24. Scalar or Dot Products

Exercise 24.1

1 A. Question

Find $\vec{a} \cdot \vec{b}$, when
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$

Answer

For any vector $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ and $\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{z}_{1} \mathrm{z}_{2}$
Given Vectors:
$\vec{a}=\hat{\imath}-2 \hat{j}+\hat{k}$
$\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{i}}-4 \hat{\jmath}+7 \hat{\mathrm{k}}$
$\vec{a} . \vec{b}=1 \times 4+(-2) \times(-4)+1 \times 7$
$\vec{a} \cdot \vec{b}=19$.

1 B. Question

Find $\vec{a} \cdot \vec{b}$, when
$\vec{a}=\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{k}$

Answer

For any vector $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ and $\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}$
$\vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\vec{a}=\hat{\jmath}+2 \hat{k}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{k}}$
$\vec{a} \cdot \vec{b}=0 \times 2+0 \times 2+1 \times 2$
a. $\vec{b}=2$

1 C. Question

Find $\vec{a} \cdot \vec{b}$, when
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$

Answer

For any vector $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ and $\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}$
$\vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\vec{a}=\hat{\jmath}-\hat{k}$
$\overrightarrow{\mathbf{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathbf{k}}$
$\vec{a} \cdot \vec{b}=0 \times 2+1 \times 3+(-1) \times(-2)$
$\vec{a} \cdot \vec{b}=5$.

2 A. Question

For what value of λ are the vector \vec{a} and \vec{b} perpendicular to each other? Where :
$\vec{a}=\lambda \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=4 \hat{i}-9 \hat{j}+2 \hat{k}$

Answer

For any vector $\vec{a}=x_{1} \hat{1}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ and $\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}$
If \vec{a} and \vec{b} are \perp to each other then $\vec{a} . \vec{b}=0$
$\vec{a}=\widehat{\lambda}+2 \hat{\jmath}+\widehat{k}$
$\vec{b}=4 \hat{i}-9 \hat{j}+2 \hat{k}$
Now
$\vec{a} \cdot \vec{b}=0$
$\lambda \times 4+2 \times(-9)+1 \times 2=0$
$\lambda \times 4=16$
$\lambda=\frac{16}{4}$
$\lambda=4$

2 B. Question

For what value of λ are the vector \vec{a} and \vec{b} perpendicular to each other? Where :
$\overrightarrow{\mathrm{a}}=\lambda \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=5 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$

Answer

For any vector $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ and $\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}$
If \vec{a} and \vec{b} are \perp to each other then $\vec{a} \cdot \vec{b}=0$
$\vec{a}=\widehat{\lambda}+2 \hat{\jmath}+\widehat{k}$
$\vec{b}=5 \hat{\imath}-9 \hat{\jmath}+2 \hat{k}$
Now
$\vec{a} \cdot \vec{b}=0$
$\lambda \times 5+2 \times(-9)+1 \times 2=0$
$\lambda \times 5=16$
$\lambda=\frac{16}{5}$

2 C. Question

For what value of λ are the vector \vec{a} and \vec{b} perpendicular to each other? Where :
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\lambda \hat{\mathrm{k}}$

Answer

For any vector $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ and $\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}$
If \vec{a} and \vec{b} are \perp to each other then $\vec{a} . \vec{b}=0$
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+2 \hat{\jmath}-\lambda \hat{\mathbf{k}}$
Now
$\vec{a} \cdot \vec{b}=0$
$2 \times 3+3 \times 2+4 \times(-\lambda)=0$
$-4 \lambda=-12$
$\lambda=\frac{12}{4}$
$\lambda=3$

2 D. Question

For what value of λ are the vector \vec{a} and \vec{b} perpendicular to each other? Where :
$\vec{a}=\lambda \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+3 \hat{k}$

Answer

For any vector $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ and $\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}$
If \vec{a} and \vec{b} are \perp to each other then $\vec{a} \cdot \vec{b}=0$
$\overrightarrow{\mathrm{a}}=\widehat{\lambda} \mathbf{l}+3 \hat{\jmath}+2 \hat{\mathrm{k}}$
$\vec{b}=\hat{\imath}-\hat{\jmath}+3 \hat{k}$
Now
$\vec{a} \cdot \vec{b}=0$
$\lambda \times 1+3 \times(-1)+2 \times 3=0$
$\lambda-3+6=0$
$\lambda=-3$

3. Question

If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=4,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=6$. Find the angle between \vec{a} and \vec{b}.

Answer

Given Data:
$|\vec{a}|=4,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=6$
Calculation:
Using formula $\vec{a} \cdot \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$
$|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \theta=\frac{6}{4 \times 3}$
$\cos \theta=\frac{1}{2}$
$\theta=\cos ^{-1}\left(\frac{1}{2}\right)$
$\therefore \theta=\frac{\pi}{3}$
Therefore angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is $\frac{\pi}{3}$.

4. Question

If $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=-\hat{j}+2 \hat{k}$, find $(\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})$.

Answer

Given data:
$\vec{a}=\hat{\imath}-\hat{\jmath}$
$\vec{b}=-\hat{\jmath}+2 \hat{k}$
Now
$\Rightarrow \overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}=(\hat{\mathrm{i}}-\hat{\jmath})-2(-\hat{\jmath}+2 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{~b}}=\hat{\mathrm{\imath}}-\hat{\jmath}+2 \hat{\jmath}-4 \hat{k}$
$\vec{a}-2 \vec{b}=\hat{\imath}+\hat{\jmath}-4 \hat{k}$
$\Rightarrow \vec{a}+\vec{b}=(\hat{\imath}-\hat{\jmath})+(-\hat{\jmath}+2 \hat{k})$
$\vec{a}+\vec{b}=\hat{\imath}-\hat{\jmath}-\hat{\jmath}+2 \hat{k}$
$\vec{a}+\vec{b}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
Consider
$(\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=(\hat{\imath}+\hat{\jmath}-4 \hat{k})(\hat{1}-2 \hat{\jmath}+2 \hat{k})$
$(\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=1 \times 1+1 \times(-2)+(-4) \times 2$
$(\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=1-2-8$
$(\vec{a}-2 \vec{b}) \cdot(\vec{a}+\vec{b})=-9$

5 A. Question

Find the angle between the vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$, where:
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}$

Answer

Using formula $\vec{a} . \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$
Given Data:
i. $\vec{a}=\hat{\imath}-\hat{\jmath}$
$\vec{b}=\hat{\jmath}+\hat{k}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \theta=\frac{(\hat{\imath}-\hat{\jmath})(\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})}{\sqrt{1^{2}+1^{2}} \times \sqrt{1^{2}+1^{2}}}$
$\cos \theta=\frac{1 \times 0+(-1) \times 1+0 \times 1}{\sqrt{2} \times \sqrt{2}}$
$\cos \theta=-\frac{1}{2}$
$\theta=\cos ^{-1}\left(-\frac{1}{2}\right)$
$\theta=\pi-\frac{\pi}{3}$
$\therefore \theta=\frac{2 \pi}{3}$
Therefore angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is $\frac{\pi}{3}$.

5 B. Question

Find the angle between the vectors \vec{a} and $\overrightarrow{\mathrm{b}}$, where:
$\vec{a}=3 \hat{i}-2 \hat{j}-6 \hat{k}$ and $\vec{b}=4 \hat{i}-\hat{j}+8 \hat{k}$

Answer

Using formula $\vec{a} \cdot \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$
$\vec{a}=3 \hat{i}-2 \hat{\jmath}-6 \hat{k}$
$\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+8 \hat{\mathrm{k}}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \theta=\frac{(3 \hat{\mathrm{\imath}}-2 \hat{\mathrm{\jmath}}-6 \hat{\mathrm{k}})(4 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+8 \hat{\mathrm{k}})}{\sqrt{3^{2}+(-2)^{2}+(-6)^{2}} \times \sqrt{4^{2}+(-1)^{2}+8^{2}}}$
$\cos \theta=\frac{3 \times 4+(-2) \times(-1)+(-6) \times 8}{\sqrt{9+4+36} \times \sqrt{16+1+64}}$
$\cos \theta=-\frac{34}{\sqrt{49} \times \sqrt{81}}$
$\cos \theta=-\frac{34}{7 \times 9}$
$\theta=\cos ^{-1}\left(-\frac{34}{63}\right)$
$\theta=122.66^{\circ}$

Therefore angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is 122.66°.

5 C. Question

Find the angle between the vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$, where:
$\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=4 \hat{i}+4 \hat{j}-2 \hat{k}$

Answer

Using formula $\vec{a} \cdot \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$
$\overrightarrow{\mathbf{a}}=2 \hat{\mathrm{i}}-\hat{\mathrm{\jmath}}+2 \hat{\mathbf{k}}$
$\overrightarrow{\mathrm{b}}=4 \hat{\imath}+4 \hat{\jmath}-2 \hat{\mathbf{k}}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \theta=\frac{(2 \hat{\imath}-\hat{\jmath}+2 \hat{k})(4 \hat{\imath}+4 \hat{\jmath}-2 \hat{k})}{\sqrt{2^{2}+(-1)^{2}+(2)^{2}} \times \sqrt{4^{2}+4^{2}+(-2)^{2}}}$
$\cos \theta=\frac{2 \times 4+(-1) \times 4+2 \times(-2)}{\sqrt{4+1+4} \times \sqrt{16+16+4}}$
$\cos \theta=\frac{0}{\sqrt{9} \times \sqrt{36}}$
$\cos \theta=\frac{0}{3 \times 6}$
$\theta=\cos ^{-1}(0)$
$\theta=\frac{\pi}{2}$
Therefore angle between \vec{a} and \vec{b} is $\frac{\pi}{2}$.

5 D. Question

Find the angle between the vectors \vec{a} and $\overrightarrow{\mathrm{b}}$, where:
$\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-2 \hat{k}$

Answer

Using formula $\vec{a} . \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\vec{b}=\hat{1}+\hat{\jmath}-2 \hat{k}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \theta=\frac{(2 \hat{\imath}-3 \hat{\jmath}+\hat{\mathrm{k}})(\hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}})}{\sqrt{2^{2}+(-3)^{2}+1^{2}} \times \sqrt{1^{2}+1^{2}+(-2)^{2}}}$
$\cos \theta=\frac{2 \times 1+(-3) \times 1+1 \times(-2)}{\sqrt{4+9+1} \times \sqrt{1+1+4}}$
$\cos \theta=-\frac{3}{\sqrt{14} \times \sqrt{6}}$
$\cos \theta=-\frac{3}{\sqrt{84}}$
$\theta=\cos ^{-1}\left(-\frac{3}{\sqrt{84}}\right)$
Therefore angle between \vec{a} and \vec{b} is $\cos ^{-1}\left(-\frac{3}{\sqrt{84}}\right)$.

5 E. Question

Find the angle between the vectors $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$, where:
$\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$

Answer

Using formula $\vec{a} . \vec{b}=|\vec{a}| \times|\vec{b}| \times \cos \theta$
$\vec{a}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \theta=\frac{(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})}{\sqrt{1^{2}+2^{2}+(-1)^{2}} \times \sqrt{1^{2}+(-1)^{2}+1^{2}}}$
$\cos \theta=\frac{1 \times 1+2 \times(-1)+(-1) \times 1}{\sqrt{1+4+1} \times \sqrt{1+1+1}}$
$\cos \theta=-\frac{2}{\sqrt{2 \times 9}}$
$\cos \theta=-\frac{\sqrt{2}}{3}$
$\theta=\cos ^{-1}\left(-\frac{\sqrt{2}}{3}\right)$
Therefore angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is $\cos ^{-1}\left(-\frac{\sqrt{2}}{3}\right)$

6. Question

Find the angles which the vector $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\sqrt{2} \hat{\mathrm{k}}$ makes with the coordinate axes.

Answer

Calculation:

Angle with x-axis
$\vec{a}=\hat{\imath}-\hat{\jmath}+\sqrt{2} \hat{k}$
unit vector along x axis is î
So, $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}$
$\cos \theta=\frac{(\hat{1}-\hat{\jmath}+\sqrt{2} \hat{k})(\hat{1})}{\sqrt{1^{2}+(-1)^{2}+(\sqrt{2})^{2}} \times \sqrt{1^{2}}}$
$\cos \theta=\frac{1}{\sqrt{4} \times \sqrt{1}}$
$\cos \theta=\frac{1}{2}$
$\theta=\cos ^{-1}\left(\frac{1}{2}\right)$
$\theta=\frac{\pi}{3}$
Therefore angle between \vec{a} and x axis is $\frac{\pi}{3}$
Angle with y-axis
$\vec{a}=\hat{\imath}-\hat{\jmath}+\sqrt{2} \hat{k}$
unit vector along y axis is $\hat{\jmath}$
So, $\overrightarrow{\mathrm{b}}=\hat{\jmath}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}$
$\cos \theta=\frac{(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\sqrt{2} \hat{\mathrm{k}})(\hat{\mathrm{\jmath}})}{\sqrt{1^{2}+(-1)^{2}+(\sqrt{2})^{2}} \times \sqrt{1^{2}}}$
$\cos \theta=-\frac{1}{\sqrt{4} \times \sqrt{1}}$
$\cos \theta=-\frac{1}{2}$
$\theta=\cos ^{-1}\left(-\frac{1}{2}\right)$
$\theta=\pi-\frac{\pi}{3}$
$\theta=\frac{2 \pi}{3}$
Therefore angle between $\overrightarrow{\mathrm{a}}$ and y axis is $\frac{2 \pi}{3}$

Angle with z-axis
$\vec{a}=\hat{\imath}-\hat{\jmath}+\sqrt{2} \hat{k}$
unit vector along z axis is $\hat{\mathrm{k}}$
So, $\overrightarrow{\mathrm{b}}=\hat{\mathrm{k}}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$\cos \theta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \theta=\frac{(\hat{\imath}-\hat{\jmath}+\sqrt{2} \hat{\mathrm{k}})(\hat{\mathrm{k}})}{\sqrt{1^{2}+(-1)^{2}+(\sqrt{2})^{2}} \times \sqrt{1^{2}}}$
$\cos \theta=\frac{\sqrt{2}}{\sqrt{4} \times \sqrt{1}}$
$\cos \theta=\frac{1}{\sqrt{2}}$
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$\theta=\frac{\pi}{4}$
Therefore angle between \vec{a} and z axis is $\frac{\pi}{4}$

7 A. Question

Dot product of a vector with $\hat{i}+\hat{j}-3 \hat{k}, \hat{i}+3 \hat{j}-2 \hat{k}$ and $2 \hat{i}+\hat{j}+4 \hat{k}$ are 0,5 and 8 respectively. Find the vector.

Answer

Given Data:
Vectors:
$\vec{a}=\hat{\imath}+\hat{\jmath}-3 \hat{k}$
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\vec{c}=2 \hat{\imath}+\hat{\jmath}+4 \hat{k}$
Their Dot products are 0,5 and 8 .
Calculation:
Let the required vector be,
$\overrightarrow{\mathrm{h}}=x \hat{\imath}+y \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$
Now,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{h}}=0$
$(\hat{\imath}+\hat{\jmath}-3 \hat{k})(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=0$
$x+y-3 z=0 \ldots$ Eq. 1
Similarly
$\Rightarrow \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{h}}=5$
$(\hat{\imath}+3 \hat{\jmath}-2 \hat{k})(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=5$
$x+3 y-2 z=5 \ldots$..Eq. 2
$\Rightarrow \vec{c} \cdot \overrightarrow{\mathrm{~h}}=8$
$(2 \hat{\imath}+\hat{\jmath}+4 \hat{k})(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=8$
$2 x+y+4 z=8 \ldots$...Eq. 3
Subtract Eq. 1 from Eq. 2
$(x+3 y-2 z)-(x+y-3 z)=5-0$
$\Rightarrow 2 y+z=5$...Eq. 4
Subtract Eq. 3 from ($2 \times$ Eq. 2)
$2(x+3 y-2 z)-2 x+y+4 z=(2 \times 5)-8$
$5 y-8 z=2$...Eq. 5
Adding Eq. 5 with ($8 \times$ Eq. 4)
$8(2 y+z)+(5 y-8 z)=8 \times 5+2$
$\Rightarrow 21 y=42$
$\Rightarrow y=2$
From Eq. 5,
$5 \times 2-8 z=2$
$\Rightarrow \mathrm{z}=1$
From Eq. 1
$x+y-3 z=0$
$\Rightarrow x+2-3 \times 1=0$
$\Rightarrow \mathrm{x}=1$
\therefore required vector is $\overrightarrow{\mathrm{h}}=\hat{\mathrm{\imath}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$

7 B. Question

Dot product of a vector with vectors $\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+\hat{j}-3 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$ are respectively 4,0 and 2 . Find the vector.

Answer

Vectors:
$\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}}$
$\vec{c}=\hat{\imath}+\hat{\jmath}+\hat{k}$
Their Dot products are 4, 0 and 2 .
Calculation:
Let the required vector be,
$\overrightarrow{\mathrm{h}}=x \hat{\imath}+y \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}$

Now,
$\vec{a} \cdot \overrightarrow{\mathrm{~h}}=0$
$(\hat{\imath}-\hat{\jmath}+\hat{k})(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=4$
$x-y+z=4$...Eq. 1
Similarly
$\Rightarrow \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{h}}=0$
$(2 \hat{\imath}+\hat{\jmath}-3 \hat{k})(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=5$
$2 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=0 \ldots$...Eq. 2
$\Rightarrow \vec{c} \cdot \overrightarrow{\mathrm{~h}}=2$
$(\hat{\imath}+\hat{\jmath}+\hat{k})(x \hat{\imath}+y \hat{\jmath}+z \hat{k})=2$
$x+y+z=2 \ldots$...Eq. 3
Subtract Eq. 1 from Eq. 3
$(x+y+z)-(x-y+z)=2-4$
$\Rightarrow 2 y=-2$
$y=-1$
Now putting the value of y in equation(2) and equation (3) we get,
$2 x-3 z=1 \ldots$ (Eq(4))
$x+z=3$ \qquad (Eq(5))
$\mathrm{Eq}(4)-2 \times \mathrm{Eq}(5)$
$-5 z=-5$
$z=1$
Now putting value of z in equation (1) we get,
$x-y+z=4$
$x+1+1=4$
$x=2$
So the vector is,
\therefore required vector is $\overrightarrow{\mathrm{h}}=2 \hat{\mathrm{i}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$

8 A. Question

If \hat{a} and \hat{b} are unit vectors inclined at an angle θ, then prove that
$\cos \frac{\theta}{2}=\frac{1}{2}|\hat{a}+\hat{b}|$

Answer

Given Data: Two unit vectors inclined at an angle θ
Proof:
Since vectors are unit vectors
$\therefore|\hat{a}|=|\hat{b}|=1$

Now,
$\Rightarrow|\hat{a}+\hat{b}|^{2}=(\hat{a}+\hat{b})^{2}$
$=(\hat{a})^{2}+(\hat{b})^{2}+2$ â. \hat{b}
$=|\hat{\mathrm{a}}|^{2}+|\hat{\mathrm{b}}|^{2}+2 \times|\hat{\mathrm{a}}| \times|\hat{\mathrm{b}}| \times \cos \theta$
$=1+1+2 \times 1 \times 1 \times \cos \theta$
$=2+2 \cos \theta$
$=2(1+\cos \theta)$
Using the identity, $(1+\cos \theta)=2 \cos ^{2} \frac{\theta}{2}$
$=2 \times 2 \cos ^{2} \frac{\theta}{2}$
$=4 \cos ^{2} \frac{\theta}{2}$
$\Rightarrow|\hat{a}+\hat{b}|^{2}=4 \cos ^{2} \frac{\theta}{2}$
$\Rightarrow|\hat{a}+\hat{b}|=\sqrt{4 \cos ^{2} \frac{\theta}{2}}$
$\Rightarrow|\hat{\mathrm{a}}+\hat{\mathrm{b}}|=2 \cos \frac{\theta}{2}$
\Rightarrow (i) $\cos \frac{\theta}{2}=\frac{1}{2}|\hat{\mathrm{a}}+\hat{\mathrm{b}}|$

8 B. Question

If \hat{a} and \hat{b} are unit vectors inclined at an angle θ, then prove that
$\tan \frac{\theta}{2}=\frac{|\hat{a}-\hat{b}|}{|\hat{a}+\hat{b}|}$

Answer

$\Rightarrow|\hat{\mathrm{a}}-\hat{\mathrm{b}}|^{2}=(\hat{\mathrm{a}}-\hat{\mathrm{b}})^{2}$
$=(\hat{\mathrm{a}})^{2}+(\hat{\mathrm{b}})^{2}-2 \hat{\mathrm{a}} . \hat{\mathrm{b}}$
$=|\hat{a}|^{2}+|\hat{\mathrm{b}}|^{2}-2 \times|\hat{\mathrm{a}}| \times|\hat{\mathrm{b}}| \times \cos \theta$
$=1+1-2 \times 1 \times 1 \times \cos \theta$
$=2-2 \cos \theta$
$=2(1-\cos \theta)$
Using the identity, $(1-\cos \theta)=2 \sin ^{2} \frac{\theta}{2}$
$=2 \times 2 \sin ^{2} \frac{\theta}{2}$
$=4 \sin ^{2} \frac{\theta}{2}$
$\Rightarrow|\hat{\mathrm{a}}-\hat{\mathrm{b}}|^{2}=4 \sin ^{2} \frac{\theta}{2}$
$\Rightarrow|\hat{\mathrm{a}}-\hat{\mathrm{b}}|=\sqrt{4 \sin ^{2} \frac{\theta}{2}}$
$\Rightarrow|\hat{\mathrm{a}}-\hat{\mathrm{b}}|=2 \sin \frac{\theta}{2}$
$\sin \frac{\theta}{2}=\frac{1}{2}|\hat{a}-\hat{b}|$
Dividing above by result (i) we will get,
$\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}=\frac{\frac{1}{2}|\hat{a}-\hat{b}|}{\frac{1}{2}|\hat{a}+\hat{b}|}$
(ii) $\tan \frac{\theta}{2}=\frac{|\hat{\mathrm{a}}-\hat{\mathrm{b}}|}{|\hat{\mathrm{a}}+\hat{\mathrm{b}}|}$

Proved

9. Question

If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is $\sqrt{3}$.

