25. Vector or Cross Product

Exercise 25.1

1. Question

If $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=-\hat{i}+3 \hat{k}$, find $|\vec{a} \times \vec{b}|$.

Answer

Given $\overrightarrow{\mathrm{a}}=\hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=-\hat{\imath}+3 \hat{k}$
We need to find the magnitude of the vector $\vec{a} \times \vec{b}$.
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\jmath} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,3,-2)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(-1,0,3)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 3 & -2 \\ -1 & 0 & 3\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(3)(3)-(0)(-2)]-\hat{\mathrm{j}}[(1)(3)-(-1)(-2)]+\hat{\mathrm{k}}[(1)(0)-(-1)(3)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}[9-0]-\hat{\mathrm{\jmath}}[3-2]+\hat{\mathrm{k}}[0-(-3)]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=9 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{9^{2}+(-1)^{2}+3^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{81+1+9}$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{91}$
Thus, $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{91}$

2 A. Question

If $\vec{a}=3 \hat{i}+4 \hat{j}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$, find the value of $|\vec{a} \times \vec{b}|$.

Answer

Given $\overrightarrow{\mathrm{a}}=3 \hat{\imath}+4 \hat{\jmath}$ and $\overrightarrow{\mathrm{b}}=\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}$
We need to find the magnitude of the vector $\vec{a} \times \vec{b}$.
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(3,4,0)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,1,1)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 4 & 0 \\ 1 & 1 & 1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(4)(1)-(1)(0)]-\hat{\jmath}[(3)(1)-(1)(0)]+\hat{\mathrm{k}}[(3)(1)-(1)(4)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[4-0]-\hat{\mathrm{j}}[3-0]+\hat{\mathrm{k}}[3-4]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{4^{2}+(-3)^{2}+(-1)^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{16+9+1}$
$\therefore|\vec{a} \times \vec{b}|=\sqrt{26}$
Thus, $|\vec{a} \times \vec{b}|=\sqrt{26}$

2 B. Question

If $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$, find the magnitude of $\vec{a} \times \vec{b}$.

Answer

Given $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{\imath}}+\hat{\jmath}$ and $\overrightarrow{\mathrm{b}}=\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}}$
We need to find the magnitude of the vector $\vec{a} \times \vec{b}$.
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,1,0)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,1,1)$
$\Rightarrow \vec{a} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 1 & 0 \\ 1 & 1 & 1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(1)(1)-(1)(0)]-\hat{\mathrm{j}}[(2)(1)-(1)(0)]+\hat{\mathrm{k}}[(2)(1)-(1)(1)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[1-0]-\hat{\mathrm{j}}[2-0]+\hat{\mathrm{k}}[2-1]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}-2 \hat{\jmath}+\hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{1^{2}+(-2)^{2}+1^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{1+4+1}$
$\therefore|\vec{a} \times \vec{b}|=\sqrt{6}$
Thus, the magnitude of the vector $\vec{a} \times \vec{b}=\sqrt{6}$

3 A. Question

Find a unit vector perpendicular to both the vectors $4 \hat{i}-\hat{j}+3 \hat{k}$ and $-2 \hat{i}+\hat{j}-2 \hat{k}$.

Answer

Given two vectors $4 \hat{i}-\hat{\jmath}+3 \hat{k}$ and $-2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$
Let $\vec{a}=4 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=-2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$
We need to find a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(4,-1,3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(-2,1,-2)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & -1 & 3 \\ -2 & 1 & -2\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(-1)(-2)-(1)(3)]-\hat{\jmath}[(4)(-2)-(-2)(3)]$
$+\hat{\mathrm{k}}[(4)(1)-(-2)(-1)]$
$\Rightarrow \vec{a} \times \vec{b}=\hat{i}[2-3]-\hat{j}[-8+6]+\hat{k}[4-2]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-\hat{1}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Let the unit vector in the direction of $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ be $\hat{\mathrm{p}}$.
We know unit vector in the direction of a vector \vec{a} is given by $\widehat{a}=\frac{\vec{a}}{|\vec{a}|}$.
$\Rightarrow \hat{p}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\mathrm{j}}+\mathrm{zk}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{(-1)^{2}+2^{2}+2^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{1+4+4}$
$\therefore|\vec{a} \times \vec{b}|=\sqrt{9}=3$
So, we have $\hat{\mathrm{p}}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{3}$
$\Rightarrow \hat{\mathrm{p}}=\frac{1}{3}(-\hat{\mathrm{\imath}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
Thus, the required unit vector that is perpendicular to both \vec{a} and \vec{b} is $\frac{1}{3}(-\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$.

3 B. Question

Find a unit vector perpendicular to the plane containing the vectors $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.

Answer

Given two vectors $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
We need to find a unit vector perpendicular to \vec{a} and \vec{b}.
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,1,1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,2,1)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ 2 & 1 & 1 \\ 1 & 2 & 1\end{array}\right|$
$\Rightarrow \vec{a} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(1)(1)-(2)(1)]-\hat{\jmath}[(2)(1)-(1)(1)]+\hat{\mathrm{k}}[(2)(2)-(1)(1)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[1-2]-\hat{\mathrm{\jmath}}[2-1]+\hat{\mathrm{k}}[4-1]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-\hat{\mathrm{i}}-\hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
Let the unit vector in the direction of $\vec{a} \times \overrightarrow{\mathrm{b}}$ be $\hat{\mathrm{p}}$.
We know unit vector in the direction of a vector \vec{a} is given by $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$.
$\Rightarrow \hat{p}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{(-1)^{2}+(-1)^{2}+3^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{1+1+9}$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{11}$
So, we have $\hat{\mathrm{p}}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{\sqrt{11}}$
$\Rightarrow \hat{\mathrm{p}}=\frac{1}{\sqrt{11}}(-\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}})$
Thus, the required unit vector that is perpendicular to both \vec{a} and \vec{b} is $\frac{1}{\sqrt{11}}(-\hat{\imath}-\hat{\jmath}+3 \hat{k})$.

4. Question

Find the magnitude of vector $\overrightarrow{\mathrm{a}}=(3 \hat{\mathrm{k}}+4 \hat{\mathrm{j}}) \times(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$.

Answer

Given $\overrightarrow{\mathrm{a}}=(3 \hat{\mathrm{k}}+4 \hat{\jmath}) \times(\hat{\mathrm{i}}+\hat{\jmath}-\hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{a}}=(4 \hat{\jmath}+3 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+\hat{\mathrm{\jmath}}-\hat{\mathrm{k}})$

We need to find the magnitude of the vector \vec{a}.
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(0,4,3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,1,-1)$
$\Rightarrow \overrightarrow{\mathrm{a}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 0 & 4 & 3 \\ 1 & 1 & -1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}[(4)(-1)-(1)(3)]-\hat{\jmath}[(0)(-1)-(1)(3)]+\hat{\mathrm{k}}[(0)(1)-(1)(4)]$
$\Rightarrow \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}[-4-3]-\hat{\mathrm{f}}[0-3]+\hat{\mathrm{k}}[0-4]$
$\therefore \overrightarrow{\mathrm{a}}=-7 \hat{\mathrm{\imath}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a}|$.
$|\vec{a}|=\sqrt{(-7)^{2}+3^{2}+(-4)^{2}}$
$\Rightarrow|\vec{a}|=\sqrt{49+9+16}$
$\therefore|\vec{a}|=\sqrt{74}$
Thus, magnitude of vector $\vec{a}=\sqrt{74}$

5. Question

If $\vec{a}=4 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{k}$, then find $2 \hat{b} \times \vec{a}$.

Answer

Given $\vec{a}=4 \hat{\imath}+3 \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{k}$
We need to find the magnitude of vector $2 \hat{b} \times \vec{a}$.
We know unit vector in the direction of a vector \vec{a} is given by $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$.
$\Rightarrow \hat{b}=\frac{\overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{b}}|}$
$\Rightarrow \hat{\mathrm{b}}=\frac{(\hat{\mathrm{i}}-2 \hat{\mathrm{k}})}{\sqrt{1^{2}+(-2)^{2}}}$
$\Rightarrow \hat{\mathrm{b}}=\frac{1}{\sqrt{5}}(\hat{\mathrm{\imath}}-2 \hat{\mathrm{k}})$
$\therefore 2 \hat{\mathrm{~b}}=\frac{2}{\sqrt{5}}(\hat{\mathrm{\imath}}-2 \hat{\mathrm{k}})=\frac{2}{\sqrt{5}} \hat{\mathrm{\imath}}-\frac{4}{\sqrt{5}} \hat{\mathrm{k}}$
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=\left(\frac{2}{\sqrt{5}}, 0,-\frac{4}{\sqrt{5}}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(4,3,1)$
$\Rightarrow 2 \hat{b} \times \vec{a}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 0 & -\frac{4}{\sqrt{5}} \\ \sqrt{5} & 3 & 1\end{array}\right|$
$\Rightarrow 2 \hat{\mathrm{~b}} \times \overrightarrow{\mathrm{a}}=\hat{\mathrm{\imath}}\left[(0)(1)-(3)\left(-\frac{4}{\sqrt{5}}\right)\right]-\hat{\mathrm{\jmath}}\left[\left(\frac{2}{\sqrt{5}}\right)(1)-(4)\left(-\frac{4}{\sqrt{5}}\right)\right]$

$$
+\hat{\mathrm{k}}\left[\left(\frac{2}{\sqrt{5}}\right)(3)-(4)(0)\right]
$$

$\Rightarrow 2 \hat{b} \times \vec{a}=\hat{\imath}\left[0+\frac{12}{\sqrt{5}}\right]-\hat{\jmath}\left[\frac{2}{\sqrt{5}}+\frac{16}{\sqrt{5}}\right]+\hat{k}\left[\frac{6}{\sqrt{5}}-0\right]$
$\therefore 2 \hat{\mathrm{~b}} \times \overrightarrow{\mathrm{a}}=\frac{12}{\sqrt{5}} \hat{\mathrm{\imath}}-\frac{18}{\sqrt{5}} \hat{\mathrm{\jmath}}+\frac{6}{\sqrt{5}} \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|2 \hat{b} \times \vec{a}|$.
$|2 \hat{b} \times \vec{a}|=\sqrt{\left(\frac{12}{\sqrt{5}}\right)^{2}+\left(-\frac{18}{\sqrt{5}}\right)^{2}+\left(\frac{6}{\sqrt{5}}\right)^{2}}$
$\Rightarrow|2 \hat{\mathrm{~b}} \times \overrightarrow{\mathrm{a}}|=\sqrt{\frac{144}{5}+\frac{324}{5}+\frac{36}{5}}$
$\therefore|2 \hat{\mathrm{~b}} \times \overrightarrow{\mathrm{a}}|=\sqrt{\frac{504}{5}}$
Thus, $|2 \hat{b} \times \vec{a}|=\sqrt{\frac{504}{5}}$

6. Question

If $\vec{a}=3 \hat{i}-\hat{j}-2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$, find $(\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})$.

Answer

Given $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-\hat{\jmath}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\jmath}+\hat{\mathrm{k}}$
We need to find the vector $(\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})$.
$\vec{a}+2 \vec{b}=(3 \hat{\imath}-\hat{\jmath}-2 \hat{k})+2(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})$
$\Rightarrow \overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}=(3+4) \hat{\mathrm{i}}+(-1+6) \hat{\jmath}+(-2+2) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}=7 \hat{\mathrm{i}}+5 \hat{\jmath}$
$2 \vec{a}-\vec{b}=2(3 \hat{\imath}-\hat{\jmath}-2 \hat{k})-(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})$
$\Rightarrow 2 \vec{a}-\vec{b}=(6-2) \hat{\imath}+(-2-3) \hat{\jmath}+(-4-1) \hat{k}$
$\therefore 2 \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(7,5,0)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(4,-5,-5)$
$\Rightarrow(\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 7 & 5 & 0 \\ 4 & -5 & -5\end{array}\right|$
$\Rightarrow(\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})$

$$
=\hat{\imath}[(5)(-5)-(-5)(0)]-\hat{\jmath}[(7)(-5)-(4)(0)]
$$

$$
+\hat{\mathrm{k}}[(7)(-5)-(4)(5)]
$$

$\Rightarrow(\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})=\hat{\imath}[-25-0]-\hat{\jmath}[-35-0]+\hat{k}[-35-20]$
$\therefore(\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})=-25 \hat{\imath}+35 \hat{\jmath}-55 \hat{k}$
Thus, $(\vec{a}+2 \vec{b}) \times(2 \vec{a}-\vec{b})=-25 \hat{i}+35 \hat{\jmath}-55 \hat{k}$

7 A. Question

Find a vector of magnitude 49, which is perpendicular to both the vectors $2 \hat{i}+3 \hat{j}+6 \hat{k}$ and $3 \hat{i}-6 \hat{j}+2 \hat{k}$.

Answer

Given two vectors $2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}$ and $3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}$
Let $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{\jmath}}+6 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
We need to find a vector of magnitude 49 that is perpendicular to \vec{a} and \vec{b}.
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,3,6)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(3,-6,2)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 6 \\ 3 & -6 & 2\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(3)(2)-(-6)(6)]-\hat{\mathrm{j}}[(2)(2)-(3)(6)]+\hat{\mathrm{k}}[(2)(-6)-(3)(3)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[6+36]-\hat{\mathrm{j}}[4-18]+\hat{\mathrm{k}}[-12-9]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=42 \hat{\mathrm{i}}+14 \hat{\mathrm{\jmath}}-21 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{42^{2}+14^{2}+(-21)^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{1764+196+441}$
$\therefore|\vec{a} \times \vec{b}|=\sqrt{2401}=49$
Thus, the vector of magnitude 49 that is perpendicular to both \vec{a} and \vec{b} is $42 \hat{i}+14 \hat{j}-21 \hat{\mathbf{k}}$.

7 B. Question

Find the vector whose length is 3 and which is perpendicular to vector $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}$ and $\overrightarrow{\mathrm{b}}=6 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$.

Answer

Given two vectors $\vec{a}=3 \hat{\imath}+\hat{\jmath}-4 \hat{k}$ and $\vec{b}=6 \hat{\imath}+5 \hat{\jmath}-2 \hat{k}$
We need to find vector of magnitude 3 that is perpendicular to \vec{a} and \vec{b}.
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(3,1,-4)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(6,5,-2)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 3 & 1 & -4 \\ 6 & 5 & -2\end{array}\right|$
$\Rightarrow \vec{a} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(1)(-2)-(5)(-4)]-\hat{\mathrm{f}}[(3)(-2)-(6)(-4)]+\hat{\mathrm{k}}[(3)(5)-(6)(1)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[-2+20]-\hat{\mathrm{\jmath}}[-6+24]+\hat{\mathrm{k}}[15-6]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=18 \hat{\mathrm{i}}-18 \hat{\jmath}+9 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{i}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{j}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{18^{2}+(-18)^{2}+9^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{324+324+81}$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{729}=27$
Let the unit vector in the direction of $\vec{a} \times \vec{b}$ be \hat{p}.
We know unit vector in the direction of a vector \vec{a} is given by $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$.
$\Rightarrow \hat{p}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
$\Rightarrow \hat{\mathrm{p}}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{27}$
$\therefore \hat{\mathrm{p}}=\frac{1}{27}(18 \hat{\mathrm{i}}-18 \hat{\mathrm{\jmath}}+9 \hat{\mathrm{k}})$
So, a vector of magnitude 3 in the direction of $\vec{a} \times \vec{b}$ is
$3 \hat{\mathrm{p}}=3 \times \frac{1}{27}(18 \hat{\mathrm{\imath}}-18 \hat{\jmath}+9 \hat{\mathrm{k}})$
$\Rightarrow 3 \hat{\mathrm{p}}=\frac{1}{9}(18 \hat{\mathrm{\imath}}-18 \hat{\mathrm{\jmath}}+9 \hat{\mathrm{k}})$
$\therefore 3 \hat{\mathrm{p}}=2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
Thus, the vector of magnitude 3 that is perpendicular to both \vec{a} and \vec{b} is $2 \hat{\imath}-2 \hat{\jmath}+\hat{k}$.

8 A. Question

Find the area of the parallelogram determined by the vectors :
$2 \hat{i}$ and $3 \hat{j}$

Answer

Given two vectors $2 \hat{1}$ and $3 \hat{\jmath}$ are sides of a parallelogram
Let $\vec{a}=2 \hat{1}$ and $\vec{b}=3 \hat{\jmath}$
Recall the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $|\vec{a} \times \vec{b}|$ where
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,0,0)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(0,3,0)$
$\Rightarrow \vec{a} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{1} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(0)(0)-(3)(0)]-\hat{\mathrm{j}}[(2)(0)-(0)(0)]+\hat{\mathrm{k}}[(2)(3)-(0)(0)]$
$\Rightarrow \vec{a} \times \vec{b}=\hat{1}[0-0]-\hat{\jmath}[0-0]+\hat{k}[6-0]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=6 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{y}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{0^{2}+0^{2}+6^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{6^{2}}$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=6$
Thus, area of the parallelogram is 6 square units.

8 B. Question

Find the area of the parallelogram determined by the vectors :
$2 \hat{i}+\hat{j}+3 \hat{k}$ and $\hat{i}-\hat{j}$

Answer

Given two vectors $2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$ and $\hat{\imath}-\hat{\jmath}$ are sides of a parallelogram
Let $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$
Recall the area of the parallelogram whose adjacent sides are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
and $\overrightarrow{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\mathrm{\jmath}}+\mathrm{b}_{3} \hat{\mathrm{k}}$ is $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,1,3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,-1,0)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(1)(0)-(-1)(3)]-\hat{\mathrm{\jmath}}[(2)(0)-(1)(3)]+\hat{\mathrm{k}}[(2)(-1)-(1)(1)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[0+3]-\hat{\mathrm{j}}[0-3]+\hat{\mathrm{k}}[-2-1]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=3 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{y}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{3^{2}+3^{2}+(-3)^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{9+9+9}$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=3 \sqrt{3}$
Thus, area of the parallelogram is $3 \sqrt{3}$ square units.

