21. Mensuration-II (Volumes and Surface Areas of a Cuboid and a Cube)

Exercise 21.1

1. Question

Find the volume of a cuboid whose
(i) length $=12 \mathrm{~cm}$, breadth $=8 \mathrm{~cm}$, height $=6 \mathrm{~cm}$
(ii) length $=1.2 \mathrm{~m}$, breadth $=30 \mathrm{~cm}$, height $=15 \mathrm{~cm}$
(iii) length $=15 \mathrm{~cm}$, breadth $=2.5 \mathrm{dm}$, height $=8 \mathrm{~cm}$.

Answer

(i) Length of cuboid $=12 \mathrm{~cm}$

Breadth of cuboid $=8 \mathrm{~cm}$
Height of cuboid $=6 \mathrm{~cm}$
Hence,
Volume of cuboid $=$ length \times breadth \times height $=12 \times 8 \times 6=576 \mathrm{~cm}^{3}$
(ii) Length $=1.2 \mathrm{~m}=120 \mathrm{~cm}$

Breadth $=30 \mathrm{~cm}$
Height $=15 \mathrm{~cm}$
Hence,
Volume of cuboid $=120 \times 30 \times 15=54000 \mathrm{~cm}^{3}$
(iii) Length $=15 \mathrm{~cm}$

Breadth $=2.5 \mathrm{dm}=25 \mathrm{~cm}$
Height $=8 \mathrm{~cm}$
Hence,
Volume of cuboid $=15 \times 25 \times 8=3000 \mathrm{~cm}^{3}$

2. Question

Find the volume of a cube whose side is
(i) 4 cm
(ii) 8 cm
(iii) 1.5 dm
(iv) 1.2 m
(v) 25 mm

Answer

(i) Given,
side of cube $=4 \mathrm{~cm}$
volume of cube $=(\text { side })^{3}=4^{3}=64 \mathrm{~cm}^{3}$
(ii) side of cube $=8 \mathrm{~cm}$
volume of cube $=(\text { side })^{3}=8^{3}=512 \mathrm{~cm}^{3}$
(iii) side of cube $=1.5 \mathrm{dm}$
volume of cube $=(\text { side })^{3}=1.5^{3}=3.375 \mathrm{dm}^{3}=3375 \mathrm{~cm}^{3}$
(iv) side of cube $=1.2 \mathrm{~m}$
volume of cube $=1.2^{3}=1.728 \mathrm{~m}^{3}$
(v) side of cube $=25 \mathrm{~mm}$
volume of cube $=25^{3}=15625 \mathrm{~mm}^{3}=15.625 \mathrm{~cm}^{3}$

3. Question

Find the height of a cuboid of volume $100 \mathrm{~cm}^{3}$, whose length and breadth are 5 cm and 4 cm respectively.

Answer

Given,
Volume of cuboid $=100 \mathrm{~cm}^{3}$
Length $=5 \mathrm{~cm}$
Breadth $=4 \mathrm{~cm}$
Let height of cuboid $=\mathrm{hcm}$
So,
$=l \times b \times h=100 \mathrm{~cm}$
$=h=\frac{100}{5 \times 4}=5 \mathrm{~cm}$

4. Question

A cuboidal vessel is 10 cm long and 5 cm wide. How high it must be made to hold $300 \mathrm{~cm}^{3}$ of a liquid?
Answer
Given,
Length of cuboidal vessel $=10 \mathrm{~cm}$
Width $=5 \mathrm{~cm}$
Volume of liquid in it $=300 \mathrm{~cm}^{3}$
Let height of vessel $=\mathrm{hcm}$
So,
$=l \times b \times h=300$
$=h=\frac{300}{10 \times 5}=6 \mathrm{~cm}$

5. Question

A milk container is 8 cm long and 50 cm wide. What should be its height so that it can hold 4 litres of milk?

Answer

Given,
Length of milk container $=8 \mathrm{~cm}$
Width $=50 \mathrm{~cm}$
Volume to hold $=4$ litre $=4000 \mathrm{~cm}^{3}$
Let height of container $=\mathrm{hcm}$

So,
$=l \times b \times h=4000$
$=h=\frac{4000}{50 \times 8}=10 \mathrm{~cm}$

6. Question

A cuboidal wooden block contains $36 \mathrm{~cm}^{3}$ wood. If it be 4 cm long and 3 cm wide, find its height.

Answer

Given,
Volume of wood in cuboidal block $=36 \mathrm{~cm}^{3}$
Length of block $=4 \mathrm{~cm}$
Breadth of block $=3 \mathrm{~cm}$
Let height of block $=\mathrm{hcm}$
So,
$=l \times b \times h=36$
$=h=\frac{36}{4 \times 3}=3 \mathrm{~cm}$

7. Question

What will happen to the volume of a cube, if its edge is
(i) halved (ii) trebled?

Answer

Given,
Let edge of cube $=\mathrm{a}$
So volume of cube $=a^{3}$
Case (i)
Edge become $=\frac{a}{2}$
Volume become $=\left(\frac{a}{2}\right)^{3}=\frac{a^{3}}{8}=\frac{1}{8}$ times
Case (ii)
Edge becomes $=3 \mathrm{a}$
Volume become $=(3 a)^{3}=27 a^{3}=27$ times

8. Question

What will happen to the volume of a cuboid if its :
(i) Length is doubled, height is same and breadth is halved?
(ii) Length is doubled, height is doubled and breadth is same?

Answer

(i) Let,

Length of cuboid = I
Breadth $=\mathrm{b}$

Height $=\mathrm{h}$
Volume of cuboid $=\mathrm{lbh}$
Now,
Case(i)
Length become $=21$
Height $=\mathrm{h}$
Breadth $=\frac{b}{2}$
Volume of cuboid $=2 l \times \frac{b}{2} \times h=l b h=$ remain same
(ii)

Case(ii)
Length become $=21$
Breadth $=\mathrm{b}$
Height $=2 h$
Volume of cuboid $=2 l \times b \times 2 h=4 l b h=$ four times

9. Question

Three cuboids of dimemsions $5 \mathrm{~cm} \times 6 \mathrm{~cm} \times 7 \mathrm{~cm}, 4 \mathrm{~cm} \times 7 \mathrm{~cm} \times 8 \mathrm{~cm}$ and $2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 13 \mathrm{~cm}$ are melted and a cube is made. Find the side of cube.

Answer

Volume of First cuboids $=5 \times 6 \times 7=210 \mathrm{vm}^{3}$
Volume of second cuboids $=4 \times 7 \times 8=224 \mathrm{~cm}^{3}$
Volume of third cuboids $=2 \times 3 \times 13=78 \mathrm{~cm}^{3}$
Volume of cube $=210+224+78=512$
Let side of cube $=a$
$\Rightarrow a^{3}=512$
$a=8 \mathrm{~cm}$

10. Question

Find the weight of solid rectangular iron piece of size $50 \mathrm{~cm} \times 40 \mathrm{~cm} \times 10 \mathrm{~cm}$, if $1 \mathrm{~cm}^{3}$ of iron weights 8 gm .

Answer

Given,
Dimension of rectangular iron piece $=50 \mathrm{~cm} \times 40 \mathrm{~cm} \times 10 \mathrm{~cm}$
Volume of solid rectangular $=50 \times 40 \times 10=20000 \mathrm{~cm}^{3}$
Weight of $1 \mathrm{~cm}^{3}$ iron $=8 \mathrm{gm}$
\therefore weight of $20000 \mathrm{~cm}^{3}$ iron $=8 \times 20000=160000 \mathrm{gm}=160 \mathrm{~kg}$

11. Question

How many wooden cubical blocks of side 25 cm can be cut from a log of wood of size 3 m by 75 cm by 50 cm , assuming that there is no wastage?

Answer

Given,
Dimensions of log of wood $=3 \mathrm{~m} \times 75 \mathrm{~cm} \times 50 \mathrm{~cm}$
Side of cubical block $=25 \mathrm{~cm}$
Hence,
No. of cubical block that can be made from wooden log $=\frac{\text { volume of wooden block }}{\text { volume of cubical block }}$
$=\frac{300 \times 75 \times 50}{25 \times 25 \times 25}=72$ blocks

12. Question

A cuboidal block of silver is 9 cm long, 4 cm broad and 3.5 cm in height. From it, beads of volume $1.5 \mathrm{~cm}^{3}$ each are to be made. Find the number of beads that can be made from the block.

