2. Functions

Exercise 2.1

1 A. Question

Give an example of a function
Which is one - one but not onto.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, Let, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
Check for Injectivity:
Let x, y be elements belongs to N i.e $x, y \in N$ such that
So, from definition
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow \mathrm{x}^{2}=\mathrm{y}^{2}$
$\Rightarrow x^{2}-y^{2}=0$
$\Rightarrow(x-y)(x+y)=0$
As $x, y \in N$ therefore $x+y>0$
$\Rightarrow \mathrm{x}-\mathrm{y}=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence f is One - One function
Check for Surjectivity:
Let y be element belongs to N i.e $y \in N$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow x^{2}=y$
$\Rightarrow x=\sqrt{y}$
$\Rightarrow \sqrt{y}$ not belongs to N for non-perfect square value of y .
Therefore no non - perfect square value of y has a pre image in domain N .
Hence, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ is One - One but not onto.

1 B. Question

Give an example of a function
Which is not one - one but onto.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $f: A \rightarrow B$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, Let, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}$
Check for Injectivity:
Let x, y be elements belongs to R i.e $x, y \in R$ such that
So, from definition
$\Rightarrow f(x)=f(y)$
$\Rightarrow x^{3}-\mathrm{x}=\mathrm{y}^{3}-\mathrm{y}$
$\Rightarrow x^{3}-y^{3}-(x-y)=0$
$\Rightarrow(x-y)\left(x^{2}+x y+y^{2}-1\right)=0$
As $x^{2}+x y+y^{2} \geq 0$
\Rightarrow therefore $x^{2}+x y+y^{2}-1 \geq-1$
$\Rightarrow x-y \neq 0$
$\Rightarrow \mathrm{x} \neq \mathrm{y}$ for some $\mathrm{x}, \mathrm{y} \in \mathrm{R}$
Hence f is not One - One function

Check for Surjectivity:

Let y be element belongs to R i.e $\mathrm{y} \in \mathrm{R}$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow x^{3}-\mathrm{x}=\mathrm{y}$
$\Rightarrow \mathrm{x}^{3}-\mathrm{x}-\mathrm{y}=0$
Now, we know that for 3 degree equation has a real root
So, let $\mathrm{x}=\alpha$ be that root
$\Rightarrow \alpha^{3}-\alpha=y$
$\Rightarrow \mathrm{f}(\alpha)=\mathrm{y}$

Thus for clearly $y \in R$, there exist $\alpha \in R$ such that $f(x)=y$
Therefore f is onto
\Rightarrow Hence, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}$ is not One - One but onto

1 C. Question

Give an example of a function
Which is neither one - one nor onto.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, Let, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=5$
As we know
A constant function is neither one - one nor onto.
So, here $f(x)=5$ is constant function
Therefore
$f: R \rightarrow R$ given by $f(x)=5$ is neither one-one nor onto function.

2 A. Question

Which of the following functions from A to B are one - one and onto?
$f_{1}=\{(1,3),(2,5),(3,7)\} ; A=\{1,2,3\}, B=\{3,5,7\}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the $c o-$ domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$

Now, As given,
$f_{1}=\{(1,3),(2,5),(3,7)\}$
$A=\{1,2,3\}, B=\{3,5,7\}$
Thus we can see that,

Check for Injectivity:

Every element of A has a different image from B
Hence f is a One - One function
Check for Surjectivity:
Also, each element of B is an image of some element of A
Hence f is Onto.

2 B. Question

Which of the following functions from A to B are one - one and onto?
$f_{2}=\{(2, a),(3, b),(4, c)\} ; A=\{2,3,4\}, B=\{a, b, c\}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, As given,
$f_{2}=\{(2, a),(3, b),(4, c)\}$
$A=\{2,3,4\}, B=\{a, b, c\}$
Thus we can see that
Check for Injectivity:
Every element of A has a different image from B
Hence f is a One - One function
Check for Surjectivity:
Also, each element of B is an image of some element of A
Hence f is Onto.