8 C. Question

Find the area of the parallelogram determined by the vectors :
$3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$

Answer

Given two vectors $3 \hat{i}+\hat{\jmath}-2 \hat{k}$ and $\hat{\mathbf{l}}-3 \hat{\mathbf{j}}+4 \hat{k}$ are sides of a parallelogram
Let $\vec{a}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\vec{b}=\hat{\imath}-3 \hat{\jmath}+4 \hat{k}$
Recall the area of the parallelogram whose adjacent sides are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(3,1,-2)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,-3,4)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(1)(4)-(-3)(-2)]-\hat{\mathrm{f}}[(3)(4)-(1)(-2)]+\hat{\mathrm{k}}[(3)(-3)-(1)(1)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[4-6]-\hat{\mathrm{\jmath}}[12+2]+\hat{\mathrm{k}}[-9-1]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-2 \hat{\mathrm{i}}-14 \hat{\mathrm{j}}-10 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{i}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\mathrm{x}}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{(-2)^{2}+(-14)^{2}+(-10)^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{4+196+100}$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=10 \sqrt{3}$
Thus, area of the parallelogram is $10 \sqrt{3}$ square units.

8 D. Question

Find the area of the parallelogram determined by the vectors :
$\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$

Answer

Given two vectors $\hat{\imath}-3 \hat{\jmath}+\hat{k}$ and $\hat{\imath}+\hat{\jmath}+\hat{k}$ are sides of a parallelogram
Let $\vec{a}=\hat{\imath}-3 \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}+\hat{\jmath}+\hat{k}$
Recall the area of the parallelogram whose adjacent sides are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,-3,1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,1,1)$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{1} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & -3 & 1 \\ 1 & 1 & 1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(-3)(1)-(1)(1)]-\hat{\mathrm{j}}[(1)(1)-(1)(1)]+\hat{\mathrm{k}}[(1)(1)-(1)(-3)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[-3-1]-\hat{\mathrm{f}}[1-1]+\hat{\mathrm{k}}[1+3]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-4 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{y}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{(-4)^{2}+0^{2}+4^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{16+16}$
$\therefore|\vec{a} \times \vec{b}|=4 \sqrt{2}$
Thus, the area of the parallelogram is $4 \sqrt{2}$ square units.

9 A. Question

Find the area of the parallelogram whose diagonals are :
$4 \hat{i}-\hat{j}-3 \hat{k}$ and $-2 \hat{i}+\hat{j}-2 \hat{k}$

Answer

Given two diagonals of a parallelogram are $4 \hat{\imath}-\hat{\jmath}-3 \hat{k}$ and $-2 \hat{i}+\hat{\jmath}-2 \hat{k}$
Let $\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{\imath}}-\hat{\jmath}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=-2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$
Recall the area of the parallelogram whose diagonals are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(4,-1,-3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(-2,1,-2)$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{\jmath}} & \hat{\mathrm{k}} \\ 4 & -1 & -3 \\ -2 & 1 & -2\end{array}\right|$
$\Rightarrow \vec{a} \times \vec{b}=\hat{i}[(-1)(-2)-(1)(-3)]-\hat{\jmath}[(4)(-2)-(-2)(-3)]$ $+\hat{\mathrm{k}}[(4)(1)-(-2)(-1)]$
$\Rightarrow \vec{a} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[2+3]-\hat{\jmath}[-8-6]+\hat{\mathrm{k}}[4-2]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=5 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{5^{2}+14^{2}+2^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{25+196+4}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{225}=15$
$\therefore \frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}=\frac{15}{2}=7.5$
Thus, the area of the parallelogram is 7.5 square units.

9 B. Question

Find the area of the parallelogram whose diagonals are :
$2 \hat{i}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$

Answer

Given two diagonals of a parallelogram are $2 \hat{\imath}+\hat{k}$ and $\hat{\imath}+\hat{\jmath}+\hat{k}$
Let $\overrightarrow{\mathrm{a}}=2 \hat{\imath}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
Recall the area of the parallelogram whose diagonals are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{1}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,0,1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,1,1)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 0 & 1 \\ 1 & 1 & 1\end{array}\right|$
$\Rightarrow \vec{a} \times \vec{b}=\hat{i}[(0)(1)-(1)(1)]-\hat{\jmath}[(2)(1)-(1)(1)]+\hat{k}[(2)(1)-(1)(0)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[0-1]-\hat{\mathrm{\jmath}}[2-1]+\hat{\mathrm{k}}[2-0]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-\hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\mathrm{x}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{(-1)^{2}+(-1)^{2}+2^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{1+1+4}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{6}$
$\therefore \frac{|\vec{a} \times \vec{b}|}{2}=\frac{\sqrt{6}}{2}$
Thus, the area of the parallelogram is $\frac{\sqrt{6}}{2}$ square units.

9 C. Question

Find the area of the parallelogram whose diagonals are:
$3 \hat{i}+4 \hat{j}$ and $\hat{i}+\hat{j}+\hat{k}$

Answer

Given two diagonals of a parallelogram are $3 \hat{i}+4 \hat{\jmath}$ and $\hat{\hat{\imath}}+\hat{\jmath}+\hat{k}$
Let $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
Recall the area of the parallelogram whose diagonals are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(3,4,0)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,1,1)$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{1} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 3 & 4 & 0 \\ 1 & 1 & 1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(4)(1)-(1)(0)]-\hat{\mathrm{f}}[(3)(1)-(1)(0)]+\hat{\mathrm{k}}[(3)(1)-(1)(4)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[4-0]-\hat{\mathrm{\jmath}}[3-0]+\hat{\mathrm{k}}[3-4]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=4 \hat{\mathrm{i}}-3 \hat{\jmath}-\hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{y}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{4^{2}+(-3)^{2}+(-1)^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{16+9+1}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{26}$
$\therefore \frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}=\frac{\sqrt{26}}{2}$
Thus, the area of the parallelogram is $\frac{\sqrt{26}}{2}$ square units.

9 D. Question

Find the area of the parallelogram whose diagonals are :
$2 \hat{i}+3 \hat{j}+6 \hat{k}$ and $3 \hat{i}-6 \hat{j}+2 \hat{k}$

Answer

Given two diagonals of a parallelogram are $2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathbf{k}}$ and $3 \hat{\imath}-6 \hat{\jmath}+2 \hat{\mathbf{k}}$
Let $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{\jmath}}+6 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Recall the area of the parallelogram whose diagonals are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,3,6)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(3,-6,2)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 6 \\ 3 & -6 & 2\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(3)(2)-(-6)(6)]-\hat{\mathrm{j}}[(2)(2)-(3)(6)]+\hat{\mathrm{k}}[(2)(-6)-(3)(3)]$
$\Rightarrow \vec{a} \times \vec{b}=\hat{i}[6+36]-\hat{\jmath}[4-18]+\hat{k}[-12-9]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=42 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}-21 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\mathrm{y}}+\mathrm{zk}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{42^{2}+14^{2}+(-21)^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{1764+196+441}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{2401}=49$
$\therefore \frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|}{2}=\frac{49}{2}=24.5$
Thus, area of the parallelogram is 24.5 square units.

10. Question

If $\vec{a}=2 \hat{i}+5 \hat{j}-7 \hat{k}, \vec{b}=-3 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}-3 \hat{k}$, compute $(\vec{a} \times \vec{b}) \times \vec{c}$ and $\vec{a} \times(\vec{b} \times \vec{c})$ and verify
that these are not equal.

Answer

Given $\overrightarrow{\mathrm{a}}=2 \hat{\imath}+5 \hat{\jmath}-7 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=-3 \hat{\mathrm{i}}+4 \hat{\jmath}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\hat{\imath}-2 \hat{\jmath}-3 \hat{\mathbf{k}}$
We need to find $(\vec{a} \times \vec{b}) \times \vec{c}$.
First, we will find $\vec{a} \times \vec{b}$.
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,5,-7)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(-3,4,1)$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & 5 & -7 \\ -3 & 4 & 1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(5)(1)-(4)(-7)]-\hat{\mathrm{\jmath}}[(2)(1)-(-3)(-7)]+\hat{\mathrm{k}}[(2)(4)-(-3)(5)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[5+28]-\hat{\mathrm{f}}[2-21]+\hat{\mathrm{k}}[8+15]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=33 \hat{\mathrm{i}}+19 \hat{\jmath}+23 \hat{\mathrm{k}}$
Now, we will find $(\vec{a} \times \vec{b}) \times \vec{c}$.
Using the formula for cross product as above, we have
$(\vec{a} \times \vec{b}) \times \vec{c}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 33 & 19 & 23 \\ 1 & -2 & -3\end{array}\right|$
$\Rightarrow(\vec{a} \times \vec{b}) \times \vec{c}$
$=\hat{1}[(19)(-3)-(-2)(23)]-\hat{\hat{\jmath}}[(33)(-3)-(1)(23)]$
$+\hat{\mathrm{k}}[(33)(-2)-(1)(19)]$
$\Rightarrow(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}[-57+46]-\hat{\jmath}[-99-23]+\hat{\mathrm{k}}[-66-19]$
$\therefore(\vec{a} \times \vec{b}) \times \vec{c}=-11 \hat{\imath}+122 \hat{\jmath}-85 \hat{k}$
Now, we need to find $\vec{a} \times(\vec{b} \times \vec{c})$.
First, we will find $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$.
Using the formula for cross product, we have

$$
\begin{aligned}
& \Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{\jmath}} & \hat{\mathrm{k}} \\
-3 & 4 & 1 \\
1 & -2 & -3
\end{array}\right| \\
& \Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}[(4)(-3)-(-2)(1)]-\hat{\mathrm{\jmath}}[(-3)(-3)-(1)(1)] \\
& \quad+\hat{\mathrm{k}}[(-3)(-2)-(1)(4)] \\
& \Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}[-12+2]-\hat{\mathrm{\jmath}}[9-1]+\hat{\mathrm{k}}[6-4] \\
& \therefore \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=-10 \hat{\mathrm{\imath}}-8 \hat{\jmath}+2 \hat{\mathrm{k}}
\end{aligned}
$$

Now, we will find $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})$.
Using the formula for the cross product as above, we have
$\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & 5 & -7 \\ -10 & -8 & 2\end{array}\right|$
$\Rightarrow \vec{a} \times(\vec{b} \times \vec{c})$

$$
\begin{aligned}
& =\hat{1}[(5)(2)-(-8)(-7)]-\hat{\jmath}[(2)(2)-(-10)(-7)] \\
& +\hat{\mathrm{k}}[(2)(-8)-(-10)(5)]
\end{aligned}
$$

$\Rightarrow \vec{a} \times(\vec{b} \times \vec{c})=\hat{i}[10-56]-\hat{\jmath}[4-70]+\hat{k}[-16+50]$
$\therefore \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=-46 \hat{\imath}+66 \hat{\jmath}+34 \hat{\mathrm{k}}$
So, we found $(\vec{a} \times \vec{b}) \times \vec{c}=-11 \hat{\imath}+122 \hat{\jmath}-85 \hat{k}$ and
$\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=-46 \hat{\mathrm{i}}+66 \hat{\jmath}+34 \hat{\mathrm{k}}$
Therefore, we have $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})$.

11. Question

If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, find $\vec{a} \cdot \vec{b}$.

Answer

Given $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$
$\Rightarrow|\vec{a} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}||\sin \theta||\hat{\mathrm{n}}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\Rightarrow 8=2 \times 5 \times \sin \theta \times 1$
$\Rightarrow 10 \sin \theta=8$
$\therefore \sin \theta=\frac{4}{5}$
We also have the dot product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
But, we have $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sqrt{1-\sin ^{2} \theta}$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=2 \times 5 \times \sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=10 \times \sqrt{1-\frac{16}{25}}$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=10 \times \sqrt{\frac{9}{25}}$
$\therefore \overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=10 \times \frac{3}{5}=6$
Thus, $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=6$

12. Question

Given $\overrightarrow{\mathrm{a}}=\frac{1}{7}(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}), \overrightarrow{\mathrm{b}}=\frac{1}{7}(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}), \overrightarrow{\mathrm{c}}=\frac{1}{7}(6 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}), \hat{\mathrm{i}}, \hat{\mathrm{j}}, \hat{\mathrm{k}}$ being a right handed orthogonal system of unit vectors in space, show that $\vec{a}, \vec{b}, \vec{c}$ is also another system.

Answer

To show that $\vec{a}, \overrightarrow{\mathrm{~b}}, \overrightarrow{\mathrm{c}}$ is a right handed orthogonal system of unit vectors, we need to prove the following -
(a) $|\vec{a}|=|b|=|\vec{c}|=1$
(b) $\vec{a} \times \vec{b}=\vec{c}$
(c) $\vec{b} \times \vec{c}=\vec{a}$
(d) $\vec{c} \times \vec{a}=\vec{b}$

Let us consider each of these one at a time.
(a) Recall the magnitude of the vector $x \hat{\imath}+y \hat{j}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
First, we will find |ä|.
$|\vec{a}|=\frac{1}{7} \sqrt{2^{2}+3^{2}+6^{2}}$
$\Rightarrow|\vec{a}|=\frac{1}{7} \sqrt{4+9+36}$
$\Rightarrow|\vec{a}|=\frac{1}{7} \sqrt{49}=\frac{1}{7} \times 7$
$\therefore|\vec{a}|=1$
Now, we will find $|\vec{a}|$.
$|\overrightarrow{\mathrm{b}}|=\frac{1}{7} \sqrt{3^{2}+(-6)^{2}+2^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{b}}|=\frac{1}{7} \sqrt{9+36+4}$
$\Rightarrow|\overrightarrow{\mathrm{b}}|=\frac{1}{7} \sqrt{49}=\frac{1}{7} \times 7$
$\therefore|\vec{b}|=1$
Finally, we will find $|\vec{c}|$.
$|\vec{c}|=\frac{1}{7} \sqrt{6^{2}+2^{2}+(-3)^{2}}$
$\Rightarrow|\vec{c}|=\frac{1}{7} \sqrt{36+4+9}$
$\Rightarrow|\vec{c}|=\frac{1}{7} \sqrt{49}=\frac{1}{7} \times 7$
$\therefore|\vec{c}|=1$
Hence, we have $|\vec{a}|=|b|=|\vec{c}|=1$
(b) Now, we will evaluate the vector $\vec{a} \times \vec{b}$

Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{1}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Taking the scalar $\frac{1}{7}$ common, here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,3,6)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(3,-6,2)$
$\Rightarrow \vec{a} \times \vec{b}=\frac{1}{7} \times \frac{1}{7}\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 6 \\ 3 & -6 & 2\end{array}\right|$
$\Rightarrow \vec{a} \times \vec{b}=\frac{1}{49}(\hat{\imath}[(3)(2)-(-6)(6)]-\hat{\jmath}[(2)(2)-(3)(6)]$ $+\hat{\mathrm{k}}[(2)(-6)-(3)(3)])$
$\Rightarrow \vec{a} \times \overrightarrow{\mathrm{b}}=\frac{1}{49}(\hat{\mathrm{i}}[6+36]-\hat{\mathrm{\jmath}}[4-18]+\hat{\mathrm{k}}[-12-9])$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\frac{1}{49}(42 \hat{\imath}+14 \hat{\jmath}-21 \hat{\mathrm{k}})$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\frac{1}{7}(6 \hat{\mathrm{\imath}}+2 \hat{\jmath}-3 \hat{\mathrm{k}})=\overrightarrow{\mathrm{c}}$
Hence, we have $\vec{a} \times \vec{b}=\vec{c}$.
(c) Now, we will evaluate the vector $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$

Taking the scalar $\frac{1}{7}$ common, here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(3,-6,2)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(6,2,-3)$
$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\frac{1}{7} \times \frac{1}{7}\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 3 & -6 & 2 \\ 6 & 2 & -3\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\frac{1}{49}(\hat{\mathrm{i}}[(-6)(-3)-(2)(2)]-\hat{\mathrm{\jmath}}[(3)(-3)-(6)(2)]$

$$
+\hat{\mathrm{k}}[(3)(2)-(6)(-6)])
$$

$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\frac{1}{49}(\hat{\mathrm{i}}[18-4]-\hat{\jmath}[-9-12]+\hat{\mathrm{k}}[6+36])$
$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\frac{1}{49}(14 \hat{\mathrm{\imath}}+21 \hat{\mathrm{\jmath}}+42 \hat{\mathrm{k}})$
$\therefore \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})=\overrightarrow{\mathrm{a}}$
Hence, we have $\vec{b} \times \vec{c}=\vec{a}$.
(d) Now, we will evaluate the vector $\vec{c} \times \vec{a}$

Taking the scalar $\frac{1}{7}$ common, here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(6,2,-3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(2,3,6)$
$\Rightarrow \vec{c} \times \vec{a}=\frac{1}{7} \times \frac{1}{7}\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 6 & 2 & -3 \\ 2 & 3 & 6\end{array}\right|$
$\Rightarrow \vec{c} \times \vec{a}=\frac{1}{49}(\hat{\imath}[(2)(6)-(3)(-3)]-\hat{\jmath}[(6)(6)-(2)(-3)]$

$$
+\hat{\mathrm{k}}[(6)(3)-(2)(2)])
$$

$\Rightarrow \overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}=\frac{1}{49}(\hat{\mathrm{i}}[12+9]-\hat{\mathrm{f}}[36+6]+\hat{\mathrm{k}}[18-4])$
$\Rightarrow \vec{c} \times \vec{a}=\frac{1}{49}(21 \hat{\imath}-42 \hat{\jmath}+14 \hat{k})$
$\therefore \vec{c} \times \overrightarrow{\mathrm{a}}=\frac{1}{7}(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=\overrightarrow{\mathrm{b}}$
Hence, we have $\vec{c} \times \vec{a}=\vec{b}$.
Thus, $\vec{a}, \vec{b}, \vec{c}$ is also another right handed orthogonal system of unit vectors.

13. Question

If $|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60$, then find $|\vec{a} \times \vec{b}|$.

