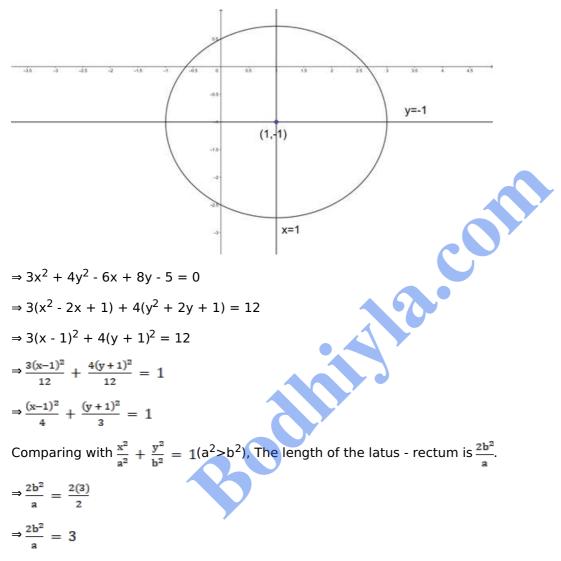
B.
$$\frac{\sqrt{3}}{2}$$

$$\sqrt{3}$$

D. none of these

Answer

Given conic is $3x^2 + 4y^2 - 6x + 8y - 5 = 0$. It is rewritten as



 \therefore The correct option is A

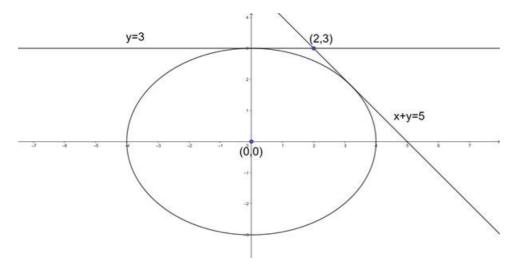
10. Question

The equations of the tangents to the ellipse $9x^2 + 16y^2 = 144$ from the point (2, 3) are

A. y = 3, x = 5 B. x = 2, y = 3 C. x = 3, y = 2 D. x + y = 5, y = 3

Answer

Given that we need to find the equation of the tangents to the ellipse $9x^2 + 16y^2 = 144$ from the point (2,3).



We know that tangent at any point (x_1, y_1) on the ellipse is $S_1 = 0$.

$$\Rightarrow$$
 S₁ = 0

 $\Rightarrow 9(xx_1) + 16(yy_1) = 144 \dots (1)$

This passes through the point (2,3)

$$\Rightarrow 9(2x_1) + 16(3y_1) = 144$$

$$\Rightarrow 18x_1 + 48y_1 = 144$$

$$\Rightarrow 3x_1 + 8y_1 = 24$$

$$\Rightarrow 8y_1 = 24 - 3x_1$$

$$\Rightarrow y_1 = 3 - \frac{3x_1}{8} \dots - (2)$$

Substituting this in the equation of the ellipse we get, $\Rightarrow 9x_1^2 + 16\left(3 - \frac{3x_1}{8}\right)^2 = 144$ $\Rightarrow 9x_1^2 + 16\left(0 - \frac{9x_1}{8}\right)^2 = 0$

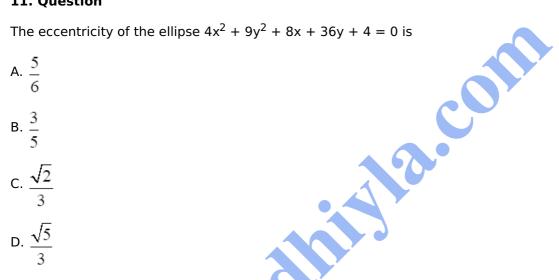
 $\Rightarrow 9x_{1}^{2} + 16\left(3 - \frac{3x_{1}}{8}\right)^{2} = 144$ $\Rightarrow 9x_{1}^{2} + 16\left(9 - \frac{9x_{1}}{4} + \frac{9x_{1}^{2}}{64}\right) = 144$ $\Rightarrow 9x_{1}^{2} - 36x_{1} + \frac{9x_{1}^{2}}{4} = 0$ $\Rightarrow \frac{45x_{1}^{2}}{4} - 36x_{1} = 0$ $\Rightarrow 9x_{1}\left(\frac{5x_{1}}{4} - 4\right) = 0$ $\Rightarrow 9x_{1} = 0 \text{ (or)}\frac{5x_{1}}{4} - 4 = 0$ $\Rightarrow x_{1} = 0 \text{ (or)}x_{1} = \frac{16}{5}$ From (2) $\Rightarrow y_{1} = 3 - \frac{3(0)}{8}$ $\Rightarrow y_{1} = 3 - \frac{3\left(\frac{16}{5}\right)}{8}$ $\Rightarrow y_{1} = 3 - \frac{6}{5}$