2 C. Question

Which of the following functions from A to B are one - one and onto?
$f_{3}=\{(a, x),(b, x),(c, z),(d, z)\} ; A=\{a, b, c, d\}, B=\{x, y, z\}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, As given,
$f_{3}=\{(a, x),(b, x),(c, z),(d, z)\}$
$A=\{a, b, c, d\}, B=\{x, y, z\}$
Thus we can clearly see that

Check for Injectivity:

Every element of A does not have different image from B
Since,
$f_{3}(a)=x=f_{3}(b)$ and $f_{3}(c)=z=f_{3}(d)$
Therefore f is not One - One function
Check for Surjectivity:
Also each element of B is not image of any element of A
Hence f is not Onto.

3. Question

Prove that the function $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$ is one - one but not onto.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow a=b$ for $a l l a, b \in A$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is Surjection iff for each $\mathrm{b} \in \mathrm{B}$, there exists $\mathrm{a} \in \mathrm{B}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{b}$
Now, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$

Check for Injectivity:

Let x, y be elements belongs to N i.e $x, y \in N$ such that
So, from definition
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow x^{2}+x+1=y^{2}+y+1$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{x}-\mathrm{y}=0$
$\Rightarrow(x-y)(x+y+1)=0$
As $x, y \in N$ therefore $x+y+1>0$
$\Rightarrow \mathrm{x}-\mathrm{y}=0$
$\Rightarrow x=y$
Hence f is One - One function

Check for Surjectivity:

y be element belongs to N i.e $\mathrm{y} \in \mathrm{N}$ be arbitrary
Since for $\mathrm{y}>1$, we do not have any pre image in domain N .
Hence, f is not Onto function.

4. Question

Let $A=\{-1,0,1\}$ and $f=\left\{\left(x, x^{2}\right): x \in A\right\}$. Show that $f: A \rightarrow A$ is neither one - one nor onto.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, We have, $A=\{-1,0,1\}$ and $f=\left\{\left(x, x^{2}\right): x \in A\right\}$.
To Prove: - $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is neither One - One nor onto function
Check for Injectivity:
We can clearly see that
$f(1)=1$
and $f(-1)=1$
Therefore
$f(1)=f(-1)$
\Rightarrow Every element of A does not have different image from A

Hence f is not One - One function
Check for Surjectivity:
Since, $y=-1$ be element belongs to A
i.e $-1 \in A$ in co - domain does not have any pre image in domain A.

Hence, f is not Onto function.

5 A. Question

Classify the following functions as injection, surjection or bijection:
$f: N \rightarrow N$ given by $f(x)=x^{2}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, f: $A \rightarrow B$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow a=b$ for $a l l a, b \in A$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
Check for Injectivity:
Let x, y be elements belongs to N i.e $x, y \in N$ such that
So, from definition
$\Rightarrow f(x)=f(y)$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow x^{2}-y^{2}=0$
$\Rightarrow(x-y)(x+y)=0$
As $\mathrm{x}, \mathrm{y} \in \mathrm{N}$ therefore $\mathrm{x}+\mathrm{y}>0$
$\Rightarrow x-y=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence f is One - One function
Check for Surjectivity:
Let y be element belongs to N i.e $y \in N$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow x^{2}=y$
$\Rightarrow \mathrm{x}=\sqrt{\mathrm{y}}$
$\Rightarrow \sqrt{\mathrm{y}}$ not belongs to N for non-perfect square value of y .
Therefore no non - perfect square value of y has a pre-image in domain N .
Hence, f is not Onto function.
Thus, Not Bijective also.

5 B. Question

Classify the following functions as injection, surjection or bijection:
$f: Z \rightarrow Z$ given by $f(x)=x^{2}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: Z \rightarrow Z$ given by $f(x)=x^{2}$
Check for Injectivity:
Let $\mathrm{x}_{1},-\mathrm{x}_{1}$ be elements belongs to Z i.e $\mathrm{x}_{1},-\mathrm{x}_{1} \in \mathrm{Z}$ such that
So, from definition
$\Rightarrow \mathrm{x}_{1} \neq-\mathrm{x}_{1}$
$\Rightarrow\left(x_{1}\right)^{2}=\left(-x_{1}\right)^{2}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)^{2}=\mathrm{f}\left(-\mathrm{x}_{1}\right)^{2}$
Hence f is not One - One function
Check for Surjectivity:
Let y be element belongs to Z i.e $y \in Z$ be arbitrary, then
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow x^{2}=y$
$\Rightarrow \mathrm{x}= \pm \sqrt{\mathrm{y}}$
$\Rightarrow \sqrt{\mathrm{y}}$ not belongs to Z for non-perfect square value of y .
Therefore no non - perfect square value of y has a pre-image in domain Z .