Answer

Given,
Dimensions of cuboidal block of silver $=9 \mathrm{~cm} \times 4 \mathrm{~cm} \times 3.5 \mathrm{~cm}$
Volume of beads made $=1.5 \mathrm{~cm}^{3}$
So,
Number of beads can be made from cuboidal block $=\frac{9 \times 4 \times 3}{1.5}=72$ beads

13. Question

Find the number of cuboidal boxes measuring 2 cm by 3 cm by 10 cm which can be stored in a carton whose dimensions are $40 \mathrm{~cm}, 36 \mathrm{~cm}$, and 24 cm .

Answer

Given,
Dimensions of cuboidal boxes $=2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 10 \mathrm{~cm}$
Dimesions of carton $=40 \mathrm{~cm} \times 36 \mathrm{~cm} \times 24 \mathrm{~cm}$
So,
Number of boxes can be stored in carton $=\frac{\text { volume of carton }}{\text { volume of one box }}=\frac{40 \times 36 \times 24}{2 \times 3 \times 10}=576$ boxes

14. Question

A cuboidal block of solid iron has dimensions $50 \mathrm{~cm}, 45 \mathrm{~cm}$, and 34 cm , How many cuboids of size 5 cm by 3 cm by 2 cm can be obtained from this block? Assume cutting causes no wastage.

Answer

Given,
Dimensions of cuboidal block of iron $=50 \mathrm{~cm} \times 45 \mathrm{~cm} \times 34 \mathrm{~cm}$
Size of small cuboids cutting from it $=5 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}$
So,
Number of small cuboids can be cut $=\frac{\text { volume of large iron cuboid }}{\text { volume of small cuboids }}=\frac{50 \times 45 \times 34}{5 \times 3 \times 2}=2550$ blocks
15. Question

A cube A has side thrice as long as that of cube B. What is the ratio of the volume of cube A to that of cube B ?

Answer

Given,
Let side of cube $B=X c m$
Then, side of cube $A=3 X \mathrm{~cm}$
So,
$=\frac{\text { volume of cube } A}{\text { volume of cube } B}=\frac{(3 x)^{3}}{(x)^{3}}=\frac{27 x^{3}}{x^{3}}=\frac{27}{1}$

16. Question

An ice-cream brick measures 20 cm by 10 cm by 7 cm . How many such bricks can be stored in deep fridge whose inner dimensions are 100 cm by 50 cm by 42 cm ?

Answer

Given,
Dimensions of ice cream brick $=20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 7 \mathrm{~cm}$
Dimensions of fridge $=100 \mathrm{~cm} \times 50 \mathrm{~cm} \times 42 \mathrm{~cm}$
So,
Number of bricks can be put in fridge $=\frac{\text { volume of fridge }}{\text { volume of one ice brick }}=\frac{100 \times 50 \times 42}{20 \times 10 \times 7}=150$ ice cream

17. Question

Suppose that there are two cubes, having edges 2 cm and 4 cm , respectively. Find the volumes V_{1} and V_{2} of the cubes and compare them.

Answer

Given,
Edge of one cube $a_{1}=2 \mathrm{~cm}$
Edge of second cube $a_{2}=4 \mathrm{~cm}$
Hence,
$=v_{1}=2^{3}=8 \mathrm{~cm}^{3}$
$=v_{2}=4^{3}=64 \mathrm{~cm}^{3}$
$=v_{2}=8 v_{1}$

18. Question

A tea-packet measures $10 \mathrm{~cm} \times 6 \mathrm{~cm} \times 4 \mathrm{~cm}$. How many such tea-packets can be placed in a cardboard box of dimensions $50 \mathrm{~cm} \times 30 \mathrm{~cm} \times 0.2 \mathrm{~m}$?

Answer

Given,
Dimensions of tea packet $=10 \mathrm{~cm} \times 6 \mathrm{~cm} \times 4 \mathrm{~cm}$
Dimension of cardboard box $=50 \mathrm{~cm} \times 30 \mathrm{~cm} \times 0.2 \mathrm{~m}$
So,
Number of tea packets can be put in cardboard box $=\frac{\text { volume of cardboard box }}{\text { volume of tea packet }}=\frac{50 \times 30 \times 20}{10 \times 6 \times 4}=125$ packets

19. Question

The weight of a metal block of size 5 cm by 4 cm by 3 cm is 1 kg . Find the weight of a block of the same metal of size 15 cm by 8 cm by 3 cm .

Answer

Given,
Dimensions of metal block $=5 \mathrm{~cm} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm}$
Weight of block $=1 \mathrm{~kg}$
Volume of box $=5 \times 4 \times 3=60 \mathrm{~cm}^{3}$
Dimension of new block $=15 \mathrm{~cm} \times 8 \mathrm{~cm} \times 3 \mathrm{~cm}$
Volume of new box $=15 \times 8 \times 3=360 \mathrm{~cm}^{3}$
We know that,
$=60 \mathrm{~cm}^{3}=1 \mathrm{~kg}$
$=360 \mathrm{~cm}^{3}=6 \times 60 \mathrm{~cm}^{3}=6 \times 1=6 \mathrm{~kg}$

20. Question

How many soap cakes can be placed in a box of size $56 \mathrm{~cm} \times 0.4 \mathrm{~m} \times 0.25 \mathrm{~m}$, if the size of a soap cake is 7 $\mathrm{cm} \times 5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$?

Answer

Given,
Dimensions of box $=56 \mathrm{~cm} \times 0.4 \mathrm{~m} \times 0.25 \mathrm{~m}$
Dimensions of soap cake $=7 \mathrm{~cm} \times 5 \mathrm{~cm} \times 2.5 \mathrm{~cm}$
So,
Number of soap cakes can be placed in box $=\frac{\text { volume of box }}{\text { volume of soap cake }}=\frac{56 \times 40 \times 25}{7 \times 5 \times 2.5}=640$

21. Question

The volume of acuboidal box is $48 \mathrm{~cm}^{3}$. If its height and kength are 3 cm and 4 cm respectively, find its breadth.

Answer

Given,
Volume of cuboidal box $=48 \mathrm{~cm}^{3}$
Height of box $=3 \mathrm{~cm}$
Length of $\mathrm{box}=4 \mathrm{~cm}$
Let height of box $=\mathrm{hcm}$
So,
$=l \times b \times h=48$
$=h=\frac{48}{3 \times 4}=4 \mathrm{~cm}$

Exercise 21.2

1. Question

Find the volume in cubic metres (cu.m) of each of the cuboids whose dimensions are :
(i) length $=12 \mathrm{~m}$, breadth $=10 \mathrm{~m}$, height $=4.5 \mathrm{~m}$
(ii) length $=14 \mathrm{~m}$, breadth $=2.5 \mathrm{~m}$, height $=50 \mathrm{~cm}$
(iii) length $=10 \mathrm{~m}$, breadth $=25 \mathrm{dm}$, height $=25 \mathrm{~cm}$.