Answer

Given $|\vec{a}|=2,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60$
We know the dot product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow 60=13 \times 5 \times \cos \theta$
$\Rightarrow 65 \cos \theta=60$
$\therefore \cos \theta=\frac{12}{13}$
We also know the cross product of two vectors \vec{a} and $\overrightarrow{\mathrm{b}}$ forming an angle θ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where \hat{n} is a unit vector perpendicular to \vec{a} and \vec{b}
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta||\hat{n}|$
But, we have $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sqrt{1-\cos ^{2} \theta}|\hat{n}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\Rightarrow|\vec{a} \times \vec{b}|=13 \times 5 \times \sqrt{1-\left(\frac{12}{13}\right)^{2}} \times 1$
$\Rightarrow|\vec{a} \times \vec{b}|=13 \times 5 \times \sqrt{1-\frac{144}{169}}$
$\Rightarrow|\vec{a} \times \vec{b}|=13 \times 5 \times \sqrt{\frac{25}{169}}$
$\therefore|\vec{a} \times \vec{b}|=13 \times 5 \times \frac{5}{13}=25$
Thus, $|\vec{a} \times \vec{b}|=25$

14. Question

Find the angle between two vectors \vec{a} and $\overrightarrow{\mathrm{b}}$, if $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$.

Answer

Given $|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$.
Let the angle between vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ be θ.
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta||\hat{n}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta| \times 1$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta$
We also have the dot product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
But, it is given that $|\vec{a} \times \vec{b}|=\vec{a} \cdot \vec{b}$
$\Rightarrow|\vec{a}||\vec{b}| \sin \theta=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow \sin \theta=\cos \theta$
$\Rightarrow \tan \theta=1$
$\therefore \theta=\frac{\pi}{4}$
Thus, the angle between two vectors is $\frac{\pi}{4}$.

15. Question

If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, then show that $\vec{a}+\vec{c}=m \vec{b}$, where m is any scalar.

Answer

Given $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}} \neq \overrightarrow{0}$.
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}$
We have $\vec{b} \times \vec{c}=-(\vec{c} \times \vec{b})$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}-[-(\vec{c} \times \overrightarrow{\mathrm{b}})]=\overrightarrow{0}$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{0}$
Using distributive property of vectors, we have
$(\vec{a}+\vec{c}) \times \vec{b}=\overrightarrow{0}$
We know that if the cross product of two vectors is the null vector, then the vectors are parallel.
Here, $(\vec{a}+\vec{c}) \times \vec{b}=\overrightarrow{0}$
So, vector $(\vec{a}+\vec{c})$ is parallel to \vec{b}.
Thus, $\vec{a}+\vec{c}=m \vec{b}$ for some scalar m.

16. Question

If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{a} and \vec{b}.

Answer

Given $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$
Let the angle between vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ be θ.
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta||\hat{n}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta| \times 1$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
$\Rightarrow \sqrt{3^{2}+2^{2}+6^{2}}=2 \times 7 \times \sin \theta$
$\Rightarrow \sqrt{9+4+36}=14 \sin \theta$
$\Rightarrow \sqrt{49}=14 \sin \theta$
$\Rightarrow 14 \sin \theta=7$
$\Rightarrow \sin \theta=\frac{7}{14}=\frac{1}{2}$
$\therefore \theta=\frac{\pi}{6}$
Thus, the angle between two vectors is $\frac{\pi}{6}$.

17. Question

What inference can you draw if $\vec{a} \times \vec{b}=\overrightarrow{0}$ and $\vec{a} \cdot \vec{b}=0$.

Answer

Given $\vec{a} \times \vec{b}=\overrightarrow{0}$ and $\vec{a} \cdot \vec{b}=0$.
To draw inferences from this, we shall analyze these two equations one at a time.

First, let us consider $\vec{a} \times \vec{b}=\overrightarrow{0}$.
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.
So, if $\vec{a} \times \vec{b}=\overrightarrow{0}$, we have at least one of the following true -
(a) $|\vec{a}|=0$
(b) $|\vec{b}|=0$
(c) $|\overrightarrow{\mathrm{a}}|=0$ and $|\overrightarrow{\mathrm{b}}|=0$
(d) \vec{a} is parallel to \vec{b}

Now, let us consider $\vec{a} \cdot \vec{b}=0$.
We have the dot product of two vectors \vec{a} and $\overrightarrow{\mathrm{b}}$ forming an angle θ is
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
So, if $\vec{a} \cdot \vec{b}=0$, we have at least one of the following true -
(a) $|\vec{a}|=0$
(b) $|\vec{b}|=0$
(c) $|\vec{a}|=0$ and $|\vec{b}|=0$
(d) \vec{a} is perpendicular to \vec{b}

Given both these conditions are true.
Hence, the possibility (d) cannot be true as $\overrightarrow{\mathrm{a}}$ can't be both parallel and perpendicular to $\overrightarrow{\mathrm{b}}$ at the same time. Thus, either one or both of \vec{a} and \vec{b} are zero vectors if we have $\vec{a} \times \vec{b}=\overrightarrow{0}$ as well as $\vec{a} \cdot \vec{b}=0$.

18. Question

If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$. Show that $\vec{a}, \vec{b}, \vec{c}$ form an orthonormal right handed triad of unit vectors.

Answer

Given $\vec{a} \times \vec{b}=\vec{c} \cdot \vec{b} \times \vec{c}=\vec{a}$ and $\vec{c} \times \vec{a}=\vec{b}$.
Considering the first equation, \vec{c} is the cross product of the vectors \vec{a} and $\overrightarrow{\mathrm{b}}$.
By the definition of the cross product of two vectors, we have \vec{c} perpendicular to both \vec{a} and \vec{b}.
Similarly, considering the second equation, we have \vec{a} perpendicular to both \vec{b} and \vec{c}.
Once again, considering the third equation, we have $\overrightarrow{\mathrm{b}}$ perpendicular to both $\overrightarrow{\mathrm{c}}$ and $\overrightarrow{\mathrm{a}}$.
From the above three statements, we can observe that the vectors \vec{a}, \vec{b} and \vec{c} are mutually perpendicular.
It is also said that $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ are three unit vectors.
Thus, $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ form an orthonormal right handed triad of unit vectors.

19. Question

Find a unit vector perpendicular to the plane $A B C$, where the coordinates of A, B and C are $A(3,-1,2), B(1,-$ $1,-3)$ and $C(4,-3,1)$.

Answer

Given points $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$
Let position vectors of the points A, B and C be \vec{a}, \vec{b} and \vec{c} respectively.
(\vec{a})

A (3, -1, 2)

B (1, -1, -3)
(\vec{b})

C ($4,-3,1$)
We know position vector of a point (x, y, z) is given by $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, where $\hat{1}, \hat{\jmath}$ and \hat{k} are unit vectors along X, Y and Z directions.
$\Rightarrow \overrightarrow{\mathrm{a}}=(3) \hat{\mathrm{\imath}}+(-1) \hat{\mathrm{\jmath}}+(2) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{a}}=3 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}}$
Similarly, we have $\vec{b}=\hat{\imath}-\hat{\jmath}-3 \hat{k}$ and $\vec{c}=4 \hat{\imath}-3 \hat{\jmath}+\hat{k}$
Plane $A B C$ contains the two vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
So, a vector perpendicular to this plane is also perpendicular to both of these vectors.
Recall the vector $\overrightarrow{\mathrm{AB}}$ is given by
$\overrightarrow{A B}=$ position vector of $B-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}=(\hat{\imath}-\hat{\jmath}-3 \hat{\mathrm{k}})-(3 \hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AB}}=(1-3) \hat{\imath}+(-1+1) \hat{\jmath}+(-3-2) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AB}}=-2 \hat{\imath}-5 \hat{\mathrm{k}}$
Similarly, the vector $\overrightarrow{\mathrm{AC}}$ is given by
$\overrightarrow{\mathrm{AC}}=$ position vector of $C-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{A C}=(4 \hat{\imath}-3 \hat{\jmath}+1 \hat{k})-(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(4-3) \hat{\mathrm{i}}+(-3+1) \hat{\jmath}+(1-2) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AC}}=\hat{\imath}-2 \hat{\jmath}-\hat{\mathrm{k}}$
We need to find a unit vector perpendicular to $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(-2,0,-5)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,-2,-1)$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ -2 & 0 & -5 \\ 1 & -2 & -1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}[(0)(-1)-(-2)(-5)]-\hat{\mathrm{j}}[(-2)(-1)-(1)(-5)]$

$$
+\widehat{\mathrm{k}}[(-2)(-2)-(1)(0)]
$$

$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}[0-10]-\hat{\mathrm{j}}[2+5]+\hat{\mathrm{k}}[4-0]$
$\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=-10 \hat{\mathrm{\imath}}-7 \hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}$
Let the unit vector in the direction of $\overrightarrow{A B} \times \overrightarrow{A C}$ be \hat{p}.
We know unit vector in the direction of a vector \vec{a} is given by $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$.
$\Rightarrow \hat{\mathrm{p}}=\frac{\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\overrightarrow{A B} \times \overrightarrow{A C}|$.
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{(-10)^{2}+(-7)^{2}+4^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{100+49+16}$
$\therefore|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{165}$
So, we have $\hat{p}=\frac{\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}}{\sqrt{165}}$
$\Rightarrow \hat{\mathrm{p}}=\frac{1}{\sqrt{165}}(-10 \hat{\mathrm{\imath}}-7 \hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}})$
Thus, the required unit vector that is perpendicular to plane $A B C$ is $\frac{1}{\sqrt{165}}(-10 \hat{\mathrm{i}}-7 \hat{\jmath}+4 \hat{\mathrm{k}})$.

20. Question

If a, b, c are the lengths of sides, $B C, C A$ and $A B$ of a triangle $A B C$, prove that $\overrightarrow{B C}+\overrightarrow{C A}+\overrightarrow{A B}=\overrightarrow{0}$ and deduce that $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

Answer

Given $A B C$ is a triangle with $B C=a, C A=b$ and $A B=c$.
$\Rightarrow|\overrightarrow{\mathrm{BC}}|=\mathrm{a},|\overrightarrow{\mathrm{CA}}|=\mathrm{b}$ and $|\overrightarrow{\mathrm{AB}}|=\mathrm{c}$

Firstly, we need to prove $\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AB}}=\overrightarrow{0}$.

From the triangle law of vector addition, we have
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$
But, we know $\overrightarrow{\mathrm{AC}}=-\overrightarrow{\mathrm{CA}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CA}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0}$
$\therefore \overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AB}}=\overrightarrow{0}$
Let $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}}$
$\Rightarrow \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
By taking cross product with \vec{a}, we get
$\vec{a} \times(\vec{a}+\vec{b}+\vec{c})=\vec{a} \times \overrightarrow{0}$
$\Rightarrow \vec{a} \times \vec{a}+\vec{a} \times \vec{b}+\vec{a} \times \vec{c}=\overrightarrow{0}[\because \vec{a} \times \overrightarrow{0}=\overrightarrow{0}]$
$\Rightarrow \overrightarrow{0}+\vec{a} \times \vec{b}+\vec{a} \times \vec{c}=\overrightarrow{0}[\because \vec{a} \times \vec{a}=\overrightarrow{0}]$
$\Rightarrow \vec{a} \times \vec{b}+\vec{a} \times \vec{c}=\overrightarrow{0}$
$\Rightarrow \vec{a} \times \vec{b}=-(\vec{a} \times \vec{c})$
$\Rightarrow \vec{a} \times \vec{b}=\vec{c} \times \vec{a}$
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta$ ही
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$
Here, all the vectors are coplanar. So, the unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is same as that of $\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$.
$\Rightarrow|\vec{a}||\vec{b}| \sin C=|\vec{c}||\vec{a}| \sin B$
$\Rightarrow|\vec{b}| \sin C=|\vec{c}| \sin B$
$\Rightarrow \mathrm{b} \sin \mathrm{C}=\mathrm{c} \sin \mathrm{B}[\because|\overrightarrow{\mathrm{CA}}|=\mathrm{b}$ and $|\overrightarrow{\mathrm{AB}}|=\mathrm{c}]$
$\therefore \frac{b}{\sin B}=\frac{c}{\sin C}---$ (II)
Consider equation (I) again.
We have $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
By taking cross product with \vec{a}, we get
$\overrightarrow{\mathrm{b}} \times(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}} \times \overrightarrow{0}$
$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}[\because \overrightarrow{\mathrm{~b}} \times \overrightarrow{0}=\overrightarrow{0}]$
$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}+\overrightarrow{0}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}[\because \overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{0}]$
$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{0}$
$\Rightarrow \vec{b} \times \vec{c}=-(\vec{b} \times \vec{a})$
$\Rightarrow \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$
$\Rightarrow|\vec{b}||\vec{c}| \sin A=|\vec{a}||\vec{b}| \sin C$
$\Rightarrow|\vec{c}| \sin A=|\vec{a}| \sin C$
$\Rightarrow c \sin A=a \sin C[\because|\overrightarrow{A B}|=c$ and $|\overrightarrow{B C}|=a]$
$\therefore \frac{c}{\sin C}=\frac{a}{\sin A}-$
From (II) and (III), we get $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Thus, $\overrightarrow{B C}+\overrightarrow{C A}+\overrightarrow{A B}=\overrightarrow{0}$ and $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ in $\triangle A B C$.

21. Question

If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$, and $\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$, then find $\vec{a} \times \vec{b}$. Verify that \vec{a} and $\vec{a} \times \vec{b}$ are perpendicular to each other.

Answer

Given $\overrightarrow{\mathrm{a}}=\hat{\mathrm{\imath}}-2 \hat{\jmath}+3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{\imath}}+3 \hat{\jmath}-5 \hat{\mathrm{k}}$
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{1}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{1}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,-2,3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(2,3,-5)$
$\Rightarrow \vec{a} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & -2 & 3 \\ 2 & 3 & -5\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(-2)(-5)-(3)(3)]-\hat{\mathrm{f}}[(1)(-5)-(2)(3)]+\hat{\mathrm{k}}[(1)(3)-(2)(-2)]$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[10-9]-\hat{\mathrm{f}}[-5-6]+\hat{\mathrm{k}}[3+4]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}+11 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$
We need to prove $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ are perpendicular to each other.
We know that two vectors are perpendicular if their dot product is zero.
So, we will evaluate \vec{a}. $(\vec{a} \times \vec{b})$.
$\vec{a} \cdot(\vec{a} \times \vec{b})=(\hat{\imath}-2 \hat{\jmath}+3 \hat{k}) \cdot(\hat{\imath}+11 \hat{\jmath}+7 \hat{k})$
$\Rightarrow \vec{a} \cdot(\vec{a} \times \vec{b})=\hat{\imath} \cdot(\hat{\imath}+11 \hat{\jmath}+7 \hat{k})-2 \hat{\jmath} \cdot(\hat{\imath}+11 \hat{\jmath}+7 \hat{k})+3 \hat{k} \cdot(\hat{\imath}+11 \hat{\jmath}+7 \hat{k})$
But, $\hat{1}, \hat{\jmath}$ and $\hat{\mathrm{k}}$ are mutually perpendicular.
$\Rightarrow \vec{a} .(\vec{a} \times \vec{b})=\hat{1} . \hat{1}-2 \hat{\jmath} .11 \hat{\jmath}+3 \hat{k} .7 \hat{k}$
$\Rightarrow \overrightarrow{\mathrm{a}} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=\hat{\mathrm{i}} . \hat{\mathrm{i}}-22(\hat{\mathrm{p}} . \hat{\mathrm{j}})+21(\hat{\mathrm{k}} . \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{a}} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=1-22+21$
$\therefore \overrightarrow{\mathrm{a}} .(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=0$
Thus $\vec{a} \times \vec{b}=\hat{\imath}+11 \hat{\jmath}+7 \hat{\mathrm{k}}$ and it is perpendicular to $\overrightarrow{\mathrm{a}}$.

22. Question

If \vec{p} and \vec{q} are unit vectors forming an angle of 30°, find the area of the parallelogram having $\vec{a}=\vec{p}+2 \vec{q}$ and $\vec{b}=2 \vec{p}+\vec{q}$ as its diagonals.

Answer

Given two unit vectors $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ forming an angle of 30°.
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$
where \hat{n} is a unit vector perpendicular to \vec{a} and \vec{b}.
$\Rightarrow \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \sin 30^{\circ} \hat{\mathrm{n}}$
$\Rightarrow \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=1 \times 1 \times \frac{1}{2} \times \hat{\mathrm{n}}$
$\therefore \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\frac{1}{2} \hat{\mathrm{n}}$
Given two diagonals of parallelogram $\vec{a}=\vec{p}+2 \vec{q}$ and $\vec{b}=2 \vec{p}+\vec{q}$
Recall the area of the parallelogram whose diagonals are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and
$\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$.
\Rightarrow Area $=\frac{1}{2}|(\overrightarrow{\mathrm{p}}+2 \overrightarrow{\mathrm{q}}) \times(2 \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}})|$
\Rightarrow Area $=\frac{1}{2}|\overrightarrow{\mathrm{p}} \times(2 \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}})+2 \overrightarrow{\mathrm{q}} \times(2 \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}})|$
\Rightarrow Area $=\frac{1}{2}|\overrightarrow{\mathrm{p}} \times 2 \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}+2 \overrightarrow{\mathrm{q}} \times 2 \overrightarrow{\mathrm{p}}+2 \overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{q}}|$
We have $\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{q}}=\overrightarrow{0}$
\Rightarrow Area $=\frac{1}{2}|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}+4(\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{p}})|$
We have $\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{p}}=-(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})$
\Rightarrow Area $=\frac{1}{2}|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}+4[-(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})]|$
\Rightarrow Area $=\frac{1}{2}|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}-4(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})|$
\Rightarrow Area $=\frac{1}{2}|-3(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})|$
\Rightarrow Area $=\frac{3}{2}|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|$
But, we found $\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\frac{1}{2} \hat{\mathrm{n}}$.
\Rightarrow Area $=\frac{3}{2}\left|\frac{1}{2} \hat{\mathrm{n}}\right|$
\Rightarrow Area $=\frac{3}{2} \times \frac{1}{2}|\hat{\mathrm{n}}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
\therefore Area $=\frac{3}{2} \times \frac{1}{2} \times 1=\frac{3}{4}$
Thus, area of the parallelogram is $\frac{3}{4}$ square units.