Hence, f is not Onto function.
Thus, Not Bijective also

5 C. Question

Classify the following functions as injection, surjection or bijection:
$f: N \rightarrow N$ given by $f(x)=x^{3}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: N \rightarrow N$ given by $f(x)=x^{3}$

Check for Injectivity:

Let x, y be elements belongs to N i.e $x, y \in N$ such that
$\Rightarrow f(x)=f(y)$
$\Rightarrow \mathrm{x}^{3}=\mathrm{y}^{3}$
$\Rightarrow x^{3}-y^{3}=0$
$\Rightarrow(x-y)\left(x^{2}+y^{2}+x y\right)=0$
As $x, y \in N$ therefore $x^{2}+y^{2}+x y>0$
$\Rightarrow \mathrm{x}-\mathrm{y}=0$
$\Rightarrow x=y$
Hence f is One - One function
Check for Surjectivity:
Let y be element belongs to N i.e $y \in N$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow x^{3}=y$
$\Rightarrow x=\sqrt[3]{y}$
$\Rightarrow \sqrt[3]{y}$ not belongs to N for non-perfect cube value of y.
Since f attain only cubic number like 1,8,27....,

Therefore no non - perfect cubic values of y in N (co-domain) has a pre-image in domain N .
Hence, f is not onto function
Thus, Not Bijective also

5 D. Question

Classify the following functions as injection, surjection or bijection:
$f: Z \rightarrow Z$ given by $f(x)=x^{3}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: Z \rightarrow Z$ given by $f(x)=x^{3}$
Check for Injectivity:
Let x, y be elements belongs to Z i.e $x, y \in Z$ such that
$\Rightarrow f(x)=f(y)$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow x^{3}-y^{3}=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence f is One - One function
Check for Surjectivity:
Let y be element belongs to Z i.e $y \in Z$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow x^{3}=y$
$\Rightarrow x=\sqrt[3]{y}$
$\Rightarrow \sqrt[3]{y}$ not belongs to Z for non - perfect cube value of y.
Since f attain only cubic number like $1,8,27 \ldots$.
Therefore no non - perfect cubic values of y in Z (co - domain) have a pre-image in domain Z.
Hence, f is not onto function
Thus, Not Bijective also

5 E. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=|x|$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one-one as well as onto function.

Now, $f: R \rightarrow R$, defined by $f(x)=|x|$
Check for Injectivity:
Let x, y be elements belongs to R i.e $x, y \in R$ such that
Case i
$\Rightarrow \mathrm{x}=\mathrm{y}$
$\Rightarrow|x|=|y|$
Case ii
$\Rightarrow-x=y$
$\Rightarrow|-x|=|y|$
$\Rightarrow x=|y|$
Hence from case i and case ii f is not One - One function

Check for Surjectivity:

Since f attain only positive values, for negative real numbers in R
(co - domain) there is no pre-image in domain R.
Hence, f is not onto function
Thus, Not Bijective also

5 F. Question

Classify the following functions as injection, surjection or bijection:
$f: Z \rightarrow Z$, defined by $f(x)=x^{2}+x$
Answer
TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: Z \rightarrow Z$ given by $f(x)=x^{2}+x$
Check for Injectivity:
Let x, y be elements belongs to Z i.e $x, y \in Z$ such that
$\Rightarrow f(x)=f(y)$
$\Rightarrow x^{2}+x=y^{2}+y$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{x}-\mathrm{y}=0$
$\Rightarrow(x-y)(x+y+1)=0$
Either $(x-y)=0$ or $(x+y+1)=0$
Case i:
If $x-y=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence f is One - One function
Case ii :
If $x+y+1=0$
$\Rightarrow x+y=-1$
$\Rightarrow \mathrm{x} \neq \mathrm{y}$
Hence f is not One - One function
Thus from case i and case ii f is not One - One function
Check for Surjectivity:
As $1 \in Z$
Let x be element belongs to Z i.e $y \in Z$ be arbitrary, then
$\Rightarrow f(x)=1$
$\Rightarrow x^{2}+x=1$
$\Rightarrow x^{2}+x-1=0$
$\Rightarrow \mathrm{x}=\frac{-1 \pm \sqrt{1+4}}{2}$
Above value of x does not belong to Z