Answer

(i) Given,

Length of cuboid $=12 \mathrm{~m}$
Breadth of cuboid $=10 \mathrm{~m}$
Height of cuboid $=4.5 \mathrm{~m}$
So,
Volume of cuboid $=l \times b \times h=12 \times 10 \times 4.5=540 \mathrm{~m}^{3}$
(ii) Given,
length of cuboid $=14 \mathrm{~m}$
breadth of cuboid $=2.5 \mathrm{~m}$
height of cuboid $=50 \mathrm{~cm}=.50 \mathrm{~m}$
so.
Volume of cuboid $=l \times b \times h=14 \times 2.5 \times .50=17.5 \mathrm{~m}^{3}$
(iii) Given,
length of cuboid $=10 \mathrm{~m}$
breadth of cuboid $=25 \mathrm{dm}=2.5 \mathrm{~m}$
height of cuboid $=25 \mathrm{~cm}=.25 \mathrm{~m}$
so,
volume of cuboid $=l \times b \times h=10 \times 2.5 \times .25=6.25 \mathrm{~m}^{3}$

2. Question

Find the volume in cubic decimetre of each of the cubes whose side is
(i) 1.5 m
(ii) 2 dm 5 cm

Answer

(i) Given,

Side of cube $=1.5 \mathrm{~m}=15 \mathrm{dm}$
Volume of cube $=15^{3}=3375 \mathrm{dm}^{3}$
(ii) Given,
side of cube $=2 \mathrm{dm} 5 \mathrm{~cm}=2.5 \mathrm{dm}$
volume of cube $=2.5^{3}=15.625 \mathrm{dm}^{3}$

3. Question

How much clay is dug out in digging a well measuring 3 m by 2 m by 5 m ?

Answer

Given
Dimensions of well $=3 \mathrm{~m} \times 2 \mathrm{~m} \times 5 \mathrm{~m}$
So,
Volume of clay dug out from it $=l \times b \times h=3 \times 2 \times 5=30 \mathrm{~m}^{3}$

4. Question

What will be the height of a cuboid of volume $168 \mathrm{~m}^{3}$, if the area of its base is $28 \mathrm{~m}^{2}$?

Answer

Given,
Volume of cuboid $=168 \mathrm{~m}^{3}$
Area of base $=l \times b=28 \mathrm{~m}^{2}$
Let height of cuboid $=\mathrm{h} \mathrm{m}$
So,
$=l \times b \times h=168$
$=28 \times h=168$
$=h=\frac{168}{28}=6 \mathrm{~m}$
So height of cuboid $=6 \mathrm{~m}$

5. Question

A tank is 8 m long, 6 m broad and 2 m high. How much water can it contain?

Answer

Given,
Dimensions of a tank $=8 m \times 6 m \times 2 m$
So,
Capacity of tank $=$ volume of tank $=l \times b \times h=8 \times 6 \times 2=96 \mathrm{~m}^{3}=96000$ litre

6. Question

The capacity of a certain cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its height and length are 10 m and 2.5 m respectively.

Answer

Given,
Capacity of cuboidal tank $=50000$ litre $=50 \mathrm{~m}^{3}$
Height of tank $=10 \mathrm{~m}$
Length of tank $=2.5 \mathrm{~m}$
Let breadth of tank $=\mathrm{b}$ m
So,
$=l \times b \times h=50$
$=b=\frac{50}{10 \times 2.5}=2 \mathrm{~m}$
Breadth of tank $=2 \mathrm{~m}$

7. Question

A rectangular diesel tanker is 2 m long, 2 m wide and 40 cm deep. How many litres of diesel can it hold?

Answer

Given,
$\mathrm{L}=2 \mathrm{~m}$
$B=2 m$
$\mathrm{H}=40 \mathrm{~cm}$
Dimensions of rectangular diesel tank $=2 \mathrm{~m} \times 2 \mathrm{~m} \times 40 \mathrm{~cm}$
So,
Amount of diesel it can hold $=$ volume of tank $=2 \times 2 \times .40=1.6 \mathrm{~m}^{3}=1600$ litre

8. Question

The length, breadth and height of a room are $5 \mathrm{~m}, 4.5 \mathrm{~m}$ and 3 m respectively. Find the volume of the air it contains.

Answer

Given,
$\mathrm{L}=5 \mathrm{~m}$
$B=4.5 m$
$H=3 m$
Dimensions of a room $=5 \mathrm{~m} \times 4.5 \mathrm{~m} \times 3 \mathrm{~m}$
So,
Volume of air it contains $=\mathrm{I} \times \mathrm{b} \times \mathrm{h}=5 \times 4.5 \times 3=67.5 \mathrm{~m}^{3}$
9. Question

A water tank is 3 m long, 2 m broad and 1 m deep. How many litres of water can it hold?

Answer

Given,
$\mathrm{L}=2 \mathrm{~m}$
$B=2 m$
$H=40 \mathrm{~cm}$
Dimensions of water tank $=3 m \times 2 m \times 1 m$
So,
Capacity of water it can hold $=l \times b \times h=3 \times 2 \times 1=6 \mathrm{~m}^{3}=6000$ litre

10. Question

How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long., 75 cm broad and 45 cm thick?

Answer

Given,
Dimensions of one plank $=3 \mathrm{~m} \times 15 \mathrm{~cm} \times 5 \mathrm{~cm}=300 \mathrm{~cm} \times 15 \mathrm{~cm} \times 5 \mathrm{~cm}$
Dimensions of wooden block $=6 \mathrm{~m} \times 75 \mathrm{~cm} \times 45 \mathrm{~cm}=600 \mathrm{~cm} \times 75 \mathrm{~cm} \times 45 \mathrm{~cm}$
So,
No. of planks can be made $=\frac{\text { volume of wooden block }}{\text { volume of one plank }}=\frac{600 \times 75 \times 45}{300 \times 15 \times 5}=90$ planks

11. Question

How many bricks each of size $25 \mathrm{~cm} \times 10 \mathrm{~cm} \times 8 \mathrm{~cm}$ will be required to build a wall 5 m long, 3 m high and

16 cm thick, assuming that the volume of sand and cement used in the construction is negligible?

Answer

Given,
Size of one brick $=25 \mathrm{~cm} \times 10 \mathrm{~cm} \times 8 \mathrm{~cm}$
Dimensions of wall $=5 \mathrm{~m} \times 3 \mathrm{~m} \times 16 \mathrm{~cm}=500 \mathrm{~cm} \times 300 \mathrm{~cm} \times 16 \mathrm{~cm}$
So,
Number of bricks needed to make the wall $=\frac{\text { volume of wall }}{\text { volume of one brick }}=\frac{500 \times 300 \times 16}{25 \times 10 \times 8}=1200$ bricks

12. Question

A village, having a population of 4000 , required 150 litres water per head per day. It has a tank which is 20 m long, 15 m broad and 6 m high. For how many days will the water of this tank last?

Answer

Given,
Dimensions of water tank $=20 \mathrm{~m} \times 15 \mathrm{~m} \times 6 \mathrm{~m}$
Population of village $=4000$
Water require per head per day $=150$ litre
Total requirement of water per day $=150 \times 4000=600000$ litre
Volume of water tank $=20 \times 15 \times 6=1800 \mathrm{~m}^{3}=1800000$ litre
So,
$=$ no. of days till water in tank last $=\frac{\text { volume of tank }}{(\text { total requirement })}=\frac{1800000}{600000}=3$ days

13. Question

A rectangular field is 70 m long and 60 m broad. A well of dimensions $14 \mathrm{~m} \times 8 \mathrm{~m} \times 6 \mathrm{~m}$ is dug outside the field and the earth dug-out from this well is spread evenly on the field. How much will the earth level rise?

Answer

Given,
Dimension of rectangular field $=70 \mathrm{~m} \times 60 \mathrm{~m}$
Dimension of well $=14 \mathrm{~m} \times 8 \mathrm{~m} \times 6 \mathrm{~m}$
Amount of earth dug out from well $=14 \times 8 \times 6=672 \mathrm{~m}^{3}$
So,
Rise in earth level of rectangular field $=\frac{70 \times 60}{672}=0.16 \mathrm{~m}=16 \mathrm{~cm}$

14. Question

A swimming pool is 250 m long and 130 m wide. 3250 cubic metres of water is pumped into it. Find the rise in the level of water.

Answer

Given,
Dimensions of swimming pool $=250 \mathrm{~m} \times 130 \mathrm{~m}$
Volume of water pumped in it $=3250 \mathrm{~m}^{3}$
So,

Rise in water level in pool $=\frac{\text { volume of water pumped }}{\text { legth } \times \text { breadth }}=\frac{3250}{250 \times 130}=0.1 \mathrm{~m}=10 \mathrm{~cm}$

15. Question

A beam 5 m long and 40 cm wide contains 0.6 cubic metre of wood. How thick is the beam?