 \Rightarrow y₁ = $\frac{9}{5}$ Substituting $x_1 = 0$ and $y_1 = 3$ in (1), we get $\Rightarrow 9(x(0)) + 16(y(3)) = 144$ $\Rightarrow 48y = 144$ ⇒ y = 3. Substituting $x_1 = \frac{16}{5}$ and $y_1 = \frac{9}{5}$ in (1), we get $\Rightarrow 9\left(x\left(\frac{16}{5}\right)\right) + 16\left(y\left(\frac{9}{5}\right)\right) = 144$ $\Rightarrow \frac{144x}{5} + \frac{144y}{5} = 144$ $\Rightarrow x + y = 5$

 \therefore The correct option is D

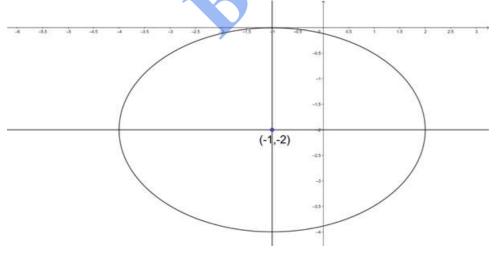
11. Question

The eccentricity of the ellipse $4x^2 + 9y^2 + 8x + 36y + 4 = 0$ is



Answer

Given that we need to find the eccentricity of the ellipse $4x^2 + 9y^2 + 8x + 36y + 4 = 0$.



 $\Rightarrow 4x^{2} + 9y^{2} + 8x + 36y + 4 = 0$ $\Rightarrow 4(x^2 + 2x + 1) + 9(y^2 + 4y + 4) - 36 = 0$ $\Rightarrow 4(x + 1)^{2} + 9(y + 2)^{2} = 36$

$$\Rightarrow \frac{4(x+1)^2}{36} + \frac{9(y+2)^2}{36} = 1$$
$$\Rightarrow \frac{(x+1)^2}{9} + \frac{(y+2)^2}{4} = 1$$

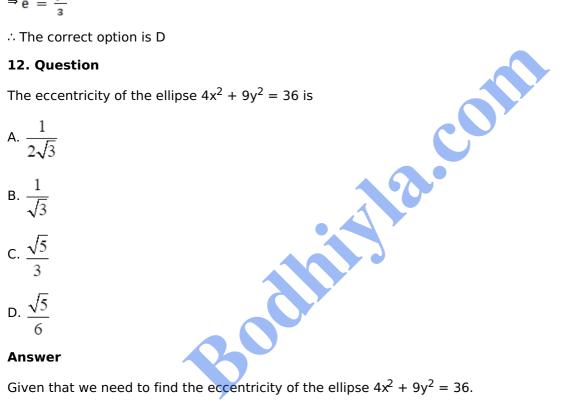
Comparing with the standard form $\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$

 \Rightarrow eccentricity(e) = $\sqrt{\frac{a^2-b^2}{a^2}}$ $\Rightarrow e = \sqrt{\frac{9-4}{9}}$ $\Rightarrow e = \sqrt{\frac{5}{9}}$ $\Rightarrow e = \frac{\sqrt{5}}{2}$