Therefore no values of x in Z (co - domain) have a pre-image in domain Z.
Hence, f is not onto function
Thus, Not Bijective also

5 G. Question

Classify the following functions as injection, surjection or bijection:
$f: Z \rightarrow Z$, defined by $f(x)=x-5$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow a=b$ for $a l l a, b \in A$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: Z \rightarrow Z$ given by $f(x)=x-5$
Check for Injectivity:
Let x, y be elements belongs to Z i.e $x, y \in Z$ such that
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow x-5=y-5$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence, f is One - One function
Check for Surjectivity:
Let y be element belongs to Z i.e $y \in Z$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow \mathrm{x}-5=\mathrm{y}$
$\Rightarrow x=y+5$
Above value of x belongs to Z
Therefore for each element in Z (co - domain) there exists an element in domain Z.
Hence, f is onto function
Thus, Bijective function

5 H. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=\sin x$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: R \rightarrow R$, defined by $f(x)=\sin x$

Check for Injectivity:

Let x, y be elements belongs to R i.e $x, y \in R$ such that
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow \sin x=\sin y$
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \mathrm{y}$
$\Rightarrow \mathrm{x} \neq \mathrm{y}$
Hence, f is not One - One function

Check for Surjectivity:

Let y be element belongs to R i.e $y \in R$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow \sin x=y$
$\Rightarrow \mathrm{x}=\sin ^{-1} \mathrm{y}$
Now, for $\mathrm{y}>1 \times$ not belongs to R (Domain)
Hence, f is not onto function
Thus, It is also not Bijective function

5 I. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=x^{3}+1$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, Let, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+1$
Check for Injectivity:
Let x, y be elements belongs to R i.e $x, y \in R$ such that
So, from definition
$\Rightarrow f(x)=f(y)$
$\Rightarrow x^{3}+1=y^{3}+1$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence f is One - One function
Check for Surjectivity:
Let y be element belongs to R i.e $y \in R$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow x^{3}+1=y$
Now, we know that for 3 degree equation has a real root
So, let $\mathrm{x}=\alpha$ be that root
$\Rightarrow \alpha^{3}+1=y$
$\Rightarrow \mathrm{f}(\alpha)=\mathrm{y}$
Thus for clearly $y \in R$, there exist $\alpha \in R$ such that $f(x)=y$
Therefore f is onto
Thus, It is also Bijective function

5 J. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=x^{3}-x$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, Let, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}$
Check for Injectivity:
Let x, y be elements belongs to R i.e $x, y \in R$ such that
So, from definition
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow x^{3}-x=y^{3}-y$
$\Rightarrow x^{3}-y^{3}-(x-y)=0$
$\Rightarrow(x-y)\left(x^{2}+x y+y^{2}-1\right)=0$
Hence f is not One - One function

Check for Surjectivity:

Let y be element belongs to R i.e $y \in R$ be arbitrary, then
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow x^{3}-x=y$
$\Rightarrow x^{3}-x-y=0$
Now, we know that for 3 degree equation has a real root
So, let $\mathrm{x}=\alpha$ be that root
$\Rightarrow \alpha^{3}-\alpha=y$
$f(\alpha)=y$
Thus for clearly $y \in R$, there exist $\alpha \in R$ such that $f(x)=y$
Therefore f is onto
Thus, It is not Bijective function

5 K. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=\sin ^{2} x+\cos ^{2} x$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow a=b$ for $a l l a, b \in A$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.
So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: R \rightarrow R$, defined by $f(x)=\sin ^{2} x+\cos ^{2} x$