23. Question

For any two vectors \vec{a} and \vec{b}, prove that $|\vec{a} \times \vec{b}|^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$.

Answer

Let the angle between vectors \vec{a} and $\overrightarrow{\mathrm{b}}$ be θ.
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta||\hat{n}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta| \times 1$
$\therefore|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
Now, consider the LHS of the given expression.
$|\vec{a} \times \vec{b}|^{2}=(|\vec{a}||\vec{b}| \sin \theta)^{2}$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta$
But, we have $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}\left(1-\cos ^{2} \theta\right)$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2} \theta$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(|\vec{a}||\vec{b}| \cos \theta)^{2}$
We know $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}=|\overrightarrow{\mathrm{a}}|^{2}, \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$ and $\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}|^{2}$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})^{2}$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{b})$
But $\vec{a} \cdot \vec{b}=b \cdot \vec{a}$ as dot product is commutative
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{b} \cdot \vec{a})(\vec{a} \cdot \vec{b})$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}=\left|\begin{array}{ll}\vec{a} \cdot \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}} \\ \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{b}}\end{array}\right|$
Thus, $|\vec{a} \times \vec{b}|^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$

24. Question

Define $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ and prove that $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}) \tan \theta$, where θ is the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.

Answer

Cross Product: The vector or cross product of two non-zero vectors \vec{a} and $\overrightarrow{\mathrm{b}}$, denoted by $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$, is defined as $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where θ is the angle between \vec{a} and $\overrightarrow{\mathrm{b}}, 0 \leq \theta \leq \pi$ and $\hat{\mathrm{n}}$ is a unit vector perpendicular to both $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$, such that $\overrightarrow{\mathrm{a}}$, $\overrightarrow{\mathrm{b}}$ and $\hat{\mathrm{n}}$ form a right handed system.

We have $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta||\hat{n}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta| \times 1$
$\therefore|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
But, we have the dot product of two vectors \vec{a} and \vec{b} forming an angle θ as $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
Now, we divide these two equations.
$\Rightarrow \frac{|\vec{a} \times \vec{b}|}{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}=\frac{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta}$
$\Rightarrow \frac{|\vec{a} \times \vec{b}|}{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}=\frac{\sin \theta}{\cos \theta}$
$\Rightarrow \frac{|\vec{a} \times \vec{b}|}{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}=\tan \theta$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}) \tan \theta$
Thus, $|\vec{a} \times \vec{b}|=(\vec{a} . \vec{b}) \tan \theta$
25. Question

If $|\overrightarrow{\mathrm{a}}|=\sqrt{26},|\overrightarrow{\mathrm{~b}}|=7$ and $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=35$, find $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$.

Answer

Given $|\vec{a}|=\sqrt{26},|\vec{b}|=7$ and $|\vec{a} \times \vec{b}|=35$
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where \hat{n} is a unit vector perpendicular to \vec{a} and \vec{b}
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta||\hat{n}| \sqrt{26}$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\Rightarrow 35=\sqrt{26} \times 7 \times \sin \theta \times 1$
$\Rightarrow 35=7 \sqrt{26} \sin \theta$
$\Rightarrow \sqrt{26} \sin \theta=5$
$\therefore \sin \theta=\frac{5}{\sqrt{26}}$
We also have the dot product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
But, we have $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow \overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sqrt{1-\sin ^{2} \theta}$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\sqrt{26} \times 7 \times \sqrt{1-\left(\frac{5}{\sqrt{26}}\right)^{2}}$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=7 \sqrt{26} \times \sqrt{1-\frac{25}{26}}$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=7 \sqrt{26} \times \sqrt{\frac{1}{26}}$
$\therefore \overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=7 \sqrt{26} \times \frac{1}{\sqrt{26}}=7$
Thus, $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=7$

26. Question

Find the area of the triangle formed by $\mathrm{O}, \mathrm{A}, \mathrm{B}$ when $\overrightarrow{O A}=\hat{\mathrm{O}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{O B}=-3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$.

Answer

Given $\overrightarrow{\mathrm{OA}}=\hat{\mathrm{i}}+2 \hat{\jmath}+3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{OB}}=-3 \hat{\mathrm{i}}-2 \hat{\jmath}+\hat{\mathrm{k}}$ are two adjacent sides of a triangle.

Recall the area of the triangle whose adjacent sides are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,2,3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(-3,-2,1)$
$\Rightarrow \overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & 2 & 3 \\ -3 & -2 & 1\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=\hat{\mathrm{i}}[(2)(1)-(-2)(3)]-\hat{\jmath}[(1)(1)-(-3)(3)]$

$$
+\mathrm{k}[(1)(-2)-(-3)(2)]
$$

$\Rightarrow \overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=\hat{\mathrm{i}}[2+6]-\hat{\mathrm{\jmath}}[1+9]+\hat{\mathrm{k}}[-2+6]$
$\therefore \overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=8 \hat{\mathrm{i}}-10 \hat{\jmath}+4 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\mathrm{j}}+\mathrm{zk}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Now, we find $|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|$.
$|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|=\sqrt{8^{2}+(-10)^{2}+4^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|=\sqrt{64+100+16}$
$\Rightarrow|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|=\sqrt{180}=6 \sqrt{5}$
$\therefore \frac{|\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}|}{2}=\frac{6 \sqrt{5}}{2}=3 \sqrt{5}$
Thus, area of the triangle is $3 \sqrt{5}$ square units.

27. Question

Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{a} which is perpendicular to both \vec{a} and $\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}}=15$.

Answer

Given $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+4 \hat{\jmath}+2 \hat{\mathbf{k}}, \overrightarrow{\mathrm{~b}}=3 \hat{\mathrm{i}}-2 \hat{\jmath}+7 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}-\hat{\jmath}+4 \hat{\mathbf{k}}$
We need to find a vector \vec{d} perpendicular to \vec{a} and \vec{b} such that $\vec{c} . \overrightarrow{\mathrm{d}}=15$.
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,4,2)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(3,-2,7)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 4 & 2 \\ 3 & -2 & 7\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(4)(7)-(-2)(2)]-\hat{\mathrm{j}}[(1)(7)-(3)(2)]+\hat{\mathrm{k}}[(1)(-2)-(3)(4)]$
$\Rightarrow \vec{a} \times \vec{b}=\hat{\mathrm{r}}[28+4]-\hat{\jmath}[7-6]+\hat{k}[-2-12]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=32 \hat{\mathrm{i}}-\hat{\mathrm{\jmath}}-14 \hat{\mathrm{k}}$
So, \vec{d} is a vector parallel to $\vec{a} \times \vec{b}$.
Let $\vec{d}=\lambda(\vec{a} \times \vec{b})$ for some scalar λ.
$\Rightarrow \overrightarrow{\mathrm{d}}=\lambda(32 \hat{\mathrm{i}}-\hat{\mathrm{\jmath}}-14 \hat{\mathrm{k}})$
We have $\overrightarrow{\mathrm{c}} . \overrightarrow{\mathrm{d}}=15$.
$\Rightarrow(2 \hat{\imath}-\hat{\jmath}+4 \hat{k}) \cdot[\lambda(32 \hat{\imath}-\hat{\jmath}-14 \hat{k})]=15$
$\Rightarrow \lambda[(2 \hat{\imath}-\hat{\jmath}+4 \hat{k}) \cdot(32 \hat{\imath}-\hat{\jmath}-14 \hat{k})]=15$
$\Rightarrow \lambda[(2)(32)+(-1)(-1)+(4)(-14)]=15$
$\Rightarrow \lambda(64+1-56)=15$
$\Rightarrow 9 \lambda=15$
$\therefore \lambda=\frac{15}{9}=\frac{5}{3}$
So, we have $\overrightarrow{\mathrm{d}}=\frac{5}{3}(32 \hat{\mathrm{i}}-\hat{\mathrm{j}}-14 \hat{\mathrm{k}})$.
Thus, $\overrightarrow{\mathrm{d}}=\frac{5}{3}(32 \hat{\mathrm{i}}-\hat{\mathrm{\jmath}}-14 \hat{\mathrm{k}})$

28. Question

Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$.

Answer

Given $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+2 \hat{\jmath}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}}$
We need to find the vector perpendicular to both the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.
$\vec{a}+\vec{b}=(3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k})+(\hat{\imath}+2 \hat{\jmath}-2 \hat{k})$
$\Rightarrow \vec{a}+\vec{b}=(3+1) \hat{\imath}+(2+2) \hat{\jmath}+(2-2) \hat{k}$
$\therefore \vec{a}+\vec{b}=4 \hat{\imath}+4 \hat{\jmath}$
$\vec{a}-\vec{b}=(3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k})-(\hat{\imath}+2 \hat{\jmath}-2 \hat{k})$
$\Rightarrow \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=(3-1) \hat{\imath}+(2-2) \hat{\jmath}+(2+2) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{\imath}}+4 \hat{\mathrm{k}}$
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(4,4,0)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(2,0,4)$
$\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{lll}\hat{i} & \hat{\jmath} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4\end{array}\right|$
$\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$ $=\hat{\imath}[(4)(4)-(0)(0)]-\hat{\jmath}[(4)(4)-(2)(0)]+\hat{\mathrm{k}}[(4)(0)-(2)(4)]$
$\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\hat{i}[16-0]-\hat{\jmath}[16-0]+\hat{k}[0-8]$
$\therefore(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=16 \hat{\imath}-16 \hat{\jmath}-8 \hat{k}$
Let the unit vector in the direction of $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$ be \hat{p}.
We know unit vector in the direction of a vector \vec{a} is given by $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$.
$\Rightarrow \hat{p}=\frac{(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})}{|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{i}+y \hat{y}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|$.
$|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=\sqrt{16^{2}+(-16)^{2}+(-8)^{2}}$
$\Rightarrow|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=\sqrt{256+256+64}$
$\therefore|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=\sqrt{576}=24$
So, we have $\hat{\mathrm{p}}=\frac{(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \times(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})}{24}$
$\Rightarrow \hat{\mathrm{p}}=\frac{1}{24}(16 \hat{\mathrm{\imath}}-16 \hat{\mathrm{\jmath}}-8 \hat{\mathrm{k}})$
$\therefore \hat{\mathrm{p}}=\frac{1}{3}(2 \hat{\mathrm{\imath}}-2 \hat{\mathrm{\jmath}}-\hat{\mathrm{k}})$
Thus, the required unit vector that is perpendicular to both \vec{a} and \vec{b} is $\frac{1}{3}(2 \hat{\imath}-2 \hat{\jmath}-\hat{k})$.

29. Question

Using vectors, find the area of the triangle with vertices $\mathrm{A}(2,3,5), \mathrm{B}(3,5,8)$ and $\mathrm{C}(2,7,8)$.

Answer

Given three points $\mathrm{A}(2,3,5), \mathrm{B}(3,5,8)$ and $\mathrm{C}(2,7,8)$ forming a triangle.
Let position vectors of the vertices A, B and C of $\triangle A B C$ be \vec{a}, \vec{b} and \vec{c} respectively.

B $(3,5,8)$
(\vec{b})
We know position vector of a point (x, y, z) is given by $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, where $_{\hat{1}, \hat{\jmath}}$ and $\hat{\mathrm{k}}$ are unit vectors along X, Y and Z directions.
$\Rightarrow \vec{a}=(2) \hat{\imath}+(3) \hat{\jmath}+(5) \hat{k}$
$\therefore \overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Similarly, we have $\vec{b}=3 \hat{\imath}+5 \hat{\jmath}+8 \hat{k}$ and $\vec{c}=2 \hat{\imath}+7 \hat{\jmath}+8 \hat{k}$
To find area of $\triangle A B C$, we need to find at least two sides of the triangle. So, we will find vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
Recall the vector $\overrightarrow{\mathrm{AB}}$ is given by
$\overrightarrow{A B}=$ position vector of $B-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{A B}=(3 \hat{\imath}+5 \hat{\jmath}+8 \hat{k})-(2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k})$
$\Rightarrow \overrightarrow{\mathrm{AB}}=(3-2) \hat{\mathrm{\imath}}+(5-3) \hat{\mathrm{\jmath}}+(8-5) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AB}}=\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
Similarly, the vector $\overrightarrow{\mathrm{AC}}$ is given by
$\overrightarrow{\mathrm{AC}}=$ position vector of $\mathrm{C}-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AC}}=\vec{c}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(2 \hat{\mathrm{\imath}}+7 \hat{\jmath}+8 \hat{\mathrm{k}})-(2 \hat{\imath}+3 \hat{\jmath}+5 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(2-2) \hat{\mathrm{i}}+(7-3) \hat{\mathrm{\jmath}}+(8-5) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AC}}=4 \hat{\jmath}+3 \hat{\mathrm{k}}$
Recall the area of the triangle whose adjacent sides are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,2,3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(0,4,3)$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}[(2)(3)-(4)(3)]-\hat{\jmath}[(1)(3)-(0)(3)]+\hat{\mathrm{K}}[(1)(4)-(0)(2)]$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}[6-12]-\hat{\mathrm{\jmath}}[3-0]+\hat{\mathrm{k}}[4-0]$
$\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=-6 \hat{i}-3 \hat{\jmath}+4 \hat{\mathrm{k}}$
Recall the magnitude of the vector $\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{t}}+\mathrm{zk}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\overrightarrow{A B} \times \overrightarrow{A C}|$.
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{(-6)^{2}+(-3)^{2}+4^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{36+9+16}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{61}$
$\therefore \frac{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|}{2}=\frac{\sqrt{61}}{2}$
Thus, area of the triangle is $\frac{\sqrt{61}}{2}$ square units.

30. Question

If $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{k}, \vec{c}=2 \hat{j}-\hat{k}$ are three vectors, find the area of the parallegram having diagonals $(\vec{a}+\vec{b})$ and $(\vec{b}+\vec{c})$.

Given $\overrightarrow{\mathrm{a}}=2 \hat{\imath}-3 \hat{\jmath}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=-\hat{\imath}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=2 \hat{\jmath}-\hat{\mathrm{k}}$
We need to find area of the parallelogram with vectors $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ as diagonals.
$\vec{a}+\vec{b}=(2 \hat{\imath}-3 \hat{\jmath}+\hat{k})+(-\hat{\imath}+\hat{k})$
$\Rightarrow \vec{a}+\vec{b}=(2-1) \hat{\imath}+(-3) \hat{\jmath}+(1+1) \hat{k}$
$\therefore \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-3 \hat{\jmath}+2 \hat{\mathrm{k}}$
$\vec{b}+\vec{c}=(-\hat{\imath}+\hat{k})+(2 \hat{\jmath}-\hat{k})$
$\Rightarrow \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=(-1) \hat{\mathrm{\imath}}+(2) \hat{\jmath}+(1-1) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=-\hat{\imath}+2 \hat{\jmath}$
Recall the area of the parallelogram whose diagonals are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,-3,2)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(-1,2,0)$
$\Rightarrow(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -3 & 2 \\ -1 & 2 & 0\end{array}\right|$
$\Rightarrow(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})$

$$
=\hat{1}[(-3)(0)-(2)(2)]-\hat{\jmath}[(1)(0)-(-1)(2)]
$$

$$
+\widehat{\mathrm{k}}[(1)(2)-(-1)(-3)]
$$

$\Rightarrow(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})=\hat{i}[0-4]-\hat{\jmath}[0+2]+\hat{k}[2-3]$
$\therefore(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})=-4 \hat{\imath}-2 \hat{\jmath}-\hat{k}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})|$.
$|(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})|=\sqrt{(-4)^{2}+(-2)^{2}+(-1)^{2}}$
$\Rightarrow|(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})|=\sqrt{16+4+1}$
$\Rightarrow|(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})|=\sqrt{21}$
$\therefore \frac{|(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})|}{2}=\frac{\sqrt{21}}{2}$
Thus, area of the parallelogram is $\frac{\sqrt{21}}{2}$ square units.

31. Question

The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find its area.

Answer

Let $A B C D$ be a parallelogram with sides $A B$ and $A C$ given.

We have $\overrightarrow{A B}=2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$ and $\overrightarrow{B C}=\hat{\imath}-2 \hat{\jmath}-3 \hat{k}$

We need to find unit vector parallel to diagonal $\overrightarrow{\mathrm{AC}}$.
From the triangle law of vector addition, we have
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(2 \hat{\imath}-4 \hat{\jmath}+5 \hat{\mathrm{k}})+(\hat{\mathrm{\imath}}-2 \hat{\jmath}-3 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(2+1) \hat{\mathrm{i}}+(-4-2) \hat{\mathrm{j}}+(5-3) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AC}}=3 \hat{\mathrm{\imath}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Let the unit vector in the direction of $\overrightarrow{\mathrm{AC}}$ be $\hat{\mathrm{p}}$.
We know unit vector in the direction of a vector \vec{a} is given by $\hat{a}=\frac{\vec{a}}{\mid \overrightarrow{a j}}$
$\Rightarrow \hat{\mathrm{p}}=\frac{\overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AC}}|}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{y}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\overrightarrow{\mathrm{AC}}|$.
$|\overrightarrow{\mathrm{AC}}|=\sqrt{3^{2}+(-6)^{2}+2^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{AC}}|=\sqrt{9+36+4}$
$\therefore|\overrightarrow{\mathrm{AC}}|=\sqrt{49}=7$
So, we have $\hat{\mathrm{p}}=\frac{\overrightarrow{\mathrm{AC}}}{7}$
$\Rightarrow \hat{\mathrm{p}}=\frac{1}{7}(3 \hat{\mathrm{i}}-6 \hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}})$
Thus, the required unit vector that is parallel to diaonal $\overrightarrow{\mathrm{AC}}$ is $\frac{1}{7}(3 \hat{\mathrm{i}}-6 \hat{\jmath}+2 \hat{\mathrm{k}})$.
Now, we have to find the area of parallelogram ABCD.
Recall the area of the parallelogram whose adjacent sides are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $|\vec{a} \times \vec{b}|$ where
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{\jmath}} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(2,-4,5)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,-2,-3)$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & -4 & 5 \\ 1 & -2 & -3\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=\hat{\mathrm{i}}[(-4)(-3)-(-2)(5)]-\hat{\mathrm{j}}[(2)(-3)-(1)(5)]$

$$
+\hat{\mathrm{k}}[(2)(-2)-(1)(-4)]
$$

$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=\hat{\mathrm{i}}[12+10]-\hat{\mathrm{j}}[-6-5]+\hat{\mathrm{k}}[-4+4]$
$\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=22 \hat{\imath}+11 \hat{\jmath}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|$.
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\sqrt{22^{2}+11^{2}+0^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\sqrt{484+121}$
$\therefore|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\sqrt{605}=11 \sqrt{5}$
Thus, area of the parallelogram is $11 \sqrt{5}$ square units.