... The correct option is D

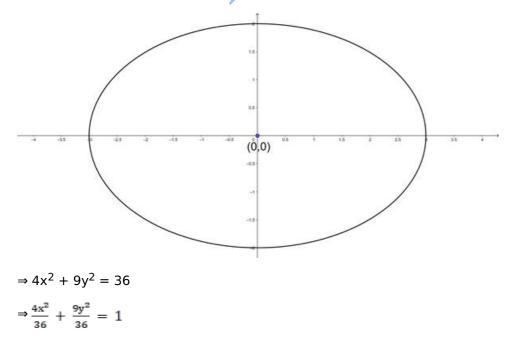
12. Question

The eccentricity of the ellipse $4x^2 + 9y^2 = 36$ is



Answer

Given that we need to find the eccentricity of the ellipse $4x^2 + 9y^2 = 36$.



$$\Rightarrow \frac{x^2}{9} + \frac{y^2}{4} = 1$$

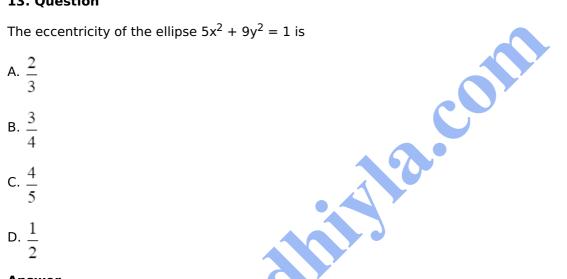
Comparing with the standard form $\frac{x^2}{a^2}+\frac{y^2}{b^2}=~1$

 \Rightarrow eccentricity(e) = $\sqrt{\frac{a^2-b^2}{a^2}}$ $\Rightarrow e = \sqrt{\frac{9-4}{9}}$ $\Rightarrow e = \sqrt{\frac{5}{9}}$ $\Rightarrow e = \frac{\sqrt{5}}{2}$

∴ The correct option is C

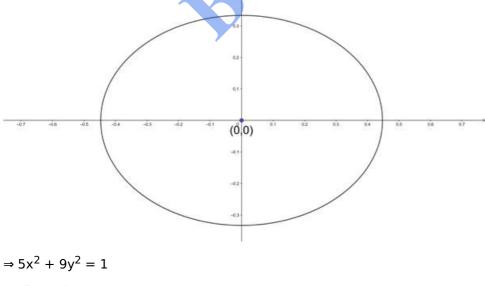
13. Question

The eccentricity of the ellipse $5x^2 + 9y^2 = 1$ is



Answer

Given that we need to find the eccentricity of the ellipse $5x^2 + 9y^2 = 1$.



$$\Rightarrow \frac{x^2}{\frac{1}{5}} + \frac{y^2}{\frac{1}{9}} = 1$$

Comparing with the standard form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Here a²>b²

$$\Rightarrow \text{ eccentricity}(e) = \sqrt{\frac{a^2 - b^2}{a^2}}$$

$$\Rightarrow e = \sqrt{\frac{\frac{1}{5} - \frac{1}{9}}{\frac{1}{5}}}$$

$$\Rightarrow e = \sqrt{\frac{\frac{4}{45}}{\frac{1}{5}}}$$

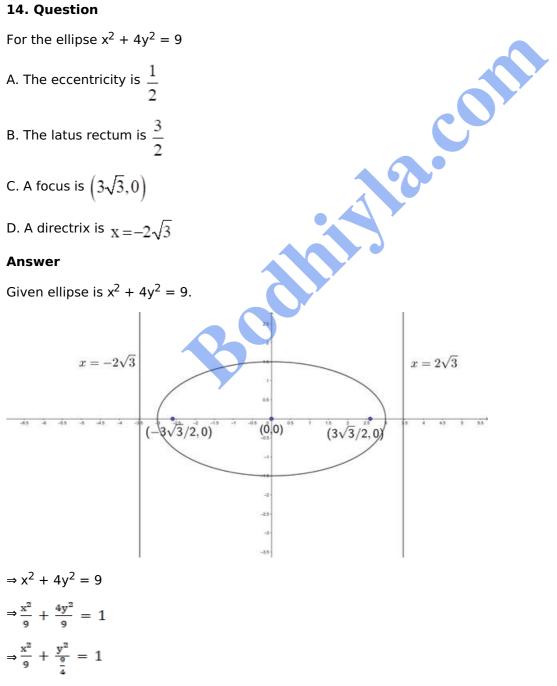
$$\Rightarrow e = \sqrt{\frac{\frac{4}{5}}{\frac{1}{5}}}$$