Check for Injectivity and Check for Surjectivity

Let x be element belongs to R i. $\mathrm{e}_{\mathrm{x}} \in \mathrm{R}$ such that
So, from definition
$\Rightarrow f(x)=\sin ^{2} x+\cos ^{2} x$
$\Rightarrow \mathrm{f}(\mathrm{x})=\sin ^{2} \mathrm{x}+\cos ^{2} \mathrm{x}$
$\Rightarrow \mathrm{f}(\mathrm{x})=1$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{constant}$
We know that a constant function is neither One - One function nor onto function.
Thus, It is not Bijective function

5 L. Question

Classify the following functions as injection, surjection or bijection:
f: $Q-\{3\} \rightarrow Q$, defined by $f(x)=\frac{2 x+3}{x-3}$

Answer

TIP: - One - One Function: - A function f: $A \rightarrow B$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}+3}{\mathrm{x}-3}$
Check for Injectivity:
Let x, y be elements belongs to Q i.e $x, y \in Q$ such that
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow \frac{2 x+3}{x-3}=\frac{2 y+3}{y-3}$
$\Rightarrow(2 x+3)(y-3)=(2 y+3)(x-3)$
$\Rightarrow 2 x y-6 x+3 y-9=2 x y-6 y+3 x-9$
$\Rightarrow-6 x+3 y=-6 y+3 x$
$\Rightarrow-6 x+3 y+6 y-3 x=0$
$\Rightarrow-9 x+9 y=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Thus, f is One - One function

Check for Surjectivity:

Let y be element belongs to Q i.e $\mathbf{y} \in \mathbf{Q}$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow \frac{2 x+3}{x-3}=y$
$\Rightarrow 2 x+3=y(x-3)$
$\Rightarrow 2 x+3=x y-3 y$
$\Rightarrow 2 x-x y=-3(y+1)$
$\Rightarrow \mathrm{x}=\frac{-3(\mathrm{y}+1)}{2-\mathrm{y}}$
Above value of x belongs to Q - [3] for $y=2$
Therefore for each element in Q - [3] (co - domain), there does not exist an element in domain Q .
Hence, f is not onto function
Thus, Not Bijective function

5 M. Question

Classify the following functions as injection, surjection or bijection:
$f: Q \rightarrow Q$, defined by $f(x)=x^{3}+1$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: Q \rightarrow Q$, defined by $f(x)=x^{3}+1$

Check for Injectivity:

Let x, y be elements belongs to Q i.e $x, y \in Q$ such that
$\Rightarrow f(x)=f(y)$
$\Rightarrow x^{3}+1=y^{3}+1$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence, f is One - One function
Check for Surjectivity:
Let y be element belongs to Q i.e $y \in Q$ be arbitrary, then
$\Rightarrow x^{3}+1=y$
$\Rightarrow x^{3}+1-y=0$
Now, we know that for 3 degree equation has a real root
So, let $\mathrm{x}=\alpha$ be that root
$\Rightarrow \alpha^{3}+1=y$
$\Rightarrow \mathrm{f}(\alpha)=\mathrm{y}$
Thus for clearly $y \in Q$, there exist $\alpha \in Q$ such that $f(x)=y$
Therefore f is onto
Thus, It is a Bijective function

5 N. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=5 x^{3}+4$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: R \rightarrow R$, defined by $f(x)=5 x^{3}+4$

Check for Injectivity:

Let x, y be elements belongs to R i.e $x, y \in R$ such that
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow 5 x^{3}+4=5 y^{3}+4$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence, f is One - One function
Check for Surjectivity:
Let y be element belongs to R i.e $y \in R$ be arbitrary, then
$\Rightarrow 5 x^{3}+4=y$
$\Rightarrow 5 x^{3}+4-y=0$
Now, we know that for 3 degree equation has a real root
So, let $\mathrm{x}=\alpha$ be that root
$\Rightarrow 5 \alpha^{3}+4=y$
$f(\alpha)=y$
Thus for clearly $y \in R$, there exist $\alpha \in R$ such that $f(x)=y$
Therefore f is onto
Thus, It is a Bijective function