Answer

Given,
Length of beam $=5 \mathrm{~m}$
Width of beam $=40 \mathrm{~cm}=0.4 \mathrm{~m}$
Volume of wood in beam $=0.6 \mathrm{~m}^{3}$
Let thickness of beam $=\mathrm{h} \mathrm{m}$
So,
$=l \times b \times h=0.6$
$=h=\frac{0.6}{5 \times 0.4}=0.3 \mathrm{~m}$

16. Question

The rainfall on a certain day was 6 cm . How many litres of water fell on 3 hectares of field on that day?

Answer

Given,
Area of field $=3$ hectare $=3 \times 10000 \mathrm{~m}^{2}=30000 \mathrm{~m}^{2}$
Depth of water on the field $=6 \mathrm{~cm}=\frac{6}{100}=0.06 \mathrm{~m}$
\therefore volume of water $=$ area of field \times depth of water
$=30000 \times 0.06=1800 \mathrm{~m}^{3}$
$=1 \mathrm{~m}^{3}=1000$ litre
$\therefore 1800 \mathrm{~m}^{3}=1800 \times 1000=18 \times 10^{5}$ litre

17. Question

An 8 m long cuboidal beam of wood when sliced produces four thousand 1 cm cubes and there is no wastage of wood in this process. If one edge of the beam is 0.5 m , find the third edge.

Answer

Given,
Length of cuboidal beam $=8 \mathrm{~m}$
One edge of beam $=0.5 \mathrm{~m}$
Let third edge of beam $=\mathrm{h} \mathrm{m}$
No. of cubes of side $1 \mathrm{~cm}(.01 \mathrm{~m})$ produced $=4000$
So,
$=$ volume of beam $=$ no. of cubes \times volume of each cube
$=8 \times 0.5 \times h=4000 \times(.01)^{3}$
$=h=\frac{4000 \times 0.000001}{8 \times 0.5}=0.001 \mathrm{~m}$
Length of third edge $=0.001 \mathrm{~m}$

18. Question

The dimensions of a metal block are 2.25 m by 1.5 m by 27 cm . It is melted and recast into cubes, each of the side 45 cm . How many cubes are formed?

Answer

Given,
Dimensions of metal block $=2.25 \mathrm{~m} \times 1.5 \mathrm{~m} \times 27 \mathrm{~cm}=2.25 \mathrm{~m} \times 1.5 \mathrm{~m} \times .27 \mathrm{~m}$
Side of each cube formed $=45 \mathrm{~cm}=0.45 \mathrm{~m}$
So,
Number of cubes can formed $=\frac{\text { volume of metal block }}{\text { volume of one cube }}=\frac{2.25 \times 1.5 \times .27}{0.45 \times 0.45 \times 0.45}=10$ cubes

19. Question

A solid rectangular piece of iron measures 6 m by 6 cm by 2 cm . Find the weight of this piece, if $1 \mathrm{~cm}^{3}$ of iron weighs 8 gm .

Answer

Given,
Dimensions of solid rectangular piece $=6 \mathrm{~m} \times 6 \mathrm{~cm} \times 2 \mathrm{~cm}$
Volume of rectangular iron $=600 \mathrm{~cm} \times 6 \mathrm{~cm} \times 2 \mathrm{~cm}=7200 \mathrm{~cm}^{3}$
Weight of $1 \mathrm{~cm}^{3}$ iron $=8 \mathrm{gm}$
\therefore weight of $7200 \mathrm{~cm}^{3}=7200 \times 8=57600 \mathrm{gm}=57.6 \mathrm{~kg}$

20. Question

Fill in the blanks in each of the following so as to make the statement true :
(i) $1 \mathrm{~m}^{3}=$ \qquad cm^{3}
(ii) 1 litre $=$ \qquad cubic decimetre
(iii) $1 \mathrm{kl}=$ \qquad m^{3}
(iv) The volume of a cube of side 8 cm is
(v) The volume of a wooden cuboid of length 10 cm and breadth 8 cm is $4000 \mathrm{~cm}^{3}$. The height of the cuboid is ...50.... cm.
(vi) $1 \mathrm{cu} . \mathrm{Dm}=$ \qquad cu. Mm
(vii) $1 \mathrm{cu} . \mathrm{Km}=$ \qquad cu. M
(viii) 1 litre $=$ \qquad cu. Cm
(ix) $1 \mathrm{ml}=$ \qquad $\mathrm{Cu} . \mathrm{Cm}$
(x) $1 \mathrm{kl}=$ \qquad cu. $\mathrm{Dm}=$ \qquad cu. Cm.

Answer

(i) $1 \mathrm{~m}^{3}=1 \times(100 \times 100 \times 100)=10^{6} \mathrm{~cm}^{3}[1 \mathrm{~m}=100 \mathrm{~cm}]$
(ii) 1 litre $=1000 \mathrm{~cm}^{3}=1000 \times(0.1 \times 0.1 \times 0.1) \mathrm{dm}^{3}=1 \mathrm{dm}^{3}[1 \mathrm{~cm}=0.1 \mathrm{dm}]$
(iii) $1 \mathrm{kl}=1000$ litre $=1 \mathrm{~m}^{3}\left[1 \mathrm{~m}^{3}=1000\right.$ litre $]$
(iv) Side of cube $=8 \mathrm{~cm}$

Volume of cube $=8^{3}=512 \mathrm{~cm}^{3}$
(v) Volume of cuboid $=4000 \mathrm{~cm}^{3}$

Length $=10 \mathrm{~cm}$, breadth $=8 \mathrm{~cm}$
Then,
Height $=\frac{\text { volume }}{\text { length } \times \text { breadth }}=\frac{4000}{10 \times 8}=50 \mathrm{~cm}$
(vi) $1 \mathrm{cu} . \mathrm{dm}=1 \mathrm{dm} \mathrm{d}^{3}=1 \times 10 \times 10 \times 10=10^{3} \mathrm{~cm}^{3}[1 \mathrm{dm}=10 \mathrm{~cm}]$
$=10^{3} \times 10 \times 10 \times 10 \mathrm{~mm}^{3}=10^{6} \mathrm{~mm}^{3}[1 \mathrm{~cm}=10 \mathrm{~mm}]$
(vii) $1 \mathrm{~km}^{3}=1000 \times 1000 \times 1000=10^{9} \mathrm{~m}^{3}[1 \mathrm{~km}=1000 \mathrm{~m}]$
(viii) 1 litre $=1000 \mathrm{~cm}^{3}=10^{3} \mathrm{~cm}^{3}$
(ix) $1 \mathrm{ml}=\frac{1}{1000}$ litre $=\frac{1}{1000} \times 1000=1 \mathrm{~cm}^{3}\left[1 \mathrm{ml}=\frac{1}{1000}\right.$ litre $]$
(x) $1 \mathrm{kl}=1 \times 1000$ litre $=1 \mathrm{~m}^{3}=1 \times(10 \times 10 \times 10) \mathrm{dm}^{3}[1 \mathrm{~m}=10 \mathrm{dm}]$
$1 \mathrm{kl}=10^{3} \mathrm{dm}^{3}=1000 \times 1000=10^{6} \mathrm{~cm}^{3}$

Exercise 21.3

1. Question

Find the surface area of a cuboid whose
(i) length $=10 \mathrm{~cm}$, breadth $=12 \mathrm{~cm}$, height $=14 \mathrm{~cm}$
(ii) length $=6 \mathrm{dm}$, breadth $=8 \mathrm{dm}$, height $=10 \mathrm{dm}$
(iii) length $=2 \mathrm{~m}$, breadth $=4 \mathrm{~m}$, height $=5 \mathrm{~m}$
(iv) length $=3.2 \mathrm{~m}$, breadth $=30 \mathrm{dm}$, height $=250 \mathrm{~cm}$.