$$\Rightarrow e = \sqrt{\frac{4}{9}}$$

$$\Rightarrow e = \frac{2}{3}$$

 \therefore The correct option is A

14. Question



Comparing with the standard form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Here a²>b²

$$\Rightarrow \text{ eccentricity}(e) = \sqrt{\frac{a^2 - b^2}{a^2}}$$

$$\Rightarrow e = \sqrt{\frac{9 - \frac{9}{4}}{9}}$$

$$\Rightarrow e = \sqrt{\frac{27}{4}}{9}$$

$$\Rightarrow e = \sqrt{\frac{3}{4}}$$

$$\Rightarrow e = \sqrt{\frac{3}{4}}$$
Length of the latus rectum is $\frac{2b^2}{a} = \frac{2\left(\frac{9}{4}\right)}{3} = \frac{3}{2}$

Focus $(\pm ae, 0) = \left(\pm \frac{3\sqrt{3}}{2}, 0\right)$

Directrices are $x = \pm \frac{a}{e}, x = \pm \frac{3}{\sqrt{a}}$

Directrices are $x = \pm 2\sqrt{3}$

 \therefore The correct options are B and D

15. Question

If the latus - rectum of an ellipse is one half of its minor axis, then its eccentricity is

A. $\frac{1}{2}$	
B. $\frac{1}{\sqrt{2}}$	
C. $\frac{\sqrt{3}}{2}$	
D. $\frac{\sqrt{3}}{4}$	

Answer

Given that we need to find the eccentricity of the ellipse whose latus - rectum is one half of the minor axis. We know that length of latus rectum is $\frac{2b^2}{a}$ and length of minor axis is 2b.

com

$$\Rightarrow \frac{2b^2}{a} = b$$

⇒ a = 2b.

We know that eccentricity of the ellipse is $e = \sqrt{\frac{a^2-b^2}{a^2}}$

$$\Rightarrow$$
 e = $\sqrt{\frac{(2b)^2 - b^2}{(2b)^2}}$

$$\Rightarrow e = \sqrt{\frac{3b^2}{4b^2}}$$
$$\Rightarrow e = \frac{\sqrt{3}}{2}.$$

 \therefore The correct option is C

16. Question

An ellipse has its centre at (1, -1) and semi - major axis = 8 and it passes through the point (1, 3). The equation of the ellipse is

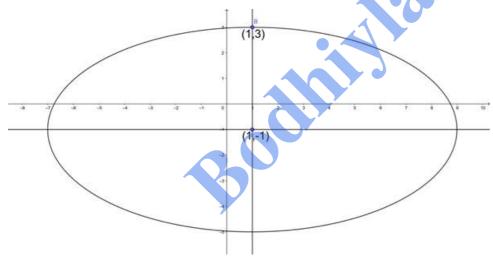
A.
$$\frac{(x+1)^2}{64} + \frac{(y+1)^2}{16} = 1$$

B. $\frac{(x-1)^2}{64} + \frac{(y+1)^2}{16} = 1$
C. $\frac{(x-1)^2}{16} + \frac{(y+1)^2}{64} = 1$
D. $\frac{(x+1)^2}{64} + \frac{(y-1)^2}{64} = 1$

D.
$$\frac{(x+1)^2}{64} + \frac{(y-1)^2}{16} = 1$$

Answer

Given that we need to find the equation of the ellipse whose centre is (1, - 1) and semi - major axis 8 and passes through (1,3).



From the standard equation $\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$.

Centre = (p,q) = (1, -1)

$$a^2 = 64$$

The equation is $\frac{(x-1)^2}{64} + \frac{(y+1)^2}{b^2} = 1$. This passes through (1,3).