5 O. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=3-4 x$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow a=b$ for $a l l a, b \in A$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: R \rightarrow R$ given by $f(x)=3-4 x$
Check for Injectivity:
Let x, y be elements belongs to R i.e $x, y \in R$ such that
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow 3-4 x=3-4 y$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence, f is One - One function
Check for Surjectivity:
Let y be element belongs to R i.e $y \in R$ be arbitrary, then
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow 3-4 x=y$
$\Rightarrow \mathrm{X}=\frac{3-\mathrm{y}}{4}$
Above value of x belongs to R
Therefore for each element in R (co - domain), there exists an element in domain R.
Hence, f is onto function
Thus, Bijective function

5 P. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=1+x^{2}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one-one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=1+\mathrm{x}^{2}$

Check for Injectivity:

Let x, y be elements belongs to R i.e $x, y \in R$ such that
So, from definition
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow x^{2}+1=y^{2}+1$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow \pm x= \pm y$
Therefore, either $x=y$ or $x=-y$ or $x \neq y$

Hence f is not One - One function
Check for Surjectivity:
1 be element belongs to R i.e $1 \in R$ be arbitrary, then
$\Rightarrow f(x)=1$
$\Rightarrow x^{2}+x=1$
$\Rightarrow x^{2}+x-1=0$
$\Rightarrow \mathrm{x}= \pm \sqrt{\mathrm{y}-1}$
Above value of x not belongs to R for $y<1$
Therefore f is not onto
Thus, It is also not Bijective function

5 Q. Question

Classify the following functions as injection, surjection or bijection:
$f: R \rightarrow R$, defined by $f(x)=\frac{x}{x^{2}+1}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one-one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: R \rightarrow R$ given by $f(x)=\frac{x}{x^{2}+1}$

Check for Injectivity:

Let x, y be elements belongs to R i.e. $x, y \in R$ such that
$\Rightarrow f(x)=f(y)$
$\Rightarrow \frac{x}{x^{2}+1}=\frac{y}{y^{2}+1}$
$\Rightarrow x y^{2}+x=y x^{2}+y$
$\Rightarrow x y^{2}+x-y x^{2}-y=0$
$\Rightarrow x y(y-x)+(x-y)=0$
$\Rightarrow(x-y)(1-x y)=0$

Case i :
$\Rightarrow \mathrm{x}-\mathrm{y}=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
f is One - One function
Case ii :
$\Rightarrow 1-x y=0$
$\Rightarrow x y=1$
Thus from case i and case ii f is One - One function
Check for Surjectivity:
Let y be element belongs to R i. $e y \in R$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow \frac{x}{x^{2}+1}=y$
$\Rightarrow x=x^{2} y+y$
$\Rightarrow x-x^{2} y=y$
Above value of x belongs to R
Therefore for each element in R (co-domain) there exists an element in domain R.
Hence, f is onto function
Thus, Bijective function

6. Question

If $f: A \rightarrow B$ is an injection such that range of $f=\{a\}$. Determine the number of elements in A.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Here, Range $\{\mathrm{f}\}=\{\mathrm{a}\}$
Since it is injective map, different elements have different images.
Thus A has only one element

7. Question

Show that the function $f: R-\{3\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-2}{x-3}$ is a bijection.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $f: R \rightarrow R$ given by $f(x)=\frac{x-2}{x-3}$
To Prove: $-\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-2}{\mathrm{x}-3}$ is a bijection

Check for Injectivity:

Let x, y be elements belongs to R i.e. $x, y \in R$ such that
$\Rightarrow f(x)=f(y)$
$\Rightarrow \frac{\mathrm{x}-2}{\mathrm{x}-3}=\frac{\mathrm{y}-2}{\mathrm{y}-3}$
$\Rightarrow(x-2)(y-3)=(x-3)(y-2)$
$\Rightarrow x y-3 x-2 y+6=x y-2 x-3 y+6$
$\Rightarrow-3 x-2 y+2 x+3 y=0$
$\Rightarrow-\mathrm{x}+\mathrm{y}=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence, f is One - One function
Check for Surjectivity:
Let y be element belongs to R i.e $y \in R$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow \frac{x-2}{x-3}=y$
$\Rightarrow x-2=x y-3 y$
$\Rightarrow x-x y=2-3 y$
$\Rightarrow x=\frac{2-3 y}{1-y}$
$x=\frac{2-3 y}{1-y}$ is a real number for all $y \neq 1$.
Also, $\frac{2-3 y}{1-y} \neq 2$ for any y
Therefore for each element in R (co-domain), there exists an element in domain R .
Hence, f is onto function
Thus, Bijective function