Answer

The sum of two unit vectors is a unit vector

Calculation:

Since $|\hat{\mathrm{a}}|=|\hat{\mathrm{b}}|=1$
Also,
$|\hat{a}+\hat{b}|=1$
Now squaring both sides we get
$\Rightarrow|\hat{\mathrm{a}}+\hat{\mathrm{b}}|^{2}=1^{2}$
$|\hat{a}|^{2}+|\hat{\mathrm{b}}|^{2}+2 \hat{\mathrm{a}} . \hat{\mathrm{b}}=1$
$1^{2}+1^{2}+2$ â. $\hat{b}=1$
\Rightarrow â. $\hat{\mathrm{b}}=-\frac{1}{2}$
Now,
$\Rightarrow|\hat{\mathrm{a}}-\hat{\mathrm{b}}|^{2}=(\hat{\mathrm{a}}-\hat{\mathrm{b}})^{2}$
$=(\hat{\mathrm{a}})^{2}+(\hat{\mathrm{b}})^{2}-2 \hat{\mathrm{a}} . \hat{\mathrm{b}}$
$=|\hat{\mathrm{a}}|^{2}+|\hat{\mathrm{b}}|^{2}-2 \hat{\mathrm{a}} \cdot \hat{\mathrm{b}}$
Using the above value,
$=1^{2}+1^{2}-2\left(-\frac{1}{2}\right)$
$=3$
$\therefore|\hat{a}-\hat{\mathrm{b}}|^{2}=3$
$\Rightarrow|\hat{\mathrm{a}}-\hat{\mathrm{b}}|=\sqrt{3}$
Hence, the magnitude of their difference is $\sqrt{ } 3$.

10. Question

If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors, then prove that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}$.

Answer

Given Data:
Three mutually perpendicular unit vectors
$\hat{\mathrm{a}} . \hat{\mathrm{b}}=\hat{\mathrm{b}} . \hat{c}=\hat{\mathrm{c}} . \hat{\mathrm{a}}=0$
Since $|\hat{a}|=|\hat{b}|=|\hat{c}|=1$
Calculation:
$|\hat{a}+\hat{b}+\hat{c}|^{2}=(\hat{a}+\hat{b}+\hat{c})^{2}$
$=(\hat{a})^{2}+(\hat{b})^{2}+(\hat{c})^{2}+2 \hat{a} \cdot \hat{b}+2 \hat{b} \cdot \hat{c}+2 \hat{c} \cdot \hat{a}$
$=|\hat{\mathrm{a}}|^{2}+|\hat{\mathrm{b}}|^{2}+|\hat{c}|^{2}+0+0+0$
$=1+1+1$
$=3$
$\Rightarrow|\hat{a}+\hat{b}+\hat{c}|^{2}=3$
$\therefore|\hat{a}+\hat{b}+\hat{c}|=\sqrt{3}$
11. Question

If $|\vec{a}+\vec{b}|=60,|\vec{a}-\vec{b}|=40$ and $|\vec{b}|=46$, find $|\vec{a}|$

Answer

Given Data:

$|\vec{a}+\vec{b}|=60$
$|\vec{a}-\vec{b}|=40$
$|\vec{b}|=46$
Calculation:
$\Rightarrow|\vec{a}+\vec{b}|^{2}=60^{2}$
$(\vec{a})^{2}+(\vec{b})^{2}+2 \vec{a} \cdot \vec{b}=3600$
$|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=3600 \ldots$ Eq. 1
Now,
$\Rightarrow|\vec{a}-\vec{b}|^{2}=40^{2}$
$(\vec{a}-\vec{b})^{2}=1600$
$(\vec{a})^{2}+(\vec{b})^{2}-2 \vec{a} \cdot \vec{b}=1600$
$|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}=1600 \ldots$ Eq. 2
Adding Eq. 1 and Eq. 2
$2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right)+2 \vec{a} \cdot \vec{b}-2 \vec{a} \cdot \vec{b}=3600+1600$
$2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right)=5200$
$\left(|\vec{a}|^{2}+46^{2}\right)=\frac{5200}{2}$
$\left(|\vec{a}|^{2}+2116\right)=2600$
$|\vec{a}|^{2}=2600-2116$
$|\vec{a}|^{2}=484$
$|\vec{a}|=\sqrt{484}$
$|\vec{a}|=22$

12. Question

Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined with the coordinate axes

Answer

Calculation:
Angle with x-axis
$\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
unit vector along x axis is î
So, $\vec{b}=\hat{1}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \alpha=\vec{a} \cdot \vec{b}$
$\cos \alpha=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \alpha=\frac{(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})(\hat{\mathrm{i}})}{\sqrt{1^{2}+1^{2}+1^{2}} \times \sqrt{1^{2}}}$
$\cos \alpha=\frac{1}{\sqrt{3} \times \sqrt{1}}$
$\cos \alpha=\frac{1}{\sqrt{3}}$
Angle with y-axis
$\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
unit vector alongy axis is $\hat{\jmath}$
So, $\overrightarrow{\mathrm{b}}=\hat{\mathrm{k}}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \beta=\vec{a} \cdot \vec{b}$
$\cos \beta=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \beta=\frac{(\hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})(\hat{\mathrm{j}})}{\sqrt{1^{2}+1^{2}+1^{2}} \times \sqrt{1^{2}}}$
$\cos \beta=\frac{1}{\sqrt{3} \times \sqrt{1}}$
$\cos \beta=\frac{1}{\sqrt{3}}$
Angle with z-axis
$\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
unit vector along z axis is $\hat{\mathrm{k}}$
So, $\overrightarrow{\mathrm{b}}=\hat{\mathrm{k}}$
$\Rightarrow|\vec{a}| \times|\vec{b}| \times \cos \gamma=\vec{a} \cdot \vec{b}$
$\cos \gamma=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}}{|\overrightarrow{\mathrm{a}}| \times|\overrightarrow{\mathrm{b}}|}$
$\cos \gamma=\frac{(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})(\hat{\mathrm{j}})}{\sqrt{1^{2}+1^{2}+1^{2}} \times \sqrt{1^{2}}}$
$\cos \gamma=\frac{1}{\sqrt{3} \times \sqrt{1}}$
$\cos \gamma=\frac{1}{\sqrt{3}}$
Hence $\alpha=\beta=\gamma$.

13. Question

Show that the vectors $\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \vec{b}=\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{c}=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ are mutually perpendicular unit vectors.

Answer

Given Data:

$\overrightarrow{\mathrm{a}}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
$\overrightarrow{\mathrm{b}}=\frac{1}{7}(3 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
$\vec{c}=\frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k})$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \cdot \frac{1}{7}(3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k})$
$\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=\frac{1}{49}(2 \times 3+3 \times(-6)+6 \times 2)$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\frac{1}{49}(6+-18+12)$
$\vec{a} \cdot \vec{b}=0$
Similarly,
$\overrightarrow{\mathrm{b}} \cdot \vec{c}=\frac{1}{7}(3 \hat{\mathrm{i}}-6 \hat{\jmath}+2 \hat{\mathrm{k}}) \frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}})$
$\overrightarrow{\text { b. }} \vec{c}=\frac{1}{49}(3 \times 6+(-6) \times 2+2 \times(-3))$
$\overrightarrow{\mathrm{b}} . \vec{c}=\frac{1}{49}(18-12-6)$
$\vec{b} . \vec{c}=0$
$\vec{c} . \vec{a}=\frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}) \cdot \frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
$\vec{c} . \vec{a}=\frac{1}{49}(6 \times 2+2 \times 3+(-3) \times 6)$
$\vec{c} . \vec{a}=\frac{1}{49}(12+6-18)$
$\vec{c} \cdot \vec{a}=0$
$\therefore \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=0$
Hence these vectors are mutually perpendicular.

14. Question

For any two vectors \vec{a} and \vec{b}, show that : $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0 \Leftrightarrow|\vec{a}|=|\vec{b}|$.

Answer

Let $(\vec{a}+\vec{b})(\vec{a}-\vec{b})=0$
$|\vec{a}|^{2}-|\vec{b}|^{2}=0$
$|\vec{a}|^{2}=|\vec{b}|^{2}$
$\Rightarrow|\vec{a}|=|\vec{b}|$
Let $\Rightarrow|\vec{a}|=|\vec{b}|$
Squaring both sides
$|\vec{a}|^{2}=|\vec{b}|^{2}$
$\Rightarrow|\vec{a}|^{2}-|\vec{b}|^{2}=0$
$\Rightarrow(\vec{a})^{2}-(\vec{b})^{2}=0$
$(\vec{a}+\vec{b})(\vec{a}-\vec{b})=0$
Hence, $(\vec{a}+\vec{b})(\vec{a}-\vec{b})=0 \Leftrightarrow|\vec{a}|=|\vec{b}|$

15. Question

If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{c}=\hat{i}+3 \hat{j}-\hat{k}$, find λ such that \vec{a} is perpendicular to $\lambda \vec{b}+\vec{c}$.

Answer

Given Data:
$\vec{a}=(2 \hat{i}-\hat{\jmath}+\hat{k})$
$\vec{b}=(\hat{\imath}+\hat{\jmath}-2 \hat{k})$
$\vec{c}=(\hat{\imath}+3 \hat{\jmath}-\hat{k})$
$\vec{d}=\lambda \vec{b}+\vec{c}$
$\overrightarrow{\mathrm{d}}=\lambda(\hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}})+(\hat{\mathrm{i}}+3 \hat{\jmath}-\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{d}}=(\lambda+1) \hat{\mathrm{i}}+(\lambda+3) \hat{\mathrm{j}}-(2 \lambda+1) \hat{\mathrm{k}}$
For this vector to be \perp
$\vec{a} \cdot \vec{d}=0$
$(2 \hat{\imath}-\hat{\jmath}+\hat{k})((\lambda+1) \hat{\imath}+(\lambda+3) \hat{\jmath}-(2 \lambda+1) \hat{k})=0$
$2(\lambda+1)-1(\lambda+3)-1 .(2 \lambda+1)=0$
$2(\lambda+1)-1(\lambda+3)-1 \cdot(2 \lambda+1)=0$
$-\lambda-2=0$
$\therefore \lambda=-2$

16. Question

If $\vec{p}=5 \hat{i}+\lambda \hat{j}-3 \hat{k}$ and $\vec{q}=\hat{i}+3 \hat{j}-5 \hat{k}$, then find the value of λ, so that $\vec{p}+\vec{q}$ and $\vec{p}-\vec{q}$ are perpendicular vectors.

Answer

Given Data:
$\overrightarrow{\mathrm{p}}=5 \hat{\imath}+\lambda \hat{\jmath}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{q}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
$\vec{p}+\vec{q}=(5 \hat{\imath}+\lambda \hat{\jmath}-3 \hat{k})+(\hat{\imath}+3 \hat{\jmath}-5 \hat{k})$
$\vec{p}+\vec{q}=(6 \hat{\imath}+(\lambda+3) \hat{\jmath}-8 \hat{k})$
Also,
$\vec{p}-\vec{q}=(5 \hat{\imath}+\lambda \hat{\jmath}-3 \hat{k})-(\hat{\imath}+3 \hat{\jmath}-5 \hat{k})$
$\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{q}}=(4 \hat{\mathrm{i}}+(\lambda-3) \hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}})$
For this vector to be \perp
$(\vec{p}+\vec{q}) \cdot(\vec{p}-\vec{q})=0$
$(6 \hat{\imath}+(\lambda+3) \hat{\jmath}-8 \hat{k}) \cdot(4 \hat{\imath}+(\lambda-3) \hat{\jmath}+2 \hat{k})=0$
$6 \times 4+(\lambda+3)(\lambda-3)-16=0$
$24+\lambda^{2}-9-16=0$
$\lambda^{2}=1$
$\lambda= \pm 1$

17. Question

If $\vec{\alpha}=3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{\beta}=2 \hat{i}+\hat{j}-4 \hat{k}$, then express $\vec{\beta}$ in the form of $\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$, where $\overrightarrow{\beta_{1}}$ is parallel to
$\vec{\alpha}$ and $\overrightarrow{\beta_{2}}$ is perpendicular to $\vec{\alpha}$.

Answer

Given Data:
$\vec{\alpha}=3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}$
$\vec{\beta}=2 \hat{i}+\hat{\jmath}-4 \hat{k}$
Now
$\overrightarrow{\beta_{1}} \| \vec{\alpha}$
$\overrightarrow{\beta_{1}}=\lambda \vec{\alpha}$
$\Rightarrow \overrightarrow{\beta_{1}}=\lambda(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k})$
Also,
$\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$
$\Rightarrow \overrightarrow{\beta_{2}}=\vec{\beta}-\overrightarrow{\beta_{1}}$
$\overrightarrow{\beta_{2}}=(2 \hat{\imath}+\hat{\jmath}-4 \hat{k})-\lambda(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k})$
$\overrightarrow{\beta_{2}}=(2-3 \lambda) \hat{\imath}+(1-4 \lambda) \hat{\mathrm{j}}-(4+5 \lambda) \hat{\mathrm{k}}$
$\overrightarrow{\beta_{2}} \perp \vec{\alpha}$
$\overrightarrow{\beta_{2}} \cdot \vec{\alpha}=0$
$((2-3 \lambda) \hat{\imath}+(1-4 \lambda) \hat{\jmath}-(4+5 \lambda) \hat{k}) \cdot(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k})=0$
$3(2-3 \lambda)+4(1-4 \lambda)-5(4+5 \lambda)=0$
$-50 \lambda=10$
$\therefore \lambda=-\frac{1}{5}$
$\Rightarrow \overrightarrow{\beta_{1}}=-\frac{1}{5}(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k})$
Using the above value,
$\Rightarrow \overrightarrow{\beta_{2}}=\vec{\beta}-\overrightarrow{\beta_{1}}$
$\overrightarrow{\beta_{2}}=(2-3 \lambda) \hat{\mathrm{i}}+(1-4 \lambda) \hat{\mathrm{\jmath}}-(4+5 \lambda) \hat{\mathrm{k}}$
$\overrightarrow{\beta_{2}}=(2-3) \hat{\mathrm{i}}+(1-4 \lambda) \hat{\mathrm{j}}-(4+5 \lambda) \hat{\mathrm{k}}$
$\overrightarrow{\beta_{2}}=\frac{1}{5}(13 \hat{\mathrm{i}}+9 \hat{\mathrm{\jmath}}-15 \hat{\mathrm{k}}$
$\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$

18. Question

If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \cdot \vec{b}=0$. But, the converse need not be true. Justify your answer with an example.

Answer

$\vec{a}=(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
$\vec{b}=-\hat{\imath}+\hat{\jmath}+3 \hat{k}$
$\vec{a} \cdot \vec{b}=(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \cdot(-\hat{\imath}+\hat{\jmath}+3 \hat{k})$
$\vec{a} \cdot \vec{b}=-2-1+3$
$\vec{a} \cdot \vec{b}=0$
$|\vec{a}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}$
$|\vec{a}|=\sqrt{6}$
$|\vec{a}| \neq 0$
Similarly,
$|\overrightarrow{\mathrm{b}}|=\sqrt{(-1)^{2}+1^{2}+3^{2}}$
$|\overrightarrow{\mathrm{b}}|=\sqrt{11}$
$|\vec{b}| \neq 0$

19. Question

Show that the vectors $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}+5 \hat{k}, \vec{c}=2 \hat{i}+\hat{j}-4 \hat{k}$ form a right angled triangle.

Answer

Given Vectors:
$\vec{a}=3 \hat{i}-2 \hat{\jmath}+\hat{k}$
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-3 \hat{\jmath}+5 \hat{\mathrm{k}}$
$\vec{c}=2 \hat{\imath}+\hat{\jmath}-4 \hat{k}$
First show that the vectors form a triangle, so we use the addition of vector
$\vec{b}+\vec{c}=(\hat{\imath}-3 \hat{\jmath}+5 \hat{k})+(2 \hat{\imath}+\hat{\jmath}-4 \hat{k})$
$\therefore \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{\imath}}-2 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}})$
$\therefore \vec{b}+\vec{c}=\vec{a}$
Hence these vectors form a triangle
Now we will use Pythagoras theorem to prove this is a right angle triangle.
$|\vec{a}|=\sqrt{3^{2}+(-2)^{2}+1^{2}}$
$|\vec{a}|=\sqrt{14}$
$|\overrightarrow{\mathrm{b}}|=\sqrt{1^{2}+(-3)^{2}+5^{2}}$
$|\vec{a}|=\sqrt{35}$
$|\vec{c}|=\sqrt{2^{2}+1^{2}+(-4)^{2}}$
$|\overrightarrow{c \mid}|=\sqrt{21}$
$\Rightarrow|\vec{a}|^{2}+|\vec{c}|^{2}=14+21$
$\Rightarrow|\vec{a}|^{2}+|\vec{c}|^{2}=35$
$\Rightarrow|\vec{a}|^{2}+|\vec{c}|^{2}=|\vec{b}|^{2}$

Therefore these vectors form a right angled triangle.

20. Question

If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ.

Answer

Given Data:
$\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{\imath}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{b}}=-\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}$
$\vec{c}=3 \hat{\imath}+\hat{\jmath}$
$\vec{d}=\vec{a}+\lambda \vec{b}$
$\overrightarrow{\mathrm{d}}=(2 \hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(-\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})$
$\overrightarrow{\mathrm{d}}=(-\lambda+2) \hat{\mathrm{i}}+(2 \lambda+2) \hat{\mathrm{\jmath}}+(\lambda+3) \hat{\mathrm{k}}$
For this vector to be \perp
$\vec{c} . \vec{d}=0$
$(3 \hat{\imath}+\hat{\jmath})((-\lambda+2) \hat{\imath}+(2 \lambda+2) \hat{\jmath}+(\lambda+3) \hat{k})=0$
$3(-\lambda+2)+1(2 \lambda+2)=0$
$-\lambda+8=0$
$\lambda=8$
The value of λ is 8 .

21. Question

Find the angles of a triangle whose vertices are $A(0,-1,-2), B(3,1,4)$ and $C(5,7,1)$.