Answer

(i) Given,

Length $=10 \mathrm{~cm}$
Breadth $=12 \mathrm{~cm}$
Height $=14 \mathrm{~cm}$
So,
Surface area of cuboid $=2(l b \times b h \times h l)=2(10 \times 12+12 \times 14+14 \times 10)$
$=2(120+168+140)=2 \times 428=856 \mathrm{~cm}^{2}$
(ii) Given,

Length $=6 \mathrm{dm}$
Breadth $=8 \mathrm{dm}$
Height $=10 \mathrm{dm}$
So,
Surface area of cuboid $=2(l b \times b h \times h l)=2(6 \times 8+8 \times 10+10 \times 6)$
$=2(48+80+60)=2 \times 188=376 \mathrm{dm}^{2}$
(iii) Given,

Length $=2 \mathrm{~m}$

Breadth $=4 \mathrm{~m}$
Height $=5 \mathrm{~m}$
So,
Surface area of cuboid $=2(l b \times b h \times h l)=2(2 \times 4+4 \times 5+5 \times 2)$
$=2(8+20+10)=2 \times 38=76 \mathrm{~m}^{2}$
(iv) Given,
length $=3.2 \mathrm{~m}=32 \mathrm{dm}$
breadth $=30 \mathrm{dm}$
height $=250 \mathrm{~cm}=25 \mathrm{dm}$
so,
surface area of cuboid $=2(l b \times b h \times h l)=2(32 \times 30+30 \times 25+25 \times 32)$
$=2(960+750+800)=2 \times 2510=5020 \mathrm{dm}^{2}$
2. Question

Find the surface area of a cube whose edge is
(i) 1.2 m
(ii) 27 cm
(iii) 3 cm
(iv) 6 m
(v) 2.1 m

Answer

(i) We have,

Edge of cube $=1.2 \mathrm{~m}$
Surface area of cube $=6 \times$ side $^{2}=6 \times 1.2^{2}=6 \times 1.44=8.64 \mathrm{~m}^{2}$
(ii) We have,

Edge of cube $=27 \mathrm{~cm}$
Surface area of cube $=6 \times$ side $^{2}=6 \times 27^{2}=6 \times 729=4374 \mathrm{~cm}^{2}$
(iii) We have,

Edge of cube $=3 \mathrm{~cm}$
Surface area of cube $=6 \times$ side ${ }^{2}=6 \times 9=54 \mathrm{~cm}^{2}$
(iv) We have,

Edge of cube $=6 \mathrm{~m}$
Surface area of cube $=6 \times$ side ${ }^{2}=6 \times 6^{2}=216 \mathrm{~m}^{2}$
(v) We have,

Edge of cube $=2.1 \mathrm{~m}$
Surface area of cube $=6 \times$ side $^{2}=6 \times 4.41=26.46 \mathrm{~m}^{2}$

3. Question

A cuboidal box is 5 cm by 5 cm by 4 cm . Find its surface area.

Answer

Given,
Dimensions of cuboidal box $=5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4 \mathrm{~cm}$
Surface area of cuboid $=2(l b \times b h \times h l)=2(5 \times 5+5 \times 4+5 \times 5)=2 \times 65=130 \mathrm{~cm}^{2}$

4. Question

Find the surface area of a cube whose volume is
(i) $343 \mathrm{~m}^{3}$
(ii) $216 \mathrm{dm}^{3}$

Answer

(i) Given,

Volume of cube $=343 \mathrm{~m}^{3}$
Side of cube $=a=\sqrt[3]{343}=7 m$
So,
Surface area of cube $=6 \times$ side $^{2}=6 \times 49=294 \mathrm{~m}^{2}$
(ii) Given,

Volume of cube $=216 \mathrm{dm}^{3}$
Side of cube $=\sqrt[3]{216}=6 \mathrm{dm}$
So,
Surface area of cube $=6 \times$ side $^{2}=6 \times 36=216 \mathrm{dm}^{2}$

5. Question

Find the volume of a cube whose surface area is
(i) $96 \mathrm{~cm}^{2}$
(ii) $150 \mathrm{~m}^{2}$

Answer

(i) Given,

Surface area of cube $=96 \mathrm{~cm}^{2}$
$=6 \times$ side $^{2}=96$
$=$ side $^{2}=\frac{96}{6}=16$
$=$ side $=\sqrt{16}=4 \mathrm{~cm}$
So,
Volume of cube $=4^{3}=64 \mathrm{~cm}^{3}$
(ii) Given,

Surface area of cube $=150 \mathrm{~m}^{2}$
$=6 \times$ side $^{2}=150$
$=$ side $^{2}=\frac{150}{6}=25$
=side $=\sqrt{25}=5 \mathrm{~m}$
So,
Volume of cube $=5^{3}=125 \mathrm{~m}^{3}$

6. Question

The dimensions of a cuboid are in the ratio $5: 3: 1$ and its total surface area is $414 \mathrm{~m}^{2}$. Find the dimensions.

Answer

Given,
Ratio of dimensions of cuboid $=5: 3: 1$
Total surface area of cuboid $=414 \mathrm{~m}^{2}$
Let dimensions are $=5 x \times 3 x \times x$
So,
$=2(l b \times b h \times h l)=414$
$=2\left(15 x^{2}+3 x^{2}+5 x^{2}\right)=414$
$=2 \times 23 x^{2}=414$
$=x^{2}=\frac{414}{46}=9$
$=x=\sqrt{9}=3$
So,
Dimensions are $=5 x=5 \times 3=15 \mathrm{~m}$
$=3 x=3 \times 3=9 \mathrm{~m}$
$=x=3 \mathrm{~m}$

7. Question

Find the area of the cardboard required to make a closed box of length $25 \mathrm{~cm}, 0.5 \mathrm{~m}$ and height 15 cm .

Answer

Given,
Dimensions of closed box $=25 \mathrm{~cm} \times 0.5 \mathrm{~m} \times 15 \mathrm{~cm}=25 \mathrm{~cm} \times 50 \mathrm{~cm} \times 15 \mathrm{~cm}$
So,
Area of cardboard required $=2(l b \times b h \times h l)=2(25 \times 50+50 \times 15+15 \times 25)$
$=2(1250+750+375)=2 \times 2375=4750 \mathrm{~cm}^{2}$

8. Question

Find the surface area of a wooden box whose shape is of a cube, and if the edge of the box is 12 cm .

Answer

Given,
Edge of a cubic wooden box $=12 \mathrm{~cm}$
Surface area of cubic wooden box $=6 \times$ side ${ }^{2}=6 \times 12 \times 12=864 \mathrm{~cm}^{2}$

9. Question

The dimensions of an oil tin are $26 \mathrm{~cm} \times 26 \mathrm{~cm} \times 45 \mathrm{~cm}$. Find the area of the tin sheet required for making 20
such tins. If 1 square metre of the tin sheet costs Rs. 10, find the cost of tin sheet used for these 20 tins.

Answer

Given,
Dimensions of oil tin are $=26 \mathrm{~cm} \times 26 \mathrm{~cm} \times 45 \mathrm{~cm}$
Then,
Area of tin sheet required for making one oil tin $=$ total surface area of oil tin
$=2(l b \times b h \times h l)=2(26 \times 26+26 \times 45+45 \times 26)=2(676+1170+1170)$
$=2 \times 3016=6032 \mathrm{~cm}^{2}$
Area of tin sheet required for 20 oil tins $=20 \times 6032=120640 \mathrm{~cm}^{2}=12.064 \mathrm{~m}^{2}$
So,
Cost of $1 \mathrm{~m}^{2}$ tin sheet $=$ Rs. 10
\therefore cost of $12.064 \mathrm{~m}^{2}$ tin sheet $=10 \times 12.064=$ Rs. 120.64

10. Question

A classroom is 11 m long, 8 m wide and 5 m high. Find the sum of the areas of its floor and the four walls (including doors, windows etc.)

Answer

Given,
Dimensions of class room $=11 \mathrm{~m} \times 8 \mathrm{~m} \times 5 \mathrm{~m}$ Where,

Length $=11 \mathrm{~m}$, Breadth $=8 \mathrm{~m}$, Height $=5 \mathrm{~m}$
Ten,
Area of floor $=$ length \times breadth $=11 \times 8=88 \mathrm{~m}^{2}$
Area of four walls (including doors \& windows) $=2(l \times h+b \times h)=2(11 \times 5+8 \times 5)$
$=2(55+40)=190 m^{2}$
\therefore Sum of areas of floor and four walls $=$ area of floor + area of four walls
$=88+190=278 \mathrm{~m}^{2}$

11. Question

A swimming pool is 20 m long 15 m wide and 3 m deep. Find the cost of repairing the floor and wall at the rate of Rs. 25 per square metre.