Substituting in the curve, we get,

$$\Rightarrow \frac{(1-1)^2}{64} + \frac{(3+1)^2}{b^2} = 1$$
$$\Rightarrow \frac{0}{64} + \frac{16}{b^2} = 1$$

$\Rightarrow b^2 = 16$

The equation of the ellipse is $\frac{(x-1)^2}{64} + \frac{(y+1)^2}{16} = 1$.

 \therefore The correct option is B

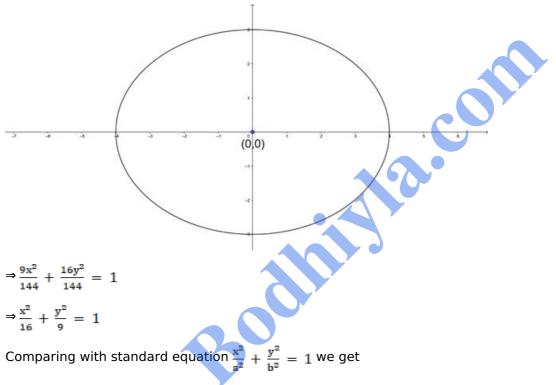
17. Question

The sum of the focal distances of any point on the ellipse $9x^2 + 16y^2 = 144$ is

- A. 32
- B. 18
- C. 16
- D. 8

Answer

Given ellipse is $9x^2 + 16y^2 = 144$. It is rewritten as



$\Rightarrow a^2 = 16$

We know that the sum of the focal distances of any point on the ellipse is 2a.

⇒ 2(4) = 8

 \therefore The correct option is D

18. Question

If (2, 4) and (10, 10) are the ends of a latus - rectum of an ellipse with eccentricity 1/2, then the length of semi - major axis is

A. $\frac{20}{3}$ B. $\frac{15}{3}$

c.
$$\frac{40}{3}$$

D. none of these

Answer

Given (2,4) and (10,10) are the ends of the latus - rectum and eccentricity is $\frac{1}{2}$.

We know that length of the latus rectum is $\frac{2b^2}{a}$.

We know that the distance between the two points (x_1,y_1) and (x_2,y_2) is $\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$.

$$\Rightarrow \frac{2b^2}{a} = \sqrt{(2-10)^2 + (4-10)^2}$$

$$\Rightarrow \frac{2b^3}{a} = \sqrt{(-8)^2 + (-6)^2}$$

$$\Rightarrow \frac{2b^3}{a} = \sqrt{64 + 36}$$

$$\Rightarrow \frac{2b^2}{a} = \sqrt{100}$$

$$\Rightarrow 2b^2 = 10a$$

$$\Rightarrow b^2 = 5a$$
We know that $b^2 = a^2(1 - e^2)$

$$\Rightarrow a^2(1 - e^2) = 5a$$

$$\Rightarrow a = (1 - (\frac{1}{2})^2) = 5$$

$$\Rightarrow a = \frac{5}{1-\frac{3}{4}}$$

$$\Rightarrow a = \frac{5}{4}$$

$$\Rightarrow a = \frac{20}{3}$$

$$\therefore \text{ The correct option is A}$$
19. Question
The equation $\frac{x^2}{2-\lambda} + \frac{y^2}{\lambda - 5} + 1 = 0$ represents an ellipse, if
A. $\lambda < 5$
B. $\lambda < 2$
C. $2 < \lambda < 5$
D. $\lambda < 2$ and $\lambda > 5$

Answer

Given equation is $\frac{x^2}{2-\lambda} + \frac{y^2}{\lambda-5} + 1 = 0$

$$\Rightarrow \frac{x^2}{2-\lambda} + \frac{y^2}{\lambda-5} = -1$$

$$\Rightarrow \frac{x^2}{\lambda - 2} + \frac{y^2}{5 - \lambda} = 1$$

Comparing with standard equation $\frac{x^2}{a^2}+\frac{y^2}{b^2}=\,1$ we get

 $\Rightarrow \lambda - 2 > 0$ ⇒ λ>2 - (1) \Rightarrow 5 - λ >0 ⇒ λ<5 - (2) From (1) and (2), $\Rightarrow 2 < \lambda < 5$