Answer

Given Data:
$\overrightarrow{\mathrm{A}}=-1 \hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{B}}=3 \hat{\mathrm{i}}+\hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{C}}=5 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}$
$=(3 \hat{\imath}+\hat{\jmath}+4 \hat{k})-(-1 \hat{\jmath}-2 \hat{k})$
$=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{B}}$
$=(5 \hat{\imath}+7 \hat{\jmath}+\hat{k})-(3 \hat{\imath}+\hat{\jmath}+4 \hat{k})$
$=2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{A}}$
$=(5 \hat{\imath}+7 \hat{\jmath}+\hat{k})-(-1 \hat{\jmath}-2 \hat{k})$
$=5 \hat{\imath}+8 \hat{\jmath}+3 \hat{\mathrm{k}}$
Now the angle A
$\cos A=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}| \times|\overrightarrow{\mathrm{AC}}|}$
$\cos A=\frac{(3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})(5 \hat{\imath}+8 \hat{\jmath}+3 \hat{k})}{\sqrt{3^{2}+2^{2}+6^{2}} \times \sqrt{5^{2}+8^{2}+3^{2}}}$
$\cos A=\frac{15+16+18}{\sqrt{49} \times \sqrt{98}}$
$\cos \mathrm{A}=\frac{49}{49 \sqrt{2}}$
$\cos \mathrm{A}=\frac{1}{\sqrt{2}}$
$A=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$A=\frac{\pi}{4}$
Now the angle B
$\cos B=\frac{\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BA}}}{|\overrightarrow{\mathrm{BC}}| \times|\overrightarrow{\mathrm{BA}}|}$
$\cos B=\frac{(2 \hat{\mathrm{i}}+6 \hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}})(-3 \hat{\mathrm{i}}-2 \hat{\mathrm{\jmath}}-6 \hat{\mathrm{k}})}{\sqrt{2^{2}+6^{2}+(-3)^{2}} \times \sqrt{(-3)^{2}+(-2)^{2}+(-6)^{2}}}$
$\cos \mathrm{B}=\frac{-6-12+18}{\sqrt{49} \times \sqrt{49}}$
$\cos \mathrm{B}=\frac{0}{49}$
$\cos \mathrm{B}=0$
$\mathrm{B}=\cos ^{-1}(0)$
$B=\frac{\pi}{2}$
Now the sum of angles of a triangle is π
$\therefore A+B+C=\pi$
$\frac{\pi}{4}+\frac{\pi}{2}+C=\pi$
$\therefore \mathrm{C}=\pi-\frac{3 \pi}{4}$
$\therefore \mathrm{C}=\frac{\pi}{4}$

22. Question

Find the magnitude of two vectors \vec{a} and $\overrightarrow{\mathrm{b}}$, having the same magnitude and such that the angle between them is 60° and their scalar product is $1 / 2$.

Answer

Given Data:
$\overrightarrow{|a|}|=|\vec{b}|$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\frac{1}{2}$
$\theta=\frac{\pi}{3}$
$|\vec{a}| \times|\vec{b}| \times \cos \theta=\vec{a} \cdot \vec{b}$
$|\vec{a}| \times|\vec{a}| \times \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
$|\vec{a}|^{2} \times \frac{1}{2}=\frac{1}{2}$
$|\vec{a}|^{2}=\frac{1 \times 2}{2}$
$|\vec{a}|^{2}=1$
$\therefore|\vec{a}|=|\vec{b}|=1$
Magnitude of vectors is unity.

23. Question

Show that the points whose position vectors are $\vec{a}=4 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}, \vec{c}=\hat{i}-\hat{j}$ form a right triangle.

Answer

Given Data:

$\vec{a}=4 \hat{i}-3 \hat{\jmath}+\hat{k}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
$\vec{c}=\hat{\imath}-\hat{\jmath}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}$
$=(2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k})-(4 \hat{\imath}-3 \hat{\jmath}+\hat{k})$
$=-2 \hat{i}-\hat{\jmath}+4 \hat{k}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{B}}$
$=(\hat{\imath}-\hat{\jmath})-(2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k})$
$=-\hat{1}+3 \hat{\jmath}-5 \hat{k}$
$\overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{C}}$
$=(4 \hat{\imath}-3 \hat{\jmath}+\hat{\mathrm{k}})-(\hat{\imath}-\hat{\jmath})$
$=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CA}}=(-2 \hat{\mathrm{i}}-7 \hat{\jmath}+4 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}-2 \hat{\jmath}+\hat{\mathrm{k}})$
$=-2 \times 3+(-1) \times(-2)+1 \times 4$
$=-6+2+4$
$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CA}}=0$
$\overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{CA}}$
Angle A right angle, $A B C$ is right angle triangle.

24. Question

If the vertices A, B, C of $\triangle A B C$ have position vectors $(1,2,3),(-1,0,0),(0,1,2)$ respectively, what is the magnitude of $\angle A B C$?

Answer

Given Data:
$\vec{A}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\vec{B}=-\hat{\imath}+0 \hat{\jmath}+0 \hat{k}$
$\overrightarrow{\mathrm{C}}=0 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}$
$=(-\hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}})-(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})$
$=-2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{B}}$
$=(0 \hat{\imath}+\hat{\jmath}+2 \hat{k})-(-\hat{\imath}+0 \hat{\jmath}+0 \hat{k})$
$=\hat{i}+\hat{\jmath}+2 \hat{k}$
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{A}}$
$=(0 \hat{\imath}+\hat{\jmath}+2 \hat{k})-(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})$
$=-\hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}}$
Now the angle B
$\cos \mathrm{B}=\frac{\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BA}}}{|\overrightarrow{\mathrm{BC}}| \times|\overrightarrow{\mathrm{BA}}|}$
$\cos B=\frac{(\hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}})(+2 \hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})}{\sqrt{1^{2}+1^{2}+(2)^{2}} \times \sqrt{2^{2}+2^{2}+3^{2}}}$
$\cos \mathrm{B}=\frac{2+2+6}{\sqrt{6} \times \sqrt{17}}$
$\cos \mathrm{B}=\frac{10}{\sqrt{102}}$
$B=\cos ^{-1}\left(\frac{10}{\sqrt{102}}\right)$

25. Question

If A, B, C have position vectors $(0,1,1),(3,1,5),(0,3,3)$ respectively, show that is right angled at C.

Answer

Given Data:

$\vec{A}=\widehat{0}_{1}+\hat{\jmath}+\widehat{k}$
$\vec{B}=3 \hat{\imath}+1 \hat{\jmath}+5 \hat{k}$
$\overrightarrow{\mathrm{C}}=0 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}$
$=(3 \hat{\imath}+1 \hat{\jmath}+5 \hat{k})-(0 \hat{\imath}+\hat{\jmath}+\hat{k})$
$=3 \hat{i}+4 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{B}}$
$=(0 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})-(3 \hat{\imath}+1 \hat{\jmath}+5 \hat{k})$
$=-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{A}}$
$=(0 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})-(0 \hat{\imath}+\hat{\jmath}+\hat{k})$
$=2 \hat{\jmath}+2 \hat{\mathrm{k}}$
Now the angle C
$\cos C=\frac{\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{BC}}| \times|\overrightarrow{\mathrm{AC}}|}$
$\cos \mathrm{C}=\frac{(-3 \hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})(2 \hat{\jmath}+2 \hat{\mathrm{k}})}{\sqrt{(-3)^{2}+2^{2}+(-2)^{2}} \times \sqrt{2^{2}+2^{2}}}$
$\cos \mathrm{C}=\frac{0+4-4}{\sqrt{6} \times \sqrt{17}}$
$\cos \mathrm{C}=0$
$C=\frac{\pi}{2}$
So angle C is a right angle triangle.

26. Question

Find the projection of $\vec{b}+\vec{c}$ on \vec{a}, where $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.

Answer

we know that $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \mathrm{x}$ where x is the angle between two vectors, so $\frac{\overrightarrow{(\vec{a} \cdot \vec{b})}}{|\vec{a}|}$ gives the projection of vector b on a

Now applying the formula for projection of $\vec{b}+\vec{c}$ on \vec{a}
$\vec{b}+\vec{c}=i+2 j-2 k+2 i-j+4 k$
$\vec{b}+\vec{c}=3 i+j+2 k$
$|\vec{a}|=\sqrt{2^{2}+2^{2}+1^{2}}=3$
$\vec{a} \cdot(\vec{b}+\vec{c})=(2 i-2 j+k) \cdot(3 i+j+2 k)$
$\hat{\mathrm{I}} . \hat{\mathrm{I}}=1 ; \hat{\mathrm{\jmath}} \cdot \hat{\jmath}=1 ; \hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1$
a $.(\vec{b}+\vec{c})=6-2+2=6$
Substituting these values in above formula, we get
$\frac{[\vec{a} \cdot(\vec{b}+\vec{c})]}{|\vec{a}|}=\frac{6}{3}=2$

27. Question

If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are orthogonal.

Answer

meaning of orthogonal is that two vectors are perpendicular to each other, so their dot product is zero.
$\vec{a}+\vec{b}=(5 \hat{\imath}-\hat{\jmath}-3 \hat{k})+(\hat{\imath}+3 \hat{\jmath}-5 \hat{k})$
$\vec{a}+\vec{b}=6 \hat{i}+2 \hat{\jmath}-8 \hat{k}$
Similarly,
$\vec{a}-\vec{b}=(5 \hat{\imath}-\hat{\jmath}-3 \hat{k})-(\hat{\imath}+3 \hat{\jmath}-5 \hat{k})$
$\vec{a}-\vec{b}=4 \hat{\imath}-4 \hat{\jmath}+2 \hat{k}$
So, to satisfy the orthogonal condition $\vec{a} \cdot \vec{b}=0$
$\hat{\mathrm{i}} . \hat{\mathrm{i}}=1 ; \hat{\mathrm{\jmath}} \cdot \hat{\jmath}=1 ; \hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1$
$(6 \hat{\imath}+2 \hat{\jmath}-8 \hat{k}) \cdot(4 \hat{i}-4 \hat{\jmath}+2 \hat{k})=(24-8-16)=0$
Hence proved

28. Question

A unit vector $\overrightarrow{\mathrm{a}}$ makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with $\hat{\mathrm{i}}$ and $\hat{\mathrm{j}}$ respectively and an acute angle θ with $\hat{\mathrm{k}}$. Find the angle θ and components of \vec{a}.

Answer

Assume, $\vec{a}=x \hat{\imath}+y \hat{j}+z \hat{k}$
Using formula: $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos x$
$|\vec{a}|=1$
since it is a unit vector
First taking dot product with î
$\overrightarrow{\mathrm{a}} . \hat{1}=|\vec{a}||\hat{i}| \cos \mathrm{x}$
$x=\cos \left(\frac{\pi}{4}\right)$
$\mathrm{x}=\frac{1}{\sqrt{2}}$
Taking dot product with $\hat{\jmath}$
$\vec{a} . \hat{\jmath}=|\vec{a}||\hat{\jmath}| \cos x$
$y=\cos \left(\frac{\pi}{3}\right)$
$y=\frac{1}{2}$

Now we have \vec{a} as $\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{2} \hat{\jmath}+z \hat{k}$
Since the magnitude of \vec{a} is 1
$\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{2}\right)^{2}+z^{2}=1$
$z^{2}=1-\frac{1}{2}-\frac{1}{4}$
$\mathrm{z}^{2}=\frac{1}{4}$
$\mathrm{z}=\frac{1}{2}$ or $\mathrm{z}=-\frac{1}{2}$
Considering, $\mathrm{z}=\frac{1}{2}$
$\overrightarrow{\mathrm{a}}=\frac{1}{\sqrt{2}} \hat{\mathrm{\imath}}+\frac{1}{2} \hat{\jmath}+\frac{1}{2} \hat{\mathrm{k}}$
Therefore, angle with $\hat{\mathrm{k}}$ is
$\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{k}}=|\overrightarrow{\mathrm{a}}||\hat{\mathrm{k}}| \cos \mathrm{x}$
$\frac{1}{2}=\cos x$
$x=\frac{\pi}{3}$

29. Question

If two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \vec{b}=1$, then find the value of $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

Answer

Expanding the given equation $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$, we get,
$6|\vec{a}|^{2}+21(\vec{a} \cdot \vec{b})-10(\vec{a} \cdot \vec{b})-35|\vec{b}|^{2}$
$6(2)^{2}+11(1)-35(1)^{2}$
$24+11-35=0$
Hence, $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})=0$.
30. Question

If \vec{a} is a unit vector, then find $|\vec{x}|$ in each of the following
(i) $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$
(ii) $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$

Answer

(i) Expanding the given equation
$|\overrightarrow{\mathrm{x}}|^{2}-|\overrightarrow{\mathrm{a}}|^{2}=8$
$|\vec{a}|=1$ as given
$|\overrightarrow{\mathrm{x}}|^{2}=9$
$|\overrightarrow{\mathrm{x}}|=3$ or $|\overrightarrow{\mathrm{x}}|=-3$
(ii) expanding the given equation
$|\overrightarrow{\mathrm{x}}|^{2}-|\overrightarrow{\mathrm{a}}|^{2}=12$
$|\vec{a}|=1$ as given
$|\overrightarrow{\mathrm{x}}|^{2}=13$
$|\overrightarrow{\mathrm{x}}|=\sqrt{13}$ or $|\overrightarrow{\mathrm{x}}|=-\sqrt{13}$

31. Question

Find $|\vec{a}|$ and $|\vec{b}|$, if
(i) $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=12$ and $|\vec{a}|=2|\vec{b}|$
(ii) $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$
(iii) $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=3$ and $|\vec{a}|=2|\vec{b}|$

Answer

(i) expanding the given equation
$|\vec{a}|^{2}-|\vec{b}|^{2}=12$
Substituting $|\vec{a}|=2|\vec{b}|$
$4|\overrightarrow{\mathrm{~b}}|^{2}-|\overrightarrow{\mathrm{b}}|^{2}=12$
$3|\vec{b}|^{2}=12$
$|\vec{b}|=2$ or -2
$|\vec{a}|=4$ or -4
(ii) expanding the given equation
$|\vec{a}|^{2}-|\vec{b}|^{2}=8$
Substituting, $|\vec{a}|=8|\vec{b}|$
$64|\vec{b}|^{2}-|\vec{b}|^{2}=8$
$63|\vec{b}|^{2}=8$
$|\overrightarrow{\mathrm{b}}|^{2}=\frac{8}{63}$
$|\overrightarrow{\mathrm{b}}|=\frac{2 \sqrt{2}}{3 \sqrt{7}}$ or $-\frac{2 \sqrt{2}}{3 \sqrt{7}}$
$|\vec{a}|=\frac{16 \sqrt{2}}{3 \sqrt{7}}$ or $-\frac{16 \sqrt{2}}{3 \sqrt{7}}$
(iii) expanding the given equation
$|\vec{a}|^{2}-|\vec{b}|^{2}=3$

Substituting, $|\vec{a}|=2|\vec{b}|$
$4|\vec{b}|^{2}-|\vec{b}|^{2}=3$
$3|\vec{b}|^{2}=3$
$|\vec{b}|=1$ or -1
| $\vec{a} \mid=2$ or -2

32. Question

Find $|\vec{a}-\vec{b}|$, if
(i) $|\vec{a}|=2,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=8$
(ii) $|\vec{a}|=3,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=1$
(iii) $|\overrightarrow{\mathrm{a}}|=\sqrt{3},|\overrightarrow{\mathrm{~b}}|=2$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=4$

Answer

(i) using formula,
$|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2(\vec{a} \cdot \vec{b})}$
Substituting the given values in above equation we get,
$|\vec{a}-\vec{b}|=\sqrt{2^{2}+5^{2}-2(8)}$
$|\vec{a}-\vec{b}|=\sqrt{13}$
(ii) using formula,
$|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2(\vec{a} . \vec{b})}$
Substituting the given values in above equation we get,
$|\vec{a}-\vec{b}|=\sqrt{3^{2}+4^{2}-2(1)}$
$|\vec{a}-\vec{b}|=\sqrt{23}$
(iii) using formula,
$|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2(\vec{a} \cdot \vec{b})}$
Substituting the given values in above equation we get,
$|\vec{a}-\vec{b}|=\sqrt{\sqrt{3}^{2}+2^{2}-2(4)}$
$|\vec{a}-\vec{b}|=\sqrt{-1}$
Now this will yield imaginary value.
We know that, $\sqrt{-1}=i$ (iota)
Therefore, $|\vec{a}-\vec{b}|=i$

33. Question

Find the angle between two vectors \vec{a} and \vec{b}, if
(i) $|\overrightarrow{\mathrm{a}}|=\sqrt{3},|\overrightarrow{\mathrm{~b}}|=2$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\sqrt{6}$
(ii) $|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{~b}}|=3$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=1$

Answer

(i) we know that $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos x$ where x is the angle between two vectors
$\cos x=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$\cos x=\frac{(\sqrt{6})}{2 \sqrt{3}}$
$\cos x=\frac{1}{\sqrt{2}}$
$x=45^{\circ}$
(ii) we know that,
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \mathrm{x}$
Where, x is the angle between two vectors.
$\cos x=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$\cos x=\frac{(1)}{3 \times 3}$
$\cos x=\frac{1}{9}$
$x=\cos ^{-1}\left(\frac{1}{9}\right)$

34. Question

Express the vector $\overrightarrow{\mathrm{a}}=5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$ as the sum of two vectors such that one is parallel to vector $\vec{b}=3 \hat{i}+\hat{k}$ and other is perpendicular to \vec{b}.

Answer

let $\vec{a}=\vec{u}+\vec{v}$ where u is vector parallel to b and v is vector perpendicular to b, as given in the question.
$5 \hat{\imath}-2 \hat{\jmath}+5 \hat{k}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}$
So, $\overrightarrow{\mathrm{u}}=\mathrm{p} \overrightarrow{\mathrm{b}}$; where p is some constant
$\overrightarrow{\mathrm{u}}=3 \mathrm{p} \hat{\mathrm{i}}+\mathrm{p} \hat{\mathrm{k}}$
Substituting this value in above equation
$\overrightarrow{\mathrm{V}}=(5-3 \mathrm{p}) \hat{\mathrm{i}}-2 \mathrm{j}+(5-\mathrm{p}) \hat{\mathrm{k}}$
Now according to conditions since vector v and b are perpendicular to each other $\vec{v} \cdot \vec{b}=0$
$\hat{\mathrm{i}} . \hat{\mathrm{I}}=1 ; \hat{\mathrm{\jmath}} \cdot \hat{\jmath}=1 ; \hat{\mathrm{k}} . \hat{\mathrm{k}}=1$
$(5-3 p)(3)+(5-p)=0$
$15-9 p+5-p=0$
$20=10 p$
$P=2$
So, $\overrightarrow{\mathrm{u}}=6 \hat{\mathrm{i}}+2 \hat{\mathrm{k}}$
substituting this value in above equation, we will get \vec{v}
$\overrightarrow{\mathrm{v}}=(5 \hat{\imath}-2 \hat{\jmath}+5 \hat{\mathrm{k}})-(6 \hat{\mathrm{i}}+2 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{v}}=-\hat{\mathrm{i}}-2 \hat{\jmath}+3 \hat{\mathrm{k}}$

35. Question

If \vec{a} and \vec{b} are two vectors of the same magnitude inclined at an angle of 30° such that $\vec{a} \cdot \vec{b}=3$, find $|\vec{a}|,|\vec{b}|$.

Answer

Let $|\vec{a}|=|\vec{b}|=x$
The angle between these vectors is 30°
So, applying the formula,
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos x$
$3=x^{2} \cos 30$
$x^{2}=\frac{6}{\sqrt{3}}$
So, the magnitude of $|\vec{a}|=|\vec{b}|=\frac{6}{\sqrt{3}}$

36. Question

Express $2 \hat{i}-\hat{j}+3 \hat{k}$ as the sum of a vector parallel and a vector perpendicular to $2 \hat{i}+4 \hat{j}-2 \hat{k}$.

Answer

Let $\vec{a}=2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=2 \hat{\imath}+4 \hat{\jmath}-2 \hat{\mathbf{k}}$
let $\vec{a}=\vec{u}+\vec{v}$ where u is vector parallel to b and v is vector perpendicular to b.
$2 \hat{\mathrm{i}}-\hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}$
So, $\overrightarrow{\mathrm{u}}=\mathrm{p} \overrightarrow{\mathrm{b}}$; where p is some constant
$\overrightarrow{\mathbf{u}}=\mathrm{p}(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-2 \hat{\mathbf{k}})$
Substituting this value in above equation
$\overrightarrow{\mathrm{v}}=(2-2 \mathrm{p}) \hat{\mathrm{i}}+(-1-4 \mathrm{p}) \hat{\mathrm{\jmath}}+(3+2 \mathrm{p}) \hat{\mathrm{k}}$
Now according to conditions since vector v and b are perpendicular to each other $\vec{v} \cdot \vec{b}=0$
$\hat{1} . \hat{\mathrm{I}}=1 ; \hat{\mathrm{\jmath}} \cdot \hat{\mathrm{\jmath}}=1 ; \hat{\mathrm{k}} . \hat{\mathrm{k}}=1$
$2(2-2 p)-4(1+4 p)-2(3+2 p)=0$
$4-4 p-4-16 p-6-4 p=0$
$-24 p=6$
$p=-\frac{1}{4}$
$\overrightarrow{\mathrm{u}}=-\left(\frac{1}{2} \hat{\imath}+1 \hat{\jmath}-\frac{1}{2} \widehat{k}\right)$
Substituting this value of u vector in above equation
$2 \hat{\imath}-\hat{\jmath}+3 \hat{k}=\left(-\frac{1}{2} \hat{\imath}-1 \hat{\jmath}+\frac{1}{2} \hat{k}\right)+\vec{v}$
$\overrightarrow{\mathrm{v}}=\frac{5}{2} \hat{\imath}+\frac{5}{2} \hat{k}$
$2 \hat{\imath}-\hat{\jmath}+3 \hat{k}=\left(-\frac{1}{2} \hat{\imath}-1 \hat{\jmath}+\frac{1}{2} \hat{k}\right)+\left(\frac{5}{2} \hat{\imath}+\frac{5}{2} \hat{k}\right)$

37. Question

Decompose the vector $6 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$ into vectors which are parallel and perpendicular to vector $\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$.