Answer

Given,
Dimensions of swimming pool are $=20 \mathrm{~m} \times 15 \mathrm{~m} \times 3 \mathrm{~m}$
Where,
Length $=20 \mathrm{~m}$, Breadth $=15 \mathrm{~m}$, Height $=3 \mathrm{~m}$
Then,
Area of floor \& walls of swimming pool $=l \times b+2(l \times h+b \times h)$
$=20 \times 15+2(20 \times 3+15 \times 3)=300+2(60+45)=300+210=510 \mathrm{~m}^{2}$

So,
Cost of repairing $1 \mathrm{~m}^{2}$ area $=$ Rs. 25
\therefore Cost of repairing $510 \mathrm{~m}^{2}=510 \times 25=$ Rs. 12750

12. Question

The perimeter of a floor of a room is 30 m and its height is 3 m . Find the area of four walls of the room.

Answer

Given,
Perimeter of floor $=30 \mathrm{~m}$
Height of floor $=3 \mathrm{~m}$
So,
$=2(l+b)=30$
$=l+b=\frac{30}{2}=15 \mathrm{~m}$
Area of four walls of room $=2(l \times h+b \times h)=2 h(l+b)=2 \times 3 \times 15=90 \mathrm{~m}^{2}$

13. Question

Show that the product of the areas of the floor and two adjacent walls of a cuboid is the square of its volume.

Answer

Given,
Let length of cuboid $=l \mathrm{~cm}$
Let breadth of cuboid $=\mathrm{bcm}$
Let height of cuboid $=\mathrm{hcm}$
So,
Area of floor $=l \times b=l b \mathrm{~cm}^{2}$
Product of areas of two adjacent walls $=(l \times h) \times(b \times h)=l b h^{2} \mathrm{~cm}^{4}$
Product of areas of floor and two adjacent walls $=l b \times l b h^{2} \mathrm{~cm}^{6}$
$=l^{2} b^{2} h^{2}=(l b h)^{2} \mathrm{~cm}^{6}$
$=(\text { volume of cuboid })^{2}$ Proved..

14. Question

The walls and ceiling of a room are to be plastered. The length, breadth nad height of the room are $4.5 \mathrm{~m}, 3$ m and 350 cm , respectively. Find the cost of plastering at the rate of Rs. 8 per square metre.

Answer

Given,
Length of room $=4.5 \mathrm{~m}$
Breadth of wall $=3 \mathrm{~m}$
Height of wall $=350 \mathrm{~cm}=\frac{350}{100}=3.5 \mathrm{~m}$
So,
Area of ceiling + area of walls $=l \times b+2(l \times h+b \times h)$
$=4.5 \times 3+2(4.5 \times 3.5+3 \times 3.5)=13.5+2(15.75+10.5)$
$=13.5+52.5=66 \mathrm{~m}^{2}$
Cost of plastering $1 \mathrm{~m}^{2}$ area $=$ Rs. 8
\therefore Cost of plastering $66 \mathrm{~m}^{2}$ area $=66 \times 8=$ Rs. 528

15. Question

A cuboid has total surface area of $50 \mathrm{~m}^{2}$ and lateral surface area os $30 \mathrm{~m}^{2}$. Find the area of its base.

Answer

Given,
Total surface area of cuboid $=50 \mathrm{~m}^{2}$
Lateral surface area of cuboid $=30 \mathrm{~m}^{2}$
So,
$=2(l \times h+b \times h)=30$
And,
$=2(l \times b)+2(l \times h+b \times h)=50$
$=2(l \times b)+30=50$
$=2(l \times b)=50-30=20$
$=l \times b=\frac{20}{2}=10$
So,
Area of base $=l \times b=10 \mathrm{~m}^{2}$

16. Question

A classroom is 7 m long, 6 m broad and 3.5 m high. Doors and windows occupy an area of $17 \mathrm{~m}^{2}$. What is the cost of white washing the walls at the rate of Rs. 1.50 per m^{2}.

Answer

Given,
Dimensions of class room $=7 \mathrm{~m} \times 6 \mathrm{~m} \times 3.5 \mathrm{~m}$
Where,
Length $=7 \mathrm{~m}$, Breadth $=6 \mathrm{~m}$, Height $=3.5 \mathrm{~m}$
Area of four walls (including doors \& windows) $=2(l \times h+b \times h)$
$=2(7 \times 3.5+6 \times 3.5)=91 \mathrm{~m}^{2}$
Then,
Area of walls without doors \& windows =
$=$ area including doors \& windows - area occupied by doors \& windows
Area of only walls $=91-17=74 \mathrm{~m}^{2}$
So,
Cost of white washing $1 \mathrm{~m}^{2}$ area of walls $=$ Rs.1.50
\therefore Total cost of white washing $=74 \times 1.50=$ Rs. 111

17. Question

The central hall of a school is 80 m long and 8 m high. It has 10 doors each of size $3 \mathrm{~m} \times 1.5 \mathrm{~m}$ and 10 windows each of size $1.5 \mathrm{~m} \times 1 \mathrm{~m}$. If the cost od white washing the walls of the hall at the rate of Rs. 1.20 per m^{2} is Rs. 2385.60, find the breadth of the hall.

Answer

Given,
Dimensions of central hall of a school $=$ Length $=80 \mathrm{~m}$, height $=8 \mathrm{~m}$
Let breadth of hall $=\mathrm{b}$ metre
So,
Area of each door $=3 \mathrm{~m} \times 1.5 \mathrm{~m}=4.5 \mathrm{~m}^{2}$
\therefore Area of 10 doors $=10 \times 4.5=45 \mathrm{~m}^{2}$
Area of each window $=1.5 \mathrm{~m} \times 1 \mathrm{~m}=1.5 \mathrm{~m}^{2}$
\therefore Area of 10 windows $=10 \times 1.5=15 \mathrm{~m}^{2}$
Area occupied by doors and windows $=45+15=60 \mathrm{~m}^{2}$
Area of the walls of the hall including doors and windows $=2(l \times h+b \times h)$
$=2(80 \times 8+b \times 8)=2(640+8 b) \mathrm{m}^{2}$
Then,
Area of only walls = (area of walls including doors \& windows - area occupied by doors \& windows)
$=[2(640+8 b)-60]=[1280+16 b-60]=(1220+16 b) m^{2}$
Total cost of white washing $=$ Rs. 2385.60
Given, Rate of white washing $=$ Rs. 1.20 per m^{2}
So,
$=1.20 \times($ area of walls only $)=2385.60$
$=1.20(1220+16 b)=2385.60$
$=1220+16 b=\frac{2385.60}{1.20}=1988$
$=16 b=1988-1220=768$
$=b=\frac{768}{16}=48$
Hence,
Breadth of hall $=48 \mathrm{~m}$

Exercise 21.4

1. Question

Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.

Answer

Given,
Length of room $=12 \mathrm{~m}$
Breadth $=9 \mathrm{~m}$

Height $=8 \mathrm{~m}$
So,
Length of longest rod that can be placed in room $=$ diagonal of room (cuboid) $=$
$\sqrt{l^{2}+b^{2}+h^{2}}=\sqrt{12^{2}+9^{2}+8^{2}}=\sqrt{144+81+64}=\sqrt{289}=17 m$

2. Question

If V is the volume of a cuboid of dimensions a, b, c and S is its surface area, then prove that
$\frac{1}{V}=\frac{2}{S}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

Answer

Given,
$V=$ volume of cuboid
$S=$ surface area of cuboid
$=a, b, c=$ dimensions of cuboid
So,
$\mathrm{S}=2(a b+b c+c a)$
$V=a b c$
$=\frac{s}{V}=\frac{[2(a b+b c+c a)]}{a b c}=2\left[\left(\frac{a b}{a b c}\right)+\left(\frac{b c}{a b c}\right)+\left(\frac{c a}{a b c}\right)\right]=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
$=\frac{1}{V}=\frac{2}{s}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ Proved.