32. Question

If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$. Is the converse true? Justify your answer with an example.

Answer

We know $\vec{a} \times \vec{b}=\overrightarrow{0}$ if either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$.
To verify if the converse is true, we suppose $\vec{a} \times \vec{b}=\overrightarrow{0}$
We know the cross product of two vectors \vec{a} and \vec{b} forming an angle θ is
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.
So, if $\vec{a} \times \vec{b}=\overrightarrow{0}$, we have at least one of the following true -
(a) $|\vec{a}|=0$
(b) $|\vec{b}|=0$
(c) $|\vec{a}|=0$ and $|\vec{b}|=0$
(d) \vec{a} is parallel to \vec{b}

The first three possibilities mean that either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ or both of them are true.
However, there is another possibility that $\vec{a} \times \vec{b}=\overrightarrow{0}$ when the two vectors are parallel. Thus, the converse is not true.

We will justify this using an example.
Given $\vec{a}=\hat{\imath}+3 \hat{\jmath}-2 \hat{k}$ and $\vec{b}=2 \vec{a}=2 \hat{\imath}+6 \hat{\jmath}-4 \hat{k}$
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\mathrm{\jmath}} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,3,-2)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(2,6,-4)$
$\Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 1 & 3 & -2 \\ 2 & 6 & -4\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(3)(-4)-(6)(-2)]-\hat{\mathrm{f}}[(1)(-4)-(2)(-2)]+\hat{\mathrm{k}}[(1)(6)-(2)(3)]$
$\Rightarrow \vec{a} \times \vec{b}=\hat{i}[-12+12]-\hat{\jmath}[-4+4]+\hat{k}[6-6]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=0 \hat{\mathrm{i}}-0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}=\overrightarrow{0}$
Hence, we have $\vec{a} \times \vec{b}=\overrightarrow{0}$ even when $\vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq \overrightarrow{0}$.
Thus, the converse of the given statement is not true.

33. Question

If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$, then verify that $\vec{a}=(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$.

Answer

Given $\overrightarrow{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}} \cdot \overrightarrow{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\mathrm{c}_{1} \hat{\imath}+\mathrm{c}_{2} \hat{\jmath}+\mathrm{c}_{3} \hat{\mathrm{k}}$
We need to verify that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
$\overrightarrow{\mathrm{b}}+\vec{c}=\left(b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}\right)+\left(c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}\right)$
$\therefore \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=\left(\mathrm{b}_{1}+\mathrm{c}_{1}\right) \hat{\mathrm{\imath}}+\left(\mathrm{b}_{2}+\mathrm{c}_{2}\right) \hat{\mathrm{\jmath}}+\left(\mathrm{b}_{3}+\mathrm{c}_{3}\right) \hat{\mathrm{k}}$
First, we will find $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})$.
Recall the cross product of two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is

$$
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\jmath} & \hat{\mathrm{k}} \\
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\
\mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}
\end{array}\right|
$$

$\Rightarrow \vec{a} \times(\vec{b}+\vec{c})=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3}\end{array}\right|$

$$
\Rightarrow \vec{a} \times(\vec{b}+\vec{c})
$$

$$
\begin{aligned}
& =\hat{1}\left[\left(a_{2}\right)\left(b_{3}+c_{3}\right)-\left(b_{2}+c_{2}\right)\left(a_{3}\right)\right] \\
& -\hat{\jmath}\left[\left(a_{1}\right)\left(b_{3}+c_{3}\right)-\left(b_{1}+c_{1}\right)\left(a_{3}\right)\right] \\
& +\hat{k}\left[\left(a_{1}\right)\left(b_{2}+c_{2}\right)-\left(b_{1}+c_{1}\right)\left(a_{2}\right)\right]
\end{aligned}
$$

$\therefore \vec{a} \times(\vec{b}+\vec{c})$

$$
\begin{aligned}
& =\hat{1}\left(a_{2} b_{3}+a_{2} c_{3}-b_{2} a_{3}-c_{2} a_{3}\right)-\hat{\jmath}\left(a_{1} b_{3}+a_{1} c_{3}-b_{1} a_{3}-c_{1} a_{3}\right) \\
& +\widehat{k}\left(a_{1} b_{2}+a_{1} c_{2}-b_{1} a_{2}-c_{1} a_{2}\right)
\end{aligned}
$$

Now, we will find $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$.
We have $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}\left[\left(\mathrm{a}_{2}\right)\left(\mathrm{b}_{3}\right)-\left(\mathrm{b}_{2}\right)\left(\mathrm{a}_{3}\right)\right]-\hat{\mathrm{\jmath}}\left[\left(\mathrm{a}_{1}\right)\left(\mathrm{b}_{3}\right)-\left(\mathrm{b}_{1}\right)\left(\mathrm{a}_{3}\right)\right]$

$$
+\mathrm{k}\left[\left(\mathrm{a}_{1}\right)\left(\mathrm{b}_{2}\right)-\left(\mathrm{b}_{1}\right)\left(\mathrm{a}_{2}\right)\right]
$$

$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{b}_{2} \mathrm{a}_{3}\right)-\hat{\mathrm{\jmath}}\left(\mathrm{a}_{1} \mathrm{~b}_{3}-\mathrm{b}_{1} \mathrm{a}_{3}\right)+\hat{\mathrm{k}}\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{a}_{2}\right)$
Finally, we will find $\vec{a} \times \vec{c}$.
We have $\vec{a} \times \vec{c}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$\Rightarrow \vec{a} \times \vec{c}=\hat{i}\left[\left(a_{2}\right)\left(c_{3}\right)-\left(c_{2}\right)\left(a_{3}\right)\right]-\hat{\jmath}\left[\left(a_{1}\right)\left(c_{3}\right)-\left(c_{1}\right)\left(a_{3}\right)\right]$

$$
+\hat{\mathrm{k}}\left[\left(\mathrm{a}_{1}\right)\left(\mathrm{c}_{2}\right)-\left(\mathrm{c}_{1}\right)\left(\mathrm{a}_{2}\right)\right]
$$

$\therefore \vec{a} \times \vec{c}=\hat{i}\left(a_{2} c_{3}-c_{2} a_{3}\right)-\hat{\jmath}\left(a_{1} c_{3}-c_{1} a_{3}\right)+\hat{\mathrm{k}}\left(\mathrm{a}_{1} \mathrm{c}_{2}-\mathrm{c}_{1} \mathrm{a}_{2}\right)$
So, $\vec{a} \times \vec{b}+\vec{a} \times \vec{c}=\left[\hat{i}\left(a_{2} b_{3}-b_{2} a_{3}\right)-\hat{\jmath}\left(a_{1} b_{3}-b_{1} a_{3}\right)+\hat{k}\left(a_{1} b_{2}-b_{1} a_{2}\right)\right]+$ $\left[\hat{i}\left(\mathrm{a}_{2} \mathrm{c}_{3}-\mathrm{c}_{2} \mathrm{a}_{3}\right)-\hat{\mathrm{j}}\left(\mathrm{a}_{1} \mathrm{c}_{3}-\mathrm{c}_{1} \mathrm{a}_{3}\right)+\hat{\mathrm{k}}\left(\mathrm{a}_{1} \mathrm{c}_{2}-\mathrm{c}_{1} \mathrm{a}_{2}\right)\right]$
$\Rightarrow \vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

$$
\begin{aligned}
& =\hat{1}\left(a_{2} b_{3}-b_{2} a_{3}+a_{2} c_{3}-c_{2} a_{3}\right)-\hat{\jmath}\left(a_{1} b_{3}-b_{1} a_{3}+a_{1} c_{3}-c_{1} a_{3}\right) \\
& +\hat{k}\left(a_{1} b_{2}-b_{1} a_{2}+a_{1} c_{2}-c_{1} a_{2}\right)
\end{aligned}
$$

$\therefore \vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

$$
\begin{aligned}
& =\hat{1}\left(a_{2} b_{3}+a_{2} c_{3}-b_{2} a_{3}-c_{2} a_{3}\right)-\hat{\jmath}\left(a_{1} b_{3}+a_{1} c_{3}-b_{1} a_{3}-c_{1} a_{3}\right) \\
& +\hat{k}\left(a_{1} b_{2}+a_{1} c_{2}-b_{1} a_{2}-c_{1} a_{2}\right)
\end{aligned}
$$

Observe that that RHS of both $\vec{a} \times(\vec{b}+\vec{c})$ and $\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$ are the same.
Thus, $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

34 A. Question

Using vectors, find the area of the triangle with vertices
$A(1,1,2), B(2,3,5)$ and $C(1,5,5)$

Answer

Given three points $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$ forming a triangle.
Let position vectors of the vertices A, B and C of $\triangle A B C$ be \vec{a}, \vec{b} and \vec{c} respectively.

A (1, 1, 2)

B $(2,3,5)$
(b)

We know position vector of a point (x, y, z) is given by $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, where $\hat{i}, \hat{\jmath}$ and \hat{k} are unit vectors along X, Y and Z directions.
$\Rightarrow \vec{a}=(1) \hat{\imath}+(1) \hat{\jmath}+(2) \hat{k}$
$\therefore \vec{a}=\hat{1}+\hat{\jmath}+2 \hat{k}$

Similarly, we have $\vec{b}=2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$ and $\vec{c}=\hat{\imath}+5 \hat{\jmath}+5 \hat{k}$
To find area of $\triangle A B C$, we need to find at least two sides of the triangle. So, we will find vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Recall the vector $\overrightarrow{\mathrm{AB}}$ is given by
$\overrightarrow{A B}=$ position vector of $B-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}=(2 \hat{\imath}+3 \hat{\jmath}+5 \hat{\mathrm{k}})-(\hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AB}}=(2-1) \hat{\imath}+(3-1) \hat{\jmath}+(5-2) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AB}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}}$
Similarly, the vector $\overrightarrow{\mathrm{AC}}$ is given by
$\overrightarrow{A C}=$ position vector of $C-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(\hat{\imath}+5 \hat{\jmath}+5 \hat{\mathrm{k}})-(\hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(1-1) \hat{\imath}+(5-1) \hat{\jmath}+(5-2) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AC}}=4 \hat{\jmath}+3 \hat{\mathrm{k}}$
Recall the area of the triangle whose adjacent sides are given by the vectors $\vec{a}=a_{1} \hat{1}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,2,3)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(0,4,3)$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}[(2)(3)-(4)(3)]-\hat{\mathrm{\jmath}}[(1)(3)-(0)(3)]+\hat{\mathrm{k}}[(1)(4)-(0)(2)]$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}[6-12]-\hat{\mathrm{\jmath}}[3-0]+\hat{\mathrm{k}}[4-0]$
$\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=-6 \hat{\mathrm{i}}-3 \hat{\jmath}+4 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\jmath}+z \hat{k}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Now, we find $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$.
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{(-6)^{2}+(-3)^{2}+4^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{36+9+16}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{61}$
$\therefore \frac{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|}{2}=\frac{\sqrt{61}}{2}$
Thus, area of the triangle is $\frac{\sqrt{61}}{2}$ square units.

34 B. Question

Using vectors, find the area of the triangle with vertices
$A(1,2,3), B(2,-1,4)$ and $C(4,5,-1)$

Answer

Given three points $\mathrm{A}(1,2,3), \mathrm{B}(2,-1,4)$ and $\mathrm{C}(4,5,-1)$ forming a triangle.
Let position vectors of the vertices A, B and C of $\triangle A B C$ be \vec{a}, \vec{b} and \vec{c} respectively.

B $(2,-1,4)$
(\vec{b})
We know position vector of a point (x, y, z) is given by $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, where $\hat{i}, \hat{\jmath}$ and $\hat{\mathrm{k}}$ are unit vectors along X, Y and Z directions.
$\Rightarrow \vec{a}=(1) \hat{\imath}+(2) \hat{\jmath}+(3) \hat{k}$
$\therefore \overrightarrow{\mathrm{a}}=\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
Similarly, we have $\vec{b}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$ and $\vec{c}=4 \hat{i}+5 \hat{\jmath}-\hat{k}$
To find area of $\triangle A B C$, we need to find at least two sides of the triangle. So, we will find vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
Recall the vector $\overrightarrow{\mathrm{AB}}$ is given by
$\overrightarrow{A B}=$ position vector of $B-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{AB}}=(2 \hat{\mathrm{i}}-\hat{\jmath}+4 \hat{\mathrm{k}})-(\hat{\mathrm{\imath}}+2 \hat{\jmath}+3 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AB}}=(2-1) \hat{\mathrm{\imath}}+(-1-2) \hat{\mathrm{\jmath}}+(4-3) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AB}}=\hat{\mathrm{\imath}}-3 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$
Similarly, the vector $\overrightarrow{\mathrm{AC}}$ is given by
$\overrightarrow{\mathrm{AC}}=$ position vector of $C-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AC}}=\vec{c}-\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(4 \hat{\imath}+5 \hat{\jmath}-\hat{\mathrm{k}})-(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(4-1) \hat{\mathrm{\imath}}+(5-2) \hat{\mathrm{\jmath}}+(-1-3) \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AC}}=3 \hat{\jmath}+3 \hat{\jmath}-4 \hat{\mathrm{k}}$
Recall the area of the triangle whose adjacent sides are given by the two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is $\frac{1}{2}|\vec{a} \times \vec{b}|$ where
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\mathrm{\jmath}} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,-3,1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(3,3,-4)$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & -3 & 1 \\ 3 & 3 & -4\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{I}}[(-3)(-4)-(3)(1)]-\hat{\jmath}[(1)(-4)-$ (3)(1)]

$$
+\hat{\mathrm{k}}[(1)(3)-(3)(-3)]
$$

$\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\mathrm{I}}[12-3]-\hat{\jmath}[-4-3]+\hat{\mathrm{k}}[3+9]$
$\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=9 \hat{\mathrm{\imath}}+7 \hat{\jmath}+12 \hat{\mathrm{k}}$
Recall the magnitude of the vector $x \hat{1}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\mathrm{y}}+\mathrm{z} \hat{\mathrm{k}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Now, we find $|\overrightarrow{A B} \times \overrightarrow{A C}|$.
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{9^{2}+7^{2}+12^{2}}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{81+49+144}$
$\Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{274}$
$\therefore \frac{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|}{2}=\frac{\sqrt{274}}{2}$
Thus, area of the triangle is $\frac{\sqrt{274}}{2}$ square units.

35. Question

Find all vectors of magnitude $10 \sqrt{3}$ that are perpendicular to the plane of $\hat{i}+2 \hat{j}+\hat{k}$ and $-\hat{i}+3 \hat{j}+4 \hat{k}$.

Answer

Given two vectors $\overrightarrow{\mathrm{a}}=\hat{\mathrm{\imath}}+2 \hat{\jmath}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=-\hat{\mathrm{\imath}}+3 \hat{\jmath}+4 \hat{\mathrm{k}}$
We need to find vectors of magnitude $10 \sqrt{3}$ perpendicular to \vec{a} and \vec{b}.
Recall a vector that is perpendicular to two vectors $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have $\left(a_{1}, a_{2}, a_{3}\right)=(1,2,1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(-1,3,4)$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & 2 & 1 \\ -1 & 3 & 4\end{array}\right|$
$\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(2)(4)-(3)(1)]-\hat{\mathrm{f}}[(1)(4)-(-1)(1)]+\hat{\mathrm{k}}[(1)(3)-(-1)(2)]$
$\Rightarrow \vec{a} \times \vec{b}=\hat{i}[8-3]-\hat{\jmath}[4+1]+\hat{k}[3+2]$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=5 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Let the unit vector in the direction of $\vec{a} \times \vec{b}$ be \hat{p}.

We know unit vector in the direction of a vector \vec{a} is given by $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$.
$\Rightarrow \hat{p}=\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Recall the magnitude of the vector $x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is
$|x \hat{\imath}+y \hat{\mathrm{j}}+\mathrm{zk}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
Now, we find $|\vec{a} \times \vec{b}|$.
$|\vec{a} \times \vec{b}|=\sqrt{5^{2}+(-5)^{2}+5^{2}}$
$\Rightarrow|\vec{a} \times \vec{b}|=\sqrt{25+25+25}$
$\therefore|\vec{a} \times \vec{b}|=\sqrt{75}=5 \sqrt{3}$
So, we have $\hat{\mathrm{p}}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{5 \sqrt{3}}$
$\Rightarrow \hat{\mathrm{p}}=\frac{1}{5 \sqrt{3}}(5 \hat{\imath}-5 \hat{\jmath}+5 \hat{\mathrm{k}})$
$\therefore \hat{\mathrm{p}}=\frac{1}{\sqrt{3}}(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})$
So, a vector of magnitude $10 \sqrt{3}$ in the direction of $\vec{a} \times \vec{b}$ is
$10 \sqrt{3} \hat{\mathrm{p}}=10 \sqrt{3} \times \frac{1}{\sqrt{3}}(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})$
$\Rightarrow 10 \sqrt{3} \hat{\mathrm{p}}=10(\hat{\imath}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})$
$\therefore 10 \sqrt{3} \hat{\mathrm{p}}=10 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}$
Observe that $-10 \sqrt{3} \hat{p}$ is also a unit vector perpendicular to the same plane. This vector is along the direction opposite to the direction of vector $10 \sqrt{3} \hat{\mathrm{p}}$.