Answer

let $\vec{a}=6 \hat{\imath}-3 \hat{\jmath}-6 \hat{k}$ and $\vec{b}=\hat{\imath}+\hat{\jmath}+\hat{k}$
let $\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}$ where u is vector parallel to b and v is vector perpendicular to b
$6 \hat{i}-3 \hat{\jmath}-6 \hat{k}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}$
So, $\overrightarrow{\mathrm{u}}=\mathrm{p} \overrightarrow{\mathrm{b}}$; where p is some constant
$\overrightarrow{\mathrm{u}}=\mathrm{p}(\hat{\mathrm{i}}+\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})$
Substituting this value in above equation
$\overrightarrow{\mathrm{v}}=(6-\mathrm{p}) \hat{\mathrm{i}}+(-3-\mathrm{p}) \hat{\jmath}+(-6-p) \hat{k}$
Now according to conditions since vector v and b are perpendicular to each other $\vec{v} \cdot \vec{b}=0$
$\hat{\mathrm{i} . \hat{1}}=1 ; \hat{\mathrm{j}} \cdot \hat{\mathrm{\jmath}}=1 ; \hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1$
$6-p-3-p-6-p=0$
$P=-1$
So, $\overrightarrow{\mathrm{u}}=-(\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}})$
Substituting this value of $\overrightarrow{\mathbf{u}}$ in above equation
$6 \hat{\imath}-3 \hat{\jmath}-6 \hat{k}=-(\hat{\imath}+\hat{\jmath}+\hat{k})+\vec{v}$
$\overrightarrow{\mathrm{v}}=7 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}$
$6 \hat{\imath}-3 \hat{\jmath}-6 \hat{k}=-(\hat{\imath}+\hat{\jmath}+\hat{k})+7 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}$

38. Question

Let $\vec{a}=5 \hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\lambda \hat{k}$. Find such that $\vec{a}+\vec{b}$ is orthogonal to $\vec{a}-\vec{b}$.

Answer

Meaning of orthogonal is that two vectors are perpendicular to each other, so their dot product is zero.
$\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=(5 \hat{\mathrm{i}}-\hat{\jmath}+7 \hat{\mathrm{k}})+(\hat{\imath}-\hat{\jmath}+\beta \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=6 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+(7+\beta) \hat{\mathrm{k}}$
Similarly
$\vec{a}-\vec{b}=(5 \hat{\imath}-\hat{\jmath}+7 \hat{k})-(\hat{\imath}-\hat{\jmath}+\beta \hat{k})$
$\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{i}}+(7-\beta) \hat{\mathrm{k}}$
So, to satisfy the orthogonal condition $\vec{a} \cdot \vec{b}=0$
$\hat{\mathrm{i} . \hat{1}}=1 ; \hat{\mathrm{\jmath}} \cdot \hat{\jmath}=1 ; \hat{\mathrm{k}} . \hat{\mathrm{k}}=1$
$[6 \hat{\mathrm{\imath}}-2 \hat{\mathrm{\jmath}}+(7+\beta) \hat{\mathrm{k}}] \cdot[4 \hat{\mathrm{\imath}}+(7-\beta) \hat{\mathrm{k}}]=24+49-\beta^{2}=0$
$\beta=\sqrt{73}$

39. Question

If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, what can you conclude about the vector \vec{b} ?

Answer

it is given that $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$
From this, we can say that $|\vec{a}|^{2}=0$
So \vec{a} is a zero vector
And from the second part $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$ we can say that $\overrightarrow{\mathrm{b}}$ can be any vector perpendicular to zero vector $\overrightarrow{\mathrm{a}}$.

40. Question

If \vec{c} is perpendicular to both \vec{a} and \vec{b}, then prove that $彳$ is perpendicular to both $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

Answer

It is given that \vec{c} is perpendicular to both \vec{a} and \vec{b}
So, $\vec{c} \cdot \vec{a}=0$ and $\vec{c} \cdot \vec{b}=0$
For \vec{c} to be perpendicular to $(\vec{a}+\vec{b}), \vec{c} \cdot(\vec{a}+\vec{b})=0$
$\vec{c} .(\vec{a}+\vec{b})$
$\vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}=0$
For the second part.
For \vec{c} to be perpendicular to $(\vec{a}-\vec{b}), \vec{c} \cdot(\vec{a}-\vec{b})=0$
$\vec{c} .(\vec{a}-\vec{b})$
$\vec{c} \cdot \vec{a}-\vec{c} \cdot \vec{b}=0$
Hence, proved

41. Question

If $|\vec{a}|=a$ and $|\vec{b}|=b$, prove that $\left(\frac{\vec{a}}{a^{2}}-\frac{\vec{b}}{b^{2}}\right)^{2}=\left(\frac{\vec{a}-\vec{b}}{a b}\right)^{2}$.
we know that $|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2(\vec{a} \cdot \vec{b})}$
Now expanding LHS of given equation we get,
$=\left[\frac{a^{2}}{a^{4}}+\frac{b^{2}}{b^{4}}-\frac{2 \vec{a} \vec{b}}{a^{2} b^{2}}\right]$
$=\left[\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}-\frac{2 \overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}}}{\mathrm{a}^{2} \mathrm{~b}^{2}}\right]$
Taking LCM we get,
$=\left[\frac{b^{2}+a^{2}-2 \vec{a} \vec{b}}{a^{2} b^{2}}\right]$
Using $|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2(\vec{a} \cdot \vec{b})}$ re-writing the above equation
$\left[\frac{(\vec{a}-\vec{b})^{2}}{a b}\right]$
Hence, proved.

42. Question

If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}=0$, then show that \vec{d} is the null vector

Answer

Given that $\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}}$ and \vec{c} are non-coplanar and $\overrightarrow{\mathrm{a}} \cdot \vec{d}=0 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{~d}}=0$ and $\vec{c} \cdot \overrightarrow{\mathrm{~d}}=0$
From above given conditions we can say that either
(i) $\overrightarrow{\mathrm{d}}=0$ or
(ii) \vec{d} is perpendicular to $\vec{a} \vec{b}$ and \vec{c}

Since $\vec{a} \vec{b}$ and \vec{c} are non-coplanar, \vec{d} cannot be simultaneously perpendicular to all three, as only three axes exist that is x, y, z

So $\overrightarrow{\mathrm{d}}$ must be a null vector which is equal to 0

43. Question

If a vector \vec{a} is perpendicular to two non-collinear vectors \vec{b} and \vec{c}, then \vec{a} is perpendicular to every vector in the plane of \vec{b} and \vec{c}.

Answer

Given \vec{a} is perpendicular to \vec{b} and \vec{c}, so $\vec{c} . \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$
Let a random vector $\overrightarrow{\mathrm{r}}=\mathrm{p} \overrightarrow{\mathrm{b}}+\mathrm{k} \vec{c}$ in the plane of $\overrightarrow{\mathrm{b}}$ and \vec{c} where p and k are some arbitrary constant
Taking dot product of \vec{r} with \vec{a}
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=(\mathrm{p} \overrightarrow{\mathrm{b}}+\mathrm{k} \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{a}}$
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=(\mathrm{p} \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}+\mathrm{k} \vec{c} \cdot \overrightarrow{\mathrm{a}})$
Using $\vec{c} \cdot \vec{a}=0$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$
$\vec{r} \cdot \vec{a}=0$
Hence, proved.

44. Question

If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, show that the angle between the vectors \vec{b} and \vec{c} is given by $\cos \theta \frac{|\vec{a}|^{2}-|\vec{b}|^{2}-|\vec{c}|^{2}}{2|\vec{b}||\vec{c}|^{2}}$.

Answer

Given $\vec{a}+\vec{b}+\vec{c}=0$
$-\vec{a}=\vec{b}+\vec{c}$
Now squaring both sides, using,
$|\vec{a}+\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+2(\vec{a} \cdot \vec{b})}$ we get,
$|\vec{a}|^{2}=|\overrightarrow{\mathrm{b}}|^{2}+|\vec{c}|^{2}+2|\overrightarrow{\mathrm{~b}}||\vec{c}| \cos x$
$\frac{\left[|\overrightarrow{\mathrm{a}}|^{2}-|\overrightarrow{\mathrm{b}}|^{2}-|\vec{c}|^{2}\right]}{2|\overrightarrow{\mathrm{~b}}||\vec{c}|}=\cos x$
Hence, proved.

45. Question

Let \vec{u}, \vec{v} and \vec{w} be vector such $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$. If $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$, then find $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$.

Answer

Given $\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{w}}=0$
Now squaring both sides using:
$(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{w}})^{2}=|\overrightarrow{\mathrm{u}}|^{2}+|\overrightarrow{\mathrm{v}}|^{2}+|\overrightarrow{\mathrm{w}}|^{2}+2 \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}+2 \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{v}}+2 \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}}$
$0=3^{2}+4^{2}+5^{2}+2 \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}+2 \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{v}}+2 \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}}$
$2 \vec{u} \cdot \vec{v}+2 \vec{w} \cdot \vec{v}+2 \vec{w} \cdot \vec{u}=-50$
$\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}}=-25$

46. Question

Let $\vec{a}=x^{2} \hat{i}+2 \hat{j}-2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=x^{2} \hat{i}+5 \hat{j}-4 \hat{k}$ be three vectors. Find the values of x for which the angle between \vec{a} and \vec{b} is acute and the angle between \vec{a} and \vec{b} is obtuse

Answer

We know that,
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos x$
Where, x is the angle between two vectors
Applying for \vec{a} and \vec{b}
$\left(x^{2} \hat{\imath}+2 \hat{\jmath}-2 \hat{k}\right) \cdot(\hat{\imath}-\hat{\jmath}+\hat{k})=\sqrt{x^{4}+4+4} \sqrt{1+1+1} \cos x$
$\frac{\left[\mathrm{x}^{2}-2-2\right]}{\sqrt{\mathrm{x}^{4}+4+4} \sqrt{1+1+1}}=\cos \mathrm{x}$
$\frac{x^{2}-4}{\sqrt{x^{4}+8} \sqrt{3}}=\cos x$
Since angle between \vec{a} and \vec{b} is acute $\cos x$ should be greater than 0
$\frac{\mathrm{x}^{2}-4}{\sqrt{\mathrm{x}^{4}+8} \sqrt{3}}>0$
$x^{2}-4>0$
$x>2$ and $x<-2$
applying for \vec{b} and \vec{c}
$\left(\mathrm{x}^{2} \hat{\mathrm{\imath}}+5 \hat{\jmath}-4 \hat{\mathrm{k}}\right) \cdot(\hat{\mathrm{i}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}})=\sqrt{\mathrm{x}^{4}+25+16} \sqrt{1+1+1} \cos \mathrm{x}$
$\frac{\left[\mathrm{x}^{2}-9\right]}{\sqrt{\mathrm{x}^{4}+25+16} \sqrt{1+1+1}}=\cos \mathrm{x}$
Since angle between \vec{c} and \vec{b} is obtuse cos x should be less than
0
$\frac{\left[x^{2}-9\right]}{\sqrt{x^{4}+41} \sqrt{3}}<0$
$x^{2}-9<0$
$x>-3$ and $x<3$

47. Question

Find the values of x and y if the vectors $\vec{a}=3 \hat{i}+x \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+y \hat{k}$ are mutually perpendicular vectors of equal magnitude.

Answer

given \vec{a} is perpendicular to \vec{b} so $\vec{b} \cdot \vec{a}=0$
$\vec{a}=3 \hat{i}+x \hat{\jmath}-\hat{k}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{\jmath}}+\mathrm{y} \hat{\mathrm{k}}$
Applying, $\vec{b} \cdot \vec{a}=0$
$6+x-y=0$
$x-y=-6 \ldots$ (i)
Since the magnitude of both vectors are equal
$\sqrt{3^{2}+x^{2}+1^{2}}=\sqrt{2^{2}+1^{2}+y^{2}}$
$\sqrt{10+\mathrm{x}^{2}}=\sqrt{5+\mathrm{y}^{2}}$
$y^{2}-x^{2}=5$
$(y-x)(y+x)=5$
$6 x+6 y=5 \ldots$ (ii)
Solving equation (i) and (ii) we get
$x=-\frac{31}{12} ; y=\frac{41}{12}$

48. Question

If \vec{a} and \vec{b} are two non-collinear unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$, find $(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})$.

Answer

Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$
$|\vec{a}+\vec{b}|=\sqrt{3}$
Squaring both sides
$|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=3$
$1+1+2 \vec{a} \cdot \vec{b}=3$
$2 \vec{a} \cdot \vec{b}=1$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\frac{1}{2}$
Now expanding the equation $(2 \vec{a}-5 \vec{b})(3 \vec{a}+\vec{b})$
$6|\vec{a}|^{2}-5|\vec{b}|^{2}-13 \vec{a} \cdot \vec{b}$
$1-\frac{13}{2}=-\frac{11}{2}$
49. Question

If \vec{a}, \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{b}|$, then prove that $\vec{a}=2 \vec{b}$ is perpendicular to \vec{a}.

Answer

Given $|\vec{a}+\vec{b}|=|\vec{b}|$
Squaring both sides we get,
$|\vec{a}+\vec{b}|^{2}=|\vec{b}|^{2}$
$|\vec{a}+\vec{b}| \cdot|\vec{a}+\vec{b}|=|\vec{b}| \cdot|\vec{b}|$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{b}}| \cdot|\overrightarrow{\mathrm{b}}|$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$
$\vec{a} .(\vec{a}+2 \vec{b})=0$
Hence, proved.

Exercise 24.2

1. Question

In a triangle $\triangle \mathrm{OAB}, \angle \mathrm{AOB}=90^{\circ}$. If P and Q are points of trisection of AB , prove that $\mathrm{OP}^{2}+\mathrm{OQ}^{2}=\frac{5}{9} \mathrm{AB}^{2}$

Answer

Given:- $\angle A O B=90^{\circ}, P$ and Q are trisection of $A B$
i.e. $A P=P Q=Q B$ or 1:1:1 division of line $A B$

To Prove:- $\mathrm{OP}^{2}+\mathrm{OQ}^{2}=\frac{5}{9} \mathrm{AB}^{2}$

Proof:- Let $\overrightarrow{0}, \vec{a}$, and \vec{b} be position vector of O, A and B respectively
Now, Find position vector of P, we use section formulae of internal division: Theorem given below
"Let A and B be two points with position vectors \vec{a} and \vec{b}
respectively, and c be a point dividing $A B$ internally in the ration $m: n$. Then the position vector of c is given by $\overrightarrow{\mathrm{OC}}=\frac{\mathrm{mb}+\mathrm{n} \overrightarrow{\mathrm{a}}}{\mathrm{m}+\mathrm{n}}$

By above theorem, here P point divides $A B$ in 1:2, so we get
\Rightarrow Position vector of $\mathrm{P}=\frac{\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{a}}}{1+2}$
\Rightarrow Position vector of $\mathrm{P}=\frac{2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}}{3}$
Similarly, Position vector of Q is calculated
By above theorem, here Q point divides $A B$ in 2:1, so we get
\Rightarrow Position vector of $\mathrm{Q}=\frac{2 \overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{a}}}{2+1}$
\Rightarrow Position vector of $Q=\frac{\vec{a}+2 \vec{b}}{3}$
Length $O A$ and $O B$ in vector form
$\Rightarrow \overrightarrow{\mathrm{OA}}=$ Position vector of $\mathrm{A}-$ Position vector of 0
$\Rightarrow \overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}-\overrightarrow{0}$
$\Rightarrow \overrightarrow{\mathrm{OB}}=$ Position vector of $B-$ Position vector of 0
$\Rightarrow \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{o}}$
Now length/distance OP in vector form
$\overrightarrow{\mathrm{OP}}=$ Position vector of $\mathrm{P}-$ Position vector of O
$\Rightarrow \overrightarrow{\mathrm{OP}}=\frac{2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}}{3}-\overrightarrow{\mathrm{o}}$
$\Rightarrow \overrightarrow{\mathrm{OP}}=\frac{2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}-3 \overrightarrow{\mathrm{c}}}{3}$
$\Rightarrow \overrightarrow{\mathrm{OP}}=\frac{2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}-2 \overrightarrow{\mathrm{o}}-\overrightarrow{\mathrm{o}}}{3}$
$\Rightarrow \overrightarrow{\mathrm{OP}}=\frac{2 \overrightarrow{\mathrm{a}}-2 \overrightarrow{\mathrm{o}}+\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{o}}}{3}$
Putting $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ values
$\Rightarrow \overrightarrow{\mathrm{OP}}=\frac{2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{3}$
length/distance OQ in vector form
$\overrightarrow{\mathrm{OQ}}=$ Position vector of $\mathrm{Q}-$ Position vector of O
$\Rightarrow \overrightarrow{\mathrm{OQ}}=\frac{\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}}{3}-\overrightarrow{\mathrm{o}}$
$\Rightarrow \overrightarrow{\mathrm{OQ}}=\frac{\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}-3 \overrightarrow{\mathrm{o}}}{3}$
$\Rightarrow \overrightarrow{\mathrm{OQ}}=\frac{\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{~b}}-2 \overrightarrow{\mathrm{o}}-\overrightarrow{\mathrm{o}}}{3}$
$\Rightarrow \overrightarrow{\mathrm{OQ}}=\frac{\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{o}}+2 \overrightarrow{\mathrm{~b}}-2 \overrightarrow{\mathrm{o}}}{3}$
Putting $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ values
$\Rightarrow \overrightarrow{\mathrm{OQ}}=\frac{\overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}}{3}$
Taking LHS
$O P^{2}+O Q^{2}$
$=\left(\frac{2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{3}\right)^{2}+\left(\frac{\overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}}{3}\right)^{2}$
$=\frac{4(\overrightarrow{\mathrm{OA}})^{2}+(\overrightarrow{\mathrm{OB}})^{2}+4\left(\overrightarrow{\mathrm{OA})} \cdot(\overrightarrow{\mathrm{OB}})+(\overrightarrow{\mathrm{OA}})^{2}+4(\overrightarrow{\mathrm{OB}})^{2}+4(\overrightarrow{\mathrm{OA}}) \cdot(\overrightarrow{\mathrm{OB}})\right.}{9}$
as we know in case of dot product
$\vec{a} \cdot \vec{a}=|a|^{2}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\mathrm{a}||\mathrm{b}| \cos \theta$
Angle between $O A$ and $O B$ is 90°,
$\Rightarrow \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=|\mathrm{OA}||\mathrm{OB}| \cos 90^{\circ}$
$\Rightarrow \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$
Therefore, $\mathrm{OP}^{2}+\mathrm{OQ}^{2}$
$=\frac{4(\overrightarrow{\mathrm{OA}})^{2}+(\overrightarrow{\mathrm{OB}})^{2}+0+(\overrightarrow{\mathrm{OA}})^{2}+4(\overrightarrow{\mathrm{OB}})^{2}+0}{9}$
$=\frac{4(\overrightarrow{\mathrm{OA}})^{2}+(\overrightarrow{\mathrm{OB}})^{2}+(\overrightarrow{\mathrm{OA}})^{2}+4(\overrightarrow{\mathrm{OB}})^{2}}{9}$
$=\frac{5(\overrightarrow{\mathrm{OA}})^{2}+5(\overrightarrow{\mathrm{OB}})^{2}}{9}$
$=\frac{5\left(\mathrm{OA}^{2}+\mathrm{OB}^{2}\right)}{9}$
As from figure $O A^{2}+O B^{2}=A B^{2}$
$=\frac{5(\mathrm{AB})^{2}}{9}$
$=$ RHS
Hence, Proved.