3. Question

The areas of three adjacent faces of a cuboid are x, y, and z. If the volume is V, prove that $V_{2}=x y z$.

Answer

Given,
Areas of three faces of cuboid $=x, y, z$
Let length of cuboid $=l$, breadth $=b$, height $=h$
So,
$=x=l \times b$
$=y=b \times h$
$=z=h \times a$
Or we can write ,
$=x y z=l^{2} b^{2} h^{2}$ \qquad
If ' V ' is volume of cuboid $=\mathrm{V}=l b h$
$=V^{2}=l^{2} b^{2} h^{2}=x y z$ from (i)
$=V^{2}=x y z$ Proved.

4. Question

A rectangular water reservoir contains $105 \mathrm{~m}^{3}$ of water. Find the depth of the water in the reservoir if its base measures 12 m by 3.5 m .

Answer

Given,
Capacity of water reservoir $=105 \mathrm{~m}^{3}$
Length of base of reservoir $=12 \mathrm{~m}$
Width of base $=3.5 \mathrm{~m}$
Let depth of reservoir $=\mathrm{h} \mathrm{m}$
So,
$=l \times b \times h=105$
$=12 \times 3.5 \times h=105$
$=h=\frac{105}{12 \times 3.5}=2.5 \mathrm{~m}$
Depth of reservoir $=2.5 \mathrm{~m}$

5. Question

Cubes A, B, C having edges $18 \mathrm{~cm}, 24 \mathrm{~cm}$ and 30 cm respectively are melted and moulded into a new cube D. Find the edge of the bigger cube D.

Answer

Given,
Edge length of cube $A=18 \mathrm{~cm}$
Edge length of cube $B=24 \mathrm{~cm}$
Edge length of cube $C=30 \mathrm{~cm}$
So,
Volume of cube $\mathrm{A}=v_{1}=18^{3}=5832 \mathrm{~cm}^{3}$
Volume of cube $\mathrm{B}=v_{2}=24^{3}=13824 \mathrm{~cm}^{3}$
Volume of cube $\mathrm{C}=v_{3}=30^{3}=27000 \mathrm{~cm}^{3}$
Total volume of three cubes $=5832+13824+27000=46656 \mathrm{~cm}^{3}$
Let ' a ' be the length of edge of new cube formed.
$=a^{3}=46656$
$=a=\sqrt[3]{46656}=36$
So,
Edge of bigger cube $=36 \mathrm{~cm}$

6. Question

The breadth of a room is twice its height, one half of its length and the volume of the room is 512 cu . Dm. Find its dimensions.

Answer

Given,
Breadth of room is twice of its height $=b=2 h$ or $h=\frac{b}{2} \ldots$. (i)
Breadth is one half of length $=b=\frac{1}{2} \operatorname{lor} l=2 b$
Volume of the room $=l b h=512 \mathrm{dm}^{3}$
$=2 b \times b \times \frac{b}{2}=512$
$=b^{3}=512$
$=b=\sqrt[3]{512}=8$
Hence,
Breadth of cube $=b=8 \mathrm{dm}$
Length of cube $=2 b=2 \times 8=16 \mathrm{dm}$
Height of cube $=\frac{b}{2}=\frac{8}{2}=4 \mathrm{dm}$

7. Question

A closed iron tank 12 m long, 9 m wide and 4 m deep is to be made. Determine the cost of iron sheet used at the rate of Rs. 5 per metre sheet, sheet being 2 m wide.

Answer

Given,
Length of tank $=12 \mathrm{~m}$
Width of tank $=9 \mathrm{~m}$
Depth of tank $=4 \mathrm{~m}$
So,
Area of sheet required $=$ total surface area of tank
$=2(l b \times b h \times h l)=2(12 \times 9+9 \times 4+4 \times 12)=2(108+36+48)$
$=2 \times 192=384 \mathrm{~m}^{2}$
Let l^{1} be the length and b^{1} be the breadth of sheet.
$=b^{1}=2 m$ given
$=l^{1} \times b^{1}=384$
$=l^{1}=\frac{384}{2}=192 \mathrm{~m}$
Then,
Cost of iron sheet at rate Rs. 5 per metre $=5 \times 192=$ Rs. 960

8. Question

A tank open at the top is made of iron sheet 4 m wide. If the dimensions of the tank are $12 \mathrm{~m} \times 8 \mathrm{~m} \times 6 \mathrm{~m}$, find the cost of iron sheet at Rs. 17.50 per metre.

Answer

Given,
Dimensions of tank $=12 \mathrm{~m} \times 8 \mathrm{~m} \times 6 \mathrm{~m}$
Where length $=12 \mathrm{~m}$, breadth $=8 \mathrm{~m}$, height $=6 \mathrm{~m}$
Area of sheet required for making the tank $=$ total surface area of tank with one top open
$=l \times b+2(l \times h+b \times h)=12 \times 8+2(12 \times 6+8 \times 6)=96+240=336 \mathrm{~m}^{2}$
Let l^{1} be the length of iron sheet and b^{1} be the breadth of iron sheet.
$=b^{1}=4 m$ given,
$=l^{1} \times b^{1}=336$
$=l^{1}=\frac{336}{4}=84 m$
So,
Cost of iron sheet at rate Rs. 17.50 per metre $=17.50 \times 84=$ Rs. 1470

9. Question

Three equal cubes are placedadjacently in a row. Find the ratio of total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.

Answer

Given,
Let edge length of three equal cubes $=a$
Then,
Sum of surface area of 3 cubes $=3 \times 6 a^{2}=18 a^{2}$
When these cubes are placed in a row adjacently they form a cuboid.
Length of new cuboid formed $=a+a+a=3 a$
Breadth of cuboid $=$ a
Height of cuboid $=a$
Total surface area of cuboid $=2(l b \times b h \times h l)=2(3 a \times a+a \times a+a \times 3 a)$
$=2\left(3 a^{2}+a^{2}+3 a^{2}\right)=2 \times 7 a^{2}=14 a^{2}$
Hence,
$=\frac{\text { Total surface area of new cuboid }}{\text { sum of surface area of } 3 \text { cuboids }}=\frac{14}{18}=\frac{7}{9}=7: 9$

10. Question

The dimensions of a room are 12.5 m by 9 m by 7 m . There are 2 doors and 4 windows in the room; each door measures 2.5 m by 1.2 m and each window 1.5 m by 1 m . Find the cost of painting the walls at Rs. 3.50 per square metre.

Answer

Given,
Dimensions of room $=12.5 \mathrm{~m} \times 9 \mathrm{~m} \times 7 \mathrm{~m}$
Dimensions of each door $=2.5 \mathrm{~m} \times 1.2 \mathrm{~m}$
Dimensions of each window $=1.5 \mathrm{~m} \times 1 \mathrm{~m}$
Area of four walls including doors and windows $=2(l \times h+b \times h)=2(12.5 \times 7+9 \times 7)$
$=2(87.5+63)=2 \times 150.5=301 \mathrm{~m}^{2}$
Area of 2 doors and 4 windows $=2(2.5 \times 1.2)+4\left((1.5 \times 1)=6+6=12 \mathrm{~m}^{2}\right.$
Area of only walls $=301-12=289 \mathrm{~m}^{2}$
Hence,
Cost of painting walls at rate Rs. 3.50 per square metre $=$ Rs. $(3.50 \times 289)=$ Rs. 1011.50

11. Question

A field is 150 m long and 100 m wide. A plot (outside the field) 50 m long and 30 m wide is dug to a depth of 8 m and the earth taken out from the plot is spread evenly in the field. By how much is the level of field
raised?