Thus, the vectors of magnitude $10 \sqrt{3}$ that are perpendicular to plane of both \vec{a} and \vec{b} are $\pm(10 \hat{\imath}-10 \hat{j}+10 \hat{k})$.

36. Question

The two adjacent sides of a parallelogram are $2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$ and $2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$. Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.

Answer

We need to find a unit vector parallel to $\overrightarrow{\mathrm{AC}}$.
Now from the Parallel law of vector Addition, we know that,
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$
Therefore,
$\overrightarrow{\mathrm{AC}}=2 \hat{\imath}-4 \hat{\jmath}-5 \hat{\mathrm{k}}+(2 \hat{\imath}+3 \hat{\jmath}+3 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{AC}}=4 \hat{\imath}-\hat{\jmath}-2 \hat{\mathrm{k}}$
Now we need to find the unit vector parallel to $\overrightarrow{\mathrm{AC}}$
Any unit vector is given by,
$\hat{\mathrm{n}}=\frac{\overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{n}}|}$
Therefore, $\widehat{A C}=\frac{\overrightarrow{A C}}{|\overrightarrow{A C}|}$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{(4)^{2}+(1)^{2}+(2)^{2}}$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{21}$
$\widehat{\mathrm{AC}}=\frac{4 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}}{\sqrt{21}}$
Now, we need to find Area of parallelogram. From the figure above it can be easily found by the cross product of adjacent sides.

Therefore, Area of Parallelogram $=|\overrightarrow{A B} \times \overrightarrow{B C}|$
If $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Here, we have,
$\left(a_{1}, a_{2}, a_{3}\right)=(2,-4,-5)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(2,3,3)$
$\Rightarrow \overrightarrow{(\mathrm{AB})} \times \overrightarrow{(\mathrm{BC})}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & -4 & -5 \\ 2 & 3 & 2\end{array}\right|$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=\hat{\mathrm{i}}(-8+15)-\hat{\mathrm{j}}(4+10)+\hat{\mathrm{k}}(6+8)$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}=7 \hat{\mathrm{i}}-14 \hat{\mathrm{\jmath}}+14 \hat{\mathrm{k}}$
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\sqrt{(7)^{2}+(14)^{2}+(14)^{2}}$
$|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=21$
Area of Parallelogram $=21$ sq units.

37. Question

If $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}+|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}|^{2}=400$ and $|\overrightarrow{\mathrm{a}}|=5$, then write the value of $|\overrightarrow{\mathrm{b}}|$.

Answer

Given $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=400$ and $|\vec{a}|=5$
We know the dot product of two vectors \vec{a} and $\overrightarrow{\mathrm{b}}$ forming an angle θ is
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
$\Rightarrow|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}||\cos \theta|$
$\therefore|\vec{a} \cdot \vec{b}|=5|\vec{b}||\cos \theta|$
We also know the cross product of two vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ forming an angle θ is
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta \hat{\mathrm{n}}$
where $\hat{\mathrm{n}}$ is a unit vector perpendicular to $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$
$\Rightarrow|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta||\hat{n}|$
$\hat{\mathrm{n}}$ is a unit vector $\Rightarrow|\hat{\mathrm{n}}|=1$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=5|\overrightarrow{\mathrm{~b}}||\sin \theta|$
We have $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=400$
$\Rightarrow(5|\overrightarrow{\mathrm{~b}}||\sin \theta|)^{2}+(5|\overrightarrow{\mathrm{~b}}||\cos \theta|)^{2}=400$
$\Rightarrow 25|\overrightarrow{\mathrm{~b}}|^{2}|\sin \theta|^{2}+25|\overrightarrow{\mathrm{~b}}|^{2}|\cos \theta|^{2}=400$
$\Rightarrow 25|\overrightarrow{\mathrm{~b}}|^{2}\left(|\sin \theta|^{2}+|\cos \theta|^{2}\right)=400$
$\Rightarrow 25|\overrightarrow{\mathrm{~b}}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=400$
But, we know $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow 25|\vec{b}|^{2}=400$
$\Rightarrow|\vec{b}|^{2}=16$
$\therefore|\vec{b}|=\sqrt{16}=4$
Thus, $|\vec{b}|=4$

Very short answer

1. Question

Define vector product of two vectors.

Answer

Definition: VECTOR PRODUCT: When multiplication of two vectors yields another vector then it is called vector product of two vectors.

Example:

Figure 1: Vector Product
$\vec{c}=\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{n}$
[where \hat{n} is a unit vector perpendicular to the plane containing \vec{a} and \vec{b} (referred to the figure provided)]

2. Question

Write the value $(\hat{i} \times \hat{j}) \cdot \hat{k}+\hat{i} \cdot \hat{j}$.

Answer

$(\hat{\imath} \times \hat{\jmath}) \cdot \hat{k}+\hat{\mathrm{\imath}} \cdot \hat{\mathrm{j}}=1$.
We know, $\hat{1} \hat{\jmath} \hat{\jmath}$ and $\hat{\mathrm{k}}$ are 3 unit vectors along x, y and z axis whose magnitudes are unity.
$\hat{\mathrm{i}} \times \hat{\mathrm{\jmath}}=|\hat{\mathrm{i}}| \hat{\mathrm{\jmath}} \mid \sin 90^{\circ} \mathrm{n}$
[where $\hat{\mathrm{n}}$ is a unit vector perpendicular to the plane containing \hat{i} and $\hat{\mathrm{j}}$]
$=1 \times 1 \times 1 \times \hat{\mathrm{k}}$
$=\hat{\mathrm{k}}$ [here $\hat{\mathrm{n}}$ is $\hat{\mathrm{k}}$, as $\hat{\mathrm{k}}$ is perpendicular to both $\hat{\mathrm{i}}$ and $\hat{\mathrm{j}}$]
And, $\hat{\mathrm{i}} \cdot \hat{\mathrm{\jmath}}=|\hat{\mathrm{i}}||\hat{\mathrm{j}}| \cos 90^{\circ}=0$.
So, $(\hat{\imath} \times \hat{\jmath}) \cdot \hat{k}+\hat{1} \cdot \hat{\jmath}$
$=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}+0$
$=|\hat{\mathrm{k}}||\hat{\mathrm{k}}| \cos 0^{\circ}$
$=1[\because \hat{\mathrm{k}}$ is an unit vector $]$.

3. Question

Write the value of $\hat{\mathrm{i}} \cdot(\hat{\mathrm{j}} \times \hat{\mathrm{k}})+\hat{\mathrm{j}} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}} \cdot(\hat{\mathrm{j}} \times \hat{\mathrm{i}})$.

Answer

$\hat{\mathrm{i}} \cdot(\hat{\jmath} \times \hat{\mathrm{k}})+\hat{\jmath} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}} \cdot(\hat{\jmath} \times \hat{\mathrm{i}})=1$.
We know, î, $\hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are 3 unit vectors along x, y and z axis whose magnitudes are unity.
We have,
$\hat{\jmath} \times \hat{\mathrm{k}}=|\hat{\jmath}||\hat{\mathrm{k}}| \sin 90^{\circ} \hat{\imath}=\hat{1}$,
$\hat{\mathrm{k}} \times \hat{\mathrm{\imath}}=|\hat{\mathrm{k}}||\hat{\mathrm{i}}| \sin 90^{\circ} \mathrm{\jmath}$ and
$\hat{\jmath} \times \hat{\imath}=|\hat{\jmath}||\hat{\imath}| \sin 90^{\circ}(-\hat{\mathrm{k}})=-\hat{\mathrm{k}}$
And, $\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=|\hat{1}||\hat{\mathrm{i}}| \cos 0^{\circ}=1$,
$\hat{\jmath} \cdot \hat{\jmath}=|\hat{\jmath}||\hat{\jmath}| \cos 90^{\circ}=1$ and
$\hat{\mathrm{k}} \cdot(-\hat{\mathrm{k}})=|\hat{\mathrm{k}}||\hat{\mathrm{k}}| \cos 180^{\circ}=-1$.
$\therefore \hat{\mathrm{i}} \cdot(\hat{\jmath} \times \hat{\mathrm{k}})+\hat{\mathrm{\jmath}} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}} \cdot(\hat{\jmath} \times \hat{\mathrm{i}})$
$=\hat{\mathrm{\imath}} \cdot \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}} \cdot \hat{\mathrm{\jmath}}+\hat{\mathrm{k}} \cdot(-\hat{\mathrm{k}})$
$=1+1+(-1)$
$=1$.

4. Question

Write the value of $\hat{\mathrm{i}} \cdot(\hat{\mathrm{j}} \times \hat{\mathrm{k}})+\hat{\mathrm{j}} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}} \cdot(\hat{\mathrm{i}} \times \hat{\mathrm{j}})$.

Answer

$\hat{\mathrm{i}} \cdot(\hat{\mathrm{\jmath}} \times \hat{\mathrm{k}})+\hat{\mathrm{\jmath}} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}} \cdot(\hat{\mathrm{i}} \times \hat{\mathrm{\jmath}})=3$.
We know, î, $\hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are 3 unit vectors along x, y and z axis whose magnitudes are unity.
We have,
$\because \hat{\jmath} \times \hat{\mathrm{k}}=|\hat{\jmath}||\hat{\mathrm{k}}| \sin 90^{\circ} \hat{\mathrm{\imath}}=\hat{\mathrm{\imath}}$,
$\hat{\mathrm{k}} \times \hat{\mathrm{i}}=|\hat{\mathrm{k}}| \hat{\mathrm{i}} \mid \sin 90^{\circ} \hat{\mathrm{j}}$ and
$\hat{\mathrm{i}} \times \hat{\mathrm{j}}=|\hat{\mathrm{i}}||\hat{\jmath}| \sin 90^{\circ} \hat{\mathrm{k}}=\hat{\mathrm{k}}$
And, î. $\hat{1}=|\hat{1}||\hat{\imath}| \mid \cos 0^{\circ}=1$,
$\hat{\jmath} \cdot \hat{\jmath}=|\hat{i ̂}||\hat{\jmath}| \cos 0^{\circ}=1$ and
$\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=|\hat{\mathrm{k}}||\hat{\mathrm{k}}| \cos 0^{\circ}=1$.
$\therefore \hat{\imath} \cdot(\hat{\jmath} \times \hat{\mathrm{k}})+\hat{\mathrm{\jmath}} \cdot(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}} \cdot(\hat{\mathrm{i}} \times \hat{\mathrm{\jmath}})$
$=\hat{\imath} \cdot \hat{\imath}+\hat{\jmath} \cdot \hat{\jmath}+\hat{k} \cdot \hat{k}$
$=1+1+1$
$=3$

5. Question

Write the value of $\hat{i} \times(\hat{j}+\hat{k})+\hat{j} \times(\hat{k}+\hat{i})+\hat{k} \times(\hat{i}+\hat{j})$.

Answer

We know, î, $\hat{\jmath}$ and $\hat{\mathrm{k}}$ are 3 unit vectors along x, y and z axis whose magnitudes are unity.
We have, $\hat{\imath} \times(\hat{\jmath}+\hat{\mathrm{k}})=|\hat{\mathrm{i}}||\hat{\jmath}| \sin 90^{\circ} \hat{\mathrm{k}}+|\hat{\mathrm{l}}||\hat{\mathrm{k}}| \sin 90^{\circ}(-\hat{\mathrm{\jmath}})=\hat{\mathrm{k}}-\hat{\mathrm{\jmath}}$,
$\hat{\mathrm{\jmath}} \times(\hat{\mathrm{k}}+\hat{\mathrm{\imath}})=|\hat{\mathrm{\jmath}}||\hat{\mathrm{k}}| \sin 90^{\circ} \hat{\mathrm{\imath}}+|\hat{\mathrm{\jmath}}||\hat{\mathrm{i}}| \sin 90^{\circ}(-\hat{\mathrm{k}})=\hat{\mathrm{\imath}}-\hat{\mathrm{k}}$ and
$\hat{\mathrm{k}} \times(\hat{\imath}+\hat{\jmath})=|\hat{\mathrm{k}}||\hat{\mathrm{i}}| \sin 90^{\circ} \hat{\mathrm{\jmath}}+|\hat{\mathrm{k}}||\hat{\jmath}| \sin 90^{\circ}(-\hat{\imath})+=\hat{\jmath}-\hat{\imath}$.
$\therefore \hat{\mathrm{i}} \times(\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})+\hat{\mathrm{j}} \times(\hat{\mathrm{k}}+\hat{\mathrm{i}})+\hat{\mathrm{k}} \times(\hat{\mathrm{i}}+\hat{\mathrm{\jmath}})$
$=\hat{\mathrm{k}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{i}}-\hat{\mathrm{k}}+\hat{\mathrm{j}}-\hat{\mathrm{\imath}}$
$=0$

6. Question

Write the expression for the area of the parallelogram having \vec{a} and \vec{b} as its diagonals.

Answer

Area of parallelogram $=\frac{1}{2}|\vec{a} \times \vec{b}|$

From the figure, it is clear that, $\vec{x}+\vec{y}=\vec{a}$ and
$\vec{y}+(-\vec{x})=\vec{b}$ i.e. $\vec{y}-\vec{x}=\vec{b}$.
Now, $\vec{a} \times \vec{b}=(\vec{x}+\vec{y}) \times(\vec{y}-\vec{x})$
$=\vec{x} \times(\vec{y}-\vec{x})+\vec{y} \times(\vec{y}-\vec{x})$
$=\{(\vec{x} \times \vec{y})-(\vec{x} \times \vec{x})\}+\{(\vec{y} \times \vec{y})-(\vec{y} \times \vec{x})\}$
$=2(\vec{x} \times \vec{y})$.
$[\therefore(\vec{x} \times \vec{x})=0,(\vec{y} \times \vec{y})=0$ and $(\vec{y} \times \vec{x})=-(\vec{x} \times \vec{y})]$
Now, we know, area of parallelogram $=|\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}}|$.
So, Area of parallelogram $=\frac{1}{2}|\vec{a} \times \vec{b}| \cdot[\because \vec{a} \times \vec{b}=2(\vec{x} \times \vec{y})]$

7. Question

For any two vectors \vec{a} and \vec{b} write the value of $(\vec{a} \cdot \vec{b})^{2}+|\vec{a} \times \vec{b}|^{2}$ in terms of their magnitudes.

Answer

$(\vec{a} \cdot \vec{b})^{2}+|\vec{a} \times \vec{b}|^{2}=(|\vec{a}||\vec{b}|)^{2}$.
We know, $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta$
and $\vec{a} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta$.
So, $(\vec{a} \cdot \vec{b})^{2}+|\vec{a} \times \vec{b}|^{2}$
$=(|\vec{a}||\vec{b}| \cos \theta)^{2}+||\vec{a}|| \vec{b}|\sin \theta|^{2}$
$=(|\vec{a}||\vec{b}|)^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$=(|\vec{a}||\vec{b}|)^{2} \cdot\left[\because\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1\right]$

8. Question

If \vec{a} and \vec{b} are two vectors of magnitudes 3 and $\frac{\sqrt{2}}{3}$ respectively such that $\vec{a} \times \vec{b}$ is a unit vector. Write the angle between \vec{a} and \vec{b}.

Answer

Angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}=45^{\circ}$.
Given, $|\vec{a}|=3,|\vec{b}|=\frac{\sqrt{2}}{3}$

Also given, $\vec{a} \times \vec{b}$ is a unit vector
i.e. $\vec{a} \times \vec{b}=1$.
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta$
$=3 \times \frac{\sqrt{2}}{3} \times \sin \theta$
$=\sqrt{2} \times \sin \theta=1$
$\Rightarrow \sqrt{2} \times \sin \theta=1$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$
\therefore Angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}=45^{\circ}$

9. Question

If $|\vec{a}|=10,|\vec{b}|=2$ and $|\vec{a} \times \vec{b}|=16$, and $\vec{a} \cdot \vec{b}$.

Answer

$\vec{a} \cdot \vec{b}=12$.
Given, $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \times \vec{b}=16$
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta=10 \times 2 \times \sin \theta=20 \times \sin \theta=16$
$\Rightarrow 20 \times \sin \theta=16$
$\Rightarrow \sin \theta=\frac{16}{20}=\frac{4}{5}$
$\therefore \cos \theta=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$=\sqrt{1-\frac{16}{25}}$
$=\sqrt{\frac{25-16}{25}}$
$=\sqrt{\frac{9}{25}}$
$=\frac{3}{5}$
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$=10 \times 2 \times \frac{3}{5}$
$=12$

10. Question

For any two vectors \vec{a} and \vec{b}, find $\vec{a} \cdot(\vec{b} \times \vec{a})$.

Answer

$\vec{a} \cdot(\vec{b} \times \vec{a})=0$.
We know,
$(\vec{b} \times \vec{a})$ is perpendicular to both \vec{a} and \vec{b}.
So, $\vec{a} \cdot(\vec{b} \times \vec{a})=0[\because \vec{a}$ and $(\vec{b} \times \vec{a})$ are perpendicular to each other $]$

11. Question

If \vec{a} and \vec{b} are two vectors such that $|\vec{b} \times \vec{a}|=\sqrt{3}$ and $\vec{a} \cdot \vec{b}=1$, find the angle between.

Answer

The angle between \vec{a} and \vec{b} is 60°.
We have, $|\vec{b} \times \vec{a}|=\sqrt{3}$ and $\vec{a} \cdot \vec{b}=1$.
$\therefore|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{a}}| \sin \theta=\sqrt{3}$
and $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=1$
Dividing equation (1) by equation (2),
$\frac{|\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{a}}| \sin \theta}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta}=\frac{\sqrt{3}}{1}=\sqrt{3}$
$\Rightarrow \tan \theta=\sqrt{3}$
$\Longrightarrow \theta=\tan ^{-1} \sqrt{3}=60^{\circ}$
\therefore The angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is 60°

12. Question

For any three vectors \vec{a}, \vec{b} and \vec{c} write the value of $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$.