2. Question

Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Answer

Given:- Quadrilateral OACB with diagonals bisect each other at 90°.

Proof:-It is given diagonal of a quadrilateral bisect each other
Therefore, by property of parallelogram (i.e. diagonal bisect each other) this quadrilateral must be a parallelogram.

Now as Quadrilateral OACB is parallelogram, its opposite sides must be equal and parallel.
$\Rightarrow O A=B C$ and $A C=O B$
Let, O is at origin.
\vec{a} and \vec{b} are position vector of A and B
Therefore from figure, by parallelogram law of vector addition
$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$
And, by triangular law of vector addition
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}$
As given diagonal bisect each other at 90°
Therefore $A B$ and $O C$ make 90° at their bisecting point D
$\Rightarrow \angle \mathrm{ADC}=\angle \mathrm{CDB}=\angle \mathrm{BDO}=\angle \mathrm{ODA}=90^{\circ}$
Or, their dot product is zero
$\Rightarrow(\overrightarrow{\mathrm{OC}}) \cdot(\overrightarrow{\mathrm{AB}})=0$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$
$\Rightarrow|\mathrm{a}|^{2}+\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}-|\mathrm{b}|^{2}=0$
$\Rightarrow|\mathrm{a}|^{2}=|\mathrm{b}|^{2}$
$\Rightarrow \mathrm{OA}=\mathrm{OB}$
Hence we get
$O A=A C=C B=O B$
i.e. all sides are equal

Therefore by property of rhombus i.e
Diagonal bisect each other at 90°

And all sides are equal
Quadrilateral OACB is a rhombus
Hence, proved.

3. Question

(Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Answer

Given:- Right angle Triangle
To Prove:- Square of the hypotenuse is equal to the sum of the squares of the other two sides Let $\triangle A O B$ be right angle triangle with right angle at O

Thus we have to prove
$A B^{2}=O A^{2}+O B^{2}$
Proof: - Let, O at Origin, then
\vec{a} and \vec{b} be position vector of A and B respectively
Since OB is perpendicular at OA, their dot product equals to zero
We know that,
(Formula: $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\mathrm{a}||\mathrm{b}| \cos \theta$)
Therefore,
$\Rightarrow(\overrightarrow{\mathrm{OA}}) \cdot(\overrightarrow{\mathrm{OB}})=0$
$\Rightarrow \vec{a} \cdot \vec{b}=0 \cdots \ldots$ (i)
Now, We can see that, by triangle law of vector addition, $\overrightarrow{A B}=\vec{b}-\vec{a}$ Therefore,
$(\overrightarrow{\mathrm{AB}})^{2}=(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})^{2}$
$\Rightarrow(\overrightarrow{\mathrm{AB}})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$
From equation (i)
$\Rightarrow(\overrightarrow{\mathrm{AB}})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-0$
$\Rightarrow \mathrm{AB}^{2}=O A^{2}+\mathrm{OB}^{2}$ (Pythagoras theorem)
Hence, proved.

4. Question

Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Answer

Given:- Parallelogram OABC

To Prove:- $A C^{2}+O B^{2}=O A^{2}+A B^{2}+B C^{2}+C O^{2}$
Proof:- Let, O at origin
\vec{a}, \vec{b} and \vec{c} be position vector of A, B and C respectively
Therefore,
$\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{c}}$
Distance/length of AC
$\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
By triangular law:-
$\vec{a}+\vec{b}=-\vec{c}$ or $\vec{a}+\vec{b}+\vec{c}=0$ the the vectors form sides of triangle
$\Rightarrow(\overrightarrow{\mathrm{AC}})^{2}=(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}})^{2}$
As $A B=O C$ and $B C=O A$
From figure
$\Rightarrow(\overrightarrow{\mathrm{AC}})^{2}=(\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}})^{2}$
$\Rightarrow(\overrightarrow{A C})^{2}=(\vec{c})^{2}+(\vec{a})^{2}-2(\vec{c}) \cdot(\vec{a}) \cdots \cdots(i)$
Similarly, again from figure
$\Rightarrow(\overrightarrow{\mathrm{OB}})^{2}=(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}})^{2}$
$\Rightarrow(\overrightarrow{\mathrm{OB}})^{2}=(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}})^{2}$
$\Rightarrow(\overrightarrow{\mathrm{OB}})^{2}=(\vec{a}+\vec{c})^{2}$
$\Rightarrow(\overrightarrow{\mathrm{OB}})^{2}=(\vec{a})^{2}+(\vec{c})^{2}+2(\vec{a}) \cdot(\vec{c})$
Now,
Adding equation (i) and (ii)
$\Rightarrow(\overrightarrow{\mathrm{AC}})^{2}+(\overrightarrow{\mathrm{OB}})^{2}=2|\vec{a}|^{2}+2|\vec{c}|^{2}$
Take RHS
$O A^{2}+A B^{2}+B C^{2}+C O^{2}$
$=(\vec{a})^{2}+(\overrightarrow{\mathrm{OC}})^{2}+(\overrightarrow{\mathrm{OA}})^{2}+(\overrightarrow{\mathrm{c}})^{2}$
$=(\vec{a})^{2}+(\vec{c})^{2}+(\vec{a})^{2}+(\vec{c})^{2}$
$=2|\vec{a}|^{2}+2|\vec{c}|^{2}$
Thus from equation (iii) and (iv), we get
LHS = RHS
Hence proved

5. Question

Prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus.

Answer

Given:- ABCD is a rectangle
To prove:- PQRS is rhombus thus finding its properties in PQRS

i.e. All sides equal and parallel

Let, P, Q, R and S are midpoints of sides $A B, B C, C D$ and $D A$ respectively
Therefore
$\overrightarrow{\mathrm{PB}}=\frac{\overrightarrow{\mathrm{AB}}}{2}=\overrightarrow{\mathrm{AP}}$
$\overrightarrow{\mathrm{BQ}}=\frac{\overrightarrow{\mathrm{BC}}}{2}=\overrightarrow{\mathrm{QC}}$
$\overrightarrow{\mathrm{CR}}=\frac{\overrightarrow{\mathrm{CD}}}{2}=\overrightarrow{\mathrm{RD}}$
$\overrightarrow{\mathrm{DS}}=\frac{\overrightarrow{\mathrm{DA}}}{2}=\overrightarrow{\mathrm{SA}}$
also $A B=C D, B C=A D$ (ABCD is rectangle opposite sides are equal)
Therefore
$\mathrm{AP}=\mathrm{PB}=\mathrm{DR}=\mathrm{RC}$ and $\mathrm{BQ}=\mathrm{QC}=\mathrm{AS}=\mathrm{SD}$
IMP:- Direction/arrow head of vector should be placed correctly
Now, considering in vector notion and applying triangular law of vector addition, we get
$\Rightarrow \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{BQ}}$
$\Rightarrow \overrightarrow{\mathrm{PQ}}=\frac{\overrightarrow{\mathrm{AB}}}{2}+\frac{\overrightarrow{\mathrm{BC}}}{2}$
$\Rightarrow \overrightarrow{\mathrm{PQ}}=\frac{\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}}{2}$
$\Rightarrow \overrightarrow{\mathrm{PQ}}=\frac{\overrightarrow{\mathrm{AC}}}{2}$
Magnitude $P Q=A C$
and $\overrightarrow{\mathrm{SR}}=\overrightarrow{\mathrm{RD}}+\overrightarrow{\mathrm{DS}}$
$\Rightarrow \overrightarrow{\mathrm{SR}}=\frac{\overrightarrow{\mathrm{CD}}}{2}+\frac{\overrightarrow{\mathrm{DA}}}{2}$
$\Rightarrow \overrightarrow{\mathrm{SR}}=\frac{\overrightarrow{\mathrm{CD}}+\overrightarrow{\mathrm{DA}}}{2}$
$\Rightarrow \overrightarrow{\mathrm{SR}}=\frac{\overrightarrow{\mathrm{CA}}}{2}$
Magnitude SR = AC
Thus sides PQ and SR are equal and parallel
It shows PQRS is a parallelogram
Now,
$\Rightarrow(\overrightarrow{\mathrm{PQ}})^{2}=(\overrightarrow{\mathrm{PQ}}) \cdot(\overrightarrow{\mathrm{PQ}})$
$\Rightarrow(\overrightarrow{\mathrm{PQ}})^{2}=(\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{BQ}}) \cdot(\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{BQ}})$
$\Rightarrow(\overrightarrow{\mathrm{PQ}})^{2}=(\overrightarrow{\mathrm{PB}}) \cdot(\overrightarrow{\mathrm{PB}})+(\overrightarrow{\mathrm{PB}}) \cdot(\overrightarrow{\mathrm{BQ}})+(\overrightarrow{\mathrm{PB}}) \cdot(\overrightarrow{\mathrm{BQ}})+(\overrightarrow{\mathrm{BQ}}) \cdot(\overrightarrow{\mathrm{BQ}})$
By Dot product, we know
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}}=|\mathrm{a}|^{2}$
$\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{b}}=0$; if angle between them is 90°
Here $A B C D$ is rectangle and have 90° at A, B, C, D
$\Rightarrow(\overrightarrow{\mathrm{PQ}})^{2}=|\overrightarrow{\mathrm{PB}}|^{2}+|\overrightarrow{\mathrm{BQ}}|^{2}$
And
$\Rightarrow(\overrightarrow{\mathrm{PS}})^{2}=(\overrightarrow{\mathrm{PS}}) \cdot(\overrightarrow{\mathrm{PS}})$
again by triangular law
$\Rightarrow(\overrightarrow{\mathrm{PS}})^{2}=(\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{AS}}) \cdot(\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{AS}})$
$\Rightarrow(\overrightarrow{\mathrm{PS}})^{2}=((\overrightarrow{\mathrm{PA}}) \cdot(\overrightarrow{\mathrm{PA}})+(\overrightarrow{\mathrm{PA}}) \cdot(\overrightarrow{\mathrm{AS}})+(\overrightarrow{\mathrm{PA}}) \cdot(\overrightarrow{\mathrm{AS}})+(\overrightarrow{\mathrm{AS}}) \cdot(\overrightarrow{\mathrm{AS}}))$
By Dot product, we know
$\vec{a} \cdot \vec{a}=|a|^{2}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$; if angle between them is 90°
Here $A B C D$ is rectangle and have 90° at A, B, C, D
$\Rightarrow(\overrightarrow{\mathrm{PS}})^{2}=|\overrightarrow{\mathrm{PA}}|^{2}+|\overrightarrow{\mathrm{AS}}|^{2}$
From above similarities of sides of rectangle in eq (i), we have
$\Rightarrow(\overrightarrow{\mathrm{PS}})^{2}=|\overrightarrow{\mathrm{PB}}|^{2}+|\overrightarrow{\mathrm{BQ}}|^{2}$
Hence $\mathrm{PQ}=\mathrm{PS}$
And from above results we have
All sides of parallelogram are equal
$P Q=Q R=R S=S P$
Hence proved by property of rhombus (all sides are equal and opposite sides are parallel), PQRS is rhombus

6. Question

Prove that the diagonals of a rhombus are perpendicular bisectors of each other.

Answer

Given:- Rhombus OABC i.e all sides are equal
To Prove:- Diagonals are perpendicular bisector of each other

Proof:- Let, O at the origin
D is the point of intersection of both diagonals
\vec{a} and \vec{c} be position vector of A and C respectively
Then,
$\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}$
$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{C}}$
Now,
$\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}$
$\Rightarrow \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}}$
as $A B=O C$
$\Rightarrow \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}$
Similarly
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OC}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=-\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}$
Tip:- Directions are important as sign of vector get changed
Magnitude are same $A C=O B=\sqrt{ } a^{2}+c^{2}$
Hence from two equations, diagonals are equal
Now let's find position vector of mid-point of OB and AC
$\Rightarrow \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{DB}}=\frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}}}{2}$
$\Rightarrow \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{DB}}=\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}}{2}$
and
$\Rightarrow \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{DC}}=\frac{\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OC}}}{2}$
$\Rightarrow \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{DC}}=\frac{-\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}}{2}$
Magnitude is same $A D=D C=O D=D B=0.5\left(\sqrt{ }{ }^{2}+c^{2}\right)$
Thus the position of mid-point is same, and it is the bisecting point D
By Dot Product of OB and AC vectors we get,
$\Rightarrow(\overrightarrow{\mathrm{OB}}) \cdot(\overrightarrow{\mathrm{AC}})=(\vec{a}+\vec{c}) \cdot(\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}})$
$\Rightarrow(\overrightarrow{\mathrm{OB}}) \cdot(\overrightarrow{\mathrm{AC}})=(\vec{c}+\overrightarrow{\mathrm{a}}) \cdot(\vec{c}-\overrightarrow{\mathrm{a}})$
$\Rightarrow(\overrightarrow{\mathrm{OB}}) \cdot(\overrightarrow{\mathrm{AC}})=|\overrightarrow{\mathrm{c}}|^{2}-|\overrightarrow{\mathrm{a}}|^{2}$
$\Rightarrow(\overrightarrow{\mathrm{OB}}) \cdot(\overrightarrow{\mathrm{AC}})=(\overrightarrow{\mathrm{OC}})^{2}-(\overrightarrow{\mathrm{OA}})^{2}$
As the side of a rhombus are equal $O A=O C$
$\Rightarrow(\overrightarrow{\mathrm{OB}}) \cdot(\overrightarrow{\mathrm{AC}})=\mathrm{OC}^{2}-\mathrm{OC}^{2}$
$\Rightarrow(\overrightarrow{\mathrm{OB}}) \cdot(\overrightarrow{\mathrm{AC}})=0$
Hence $O B$ is perpendicular on $A C$
Thus diagonals of rhombus bisect each other at 90°

7. Question

Prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square.

Answer

Given:- $A B C D$ is a rectangle i.e $A B=C D$ and $A D=B C$
To Prove:- $A B C D$ is a square only if its diagonal are perpendicular

Proof:- Let A be at the origin
\vec{a} and \vec{b} be position vector of B and D respectively
Now,
By parallelogram law of vector addition,
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
Since in rectangle opposite sides are equal $\mathrm{BC}=\mathrm{AD}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}$
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$
and
$\Rightarrow \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AD}}$
Negative sign as vector is opposite
$\Rightarrow \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}$
$\Rightarrow \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}$
Diagonals are perpendicular to each other only
$\Rightarrow(\overrightarrow{\mathrm{AC}}) \cdot(\overrightarrow{\mathrm{BD}})=0$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$
$\Rightarrow|\vec{a}|^{2}-|\vec{b}|^{2}=0$
$\Rightarrow|\vec{a}|^{2}=|\vec{b}|^{2}$
$\Rightarrow A B^{2}=A D^{2}$
$\Rightarrow A B=A D$
Hence all sides are equal if diagonals are perpendicular to each
other
$A B C D$ is a square
Hence proved

8. Question

If $A D$ is the median of $\triangle A B C$, using vectors, prove that $A B^{2}+A C^{2}=2\left(A D^{2}+C D^{2}\right)$.

Answer

Given:- $\triangle A B C$ and $A D$ is median
To Prove:- $A B^{2}+A C^{2}=2\left(A D^{2}+C D^{2}\right)$

Proof:- Let, A at origin
\vec{b} and \vec{c} be position vector of B and C respectively
Therefore,
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{c}}$
Now position vector of D , mid-point of BC i.e divides BC in 1:1.
Section formula of internal division: Theorem given below
"Let A and B be two points with position vectors \vec{a} and \vec{b}
respectively, and c be a point dividing $A B$ internally in the ration $m: n$. Then the position vector of c is given
by $\overrightarrow{\mathrm{OC}}=\frac{\mathrm{mb}+\mathrm{na}}{\mathrm{m}+\mathrm{n}}$
Position vector of D is given by
$\Rightarrow \overrightarrow{\mathrm{AD}}=\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{2}$
Now distance/length of CD
$\overrightarrow{C D}=$ position vector of D-position vector of C
$\Rightarrow \overrightarrow{\mathrm{CD}}=\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{2}-\overrightarrow{\mathrm{c}}$
$\Rightarrow \overrightarrow{\mathrm{CD}}=\frac{\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}}{2}$

Now taking RHS
$=2\left(A D^{2}+C D^{2}\right)$
$=2\left[\left(\frac{\overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{c}}}{2}\right)^{2}+\left(\frac{\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}}{2}\right)^{2}\right]$
$=\frac{2}{4}\left[(\vec{b}+\vec{c})^{2}+(\vec{b}-\vec{c})^{2}\right]$
$=\frac{1}{2}\left[(\vec{b})^{2}+(\vec{c})^{2}+2(\vec{b}) \cdot(\vec{c})+(\vec{b})^{2}+(\vec{c})^{2}-2(\vec{b}) \cdot(\vec{c})\right]$
$=\frac{1}{2}\left[2(\vec{b})^{2}+2(\vec{c})^{2}\right]$
$=(\vec{b})^{2}+(\vec{c})^{2}$
$=A B^{2}+A C^{2}$
$=$ LHS
Hence proved

9. Question

If the median to the base of a triangle is perpendicular to the base, then the triangle is isosceles.

Answer

Given:- $\triangle A B C, A D$ is median
To Prove:- If $A D$ is perpendicular on base $B C$ then $\triangle A B C$ is isosceles

Proof:- Let, A at Origin
$\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ be position vector of B and C respectively
Therefore,
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{c}}$
Now position vector of D, mid-point of $B C$ i.e divides $B C$ in 1:1
Section formula of internal division: Theorem given below
"Let A and B be two points with position vectors \vec{a} and \vec{b}
respectively, and c be a point dividing $A B$ internally in the ration $m: n$. Then the position vector of c is given
by $\overrightarrow{\mathrm{OC}}=\frac{\mathrm{mb}+n \vec{a}}{\mathrm{~m}+\mathrm{n}}$
Position vector of D is given by
$\Rightarrow \overrightarrow{\mathrm{AD}}=\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{2}$
Now distance/length of BC
$\overrightarrow{\mathrm{BC}}=$ position vector of C-position vector of B
$\Rightarrow \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}}$
Now, assume median AD is perpendicular at BC
Then by Dot Product
$\Rightarrow(\overrightarrow{\mathrm{AD}}) \cdot(\overrightarrow{\mathrm{BC}})=0$
$\Rightarrow\left(\frac{\vec{b}+\vec{c}}{2}\right) \cdot(\vec{c}-\vec{b})=0$
$\Rightarrow(\vec{c}+\vec{b}) \cdot(\vec{c}-\vec{b})=0$
$\Rightarrow|\vec{c}|^{2}-|\vec{b}|^{2}=0$
$\Rightarrow|\vec{c}|^{2}=|\vec{b}|^{2}$
$\Rightarrow A C=A B$
Thus two sides of $\triangle A B C$ are equal
Hence $\triangle A B C$ is isosceles triangle

10. Question

In a quadrilateral $A B C D$, prove that $A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}+4 P Q^{2}$ where P and Q are middle points of diagonals AC and BD.