Answer

Given,
Length of field $=150 \mathrm{~m}$
Width of field $=100 \mathrm{~m}$
Area of field $=150 \mathrm{~m} \times 100 \mathrm{~m}=15000 \mathrm{~m}^{2}$
Length of plot $=50 \mathrm{~m}$
Breadth $=30 \mathrm{~m}$
Depth upto which it dug $=8 \mathrm{~m}$
So volume of earth taken out from it $=50 \times 30 \times 8=12000 \mathrm{~m}^{3}$
let raise in earth level of field on which it spread $=\mathrm{h}$ metre
so,
$=15000 \times h=12000$
$=h=\frac{12000}{15000}=0.8 \mathrm{~m}$
The level of field raised by 0.8 metre

12. Question

Two cubes, each of volume $512 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid.

Answer

Given,
Volume of each cube $=512 \mathrm{~cm}^{3}$
Let length of edge of each cube $=a \mathrm{~cm}$
So,
$=a^{3}=512$
$=\mathrm{a}=\sqrt[3]{512}=8 \mathrm{~cm}$
When these two cubes are joined end to end a cuboid is formed :
Length of cuboid $=8+8=16 \mathrm{~cm}$
Breadth $=8 \mathrm{~cm}$
Height $=8 \mathrm{~cm}$
Surface area of resulting cuboid $=2(l b \times b h \times h l)=2(16 \times 8+8 \times 8+8 \times 16)$
$=2(128+64+128)=2 \times 320=640 \mathrm{~cm}^{2}$

13. Question

Three cubes whose edges measure $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm respectively are melted to form a new cube. Find the surface area of the new cube formed.

Answer

Given,
Edge of three cubes are respectively $=3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$
So,

Sum of volume of these cubes $=3^{3}+4^{3}+5^{3}=27+64+125=216 \mathrm{~cm}^{3}$
After melted these cubes a new cube is formed.
Let edge length of this new cube $=\mathrm{acm}$
So,
$=a^{3}=216$
$=a=\sqrt[3]{216}=6 \mathrm{~cm}$
Edge of new cube $=6 \mathrm{~cm}$
Surface area of new cube $=6 \times a^{2}=6 \times 36=216 \mathrm{~cm}^{2}$

14. Question

The cost of preparing the walls of a room 12 m long at the rate of Rs. 1.35 per square metre is Rs. 340.20 and the cost of matting the floor at 85 paise per square metre is Rs. 91.80 . Find the height of the room.

Answer

Given,
Length of room $=12 \mathrm{~m}$
Let width of room $=\mathrm{b}$ metre
Let height of room $=\mathrm{h}$ metre
Now,
Area of floor $=12 \mathrm{~b} \mathrm{~m}^{2}$
Cost of matting floor @rate 85 paise per square metre $=$ Rs. 91.80
$=12 b \times .85=91.80$
$=b=\frac{91.80}{12 \times .85}=9 \mathrm{~m}$
Breadth of room $=9 \mathrm{~m}$
Area of 4 walls $=2(l \times h+b \times h)=2(12 h+9 h)=42 h m^{2}$
Cost of preparing walls at rate Rs.1.35 per square metre $=$ Rs.340.20
$=42 h \times 1.35=340.20$
$=h=\frac{340.20}{42 \times 1.35}=6 \mathrm{~m}$
Height of room $=6 \mathrm{~m}$

15. Question

The length of a hall is 18 m and the width 12 m . The sum of the areas of the floor and the flat roof is equal to the sum of the areas of the four walls. Find the height of the wall.

Answer

Given,
Length of hall $=18 \mathrm{~m}$
Width of hall $=12 \mathrm{~m}$
Let height of hall $=\mathrm{h}$ metre
Then,
Sum of area of floor \& flat roof $=l \times b+l \times b=12 \times 18+12 \times 18=432 m^{2}$

Sum of area of 4 walls $=2(l \times h+b \times h)=2(18 h+12 h)=60 h m^{2}$
Now,
$=60 \mathrm{~h}=432$ \qquad given
$=h=\frac{432}{60}=7.2 \mathrm{~m}$
Height of hall $=7.2$ metre

16. Question

A metal cube of edge 12 cm is melted and formed into three smaller cubes. If the edges of the two smaller cubes are 6 cm and 8 cm , find the edge of the third smaller cube.

Answer

Given,
Edge of metal cube $=12 \mathrm{~cm}$
Edge of smaller two cubes $=6 \mathrm{~cm}, 8 \mathrm{~cm}$
Let edge of third cube $=\mathrm{acm}$
So,
Volume of metal cube $=$ sum of volume of three small cubes
$=12^{3}=6^{3}+8^{3}+a^{3}$
$=a^{3}=1728-(216+512)=1728-728=1000$
$=a=\sqrt[3]{1000}=10 \mathrm{~cm}$
So,
Edge of third smaller cube would be $=10 \mathrm{~cm}$

17. Question

The dimensions of a cinema hall are $100 \mathrm{~m}, 50 \mathrm{~m}$ and 18 m . How many persons can sit in the gall, if each person required $150 \mathrm{~m}^{3}$ of air?

Answer

Given,
Dimensions of cinema hall are $=100 \mathrm{~m} \times 50 \mathrm{~m} \times 18 \mathrm{~m}$
Where, length $=100 \mathrm{~m}$, breadth $=50 \mathrm{~m}$, height $=18 \mathrm{~m}$
Each person air requirement $=150 \mathrm{~m}^{3}$
Now,
Volume of cinema hall $=l b h=100 \times 50 \times 18=90000 \mathrm{~cm}^{3}$
So,
Number of person can sit in cinema hall $=\frac{\text { volume of hall }}{\text { volume of airrequired by one person }}=\frac{90000}{150}=600$

18. Question

The external dimensions of a closed wooden box are $48 \mathrm{~cm}, 36 \mathrm{~cm}, 30 \mathrm{~cm}$. The box is made of 1.5 cm thick wood. How many bricks of size $6 \mathrm{~cm} \times 3 \mathrm{~cm} \times 0.75 \mathrm{~cm}$ can be put in this box?

Answer

Given,

External dimensions of wooden box $=48 \mathrm{~cm} \times 36 \mathrm{~cm} \times 30 \mathrm{~cm}$
Dimensions of bricks $=6 \mathrm{~cm} \times 3 \mathrm{~cm} \times 0.75 \mathrm{~cm}$
Thickness of wood $=1.5 \mathrm{~cm}$
So,
Internal dimensions of box $=48-(2 \times 1.5) \mathrm{cm}+36-(2 \times 1.5) \mathrm{cm}+30-(2 \times 1.5) \mathrm{cm}$
$=45 \mathrm{~cm} \times 33 \mathrm{~cm} \times 27 \mathrm{~cm}$
Hence,
Number of bricks can be put in box $=\frac{\text { internal volume of box }}{\text { volume of one brick }}=\frac{45 \times 33 \times 27}{6 \times 3 \times 0.75}=2970$ bricks

19. Question

The dimensions of a rectangular box are in the ratio of 2:3:4 and the difference between the cost of covering it with sheet of paper at the rates of Rs. 8 and Rs. 9.50 per m^{2} is Rs. 1248 . Find the dimensions of the box.

Answer

Given,
Ratio of dimensions of rectangular box $=2: 3: 4$
Let length of box $=2 x \mathrm{~m}$
Let breadth $=3 \times \mathrm{m}$
Let height $=4 \times \mathrm{m}$
Area of sheet of paper required for covering it = total surface area of cuboid
$=2(l b \times b h \times h l)=2\left(6 x^{2}+12 x^{2}+8 x^{2}\right)=2 \times 26 x^{2}=52 x^{2} m^{2}$
Cost of covering it with sheet of paper at Rs.9.50 $/ \mathrm{m}^{2}=52 \mathrm{x}^{2} \times 9.50=R s .494 x^{2}$
Cost of covering it with sheet of paper at rate Rs. $8 / \mathrm{m}^{2}=52 x^{2} \times 8=R s .416 x^{2}$
$=494 x^{2}-416 x^{2}=1248$ Given
$=78 x^{2}=1248$
$=x^{2}=\frac{1248}{78}=16$
$=x=\sqrt{16}=4$
So,
Length of box $=2 x=2 \times 4=8 \mathrm{~m}$
Breadth of box $=3 \mathrm{x}=3 \times 4=12 \mathrm{~m}$
Height of box $=4 x=4 \times 4=16 \mathrm{~m}$