Answer

$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0$.
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$
$=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c})+(\vec{b} \times \vec{a})+(\vec{c} \times \vec{a})+(\vec{c} \times \vec{b})$
$=(\vec{a} \times \vec{b})-(\vec{c} \times \vec{a})+(\vec{b} \times \vec{c})-(\vec{a} \times \vec{b})+(\vec{c} \times \vec{a})-(\vec{b} \times \vec{c})$
$=0$

13. Question

For any two vectors \vec{a} and \vec{b}, find $(\vec{a} \times \vec{b}) \cdot \vec{b}$.

Answer

$(\vec{a} \times \vec{b}) \cdot \vec{b}=0$

We know, $(\vec{a} \times \vec{b})$ is perpendicular to both \vec{a} and \vec{b}.
So, $(\vec{a} \times \vec{b}) \cdot \vec{b}=0[\because \cdot \vec{b}$ and $(\vec{a} \times \vec{b})$ are perpendicular to each other]

14. Question

Write the value of $\hat{i} \times(\hat{j} \times \hat{k})$.

Answer

$\hat{i} \times(\hat{\jmath} \times \hat{k})=0$.
We know, î, $\hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are 3 unit vectors along x, y and z axis whose magnitudes are unity.
$\hat{\mathrm{i}} \times(\hat{\mathrm{\jmath}} \times \hat{\mathrm{k}})=\hat{\mathrm{i}} \times \hat{\mathrm{\imath}}=|\hat{\mathrm{i}}||\hat{\mathrm{i}}| \sin 0^{\circ}=0$.

15. Question

If $\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-\hat{k}$, then find $(\vec{a} \times \vec{b}) \vec{a}$.

Answer

NOTE: The product of ($\vec{a} \times \vec{b}$) and \vec{a} is not mentioned here.
$(\vec{a} \times \vec{b}) \cdot \vec{a}=0$ and $(\vec{a} \times \vec{b}) \times \vec{a}=19 \hat{\imath}+17 \hat{\jmath}-20 \hat{k}$.
We know, $\hat{1}, \hat{\jmath}$ and $\hat{\mathrm{k}}$ are 3 unit vectors along x, y and z axis whose magnitudes are unity.
Given, $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-\hat{\jmath}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\jmath}-\hat{\mathrm{k}}$.
$\therefore(\vec{a} \times \vec{b}) \cdot \vec{a}=[(3 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \times(2 \hat{\imath}+\hat{\jmath}-\hat{k})] \cdot(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})$
$=(-\hat{\imath}+7 \hat{\jmath}+5 \hat{k}) \cdot(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})$
$=-3-7+10$
$=0$.
"FOR CROSS PRODUCT"
$\therefore(\vec{a} \times \vec{b}) \times \vec{a}=[(3 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \times(2 \hat{\imath}+\hat{\jmath}-\hat{k})] \times(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})$
$=(-\hat{\imath}+7 \hat{\jmath}+5 \hat{k}) \times(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})$
$=19 \hat{\mathrm{i}}+17 \mathrm{\jmath}-20 \hat{\mathrm{k}}$.

16. Question

Write a unit vector perpendicular to $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$.

Answer

We know that cross product of two vectors gives us a vector which is perpendicular to both the vectors. Let $\vec{M}=\hat{\imath}+\hat{\jmath}$ and $\vec{N}=\hat{\jmath}+\hat{k}$ and \vec{O} be vector perpendicular to vectors \vec{M} and \vec{N}.
$\therefore \vec{O}=\vec{M} \times \vec{N}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ M_{1} & M_{2} & M_{3} \\ N_{1} & N_{2} & N_{3}\end{array}\right|$
$=\left(M_{2} N_{3}-M_{3} N_{2}\right) \hat{\imath}-\left(M_{1} N_{3}-M_{3} N_{1}\right) \hat{\jmath}+\left(M_{1} N_{2}-M_{2} N_{1}\right) \hat{k}$
Inserting the given values we get,
$\vec{o}=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|$
$=(1 \times 1-0 \times 1) \hat{\imath}-(1 \times 1-0 \times 0) \hat{\jmath}+(1 \times 1-1 \times 0) \hat{k}$
$=(1-0) \hat{\imath}+(1-0) \hat{\jmath}+(1-0) \hat{k}$
$=\hat{\imath}-\hat{\jmath}+\hat{k}$
Now, as we know unit vector can be obtained by dividing the given vector by its magnitude.
$\vec{O}=\hat{\imath}-\hat{\jmath}+\hat{k}$ and $|\vec{C}|=\sqrt{1^{2}+(-1)^{2}+1^{2}}=\sqrt{3}$
Unit vector in the direction of $\vec{O}=\frac{\vec{C}}{|\vec{c}|}$
\therefore Desired unit vector is $\frac{1}{\sqrt{3}}(\hat{\imath}-\hat{\jmath}+\hat{k})$

17. Question

If $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{-2}=144$ and $|\vec{a}|=4$, find $|\vec{b}|$.
[Correction in the Question - $(\vec{a} \cdot \vec{b})^{-2}$ should be $(\vec{a} \cdot \vec{b})^{2}$ or else it's not possible to find the value| $\vec{b} \mid$.]

Answer

We know that,
$(\vec{a} \times \vec{b})=|\vec{a}||\vec{b}| \sin \theta \rightarrow(1)$
$(\vec{a} \cdot \vec{b})=|\vec{a}||\vec{b}| \cos \theta \rightarrow$ (2)
Now,
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=144$
$|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta+|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2} \theta=144 \rightarrow$ From (1) and (2)
$|\vec{a}|^{2}|\vec{b}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=144$
$|\vec{a}|^{2}|\vec{b}|^{2}=144 \rightarrow \sin ^{2} \theta+\cos ^{2} \theta=1$
$4^{2} \times|\vec{b}|^{2}=144$
$16 \times|\vec{b}|^{2}=144$
$|\vec{b}|^{2}=\frac{144}{16}=9$
$|\vec{b}|=3$

18. Question

If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then write the value of $|\vec{r} \times \hat{i}|^{2}$.

Answer

So we have $\overrightarrow{\mathrm{r}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ and $\hat{\imath}$, in order to find $|\overrightarrow{\mathrm{r}} \times \hat{\mathrm{l}}|^{2}$ we need to work out the problem by finding cross product through determinant.
$\therefore \vec{r} \times \hat{\imath}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ r_{1} & r_{2} & r_{3} \\ 1 & 0 & 0\end{array}\right|$

$$
=\left(r_{2} \times 0-r_{3} \times 0\right) \hat{\imath}-\left(r_{1} \times 0-r_{3} \times 1\right) \hat{\jmath}+\left(r_{1} \times 0-r_{2} \times 1\right) \hat{k}
$$

$\vec{r} \times \hat{\imath}=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ x & y & z \\ 1 & 0 & 0\end{array}\right|=(y \times 0-z \times 0) \hat{\imath}-(x \times 0-z \times 1) \hat{\jmath}+(x \times 0-y \times 1) \hat{k}$
$=0 \hat{\imath}+z \hat{\jmath}-y \hat{k}=z \hat{\jmath}-y \hat{k} \rightarrow(1)$
Now then,
$|\vec{r} \times \hat{\imath}|=\sqrt{z^{2}+(-y)^{2}}=\sqrt{z^{2}+y^{2}} \rightarrow$ From (1)
$|\vec{r} \times \hat{\imath}|^{2}=z^{2}+y^{2}$

19. Question

If \vec{a} and \vec{b} are unit vectors such that $\vec{a} \times \vec{b}$ is also a unit vector, find the angle between \vec{a} and \vec{b}.

Answer

Let's see what all things we know from the given question.
$|\vec{a}|=1,|\vec{b}|=1$ and $|\vec{a} \times \vec{b}|=1 \rightarrow$ Unit Vectors
Also, $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
$1=(1)(1) \sin \theta$
$\sin \theta=1$
$\theta=\frac{\pi}{2}$

20. Question

If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, write the angle between \vec{a} and \vec{b}.

Answer

Equations we already have -
$|\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}||\cos \theta| \rightarrow(1)$
$|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta| \rightarrow$ (2)
Now,
$|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}| \rightarrow$ (Given)
$|\vec{a}||\vec{b}||\sin \theta|=|\vec{a}||\vec{b}||\cos \theta| \rightarrow(1$ and 2$)$
$\sin \theta=\cos \theta$
$\theta=\frac{\pi}{4}$

21. Question

If \vec{a} and \vec{b} are unit vectors, then write the value of $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \times \vec{b})^{2}$.

Let's have a look at everything we have before proceeding to solve the question.
$|\vec{a}|=1$ and $|\vec{b}|=1 \rightarrow$ Given (Unit Vectors)
$(\vec{a} \times \vec{b})=|\vec{a}||\vec{b}| \sin \theta$
$(\vec{a} \cdot \vec{b})=|\vec{a}||\vec{b}| \cos \theta$
Now then,
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \times \vec{b})^{2}$
$=(|\vec{a}||\vec{b}| \sin \theta)^{2}+(|\vec{a}||\vec{b}| \sin \theta)^{2}$
$=|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta+|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta$
$=2|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta$
$=2(1)(1) \sin ^{2} \theta$
$=2 \sin ^{2} \theta$
In case, the question asks for $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}$
$=(|\vec{a}||\vec{b}| \sin \theta)^{2}+(|\vec{a}||\vec{b}| \cos \theta)^{2}$
$=|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \theta+|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2} \theta$
$=|\vec{a}|^{2}|\vec{b}|^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=|\vec{a}|^{2}|\vec{b}|^{2}$
$=(1)(1)$
$=1$

22. Question

If \vec{a} is a unit vector such that $\vec{a} \times \hat{i}=j$, find $\vec{a} \cdot \hat{i}$.

Answer

We know that \rightarrow
$\hat{\imath} \times \hat{\jmath}=\hat{k} \rightarrow(1)$
$\hat{\jmath} \times \hat{k}=\hat{\imath} \rightarrow(2)$
$\hat{k} \times \hat{\imath}=\hat{\jmath} \rightarrow$ (3)
$\hat{\imath} \cdot \hat{\jmath}=\hat{\imath} \cdot \hat{k}=\hat{\jmath} \cdot \hat{k}=0 \rightarrow$ (4)
Now,
$\vec{a} \times \hat{\imath}=\hat{k} \times \hat{\imath} \rightarrow$ Given and (3)
On comparing LHS and RHS we get :
$\vec{a}=\hat{k} \rightarrow$ (5)
$\vec{a} . \hat{\imath}=\hat{k} . \hat{\imath} \rightarrow \operatorname{From}(5)$
$\vec{a} \cdot \hat{\imath}=0 \rightarrow$ From (4)

23. Question

If \vec{c} is a unit vector perpendicular to the vectors \vec{a} and \vec{b}, write another unit vector perpendicular to \vec{a} and \vec{b}.

Answer

We know that cross product of two vectors gives us a vector which is perpendicular to both the vectors. And keeping in mind that \vec{c} is a Unit vector we get the equation -
$\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}=\vec{c} \rightarrow$ (Vector divided its magnitude gives unit vector)
$\frac{\vec{b} \times \vec{a}}{|\vec{a} \times \vec{b}|}=-\vec{c} \therefore-\vec{c}$ is perpendicular to \vec{a} and \vec{b}
Thus, $-\vec{c}$ is another unit vector perpendicular to \vec{a} and \vec{b}.

Alternative Solution -

Since \vec{c} is perpendicular to \vec{a} and \vec{b}, any unit vector parallel/anti-parallel to \vec{c} will be perpendicular to \vec{a} and \vec{b}.

24. Question

Find the angle between two vectors \vec{a} and \vec{b}, with magnitudes 1 and 2 respectively and when $|\vec{a} \times \vec{b}|=\sqrt{3}$.

Answer

$|\vec{a}|=1,|\vec{b}|=2,|\vec{a} \times \vec{b}|=\sqrt{3} \rightarrow$ Given
$|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin \theta|$
$\sqrt{3}=1 \times 2 \times \sin \theta$
$\sin \theta=\frac{\sqrt{3}}{2}$
$\sin \theta=\frac{\pi}{3}$

25. Question

Vectors \vec{a} and \vec{b} are such that $|\vec{a}|=\sqrt{3}, \vec{b} \left\lvert\,=\frac{2}{3}\right.$ and $(\vec{a} \times \vec{b})$ is a unit vector. Write the angle between \vec{a} and \vec{b}.

Answer

Let's have a look at everything given in the problem.
$|\vec{a}|=\sqrt{3}$
$|\vec{b}|=\frac{2}{3}$
$|\vec{a} \times \vec{b}|=1$
We can use the basic cross product formula to solve the question -
$|\vec{a} \times \vec{b}|=|a||b| \sin \theta$
$1=\sqrt{3} \times \frac{2}{3} \times \sin \theta$
$\sin \theta=\frac{3}{2} \times \frac{1}{\sqrt{3}}=\frac{3}{2} \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\sin \theta=\frac{\sqrt{3}}{2}$
$\theta=\frac{\pi}{3}$

26. Question

Find λ, if $(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+14 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}-\lambda \hat{\mathrm{j}}+7 \hat{\mathrm{k}})=\overrightarrow{0}$.

Answer

We need to solve the problem by finding cross product through determinant.
Let $\vec{M}=2 \hat{\imath}+6 \hat{\jmath}+14 \hat{k}$ and $\vec{N}=\hat{\imath}-\lambda \hat{\jmath}+7 \hat{k}$, also $\vec{M} \times \vec{N}=0$ (Given)
$\vec{M} \times \vec{N}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ M_{1} & M_{2} & M_{3} \\ N_{1} & N_{2} & N_{3}\end{array}\right|$
$=\left(M_{2} N_{3}-M_{3} N_{2}\right) \hat{\imath}-\left(M_{1} N_{3}-M_{3} N_{1}\right) \hat{\jmath}+\left(M_{1} N_{2}-M_{2} N_{1}\right) \hat{k}$
Inserting the given values we get,
$\overrightarrow{0}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 6 & 14 \\ 1 & -\lambda & 7\end{array}\right|$

$$
=(6 \times 7-(14 \times-\lambda)) \hat{\imath}-(2 \times 7-14 \times 1) \hat{\jmath}+((2 \times-\lambda)-6 \times 1) \hat{k}
$$

$(42+14 \lambda) \hat{\imath}-0 \hat{\jmath}+(-2 \lambda-6) \hat{k}=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}$
On comparing LHS and RHS we get,
$42+14 \lambda=0$ and $-2 \lambda-6=0$
$14 \lambda=-42$ and $-2 \lambda=6$
$\lambda=-3$ and $\lambda=-3$

27. Question

Write the value of the area of the parallelogram determined by the vectors $2 \hat{\mathrm{i}}$ and $3 \hat{\mathrm{j}}$.

Answer

Area of the parallelogram is give by $|\vec{a} \times \vec{b}|$
Let, $\vec{a}=2 \hat{\imath}$ and $\vec{b}=3 \hat{\jmath}$
Area $=|\vec{a} \times \vec{b}|$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 0 & 0 \\ 0 & 3 & 0\end{array}\right|$
$=(0-0) \hat{\imath}-(0-0) \hat{\jmath}+(6-0) \hat{k}$
$=6 \hat{k}=6|\hat{k}|=6(1) \rightarrow(\vec{k}$ is an unit vector $)$
$=6$ sq. units.

28. Question

Write the value of $(\hat{i} \times \hat{j}) \cdot \hat{k}+(\hat{j}+\hat{k}) \cdot \hat{j}$.

Answer

We know that,
$\hat{\imath} \times \hat{\jmath}=\hat{k} \rightarrow(1)$
$\hat{\jmath} \times \hat{k}=\hat{\imath} \rightarrow$ (2)
$\hat{k} \times \hat{\imath}=\hat{\jmath} \rightarrow$ (3)
$\hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1 \rightarrow$ (4)
$\hat{\imath} . \hat{\jmath}=\hat{\imath} . \hat{k}=\hat{\jmath} \cdot \hat{k}=0 \rightarrow$ (5)
Now,
$=(\hat{\imath} \times \hat{\jmath}) \cdot \hat{k}+(\hat{\jmath}+\hat{k}) \cdot \hat{\jmath}$
$=\hat{k} \cdot \hat{k}+\hat{\jmath} \cdot \hat{\jmath}+\hat{k} \cdot \hat{\jmath} \rightarrow($ From 1$)$
$=1+1+0 \rightarrow($ From 4 and 5$)$
$=2$

29. Question

Find a vector of magnitude $\sqrt{171}$ which is perpendicular to both of the vectors $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$.

Answer

We know that cross product of two vectors gives us a vector which is perpendicular to both the vectors. If we can find an unit vector
perpendicular to the given vectors, we can easily get the answer by multiplying $\sqrt{171}$ to the unit vector.
Unit vectors perpendicular to the given vectors $= \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Now,
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{\imath}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \hat{\jmath}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & -3 \\ 3 & -1 & 2\end{array}\right|$

$$
=(2 \times 2-(-3 \times-1)) \hat{\imath}-(1 \times 2-(-3 \times 3)) \hat{\jmath}
$$

$$
+((1 \times-1)-2 \times 3) \hat{k}
$$

$\vec{a} \times \vec{b}=\hat{\imath}-11 \hat{\jmath}-7 \hat{k}$
$|\vec{a} \times \vec{b}|=\sqrt{1^{2}+(-11)^{2}+(-7)^{2}}=\sqrt{171}$
\because Unit vectors perpendicular to \vec{a} and $\vec{b}= \pm \frac{\hat{\imath}-11 \hat{\jmath}-7 \hat{k}}{\sqrt{171}}$
Vectors of magnitude $\sqrt{171}$ which are perpendicular to \vec{a} and $\vec{b} \rightarrow$
$\sqrt{171} \times \pm \frac{\hat{\imath}-11 \hat{\jmath}-7 \hat{k}}{\sqrt{171}}= \pm(\hat{\imath}-11 \hat{\jmath}-7 \hat{k})$

30. Question

Write the number of vectors of unit length perpendicular to both vectors $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$.