Answer

Given:- Quadrilateral ABCD with AC and BD are diagonals. P and Q are mid-point of AC and BD respectively
To Prove:- $A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}+4 P Q^{2}$

Proof:- Let, O at Origin
$\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be position vector of A, B, C and D respectively
As P and Q are mid-point of $A C$ and $B D$,
Then, position vector of P , mid-point of $A C$ i.e divides $A C$ in 1:1
and position vector of Q, mid-point of $B D$ i.e divides $B D$ in 1:1
Section formula of internal division: Theorem given below
"Let A and B be two points with position vectors \vec{a} and \vec{b}
respectively, and c be a point dividing $A B$ internally in the ration $m: n$. Then the position vector of c is given by $\overrightarrow{\mathrm{OC}}=\frac{\mathrm{mb}+\mathrm{na}}{\mathrm{m}+\mathrm{n}}$ "

Hence

Position vector of P is given by
$=\frac{\vec{a}+\vec{c}}{2}$
Position vector of Q is given by
$=\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{d}}}{2}$
Distance/length of PQ
$\Rightarrow \overrightarrow{\mathrm{PQ}}=$ position vector of $\mathrm{Q}-$ position vector of P
$\Rightarrow \overrightarrow{\mathrm{PQ}}=\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{d}}}{2}-\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}}{2}$
Distance/length of AC
$\Rightarrow \overrightarrow{\mathrm{AC}}=$ position vector of $C-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}$
Distance/length of BD
$\Rightarrow \overrightarrow{\mathrm{BD}}=$ position vector of $\mathrm{D}-$ position vector of B
$\Rightarrow \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{b}}$
Distance/length of $A B$
$\Rightarrow \overrightarrow{\mathrm{AB}}=$ position vector of $B-$ position vector of A
$\Rightarrow \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}$
Distance/length of BC
$\Rightarrow \overrightarrow{\mathrm{BC}}=$ position vector of $\mathrm{C}-$ position vector of B
$\Rightarrow \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}}$
Distance/length of CD
$\Rightarrow \overrightarrow{\mathrm{CD}}=$ position vector of D-position vector of C
$\Rightarrow \overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{c}}$
Distance/length of DA
$\Rightarrow \overrightarrow{\mathrm{DA}}=$ position vector of $A-$ position vector of D
$\Rightarrow \overrightarrow{\mathrm{DA}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{d}}$
Now, by LHS
$=A B^{2}+B C^{2}+C D^{2}+D A^{2}$
$=(\vec{b}-\vec{a})^{2}+(\vec{c}-\vec{b})^{2}+(\vec{d}-\vec{c})^{2}+(\vec{a}-\vec{d})^{2}$
$=2\left[|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+|\vec{d}|^{2}-\vec{a} \vec{b} \cos \theta_{1}-\vec{c} \vec{b} \cos \theta_{2}-\vec{c} \vec{d} \cos \theta_{3}\right.$ $\left.-\vec{a} \vec{d} \cos \theta_{4}\right]$

Where $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are angle between vectors
$A C^{2}+B D^{2}+4 P Q^{2}$
$=(\vec{c}-\vec{a})^{2}+(\vec{d}-\vec{b})^{2}+4\left(\frac{\vec{b}+\vec{d}}{2}-\frac{\vec{a}+\vec{c}}{2}\right)^{2}$
$\left.=(\vec{c}-\vec{a})^{2}+(\vec{d}-\vec{b})^{2}+(\vec{b}+\vec{d})-(\vec{a}+\vec{c})\right)^{2}$
$=(\vec{c}-\vec{a})^{2}+(\vec{c}+\vec{a})^{2}+(\vec{d}-\vec{b})^{2}+(\vec{d}+\vec{b})^{2}+2(\vec{b}+\vec{d}) \cdot(\vec{a}+\vec{c})$
$=2\left[|\overrightarrow{\mathrm{a}}|^{2}+|\overrightarrow{\mathrm{b}}|^{2}+|\overrightarrow{\mathrm{c}}|^{2}+|\overrightarrow{\mathrm{d}}|^{2}-\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \cos \theta_{1}-\overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{b}} \cos \theta_{2}-\overrightarrow{\mathrm{c}} \overrightarrow{\mathrm{d}} \cos \theta_{3}\right.$

$$
\left.-\vec{a} \vec{d} \cos \theta_{4}\right]
$$

Thus LHS = RHS
Hence proved

Very short answer

1. Question

What $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is the angle between vectors and with magnitudes 2 and $\sqrt{ } 3$ respectively? Given $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\sqrt{3}$.

Answer

We know,
$\vec{a} \cdot \vec{b}=|a||b| \cos \theta$ where θ is the angle between \vec{a} and \bar{b}.
Given, $|a|=2|b|=\sqrt{ } 3$
$\vec{a} \cdot \vec{b}=2 \cdot \sqrt{3} \cos \theta$
So, $\cos \theta=\frac{1}{2}$
$\theta=60^{\circ}$

2. Question

If \vec{a} and \vec{b} are two vectors such that $\vec{a} \cdot \vec{b}=6,|\vec{a}|=3$ and $|\vec{b}|=4$. Write the projection of on

Answer

$\vec{a} \cdot \vec{b}=|a||b| \cos \theta=6$
Given,
$|a|=3,|b|=4$
$6=3 \times 4 \cos \theta$
$6=12 \cos \theta$
$\cos \theta=\frac{1}{2}$

3. Question

Find the cosine of the angle between the vectors $4 \hat{i}-3 \hat{j}+3 \hat{k}$ and $2 \hat{i}-\hat{j}-\hat{k}$.

Answer

We know,
If $A=a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}, \mathrm{~B}=a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}$
$\left(a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}\right)=a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+c_{1} \cdot c_{2}$
And $\vec{A} \cdot \vec{B}=|A||B| \cos \theta$
So, $\vec{A} \cdot \vec{B}=\left(a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}\right)$
$=a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+c_{1} \cdot c_{2}$
$=|A||B| \cos \theta$
$|A|=\sqrt{ } 34$
$|B|=\sqrt{ } 6$
Here, $4 \times 2+(-3) \times(-1)+3 \times(-1)=8$
$\vec{A} \cdot \vec{B}=|A||B| \cos \theta$
$=\sqrt{34} \times \sqrt{6} \cos \theta$
$=\sqrt{204} \cos \theta$
$=8$
$\cos \theta=\frac{8}{\sqrt{204}}=0.56$

4. Question

If the vectors $3 \hat{i}+m \hat{j}+\hat{k}$ and $2 \hat{i}-\hat{j}-8 \hat{k}$ are orthogonal, find m.

Answer

Orthogonal vectors are perpendicular to each other so their dot product is always 0 as $\cos 90^{\circ}=0$
If $\hat{A}=a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}, \mathrm{~B}=a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}$
$\left(a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}\right)=a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+c_{1} \cdot c_{2}$
And $\vec{A} \cdot \vec{B}=3 \times 2+m \times(-1)+1 \times(-8)=0$
$6-m-8=0$
$-m-2=0$
$m=-2$

5. Question

If the vectors $3 \hat{i}-2 \hat{j}-4 \hat{k}$ and $18 \hat{i}-12 \hat{j}-m \hat{k}$ are parallel, find the value of m.

Answer

If $A=a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}, \mathrm{~B}=a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}$
And A is parallel to B
Then $A=k B$, where k is some constant
So, $k=\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{3}{18}=\frac{4}{m}$
$k=\frac{4}{m}=\frac{1}{6}$
$m=6 \times 4$
$=24$

6. Question

If \vec{a} and \vec{b} are vectors of equal magnitude, write the value of $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})$.

Answer

We know that dot product is distributive.
So
$(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}||\vec{a}|-|\vec{a}||\vec{b}|+|\vec{a}||\vec{b}|-|\vec{b}||\vec{b}|$
$=|\vec{a}|^{2}-|\vec{b}|^{2}$
We know
$|\vec{a}|=|\vec{b}|$
$(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}||\vec{a}|-|\vec{a}||\vec{b}|+|\vec{a}||\vec{b}|-|\vec{b}||\vec{b}|$
$=|\vec{a}|^{2}-|\vec{b}|^{2}$
$=|\vec{a}|^{2}-|\vec{a}|^{2}$
$=0$

7. Question

If \vec{a} and \vec{b} are two vectors such that $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$, find the relation between the magnitudes of \vec{a} and \vec{b}.

Answer

We know that dot product is distributive.
So
$(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}||\vec{a}|-|\vec{a}||\vec{b}|+|\vec{a}||\vec{b}|-|\vec{b}||\vec{b}|$
$=|\vec{a}|^{2}-|\vec{b}|^{2}$
Given that,
$(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}||\vec{a}|-|\vec{a}||\vec{b}|+|\vec{a}||\vec{b}|-|\vec{b}||\vec{b}|$
$=|\vec{a}|^{2}-|\vec{b}|^{2}$
$=0$
$|\vec{a}|^{2}-|\vec{b}|^{2}=0$
$|\vec{a}|^{2}=|\vec{b}|^{2}$
Therefore, both the vectors have equal magnitude

8. Question

For any two vectors \vec{a} and \vec{b} write when $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$ holds.

Answer

We know,
$|\vec{a}+\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta}$
$|\vec{a}|+|\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta}$
$(|\vec{a}|+|\vec{b}|)^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta$
$|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta$
Comparing LHS and RHS we can conclude that
$2|\vec{a}||\vec{b}|=2|\vec{a}||\vec{b}| \cos \theta$
$\cos \theta=1$ or $\theta=0^{\circ}$

9. Question

For any two vectors \vec{a} and \vec{b} write when $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ holds.

Answer

We know,
$|\vec{a}+\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta}$
$|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta}$
If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
Then, $\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta}=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta}$
$2|\vec{a}||\vec{b}| \cos \theta=-2|\vec{a}||\vec{b}| \cos \theta$
Comparing LHS and RHS we can conclude that
$\cos \theta=0$ or $\theta=90^{\circ}$

10. Question

If \vec{a} and \vec{b} are two vectors of the same magnitude inclined at an angle of 60° such that $\vec{a} \cdot \vec{b}=8$, write the value of their magnitude.

Answer

Given,
$\theta=60^{\circ}$ and $|\vec{a}|=|\vec{b}|$
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$=|\vec{a}|^{2} \cos 60^{\circ}$
$=8$
$\vec{a} \cdot \vec{b}=|\vec{a}|^{2} \times \frac{1}{2}$
$=8$
$|\vec{a}|^{2}=16$
$|\vec{a}|=4$ (as magnitude cannot be negative)

11. Question

If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, what can you conclude about the vector \vec{b} ?

Answer

$\vec{a} \cdot \vec{a}=\vec{a} \cdot \vec{b}=0$
$|\vec{a}||\vec{a}| \cos 0^{\circ}=|\vec{a}||\vec{b}| \cos \theta$
$=0$
Possible answers are,
$|\vec{a}|=0$ i.e. \vec{a} is a null vector
Or
$\cos \theta=0$ or $\theta=90^{\circ}$ i.e. \vec{a} and \vec{b} are perpendicular
Or
$|\vec{b}|=0$ i.e. \vec{b} is a null vector

12. Question

If \vec{b} is a unit vector such that $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$, find $\mid \vec{a})$.

Answer

$(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}||\vec{a}|-|\vec{a}||\vec{b}|+|\vec{a}||\vec{b}|-|\vec{b}||\vec{b}|$
$=|\vec{a}|^{2}-|\vec{b}|^{2}$
$=8$
$|\vec{a}|^{2}-1^{2}=8$
$|\vec{a}|^{2}=9$
$|\vec{a}|=3$

13. Question

If \hat{a} and \hat{b} are unit vectors such that $\hat{a}+\hat{b}$ is a unit vector, write the value of $|\hat{a}-\hat{b}|$.

Answer

$|\vec{a}+\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta}=1$ (As given as unit vector)
$\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{a}||\vec{b}| 2 \cos \theta}=\sqrt{1^{2}+1^{2}+1 \times 1 \times \cos \theta}$
$=1$
$\sqrt{2+2 \cos \theta}=1$
$2+2 \cos \theta=1$
$\cos \theta=-1 / 2$
$|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta}$
$=\sqrt{1+1-2 \times 1 \times 1 \times \cos \theta}$
$=\sqrt{2-2(-1 / 2)}$
$=\sqrt{3}$

14. Question

If $|\vec{a}|=2,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=2$, and find $|\vec{a}-\vec{b}|$.

Answer

$|\vec{a}|=2,|\vec{b}|=5$
$\vec{a} \cdot \vec{b}=|a||b| \cos \theta$
$=2 \times 5 \times \cos \theta$
$=2$
$\cos \theta=\frac{2}{10}=\frac{1}{5}$
$|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta}$
$=\sqrt{2^{2}+5^{2}-2 \times 2 \times 5 \times \cos \theta}$
$=\sqrt{4+25-20(1 / 5)}$
$|\vec{a}-\vec{b}|=\sqrt{4+25-20(1 / 5)}$
$=\sqrt{29-4}=\sqrt{25}$
$=5$

15. Question

If $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=-\vec{j}+\vec{k}$, find the projection of \vec{a} on \vec{b}.

Answer

Projection of \vec{a} on \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$|\vec{b}|=\sqrt{(-1)^{2}+1^{2}}$
$=\sqrt{2}$
$\left(a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}\right)=a_{1} \cdot a_{2}+b_{1} \cdot b_{2}+c_{1} \cdot c_{2}$
$\vec{a} \cdot \vec{b}=1 \times 0+(-1) \times(-1)+0 \times 1$
$=1$
Therefore projection $=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{1}{\sqrt{2}}$

16. Question

For any two non-zero vectors, write the value of $\frac{|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}}{|\vec{a}|^{2}+|\vec{b}|^{2}}$.

Answer

$\frac{|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}}{|\vec{a}|^{2}+|\vec{b}|^{2}}=\frac{\left(|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \vec{b}\right)+\left(|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \vec{b}\right)}{|\vec{a}|^{2}+|\vec{b}|^{2}}$
$=\frac{2\left(|\vec{a}|^{2}+|\vec{b}|^{2}\right)}{|\vec{a}|^{2}+|\vec{b}|^{2}}$
$=2$

17. Question

Write the projections of $\vec{r}=3 \hat{i}-4 \hat{j}+12 \hat{k}$ on the coordinate axes.

Answer

x-axis= $\hat{\imath}$
y-axis $=\hat{\jmath}$
z -axis= \widehat{k}
$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|b|^{2}} \vec{b}$
Projection along x-axis $=\frac{3}{1} \hat{\imath}$
$=3 \hat{\imath}$
Projection along y-axis $=\frac{-4}{1} \hat{\jmath}$
$=-4 \hat{\jmath}$
Projection along z-axis $=\frac{12}{1} \widehat{k}$
$=12 \hat{k}$

18. Question

Write the component of \vec{b} along \vec{a}.

Answer

Component of a given vector \vec{b} along \vec{a} is given by the length of \vec{b} on \vec{a}.
Let θ be the angle between both the vectors.
So the length of \vec{b} on \vec{a} is given as: $|b| \cos \theta$
By vector dot product, we know that:
$\operatorname{Cos} \theta=\frac{\vec{a} \vec{b}}{|\vec{a}||\vec{b}|}$
Therefore, $|b| \cos \theta=|b| \frac{\vec{a} \vec{b}}{|\vec{a}||\vec{b}|}=\frac{\vec{a} \vec{b}}{|\vec{a}|}$
Hence, $\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \vec{b}}{|\vec{a}|}$

19. Question

Write the value of $(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}$, where \vec{a} is any vector.

Answer

Let $\vec{a}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
$\vec{a} \cdot \hat{\imath}=x$ (1)
$\vec{a} . \hat{j}=y(2)$
$\vec{a} \cdot \hat{k}=z$ (3)
Put the values obtained in the given equation
We get:
$(\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{i}}) \hat{\mathrm{i}}+(\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{j}}) \hat{\mathrm{j}}+(\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{k}}) \hat{\mathrm{k}},=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
i.e.
$(\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{i}}) \hat{\mathrm{i}}+(\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{j}}) \hat{\mathrm{j}}+(\overrightarrow{\mathrm{a}} \cdot \hat{\mathrm{k}}) \hat{\mathrm{k}},=\vec{a}$

20. Question

Find the value of $\theta \in(0, \pi / 2)$ for which vectors $\overrightarrow{\mathrm{a}}=(\sin \theta) \hat{\mathrm{i}}+(\cos \theta) \hat{\mathrm{j}}$ and $\vec{b}=\hat{\imath}-\sqrt{3 \hat{\jmath}}+2 \hat{k}$ are perpendicular.

Answer

Given:
$\vec{a}=(\sin \theta) \hat{i}+(\cos \theta) \hat{j}$
$\vec{b}=\hat{\imath}-\sqrt{3 \hat{\jmath}}+2 \hat{k}$
$\vec{a} \cdot \vec{b}=0$ (perpendicular)
So,
$\vec{a} \cdot \vec{b}=\{(\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}) \cdot(\hat{\imath}-\sqrt{3 \hat{\jmath}}+2 \hat{k})\}=0$
Therefore;
$\sin _{\theta}-\sqrt{3 \cos \theta}=0$
Multiply and divide the whole equation by 2 :
We get
$\frac{1}{2} \sin \theta-\frac{\sqrt{3}}{2} \cos \theta=0$
By the identity:
$\sin (a-b)=\sin a \cos b-\cos a \sin b$
We have:
$\sin \left(\theta-\frac{\pi}{3}\right)=0$
$\sin \left(\theta-\frac{\pi}{3}\right)=\sin n \pi$
So
$\left(\theta-\frac{\pi}{3}\right)=n \pi$
$\theta=n \pi+\frac{\pi}{3}, \mathrm{n}_{\in} I$

21. Question

Write the projection of $\hat{i}+\hat{j}+\hat{k}$ along the vector \hat{j}.

Answer

Let, $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k} \& \vec{b}=\hat{\jmath}$
We know that, projection of \vec{a} along \vec{b} is given by:
$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}$
Also, $\vec{a} \cdot \vec{b}=1$
$\&|b|=1$
So, $\operatorname{proj}_{\vec{b}} \vec{a}=1(\hat{\jmath})=\hat{\jmath}$

22. Question

Write a vector satisfying $\vec{a} \cdot \hat{i}=\vec{a} \cdot(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})=1$.

Answer

Let $\vec{a}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
$\vec{a} \hat{\imath}=x$
$\vec{a}(\hat{\imath}+\hat{\jmath})=x+y$
$\vec{a}(\hat{\imath}+\hat{\jmath}+\hat{k})=x+y+z$
For all the equations to be equal to 1 ;
i.e. $x=x+y$
$=x+y+z$
$=1$
So, $x=1$;
$\& x+y=1$
$\& x+y+z=1$
We get: $x=1, y=z=0$
Therefore, $\vec{a}=\hat{\imath}$

23. Question

If \vec{a} and \vec{b} are unit vectors, find the angle between $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

Answer

Since, $|\vec{a}|=|\vec{b}|=1$
Let $\vec{A}=\vec{a}+\vec{b} \& \vec{B}=\vec{a}-\vec{b}$
Angle between $\vec{a} \& \vec{b}$ is θ and angle between $\vec{A} \& \vec{B}$ is $\alpha \& \beta$

By vector addition method;
we have:
$|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}| \cos \theta$
$=2(1+\cos \theta)$
$|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos \theta$
$=2(1-\cos \theta)$
So,
$|\vec{a}+\vec{b}|=2 \cos \frac{\theta}{2}$
$|\vec{a}-\vec{b}|=2 \sin \frac{\theta}{2}$
Now in the parallelogram:
Area of parallelogram = (product of two sides and the sine of angle between them)
i.e. area $=|\vec{a}| \times|\vec{b}| \times \sin \theta(1)$

Also area of parallelogram= sum of area of all four triangle
And area of each triangle $=\frac{1}{2} b h$
So, Area $=2\left\{\frac{1}{2} * \frac{|\vec{A}|}{2} * \frac{|\vec{B}|}{2} \sin \alpha\right\}+2\left\{\frac{1}{2} * \frac{|\vec{A}|}{2} * \frac{|\vec{B}|}{2} \sin \beta\right\}$
Since $\alpha \& \beta$ are supplementary
$A=4\left\{\frac{1}{2} * \frac{|\vec{A}|}{2} * \frac{|\vec{B}|}{2} \sin \alpha\right\}=\frac{1}{2} *|\vec{A}||\vec{B}| \sin \alpha(2)$
From (1) \&(2) we get:
$\sin \alpha=\frac{2|\vec{a}||\vec{b}| \sin \theta}{|\vec{A}||\vec{B}|}=\frac{2|\vec{a}||\vec{b}| \sin \theta}{|\vec{a}+\vec{b}||\vec{a}-\vec{b}|}$
$\sin \alpha=\frac{2 * 1 * 1 * \sin \theta}{2 \sin \frac{\theta}{2} * 2 \cos \frac{\theta}{2}}=\frac{2 \sin \theta}{2 \sin \theta}=1$
$\alpha=\sin ^{-1} 1=\frac{\pi}{2}$

24. Question

If \vec{a} and \vec{b} are mutually perpendicular unit vectors, write the value of $|\vec{a}| \vec{b} \mid$.

Answer

Since $\vec{a} \& \vec{b}$ are mutually perpendicular;
Then, $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}(1)$
And $\sin \theta=\frac{(\vec{a} \times \vec{b})}{|\vec{a}||\vec{b}|}(2)$
Squaring and adding both equations, we get;
$(\sin \theta)^{2}+(\cos \theta)^{2}=\left(\frac{(\vec{a} X \vec{b})}{|\vec{a}||\vec{b}|}\right)^{2}+\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)^{2}$
$1=\frac{(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}}{(|\vec{a}||\vec{b}|)^{2}}$
So, $(|\vec{a}||\vec{b}|)^{2}=(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}$
Hence, $|\vec{a}||\vec{b}|=\sqrt{(\vec{a} X \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}, ~}$

25. Question

If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular unit vectors, write the value of $|\vec{a}+\vec{b}+\vec{c}|$.