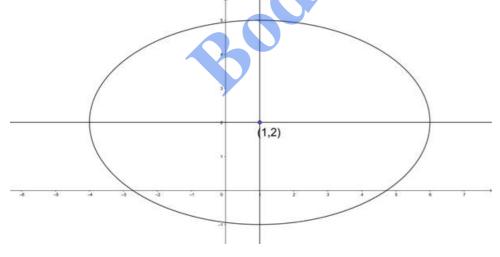
 \therefore The correct option is C

20. Question

The eccentricity of the ellipse $9x^2 + 25y^2 - 18x - 100y - 116 = 0$, is

Answer

Given that we need to find the eccentricity of the ellipse $9x^2 + 25y^2 - 18x - 100y - 116 = 0$.



 $\Rightarrow 9x^2 + 25y^2 - 18x - 100y - 116 = 0$

$$\Rightarrow 9(x^2 - 2x + 1) + 25(y^2 - 4y + 4) - 225 = 0$$

$$\Rightarrow 9(x - 1)^2 + 25(y - 2)^2 = 225$$

$$\Rightarrow \frac{9(x-1)^2}{225} + \frac{25(y-2)^2}{225} = 1$$
$$\Rightarrow \frac{(x-1)^2}{25} + \frac{(y-2)^2}{9} = 1$$

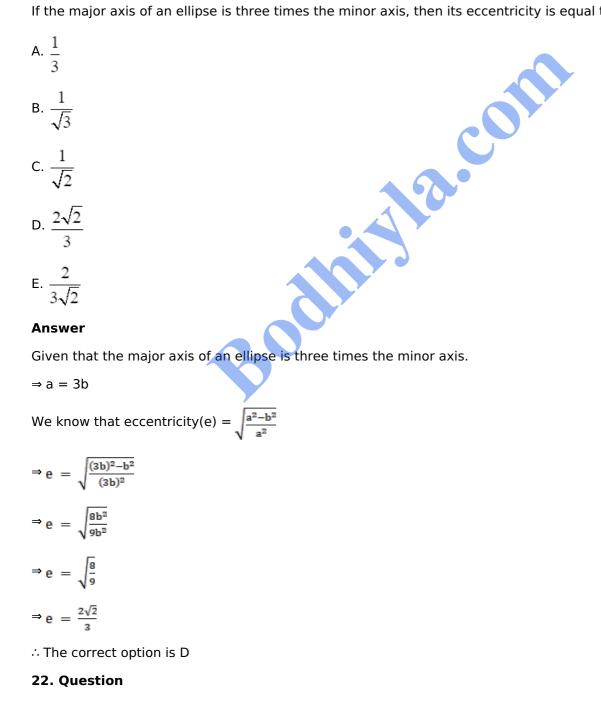
Comparing with the standard form $\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$

Here $a^2 > b^2$ ⇒ eccentricity(e) = $\sqrt{\frac{a^2-b^2}{a^2}}$ $\Rightarrow e = \sqrt{\frac{25-9}{25}}$ $\Rightarrow e = \sqrt{\frac{16}{25}}$ $\Rightarrow e = \frac{4}{5}$

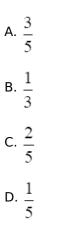
 \therefore The correct option is B

21. Question

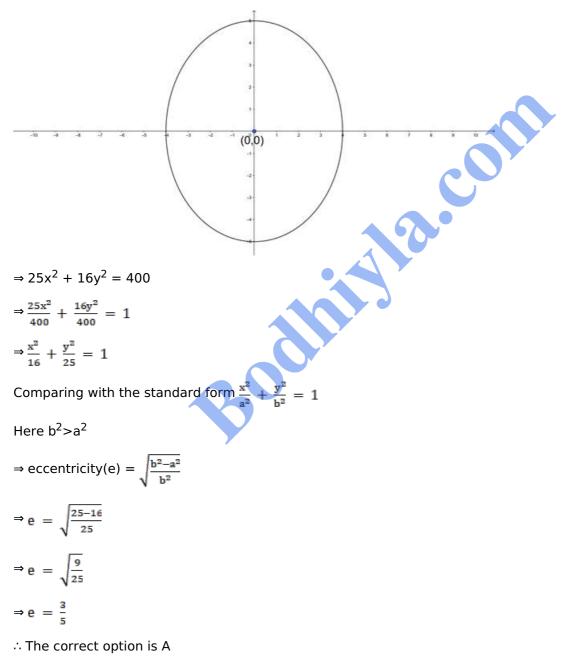
If the major axis of an ellipse is three times the minor axis, then its eccentricity is equal to