Answer

As we know, for vectors \vec{a} and \vec{b} unit vectors perpendicular to them is give by $\pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
Unit vector can be \perp either in positive or negative direction.
Hence, the number of vectors of unit length perpendicular to both the vectors $\vec{a}=2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\vec{b}=\hat{\jmath}+\hat{k}$ is 2.
31. Question

Write the angle between the vectors $\vec{a} \times \vec{b}$ and $\vec{a} \times \vec{b}$.

Answer

Given question gives us two same vectors so the angle is 0°.
In case, it asks write the angle between the vectors $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}-$
The angle between the vectors will be 180° as they are equal in magnitude and opposite in direction.

MCQ

1. Question

Mark the correct alternative in each of the following:
If \vec{a} is any vector, then $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}$
A. \vec{a}^{2}
B. $2 \overrightarrow{\mathrm{a}}^{2}$
C. $3 \vec{a}^{2}$
D. $4 \overrightarrow{\mathrm{a}}^{2}$

Answer

Let $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\vec{a} \times \hat{\imath}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ 1 & 0 & 0\end{array}\right|$
$=a_{3} \hat{\jmath}-a_{2} \hat{k}$
$(\vec{a} \times \hat{\imath})^{2}=a_{3}{ }^{2}+a_{2}{ }^{2} \because \hat{\jmath} . \hat{k}=0$
$\vec{a} \times \hat{\jmath}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ 0 & 1 & 0\end{array}\right|$
$=-a_{3} \hat{\imath}+a_{1} \hat{k}$
$(\vec{a} \times j)^{2}=a_{3}{ }^{2}+a_{1}{ }^{2} \because \hat{l} . \hat{k}=0$
$\vec{a} \times \hat{k}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ 0 & 0 & 1\end{array}\right|$
$a_{2} \hat{\imath}-a_{1} \hat{\jmath}$
$(\vec{a} \times k)^{2}=a_{1}{ }^{2}+a_{2}{ }^{2} \because \hat{\jmath} \cdot \hat{\imath}=0$
$(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{i}})^{2}+(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{j}})^{2}+(\overrightarrow{\mathrm{a}} \times \hat{\mathrm{k}})^{2}=a_{3}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}+a_{1}{ }^{2}+a_{1}{ }^{2}+a_{2}{ }^{2}$
$=2\left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}\right)$
$=2 \vec{a}^{2}$
(B)

2. Question

Mark the correct alternative in each of the following:
If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq 0$, then
A. $\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}$
B. $\vec{b}=\overrightarrow{0}$
C. $\vec{b}+\vec{c}=\overrightarrow{0}$
D. None of these

Answer

$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}$
$\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}$
$\vec{a}(\vec{b}-\vec{c})=0$
$\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$
$\vec{a} \times \vec{b}-\vec{a} \times \vec{c}=0$
$\vec{a} \times(\vec{b}-\vec{c})=0$
Let Q be the angle between \vec{a} and $\vec{b}-\vec{c}$
$|\vec{a}||\vec{b}-\vec{c}| \sin Q=0 \ldots$ (2)
Out of the four options the only option that satisfies both (1) and (2) is
$\vec{b}-\vec{c}=0$
$\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}(\mathrm{A})$

3. Question

Mark the correct alternative in each of the following:
The vector $\vec{b}=3 \hat{i}+4 \hat{k}$ is to be written as sum of a vector $\vec{\alpha}$ parallel to $\vec{a}=\hat{i}+\hat{j}$ and a vector $\vec{\beta}$ perpendicular to \vec{a}. Then $\vec{\alpha}=$
A. $\frac{3}{2}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
B. $\frac{2}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
C. $\frac{1}{2}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
D. $\frac{1}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$

Answer

$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}$
$\vec{a}=\hat{i}+\hat{j}$
$\vec{b}=\vec{\alpha}+\vec{\beta}$
Let $\vec{\alpha}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}$
Since $\vec{\alpha}|\mid \vec{a}$
$\vec{\alpha}=\gamma \vec{a}$
$a \hat{\imath}+b \hat{\jmath}+c \hat{k}=\gamma(\hat{\imath}+\hat{\jmath})$
$\alpha=\gamma \hat{\imath}+\gamma \hat{\jmath}$
$\beta=\vec{b}-\alpha$
$=(3-\gamma) \hat{\imath}-\gamma \hat{\jmath}+4 \hat{k}$
Since β is perpendicular to a
$\vec{a} . \beta=0$
$3-\gamma-\gamma=0$
$\gamma=\frac{3}{2}$
$\therefore \alpha=\frac{3}{2}(\hat{\imath}+\hat{\jmath})(\mathrm{A})$

4. Question

Mark the correct alternative in each of the following:
The unit vector perpendicular to the plane passing through points $P(\hat{i}-\hat{j}+2 \hat{k}), Q(2 \hat{i}-\hat{k})$ and $R(2 \hat{j}+\hat{k})$ is
A. $2 \hat{i}+\hat{j}+\hat{k}$
B. $\sqrt{6}(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
C. $\frac{1}{\sqrt{6}}(2 \hat{i}+\hat{j}+\hat{k})$
D. $\frac{1}{6}(2 \hat{i}+\hat{j}+\hat{k})$

Answer

The equations of the plane is given by
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0$
Where A, B and C are the drs of the normal to the plane.
Putting the first point,
$=A(x-1)+B(y+1)+C(z-2)=0$
Putting the second point in Eqn (1)
$=A(2-1)+B(0+1)+C(-1-2)=0$
$A+B-3 C=0 \ldots$... a)
Putting the third point in Eqn (1)
$=A(0-1)+B(2+1)+C(1-2)=0$
$=-A+3 B-C=0$
Solving (a) and (b) using cross multiplication method
$A+B-3 C=0$
$-A+3 B-C=0$
$\frac{A}{-1-(-9)}=\frac{-B}{-1-3}=\frac{C}{3-(-1)}=\alpha$
$A=8 \alpha ; B=4 \alpha ; C=4 \alpha$
Put these in Eqn(1)
$=8 \alpha(x-1)+4 \alpha(y+1)+4 \alpha(z-2)=0$
$=2(x-1)+(y+1)+(z-2)=0$
$=2 x+2+y+1+z-2=0$
$2 x+y+z+1=0$
Now the vector perpendicular to this plane is
$\vec{c}=2 \hat{\imath}+\hat{\jmath}+\hat{k}$
Now the unit vector of \vec{c} is given by

$$
\hat{c}=\frac{\vec{c}}{|\vec{c}|}
$$

$|\vec{c}|=\sqrt{2^{2}+1^{2}+1^{2}}=\sqrt{6}$
$\hat{c}=\frac{1}{\sqrt{6}}(2 \hat{\imath}+\hat{\jmath}+\hat{k})(\mathrm{C})$

5. Question

Mark the correct alternative in each of the following:
If \vec{a}, \vec{b} represent the diagonals of a rhombus, then
A. $\vec{a} \times \vec{b}=\overrightarrow{0}$
B. $\vec{a} \cdot \vec{b}=0$
C. $\vec{a} \cdot \vec{b}=1$
D. $\vec{a} \times \vec{b}=\vec{a}$

Answer

The diagnols of a rhombus are always perpendicular
It means \vec{a} is perpendicular to \vec{b}
$\mathrm{Q}=90^{\circ}$
$\cos Q=0$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$ (B)

6. Question

Mark the correct alternative in each of the following:
Vectors \vec{a} and \vec{b} are inclined at angle $\theta=120^{\circ}$. If $|\vec{a}|=1,|\vec{b}|=2$, then $[(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})]^{2}$ is equal to
A. 300
B. 325
C. 275
D. 225

Answer

$\lfloor(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})]^{2}$
$=[3(\vec{a} \times \vec{a})-(\vec{a} \times \vec{b})-9(\vec{b} \times \vec{a})-(3 \vec{b} \times \vec{b})]^{2}$
[3($0 \because$ Angle between the same vector is 0° and $\left.\sin 0=0\right)-(\vec{a} \times \vec{b})$

$$
-3(\vec{a} \times \vec{b})-3(\vec{b} \times \vec{b}=0)]^{2}=(\vec{b} \times \vec{a})=-(\vec{a} \times \vec{b})
$$

$=\left[-10\left(|\vec{a}||\vec{b}| \sin \frac{2 \pi}{3}\right)\right]^{2}$
$=100 \times 1 \times 4 \times \frac{3}{4}$
$\because \sin \frac{2 \pi}{3}=\sin \pi-\frac{\pi}{3}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
$=300(\mathrm{~A})$

7. Question

Mark the correct alternative in each of the following:
If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{j}-\hat{k}$, then a unit vector normal to vectors $\vec{a}+\vec{b}$ and $\vec{b}-\vec{c}$ is
A. $\hat{\mathrm{i}}$
B. \hat{j}
C. $\hat{\mathrm{k}}$
D. None of these

Answer

$\vec{a}+\vec{b}=3 \hat{\jmath}+\hat{k}$
$\vec{b}-\vec{c}=3 \hat{k}$
Let \vec{c} be perpendicular to both of these vectors
$\vec{c}=(\vec{a}+\vec{b}) \times(\vec{b}-\vec{c})$
$=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right|$
$=\hat{\imath}(9-0)-\hat{\jmath}(0-0)+\hat{k}(0-0)$
$=9 \hat{\imath}$
Now the unit vector of \vec{c} is given by
$\hat{c}=\frac{\vec{c}}{|\vec{c}|}$
$|\vec{c}|=\sqrt{9^{2}}=9$
$\hat{c}=\frac{1}{9}(9 \hat{\imath})=\hat{\imath}(\mathrm{A})$

8. Question

Mark the correct alternative in each of the following:
A unit vector perpendicular to both $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is,
A. $\hat{i}-\hat{j}+\hat{k}$
B. $\hat{i}+\hat{j}+\hat{k}$
C. $\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
D. $\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$

Answer

Let $\vec{a}=\hat{\imath}+\hat{\jmath}$ and $\vec{b}=\hat{\jmath}+\vec{k}$
A vector perpendicular to both of them is given by $\vec{a} \times \vec{b}$
$\vec{a} \times \vec{b}=\vec{c}=\left|\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|$
$=\hat{\imath}(1-0)-\hat{\jmath}(1-0)+\hat{k}(1-0)$
$=\hat{\imath}-\hat{\jmath}+\hat{k}$
Now the unit vector of \vec{c} is given by
$\hat{c}=\frac{\vec{c}}{|\vec{c}|}$
$|\vec{c}|=\sqrt{1^{2}+(-1)^{2}+1^{2}}=\sqrt{3}$
$\hat{c}=\frac{1}{\sqrt{3}}(\hat{\imath}-\hat{\jmath}+\hat{k})(\mathrm{D})$

9. Question

Mark the correct alternative in each of the following:
If $\vec{a}=2 \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+4 \hat{j}-2 \hat{k}$, then $\vec{a} \times \vec{b}$ is
A. $10 \hat{i}+2 \hat{j}+11 \hat{k}$
B. $10 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}$
C. $10 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}$
D. $10 \hat{i}-2 \hat{j}-10 \hat{k}$

Answer

$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -3 & -1 \\ -2 & 4 & -2\end{array}\right|$
$=\hat{\imath}(6-(-4))-\hat{\jmath}(-4-(-1))+\hat{k}(8-(-3))$
$=\hat{\imath}(10)-\hat{\jmath}(-3)+\hat{k}(11)$
$=10 \hat{\imath}+3 \hat{\jmath}+11 \hat{k}(\mathrm{~B})$

10. Question

Mark the correct alternative in each of the following:
If $\hat{\mathrm{i}}, \hat{\mathrm{j}}, \hat{\mathrm{k}}$ are unit vectors, then
A. $\hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=1$
B. $\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=1$
C. $\hat{\mathrm{i}} \times \hat{\mathrm{j}}=1$
D. $\hat{\mathrm{i}} \times(\hat{\mathrm{j}} \times \hat{\mathrm{k}})=1$

Answer

$\hat{\mathrm{i}}, \hat{\mathrm{j}}, \hat{\mathrm{k}}$ are unit vectors and angle between each of them is 90°
So, $\cos Q=\cos \frac{\pi}{2}=0$
So (A) is false $\because \hat{\imath} \hat{\jmath}=0$
Option (B) is true because angle between them is 0°
So, $\cos Q=\cos 0=1$
$\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=1 \because|\hat{\imath}|=|\hat{\jmath}|=1$
(C) False as $\hat{\imath} \times \hat{\jmath}=\hat{k}$
(D) is False as $\hat{\jmath} \times \hat{k}=\hat{\imath}$

And then $\hat{\imath} \times \hat{\imath}=0$ as $\sin Q=0$
(B)

11. Question

Mark the correct alternative in each of the following:
If θ is the angle between the vectors $2 \hat{i}-2 \hat{j}+4 \hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$, then $\sin \theta=$
A. $\frac{2}{3}$
B. $\frac{2}{\sqrt{7}}$
C. $\frac{\sqrt{2}}{7}$
D. $\sqrt{\frac{2}{7}}$

Answer

Let $\vec{a}=2 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$ and $\vec{b}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -2 & 4 \\ 3 & 1 & 2\end{array}\right|$
$=\hat{\imath}(-4-4)-\hat{\jmath}(4-12)+\hat{k}(2-(-6))$
$=-8 \hat{\imath}+8 \hat{\jmath}+8 \hat{k}$
We know
$|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}||\sin Q||\hat{n}|$
$\Rightarrow \sqrt{(-8)^{2}+8^{2}+8^{2}}=\sqrt{2^{2}+(-2)^{2}+4^{2}} \sqrt{3^{2}+1^{2}+2^{2}} \sin Q$
$\Rightarrow 8 \sqrt{3}=2 \sqrt{6} \cdot \sqrt{14} \sin Q$
$\Rightarrow \frac{2}{\sqrt{7}}=\sin Q$ (B)

12. Question

Mark the correct alternative in each of the following:
If $|\vec{a} \times \vec{b}|=4,|\vec{a} \cdot \vec{b}|=2$, then $|\overrightarrow{\mathrm{a}}|^{2}|\overrightarrow{\mathrm{~b}}|^{2}=$
A. 6
B. 2
C. 20
D. 8

Answer

We know,
$(\vec{a} \cdot \vec{b})^{2}+|\vec{a} \times \vec{b}|=|\vec{a}|^{2}|\vec{b}|^{2}$
$\Rightarrow 2^{2}+4^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
$\Rightarrow 4+16=|\vec{a}|^{2}|\vec{b}|^{2}$
$\Rightarrow 20=|\vec{a}|^{2}|\vec{b}|^{2}$

13. Question

Mark the correct alternative in each of the following:
The value of $(\vec{a} \times \vec{b})^{2}$ is
A. $|\vec{a}|^{2}+|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
B. $|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
C. $|\vec{a}|^{2}+|\vec{b}|^{2}-2(\vec{a} \cdot \vec{b})$
D. $|\vec{a}|^{2}+|\vec{b}|^{2}-\vec{a} \cdot \vec{b}$

Answer

Let Q be the angle between vectors a and b
$=(\vec{a} \times \vec{b})^{2}$
$=\left(|a||b|\left|\sin Q \|||\hat{n}|)^{2}\right.\right.$
$=|a|^{2}|b|^{2} \sin ^{2} Q$
$=|a|^{2}|b|^{2}\left(1-\cos ^{2} Q\right)$
$\because \sin ^{2} \mathrm{Q}=1-\cos ^{2} \mathrm{Q}$
$=|a|^{2}|b|^{2}-|a|^{2}|b|^{2} \cos ^{2} Q$
$=|a|^{2}|b|^{2}-(a . b)^{2}(\mathrm{~B}) \because(a . b)=|a||b| \cos Q$

14. Question

Mark the correct alternative in each of the following:
The value of $\hat{\mathrm{i}} \cdot(\hat{\mathrm{j}} \times \hat{\mathrm{k}})+\hat{\mathrm{j}} \cdot(\hat{\mathrm{i}} \times \hat{\mathrm{k}})+\hat{\mathrm{k}} \cdot(\hat{\mathrm{i}} \times \hat{\mathrm{j}})$, is
A. 0
B. -1
C. 1
D. 3

Answer

We know,
$(\hat{\imath} \times \hat{\imath})=0 ;$
$(\hat{\jmath} \times \hat{\jmath})=0$;
$(\hat{k} \times \hat{k})=0 ;$
$(\hat{\imath} \times \hat{\jmath})=\hat{k}$;
$(\hat{\jmath} \times \hat{k})=\hat{\imath} ;$
$(\hat{k} \times \hat{\imath})=\hat{\jmath} ;$
$(\hat{\jmath} \times \hat{\imath})=-\hat{k} ;$
$(\hat{k} \times \hat{\jmath})=-\hat{\imath} ;$
$(\hat{\imath} \times \hat{k})=-\hat{\jmath} ;$
Using them,
$\hat{\mathrm{i}} \cdot(\hat{\mathrm{j}} \times \hat{\mathrm{k}})+\hat{\mathrm{j}} \cdot(\hat{\mathrm{i}} \times \hat{\mathrm{k}})+\hat{\mathrm{k}} \cdot(\hat{\mathrm{i}} \times \hat{\mathrm{j}})$
$=\hat{\imath} . \hat{\imath}-\hat{\jmath} \cdot \hat{\jmath}+\hat{k} \cdot \hat{k}$
We know,
$\hat{\imath} . \hat{\imath}=\hat{\jmath} . \hat{\jmath}=\hat{k} \cdot \hat{k}=1=1-1+1$
$=1$ (C)

15. Question

Mark the correct alternative in each of the following:
If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer

$|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$
$|\vec{a}||\vec{b}| \cos Q=|\vec{a}||\vec{b}| \sin Q$
$\tan Q=1$
$Q=\frac{\pi}{4}$