Answer

Since all three vectors are mutually perpendicular, so dot product of each vector with another is zero.
i.e. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0$

Also, $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$

So, $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
$|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}$
i.e. $|\vec{a}+\vec{b}+\vec{c}|^{2}=3$

So, $|\vec{a}+\vec{b}+\vec{c}|^{2}=\sqrt{3}$
26. Question

Find the angle between the vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$.

Answer

By vector dot product, we know that:
$\vec{a} \cdot \vec{b}=|a||b| \cos \theta$
So, $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|a||b|}$
$\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}-\hat{k}$.
$\vec{a} \cdot \vec{b}=-1$
$|a|=\sqrt{3} \&|b|=\sqrt{3}$
Therefore,
$\cos \theta=\frac{-1}{\sqrt{3} * \sqrt{3}}$
$\cos _{\theta}=\frac{-1}{3}$
So, $\theta=\cos ^{-1}\left(\frac{-1}{3}\right)$

27. Question

For what value of λ are the vectors $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$. perpendicular to each other?

Answer

Let $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$.
for \vec{a} to be perpendicular to $\vec{b} \cos \theta=0$
i.e. $\vec{a} \cdot \vec{b}=0$ [vector dot product]
$(2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+3 \hat{k})=0$
$2-2 \lambda+3=0$
$5-2 \lambda=0$
Hence, $\lambda=\frac{5}{2}$

28. Question

Find the projection of \vec{a} on \vec{b}, if $\vec{a} \cdot \vec{b} \vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$.

Answer

We know that;
$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|b|^{2}} \vec{b}$
So,
$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{|b|^{2}}$

29. Question

Write the value of p for which $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+p \hat{j}+3 \hat{k}$ are parallel vectors.

Answer

$\vec{a}=3 \hat{\imath}+2 \hat{\jmath}+9 \hat{k}$ and $\vec{b}=\hat{\imath}+p \hat{\jmath}+3 \hat{k}$
for \vec{a} to be parallel to $\vec{b} \sin \theta=0$
i.e. $(\vec{a} X \vec{b})=0$ [vector cross product]
î $\hat{\jmath} \hat{k}$
$32 \quad 9=0$
1 p 3
$\hat{\mathrm{i}}(6-9 p)-\hat{\mathrm{\jmath}}(9-9)+\hat{k}(3 p-2)=0$
$\hat{\imath}(6-9 p)+\hat{k}(3 p-2)=0 \hat{\imath}+0 \hat{k}$
$(6-9 p)=0 \&(3 p-2)=0$
Hence, $p=\frac{2}{3}$

30. Question

Find the value of λ if the vectors $2 \hat{i}+\lambda \hat{j}+3 \hat{k}$ and $3 \hat{i}+2 \hat{j}-4 \hat{k}$ are perpendicular to each other.

Answer

Let $\vec{a}=2 \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+3 \hat{\mathrm{k}}$ and $\vec{b}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
for \vec{a} to be perpendicular to $\vec{b} \cos \theta=0$
i.e. $\vec{a} \cdot \vec{b}=0$ [vector dot product]
$(2 \hat{\imath}+\lambda \hat{\jmath}+3 \hat{k}) \cdot(3 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})=0$
$6+2 \lambda-12=0$
$2 \lambda-6=0$
Hence, $\lambda=3$

31. Question

If $|\vec{a}|=2,|\vec{b}|=3, \vec{a} \cdot \vec{b}=3$, find the projection of \vec{b} on \vec{a}

Answer

Given $|\vec{a}|=2$ and $|\vec{b}|=3$ and $|\vec{a} \cdot \vec{b}|=3$
The projection of \vec{b} vector \vec{a} on a is given by,
$\vec{b} \cdot \hat{a}=\vec{b} \cdot \frac{\vec{a}}{|\vec{a}|}$
$=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$ (since scalar product is commutative)
$=\frac{3}{2}$

32. Question

Write the angle between the two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$

Answer

We know that the scalar product of two non-zero vectors \vec{a} and \vec{b}, denoted by \vec{a}. \vec{b}, is defined as,
$\vec{a} \cdot \vec{b}=\overrightarrow{|a|} \mid \overrightarrow{b \mid} \cos \theta$
$\sqrt{6}=\sqrt{3} \times 2 \cos \theta$
$\cos \theta=\frac{\sqrt{3} \times \sqrt{2}}{\sqrt{3} \times 2}$
$=\frac{1}{\sqrt{2}}$
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$=\frac{\pi}{4}$

33. Question

Write the projection of vector $\hat{\imath}+3 \hat{\jmath}+7 \hat{k}$ on the vector $2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}$.

Answer

Let $\vec{a}=\hat{\imath}+3 \hat{\jmath}+7 \hat{k}$ and $\vec{b}=\widehat{2 \imath}-3 \hat{\jmath}+6 \hat{k}$
Then the projection of vector \vec{a} on \vec{b} is given by,
$\vec{a} \cdot \hat{b}=\frac{\vec{a} \cdot \stackrel{\leftarrow}{b}}{|\vec{b}|}$
$=\vec{a} \cdot \vec{b}=(\hat{\imath}+3 \hat{\jmath}+7 \hat{k}) \cdot(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})$
$=1 \times 2-3 \times 3+7 \times 6$
$=2-9+42$
$=35$
Now, $|\vec{b}|=\sqrt{2^{2}+6^{2}+3^{2}}$
$=\sqrt{4+36+9}$
$=\sqrt{49}$
$=7$
Therefore projection of \vec{a} on $\vec{b}=\frac{35}{7}$
$=5$

34. Question

Find λ, when the projection of $\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 units.

Answer

Given $\vec{a}=\widehat{\lambda} t+\hat{\jmath}+4 \hat{k}$ and $\vec{b}=\widehat{2 l}+6 \hat{\jmath}+3 \hat{k}$
Projection of \vec{a} on \vec{b} is given by $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$\vec{a} \cdot \vec{b}=(\lambda \hat{\imath}+\hat{\jmath}+\widehat{4 k}) \cdot(2 \hat{\imath}+6 \hat{\jmath}+\widehat{3 k})$
$=2 \lambda+6+12$
$=2 \lambda+18$
Now, $|\mathrm{b}|=\sqrt{2^{2}+6^{2}+3^{2}}=\sqrt{49}=7$
$\frac{2 \lambda+18}{7}=4$
$2 \lambda+18=28$
$2 \lambda=10$
$\lambda=5$

35. Question

For what value of λ are the vectors $\vec{a}=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ perpendicular to each other?

Answer

Given $\vec{a}=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
For two vectors to be perpendicular, the angle between them must be 90° or $\frac{\pi}{2}$
We know that $\cos 90=0$
$\vec{a} \cdot \vec{b}=(2 \hat{\imath}+\lambda \hat{\jmath}+\widehat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+\widehat{3 k})$
$=2-2 \lambda+3$
$=5-2 \lambda$
By scalar product, $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$5-2 \lambda=0$
$\lambda=\frac{5}{2}$

36. Question

Write the projection of the vector $7 \hat{\imath}+\hat{\jmath}-4 \hat{k}$ on the vector $2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$.

Answer

Let $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}+\hat{\jmath}+\hat{k}$
Projection of \vec{a} on \vec{b} is given by,
$\vec{a} . \hat{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$\vec{a} \cdot \vec{b}=(7 \hat{\imath}+\hat{\jmath}-4 \hat{k}) \cdot(2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k})$
$=7 \times 2+1 \times 6-4 \times 3$
$=14+6-12$
$=14-6$
$=8$
$|\vec{b}|=\sqrt{2^{2}+6^{2}+3^{2}}$
$=\sqrt{4+36+9}$
$=\sqrt{49}$
$=7$
Therefore, projection of \vec{a} on \vec{b} is $\frac{8}{7}$

37. Question

Write the value of λ so that the vectors $\vec{a}=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ perpendicular to each other?

Answer

Given $\vec{a}=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
For two vectors to be perpendicular, the angle between them must be 90° or $\frac{\pi}{2}$
We know that $\operatorname{Cos} 90=0$
$\vec{a} \cdot \vec{b}=(2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}) \cdot(\hat{\imath}-2 \hat{\jmath}+\widehat{3 k})$
$=2-2 \lambda+3$
$=5-2 \lambda$
By scalar product, $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
Therefore, $5-2 \lambda=0$
$\lambda=\frac{5}{2}$

38. Question

Write the projection of $\vec{b}+\vec{c}$ on \vec{a}, when $\vec{a}=2 \hat{\imath}-2 \hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$, and $\vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$.

Answer

Given, $\vec{a}=\hat{2 l}-2 \hat{\jmath}+\hat{k}$
$\vec{b}=\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
$\vec{c}=\widehat{2 \imath}-\hat{\jmath}+4 \widehat{k}$
So, $\vec{b}+\vec{c}=(\hat{\imath}+\widehat{\jmath \jmath}+2 \hat{k})+(2 \hat{\imath}-\hat{\jmath}+\widehat{4 k})$
$=\widehat{3 \imath}+\hat{\jmath}+6 \widehat{k}$
$=\stackrel{\rightharpoonup}{d}$
Now, to find projection of $\vec{b}+\vec{c}$ on \vec{a} i.e. \vec{d} on \vec{a}
$\vec{d} \cdot \hat{a}=\frac{\vec{d} \cdot \vec{a}}{|\vec{a}|}$
Now, $\vec{d} \cdot \vec{a}=(3 \hat{\imath}+\hat{\jmath}+\widehat{6 k}) \cdot(2 \hat{\imath}-2 \hat{\jmath}+\hat{k})$
$=3 \times 2-1 \times 2+6 \times 1$
$=6-2+6$
$=10$
$|\vec{a}|=\sqrt{2^{2}+(-2)^{2}+1^{2}}$
$=\sqrt{4+4+1}$
$=\sqrt{ } 9$
$=3$
Therefore, $\frac{\stackrel{\rightharpoonup}{d} \cdot \stackrel{\rightharpoonup}{a}}{|\stackrel{\rightharpoonup}{a}|}=\frac{10}{3}$

39. Question

If \vec{a} and \vec{b} are perpendicular vectors, $|\vec{a}+\vec{b}|=3$ and $|\vec{a}|=5$, find the value of $|\vec{b}|$.

Answer

Given, $|\vec{a}+\vec{b}|=3$ and $|\vec{a}|=5$
Also given \vec{a} and \vec{b} are perpendicular
$\vec{a} \cdot \vec{b}=0$
$|\vec{a}+\vec{b}|^{2}=(\vec{a}+\vec{b})^{2}$
$3^{2}=|\vec{a}|^{2}+2|\vec{a} \cdot \vec{b}|+|\vec{b}|^{2}$
$3^{2}=5^{2}+|\vec{b}|^{2}$
$9=25+|\vec{b}|^{2}$
$-|\vec{b}|^{2}=16$
$|\vec{b}|=-4$

40. Question

If \vec{a} and \vec{b} vectors are such that $|\vec{a}|=3,|\vec{b}|=\frac{2}{3}$ and $\vec{a} X \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b}.

Answer

Given $|\vec{a}|=3|\vec{b}|=\frac{2}{3}$
Also given, $\vec{a} \times \vec{b}$ is a unit vector
$\Rightarrow|\vec{a} \times \vec{b}|=1$
By vector product,
$|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \operatorname{Sin} \theta$
Therefore, $1=3 \times \frac{2}{3} \sin \theta$
$\Rightarrow \sin \theta=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{6}$
41. Question

If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between \vec{a} and \vec{b}.

Answer

Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=1$
Now, $|\vec{a}+\vec{b}|^{2}=(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})$
$\Rightarrow 1=|\vec{a}|^{2}+2|\vec{a}||\vec{b}|+|\vec{b}|^{2}$
$\Rightarrow 1=1+2|\vec{a} \cdot \vec{b}|+1$
$\Rightarrow-1=2+2|\vec{a} \cdot \vec{b}|$
$\Rightarrow-\frac{1}{2}=|\vec{a} \cdot \vec{b}|$
Also, $|\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}| \cos \theta$
Therefore, $-\frac{1}{2}=1 \times 1 \times \cos \theta$
$\Rightarrow \operatorname{Cos} \theta=-\frac{1}{2}$
We know that $\cos 60^{\circ}=\frac{1}{2}$ and \cos is negative in $2^{\text {nd }}$ quadrant
Therefore, $\theta=180-60$
$=120$
$=\frac{2 \pi}{3}$

42. Question

If \vec{a} and \vec{b} are unit vectors, then find the angle between \vec{a} and \vec{b}, given that $\sqrt{3} \vec{a}-\vec{b}$ is a unit vector.

Answer

Given, $|\vec{a}|=|\vec{b}|=1$ and $|\sqrt{3} \vec{a}+\vec{b}|=1$
By scalar product, $|\vec{a} \cdot \vec{b}|=|\vec{a}||\vec{b}| \cos \theta$
By substituting the values, we get
$\vec{a} \cdot \vec{b}=\cos \theta$
$|\sqrt{3} a-b|^{2}=1$
$(\sqrt{3} a)^{2}-2 \sqrt{3} a b+b^{2}=1$
$3 a^{2}-2 \sqrt{ } 3 \cos \theta+b^{2}=1$
$\Rightarrow 3-2 \sqrt{ } 3 \cos \theta+1=1$
$\Rightarrow 4-1=2 \sqrt{ } 3 \cos \theta$
$\Rightarrow 3=2 \sqrt{ } 3 \cos \theta$
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$
$\Rightarrow \theta=\frac{\pi}{6}$

MCQ

1. Question

Mark the correct alternative in each of the following:
The vector \vec{a} and \vec{b} satisfy the equation $2 \vec{a}+\vec{b}=\vec{p}$ and $\vec{a}+2 \vec{b}=\vec{q}$, where $\vec{p}=\hat{i}+\hat{j}$ and $\vec{q}=\hat{i}-\hat{j}$. If θ is the angle between \vec{a} and \vec{b}, then
A. $\cos \theta=\frac{4}{5}$
B. $\sin \theta=\frac{1}{\sqrt{2}}$
C. $\cos \theta=-\frac{4}{5}$
D. $\cos \theta=-\frac{3}{5}$

Answer

Here, $2 \vec{a}+\vec{b}=\vec{p}$ and $\vec{a}+2 \vec{b}=\vec{q}$
Also, $\vec{p}=\hat{\imath}+\hat{\jmath}$ and $\vec{q}=\hat{\imath}-\hat{\jmath}$
$\therefore 2 \vec{a}+\vec{b}=\hat{\imath}+\hat{\jmath}$ and $\vec{a}+2 \vec{b}=\hat{\imath}-\hat{\jmath}$
Solving above two equations for \vec{a} and \vec{b} we get,
$\therefore \vec{a}=\frac{2}{6} \hat{\imath}+\hat{\jmath}$ and $\vec{b}=\frac{2}{6} \hat{\imath}-\hat{\jmath}$
$\therefore \vec{a} \cdot \vec{b}=\frac{2}{6} \times \frac{2}{6}+1 \times(-1)$
$=\frac{4}{36}-1$
$=-\frac{32}{36}$
Also, $|\vec{a}|=\left\{\left(\frac{2}{6}\right)^{2}+(1)^{2}\right\}^{\frac{1}{2}}$
$=\sqrt{\frac{40}{36}}$
$=\frac{\sqrt{40}}{6}$
Ands, $|\vec{b}|=\left\{\left(\frac{2}{6}\right)^{2}+(1)^{2}\right\}^{\frac{1}{2}}$
$=\sqrt{\frac{40}{36}}$
$=\frac{\sqrt{40}}{6}$

Now, θ is the angle between \vec{a} and \vec{b}
So, $\cos \theta=\frac{\overrightarrow{\vec{a}} \vec{b}}{|\vec{a}||\vec{b}|}$
$=\frac{\left(-\frac{32}{36}\right)}{\left(\frac{\sqrt{40}}{6} \times \frac{\sqrt{40}}{6}\right)}$
$=-\frac{32}{40}$
$=-\frac{4}{5}$

2. Question

Mark the correct alternative in each of the following:
If $\vec{a} \cdot \hat{i}=\vec{a} \cdot(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})=1$, then $\vec{a}=$
A. $\overrightarrow{0}$
B. $\hat{\mathrm{i}}$
C. \hat{j}
D. $\hat{i}+\hat{j}+\hat{k}$

Answer

Here, $\vec{a} \hat{\imath}=1$
$\vec{a}(\hat{\imath}+\hat{\jmath})=1$ \qquad (2)
and $\vec{a}(\hat{\imath}+\hat{\jmath}+\hat{k})=1$
From (2),
$\vec{a} \hat{\imath}+\vec{a} \hat{\jmath}=1$
$\therefore \vec{a} \hat{\jmath}=0(\because \vec{a} \hat{\imath}=1)$ \qquad (4)

From (3) and (4)
$\vec{a} \hat{\imath}+\vec{a} \hat{k}=1(\because a \vec{\jmath} \hat{j}=0)$
$\therefore \vec{a} \hat{k}=0(\because \vec{a} \hat{\imath}=1)$
So,$\vec{a}=\vec{a} \hat{\imath}+\vec{a} \hat{\jmath}+\vec{a} \hat{k}$
$=\hat{\imath}$

3. Question

Mark the correct alternative in each of the following:
If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{6}$
B. $\frac{2 \pi}{3}$
C. $\frac{5 \pi}{3}$
D. $\frac{\pi}{3}$

Answer

Here, $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
$\Rightarrow \vec{a} \cdot(\vec{a}+\vec{b}+\vec{c})=\overrightarrow{0}$
$\Rightarrow \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=\overrightarrow{0}$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=-\vec{a} \cdot \vec{a}=-|\vec{a}|^{2}$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}=-9(\because|\vec{a}|=3)$ \qquad
From (1)
$\Rightarrow \vec{b} \cdot(\vec{a}+\vec{b}+\vec{c})=\overrightarrow{0}$
$\Rightarrow \vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{b} \cdot \vec{c}=\overrightarrow{0}$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}=-\vec{b} \cdot \vec{b}=-|\vec{b}|^{2}$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}=-25(\because|\vec{b}|=5)$
From (1)
$\Rightarrow \vec{c} \cdot(\vec{a}+\vec{b}+\vec{c})=\overrightarrow{0}$
$\Rightarrow \vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}+\vec{c} \cdot \vec{c}=\overrightarrow{0}$
$\Rightarrow \vec{c} \cdot \vec{a}+\vec{c} \cdot \vec{b}=-\vec{c} \cdot \vec{c}=-|\vec{c}|^{2}$
$\Rightarrow \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}=-49(\because|\vec{c}|=7)$
From (2) and (3)
$\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}=24$ \qquad (5)

From (2) and (5)
$2(\vec{a} \cdot \vec{b})=15$
$\Rightarrow \vec{a} \cdot \vec{b}=\frac{15}{2}$
Let θ be the angle between \vec{a} and \vec{b}
Then, $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$=\frac{\frac{15}{2}}{3 \times 5}$
$=\frac{1}{2}$

So, $\theta=\frac{\pi}{3}$
i.e. angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$.

4. Question

Mark the correct alternative in each of the following:
Let \vec{a} and \vec{b} be two unit vectors and α be the angle between them, then $\vec{a}+\vec{b}$ is a unit vector, if
A. $\alpha=\frac{\pi}{4}$
B. $\alpha=\frac{\pi}{3}$
C. $\alpha=\frac{2 \pi}{3}$
D. $\alpha=\frac{\pi}{2}$

Answer

Here, \vec{a} and \vec{b} are unit vectors.
i.e. $|\vec{a}|=1$ and $|\vec{b}|=1$

If $\vec{a}+\vec{b}$ is unit vector then
$|\vec{a}+\vec{b}|=1$
$\Rightarrow|\vec{a}+\vec{b}|^{2}=1$
$\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=1\left(\because|\vec{a}|^{2}=\vec{a} \cdot \vec{a}\right)$
$\Rightarrow \vec{a} \cdot \vec{a}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}=1$
$\Rightarrow 2(\vec{a} \cdot \vec{b})+2=1\left(\because|\vec{a}|^{2}=\vec{a} \cdot \vec{a}=1 ;|b|^{2}=\vec{b} \cdot \vec{b}=1 ; \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\right)$
$\Rightarrow(\vec{a} \cdot \vec{b})=-\frac{1}{2}$
Now, $\cos \alpha=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$=-\frac{1}{2}$
We know $\cos \frac{\pi}{3}=\frac{1}{2}$ and cosine is negative in second quadrant.
$\therefore \alpha=\pi-\frac{\pi}{3}$
$=\frac{2 \pi}{3}$

5. Question

Mark the correct alternative in each of the following:
The vector $(\cos \alpha+\cos \beta) \hat{i}+(\cos \alpha+\sin \beta) \hat{j}+(\sin \alpha) \hat{k}$ is a
A. null vector
B. unit vector
C. constant vector
D. none of these

Answer

Let $\vec{a}=(\cos \alpha \cos \beta) \hat{\imath}+(\cos \alpha \sin \beta) \hat{\jmath}+(\sin \alpha) \hat{k}$
So, $|\vec{a}|^{2}=(\cos \alpha \cos \beta)^{2}+(\cos \alpha \sin \beta)^{2}+(\sin \alpha)^{2}$
$=\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)+\sin ^{2} \alpha$
$=\cos ^{2} \alpha(1)+\sin ^{2} \alpha$
$=1$
i.e. $|\vec{a}|=1$

So, \vec{a} is a unit vector.