The eccentricity of the ellipse $25x^2 + 16y^2 = 400$ is



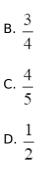
Given that we need to find the eccentricity of the ellipse $25x^2 + 16y^2 = 400$.



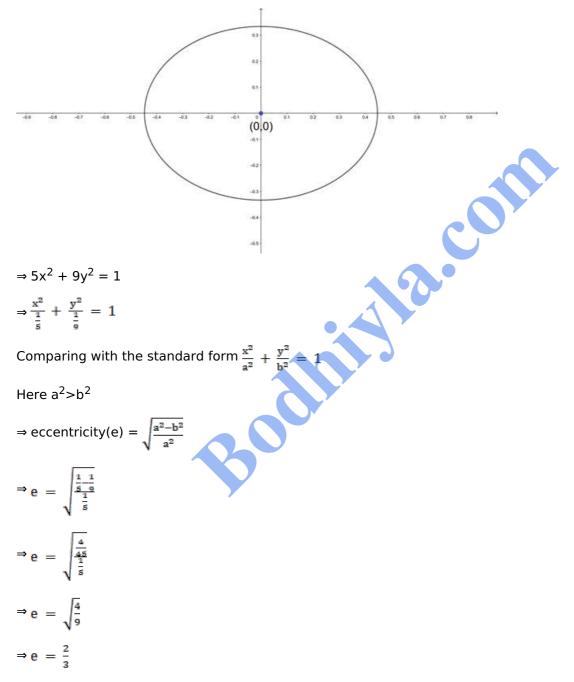
23. Question

The eccentricity of the ellipse $5x^2 + 9y^2 = 1$ is

A.
$$\frac{2}{3}$$



Given that we need to find the eccentricity of the ellipse $5x^2 + 9y^2 = 1$.



 \therefore The correct option is A

24. Question

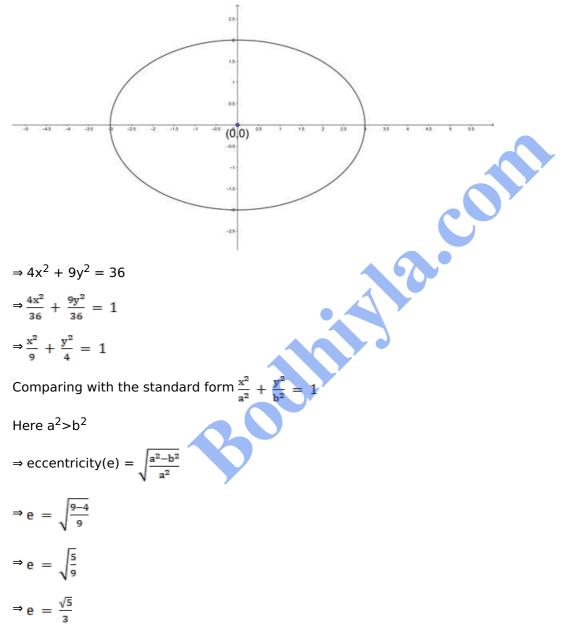
The eccentricity of the ellipse $4x^2 + 9y^2 = 36$ is

A.
$$\frac{1}{2\sqrt{3}}$$

B.
$$\frac{1}{\sqrt{3}}$$

C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{5}}{6}$

Given that we need to find the eccentricity of the ellipse $4x^2 + 9y^2 = 36$.



 \therefore The correct option is C