6. Question

Mark the correct alternative in each of the following:
If the position vectors of P and Q are $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$ then the cosine of the angle between $P \vec{Q}$ and y-axis is
A. $\frac{5}{\sqrt{162}}$
B. $\frac{4}{\sqrt{162}}$
C. $-\frac{5}{\sqrt{162}}$
D. $\frac{11}{\sqrt{162}}$

Answer

Let \vec{r} be the direction of $\overrightarrow{P Q}$
Then, $\vec{r}=Q-P=4 \hat{\imath}-5 \hat{\jmath}+11 \hat{k}$
Let θ be the angle between \vec{r} and Y -axis
Then, $\cos \theta=\frac{\vec{r} \cdot \hat{\jmath}}{|\vec{r}| \times|\hat{\jmath}|}$
$=-\frac{5}{(16+25+121)^{\frac{1}{2}}}$
$=-\frac{5}{\sqrt{162}}$

7. Question

Mark the correct alternative in each of the following:
If \vec{a} and \vec{b} are unit vectors, then which of the following values of $\vec{a} \cdot \vec{b}$ is not possible?
A. $\sqrt{3}$
B. $\sqrt{3} / 2$
C. $1 / \sqrt{2}$
D. $-1 / 2$

Answer

Here, \vec{a} and \vec{b} are unit vectors.
i.e. $|\vec{a}|=1$ and $|\vec{b}|=1$

Now, Let θ be the angle between \vec{a} and \vec{b}
So, $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$\Rightarrow \vec{a} \cdot \vec{b}=\cos \theta$
Now, we know $\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
; $\cos \frac{2 \pi}{3}=-\frac{1}{2}$
$; \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
Therefore, $\vec{a} \cdot \vec{b}=\cos \theta=\sqrt{3}$ is not possible.

8. Question

Mark the correct alternative in each of the following:
If the vectors $\hat{i}-2 x \hat{j}+2 y \hat{k}$ and $\hat{i}+2 x \hat{j}-3 y \hat{k}$ are perpendicular, then the locus of (x, y) is
A. a circle
B. an ellipse
C. a hyperbola
D. none of these

Answer

Let $\vec{a}=\hat{\imath}-2 x \hat{\jmath}+2 y \hat{k}$ and $\vec{b}=\hat{\imath}+2 x \hat{\jmath}-3 y \hat{k}$
Given that \vec{a} and \vec{b} are perpendicular.
So, $\vec{a} \cdot \vec{b}=0$
$\Rightarrow 1-4 x^{2}-6 y^{2}=0$
$\Rightarrow 4 x^{2}+6 y^{2}=1$
Here, vectors are in 3-Dimensions
\therefore above equation represents an ellipse .i.e. locus of (x, y) is an ellipse.

9. Question

Mark the correct alternative in each of the following:
The vector component of \vec{b} perpendicular to \vec{a} is
A. $(\vec{b} \cdot \vec{c}) \vec{a}$
B. $\frac{\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})}{|\overrightarrow{\mathrm{a}}|^{2}}$
C. $\vec{a} \times(\vec{b} \times \vec{c})$
D. none of these

Answer

Let \vec{r} be the vector projection of \vec{b} onto \vec{a}
Then, $\vec{r}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \cdot \vec{a}$
Now, vector component of \vec{b} perpendicular to \vec{a} is
$\vec{x}=\vec{b}-\vec{r}$
$=\vec{b}-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \cdot \vec{a}$
$=\frac{\vec{b}(\vec{a} \cdot \vec{a})-(\vec{a} \cdot \vec{b}) \vec{a}}{|\vec{a}|^{2}}$
$=\frac{\vec{a} \times(\vec{b} \times \vec{c})}{|\vec{a}|^{2}}$

10. Question

Mark the correct alternative in each of the following:
The length of the longer diagonal of the parallelogram constructed on $5 \vec{a}+2 \vec{b}$ and $\vec{a}-3 \vec{b}$ if its is given that $|\vec{a}|=2 \sqrt{2},|\vec{b}|=3$ and angle between \vec{a} and \vec{b} is $\pi / 4$, is
A. 15
B. $\sqrt{113}$
C. $\sqrt{593}$
D. $\sqrt{369}$

Answer

Here, $|\vec{a}|=2 \sqrt{2}$ and $|\vec{b}|=3$
The parallelogram is constructed on $5 \vec{a}+2 \vec{b}$ and $\vec{a}-3 \vec{b}$
Then its one diagonal is $5 \vec{a}+2 \vec{b}+\vec{a}-3 \vec{b}=6 \vec{a}-\vec{b}$
And other diagonal is $5 \vec{a}+2 \vec{b}-\vec{a}+3 \vec{b}=4 \vec{a}+5 \vec{b}$
Length of one diagonal is $=|6 \vec{a}-\vec{b}|$
$=\{(6 \vec{a}-\vec{b}) \cdot(6 \vec{a}-\vec{b})\}^{\frac{1}{2}}$
$=\left(36 \vec{a}^{2}+\vec{b}^{2}-2 \times 6|\vec{a}||\vec{b}| \cos \frac{\pi}{4}\right)^{\frac{1}{2}}$
$=\left(36 \times 8+9-12 \times 2 \sqrt{2} \times 3 \times \frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}$
$=(288+9-12 \times 6)^{\frac{1}{2}}$
$=\sqrt{ } 225$
$=15$
Length of other diagonal is $=|4 \vec{a}+5 \vec{b}|$
$=\{(4 \vec{a}+5 \vec{b}) \cdot(4 \vec{a}+5 \vec{b})\}^{\frac{1}{2}}$
$=\left(16 \vec{a}^{2}+25 \vec{b}^{2}+2 \times 4 \times 5|\vec{a}||\vec{b}| \cos \frac{\pi}{4}\right)^{\frac{1}{2}}$
$=\left(16 \times 8+25 \times 9+40 \times 2 \sqrt{2} \times 3 \times \frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}$
$=(128+225+40 \times 6)^{\frac{1}{2}}$
$=\sqrt{ } 593$
So, Length of the longest diagonal is $\sqrt{ } 593$.

11. Question

Mark the correct alternative in each of the following:
If \vec{a} is a non-zero vector of magnitude ' a ' and λ is a non-zero scalar, then $\lambda \vec{a}$ is a unit vector if
A. $\lambda=1$
B. $\lambda=-1$
C. $a=|\lambda|$
D. $\mathrm{a}=\frac{1}{|\lambda|}$

Answer

Here, $|\vec{a}|=a$
Now, $\lambda \vec{a}$ is unit vector if $|\lambda \vec{a}|=1$
i.e. $|\lambda||\vec{a}|=1$
i.e. $|\lambda| a=1$
i.e. $a=\frac{1}{|\lambda|}$

12. Question

Mark the correct alternative in each of the following:
If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

Answer

Here, θ be the angle between \vec{a} and \vec{b}
Then, $\cos \theta=\frac{\vec{a} \vec{b}}{|\vec{a}||\vec{b}|}$
Now, $\vec{a} \cdot \vec{b} \geq 0$
$\Rightarrow \cos \theta|\vec{a}||\vec{b}| \geq 0$
$\Rightarrow \cos \theta \geq 0$
We know cosine is positive in first quadrant.
$\therefore 0 \leq \theta \leq \frac{\pi}{2}$

13. Question

Mark the correct alternative in each of the following:
The values of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}, \vec{b}=7 \hat{i}-2 \hat{j}+x \hat{k}$ is obtuse and the angle between \vec{b} and the z-axis is acute and less than $\pi / 6$ are
A. $\mathrm{x}>\frac{1}{2}$ or $\mathrm{x}<0$
B. $0<\mathrm{x}<\frac{1}{2}$
C. $\frac{1}{2}<\mathrm{x}<15$
D. ϕ

Answer

Here, angle between \vec{a} and \vec{b} is obtuse
So,$\vec{a} \cdot \vec{b} \leq 0$
$\Rightarrow 14 \mathrm{x}^{2}-8 \mathrm{x}+\mathrm{x} \leq 0$
$\Rightarrow 14 x^{2}-7 x \leq 0$
$\Rightarrow 2 x^{2}-x \leq 0$
$\Rightarrow \mathrm{x}(2 \mathrm{x}-1) \leq 0$
$\Rightarrow x \leq 0$ and $x \geq \frac{1}{2}$
or $x \geq 0$ and $x \leq \frac{1}{2}$ \qquad (1)

Now, angle between \vec{b} and Z-axis is acute
So,$\vec{b} \cdot \hat{k} \geq 0$
$\Rightarrow x \geq 0$
\therefore From (1) and (2) $0 \leq x \leq \frac{1}{2}$.

14. Question

Mark the correct alternative in each of the following:
If $\vec{a}, \vec{b}, \vec{c}$ are any three mutually perpendicular vectors of equal magnitude a, then $|\vec{a}+\vec{b}+\vec{c}|$ is equal to
A. a
B. $\sqrt{2} \mathrm{a}$
C. $\sqrt{3} a$
D. 2 a

Answer

We know that,
$|\vec{a}+\vec{b}+\vec{c}|^{2}=|\overrightarrow{|a|}|^{2}+\overrightarrow{\left.b\right|^{2}}+\overrightarrow{|c|^{2}}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}$ (i)
Since, they are mutually perpendicular vectors
$\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$ (ii)
And according to question
$|\vec{a}|=|\vec{b}|=|\vec{c}|$
Using (i) and (ii) ,
$|\vec{a}+\vec{b}+\vec{c}|=\sqrt{\mid \overrightarrow{\left.a\right|^{2}}+\overrightarrow{|b|^{2}}+\overrightarrow{|c|^{2}}}$
$=\sqrt{3}|\vec{a}|$ Ans.

Smart Approach

In case of such mutually perpendicular vectors, assume vectors to be $\hat{\imath}, \hat{\jmath}, \hat{k}$ and verify your answer from options.

15. Question

Mark the correct alternative in each of the following:
If the vectors $3 \hat{i}+\lambda \hat{j}+\hat{k}$ and $2 \hat{i}-\hat{j}+8 \hat{k}$ are perpendicular, then λ is equal to
A. -14
B. 7
C. 14
D. $\frac{1}{7}$

Answer

We have,
$\vec{a}=3 \vec{\imath}+\lambda \vec{j}+\vec{k}$
$\vec{b}=2 \vec{\imath}-\vec{\jmath}+8 \vec{k}$
Given that \vec{a} and \vec{b} are perpendicular
$\Rightarrow \vec{a} \cdot \vec{b}=0$
$\Rightarrow(3 \vec{\imath}+\lambda \vec{\jmath}+\vec{k}) \cdot(2 \vec{\imath}-\vec{\jmath}+8 \vec{k})=0$
$\Rightarrow 6-\lambda+8=0$
$\therefore \lambda=14$ Ans.

16. Question

Mark the correct alternative in each of the following:
The projection of the vector $\hat{i}+\hat{j}+\hat{k}$ along the vector \hat{j} is
A. 1
B. 0
C. 2
D. -1

Answer

Projection of \vec{a} on \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
Projection of $\hat{i}+\hat{j}+\hat{k}$ on \hat{j} is
$\frac{(\hat{i}+\hat{j}+\hat{k}) \cdot \hat{j}}{|\hat{j}|}$
$=\frac{1}{1}$
$=1$ Ans.

17. Question

Mark the correct alternative in each of the following:
The vectors $2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $a \hat{i}-b \hat{j}+c \hat{k}$ are perpendicular, if
A. $a=2, b=3, c=-4$
B. $a=4, b=4, c=5$
C. $a=4, b=4, c=-5$
D. $a=-4, b=4, c=-5$

Answer

The given two vectors,
\Rightarrow Their dot-product is zero
$\Rightarrow(2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}) \cdot(a \hat{\imath}+b \hat{\jmath}+c \hat{k})=0$
$2 \mathrm{a}+3 \mathrm{~b}-4 \mathrm{c}=0$
From the given options only option B satisfies the above equation
Hence option B is correct answer.
18. Question

Mark the correct alternative in each of the following:
If $|\vec{a}|=|\vec{b}|$, then $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=$
A. positive
B. negative
C. 0
D. none of these

Answer

$(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=|\vec{a}|^{2}+(\vec{b} \cdot \vec{a})-(\vec{a} \cdot \vec{b})-|\vec{b}|^{2}$
$=|\vec{a}|^{2}-|\vec{b}|^{2}(|\vec{a}|=|\vec{b}|)$
$=0$ Ans.

19. Question

Mark the correct alternative in each of the following:
If \vec{a} and \vec{b} are unit vectors inclined at an angle θ, then the value of $|\vec{a}-\vec{b}|$ is
A. $2 \sin \frac{\theta}{2}$
B. $2 \sin \theta$
C. $2 \cos \frac{\theta}{2}$
D. $2 \cos \theta$

Answer

$|\vec{a}-\vec{b}|=\sqrt{|a|^{2}+|b|^{2}-2|a||b| \cos \theta}$
Given that,
$|\vec{a}|=|\vec{b}|=1$
$|\vec{a}-\vec{b}|=\sqrt{2-2 \cos \theta}\left\{(1-\cos \theta)=2 \sin ^{2} \frac{\theta}{2}\right\}$
$|\vec{a}-\vec{b}|=\sqrt{(2) 2 \sin ^{2} \frac{\theta}{2}}$
$|\vec{a}-\vec{b}|=\left|2 \sin \frac{\theta}{2}\right|$ Ans.

20. Question

Mark the correct alternative in each of the following:
If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3}|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ is
A. 2
B. $2 \sqrt{2}$
C. 4
D. none of these

Answer

If \vec{a} and \vec{b} are unit vector then
$|\vec{a}+\vec{b}|=\left|2 \cos \frac{\theta}{2}\right|$
$|\vec{a}-\vec{b}|=\left|2 \sin \frac{\theta}{2}\right|$
$\sqrt{3}|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|=2 \sqrt{3} \cos \frac{\theta}{2}+2 \sin \frac{\theta}{2}$
Maximum value of a $\sin \theta+\mathrm{b} \cos \theta$ is $\sqrt{a^{2}+b^{2}}$
Maximum value of $2 \sqrt{3} \cos \frac{\theta}{2}+2 \sin \frac{\theta}{2}$ is 4 Ans.

21. Question

Mark the correct alternative in each of the following:
If the angle between the vectors $x \hat{i}+3 \hat{j}-7 \hat{k}$ and $x \hat{i}-x \hat{j}+4 \hat{k}$ is acute, then x lies in the interval.
A. $(-4,7)$
B. $[-4,7]$
C. $R-[4,7]$
D. $R-(4,7)$

Answer

$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \vec{b} \mid}$
If the angle is acute $\cos \theta<0$
$\Rightarrow \vec{a} \cdot \vec{b}<0$
$\Rightarrow(x \hat{\imath}+3 \hat{\jmath}-7 \hat{k}) \cdot(x \hat{\imath}-x \hat{\jmath}+4 \hat{k})<0$
$\Rightarrow x^{2}-3 x-28<0$
$\Rightarrow(x-7)(x+4)<0$
$\Rightarrow x \in R-(4,7)$ Ans.

22. Question

Mark the correct alternative in each of the following:
If \vec{a} and \vec{b} are two unit vectors inclined at an angle θ such that $|\vec{a}+\vec{b}|<1$, then
A. $\theta<\frac{\pi}{3}$
B. $\theta>\frac{2 \pi}{3}$
C. $\frac{\pi}{3}<\theta<\frac{2 \pi}{3}$
D. $\frac{2 \pi}{3}<\theta<\pi$

Answer

We know that,
If \vec{a} and \vec{b} are two-unit vectors inclined at an angle θ
$|\vec{a}+\vec{b}|=\left|2 \cos \frac{\theta}{2}\right|$
According to question,
$|\vec{a}+\vec{b}|<1$
$\Rightarrow\left|2 \cos \frac{\theta}{2}\right|<1$
$\Rightarrow \frac{-1}{2}<\cos \frac{\theta}{2}<\frac{1}{2}$
$\Rightarrow \frac{2 \pi}{3}>\frac{\theta}{2}>\frac{\pi}{3}$
$\Rightarrow \frac{2 \pi}{3}<\theta<\frac{4 \pi}{3}$ Ans.

23. Question

Mark the correct alternative in each of the following:
Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $|\vec{a}+\vec{b}+\vec{c}|=1$ and \vec{a} is perpendicular to \vec{b}. If \vec{c} makes angle α and $\beta \vec{a}$ and \vec{b} respectively, then $\cos \alpha+\cos \beta=$
A. $-\frac{3}{2}$
B. $\frac{3}{2}$
C. 1
D. -1

Answer

We know that,
$|\vec{a}+\vec{b}+\vec{c}|^{2}=\left|\overrightarrow{\left.a\right|^{2}}+\left|\overrightarrow{\left.b\right|^{2}}+|\overrightarrow{c \mid}|^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}^{\text {(i) }}\right.\right.$
Since,
\vec{a} is perpendicular to \vec{b}
$\Rightarrow \vec{a} \cdot \vec{b}=0$
And according to question
$|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
We can rewrite equation (i) as
$|\vec{a}+\vec{b}+\vec{c}|^{2}=|\overrightarrow{|a|}|^{2}+|\vec{b}|^{2}+\overrightarrow{|c|^{2}}+0+2 \cos \beta+2 \cos \alpha$
$1=1+1+1+0+2(\cos \alpha+\cos \beta)$
$\Rightarrow \cos \alpha+\cos \beta=-1$ Ans.

24. Question

Mark the correct alternative in each of the following:
The orthogonal projection of \vec{a} and \vec{b} is
A. $\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{|\vec{a}|^{2}}$
B. $\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{|\vec{b}|^{2}}$
C. $\frac{\vec{a}}{|\vec{a}|^{2}}$
D. $\frac{\vec{b}}{|\vec{b}|^{2}}$

Answer

Key Concept/Trick: Magnitude of Projection of any vector \vec{a} on \vec{b}
is given by $\vec{a} \cdot \hat{b}$
Now, Since it is the magnitude or length $\left(a_{\cos } \theta\right)$ we have to give the length a direction in the direction of \vec{b}
So, we multiply the projection by unit vector of \vec{b}
$\overrightarrow{(a} \cdot \hat{b}) \cdot \hat{b}$ which on simplification gives option B Ans.

25. Question

Mark the correct alternative in each of the following:
If θ is an acute angle and the vector $(\sin \theta) \hat{i}+(\cos \theta) \hat{\mathrm{j}}$ is perpendicular to the vector $\hat{\mathrm{i}}-\sqrt{3} \hat{\mathrm{j}}$, then $\theta=$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{5}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer

Since, the given two vectors are given as perpendicular their dot product must be zero
$((\sin \theta) \hat{i}+(\cos \theta) \hat{\mathrm{j}})(\hat{\imath}-\sqrt{3} \hat{\jmath})=0$
$\sin \theta-\sqrt{3} \cos \theta=0$
$\tan \theta=\sqrt{3}$
Since θ is acute then, $\theta=\frac{\pi}{3}$ Ans

26. Question

Mark the correct alternative in each of the following:
If \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector, if $\theta=$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer

We know that,
$|\vec{a}+\vec{b}|=\left|2 \cos \frac{\theta}{2}\right|$
According to Question,
$|\vec{a}+\vec{b}|=1$
$\Rightarrow\left|2 \cos \frac{\theta}{2}\right|=1$
$\Rightarrow \cos \frac{\theta}{2}=\frac{1}{2}$
$\Rightarrow \frac{\theta}{2}=\frac{\pi}{3}$
$\theta=\frac{2 \pi}{3}$ Ans.