8 A. Question

Let $A=[-1,1]$, Then, discuss whether the following functions from A to itself are one - one, onto or bijective:
$f(x)=\frac{x}{2}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, here $f: A \rightarrow A: A=[-1,1]$ given by function is $f(x)=\frac{x}{2}$
Check for Injectivity:
Let x, y be elements belongs to A i.e. $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ such that
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow \frac{\mathrm{x}}{2}=\frac{\mathrm{y}}{2}$
$\Rightarrow 2 \mathrm{x}=2 \mathrm{y}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
1 belongs to A then
$\mathrm{f}(1)=\frac{1}{2}$
Not element of A co - domain
Hence, f is not One - One function
Check for Surjectivity:
Let y be element belongs to A i.e $y \in A$ be arbitrary, then
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \frac{\mathrm{x}}{2}=\mathrm{y}$
$\Rightarrow \mathrm{x}=2 \mathrm{y}$
Now,
1 belongs to A
$\Rightarrow \mathrm{x}=2$, which not belong to A co - domain

Hence, f is not onto function
Thus, It is not Bijective function

8 B. Question

Let $A=[-1,1]$, Then, discuss whether the following functions from A to itself are one - one, onto or bijective:
$g(x)=|x|$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the $c o-$ domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, here $f: A \rightarrow A: A=[-1,1]$ given by function is $g(x)=|x|$

Check for Injectivity:

Let x, y be elements belongs to A i.e $x, y \in A$ such that
$\Rightarrow g(x)=g(y)$
$\Rightarrow|x|=|y|$
$\Rightarrow \mathrm{x}=\mathrm{y}$
1 belongs to A then
$\Rightarrow \mathrm{g}(1)=1=\mathrm{g}(-1)$
Since, it has many element of A co - domain
Hence, g is not One - One function
Check for Surjectivity:
Let y be element belongs to A i.e $y \in A$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow \frac{\mathrm{x}}{2}=\mathrm{y}$
$\Rightarrow x=2 y$
Now,
1 belongs to A
$\Rightarrow x=2$, which not belong to A co - domain
Since g attain only positive values, for negative - 1 in A (co - domain) there is no pre-image in domain A.

Hence, g is not onto function
Thus, It is not Bijective function

8 C. Question

Let $A=[-1,1]$, Then, discuss whether the following functions from A to itself are one - one, onto or bijective:
$h(x)=x^{2}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, here $f: A \rightarrow A: A=[-1,1]$ given by function is $h(x)=x^{2}$

Check for Injectivity:

Let x, y be elements belongs to A i.e. $x, y \in A$ such that
$\Rightarrow h(x)=h(y)$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow \pm x= \pm y$
Since it has many elements of Aco-domain
Hence, h is not One - One function
Check for Surjectivity:
Let y be element belongs to A i.e. $y \in A$ be arbitrary, then
$\Rightarrow h(x)=y$
$\Rightarrow x^{2}=y$
$\Rightarrow x= \pm \sqrt{ } y$
Since h have no pre-image in domain A.
Hence, h is not onto function
Thus, It is not Bijective function

9 A. Question

Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective: $\{(x, y): x$ is a person, y is the mother of $x\}$

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Here, It is given $(x, y): x$ is a person, y is the mother of x
As we know each person " x " has only one biological mother
Thus,
Given relation is a function
Since more than one person may have the same mother
Function, not One - One (injective) but Onto (Surjective)

9 B. Question

Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective: $\{(a, b): a$ is a person, b is ancestor of $a\}$

Answer

TIP: - One - One Function: - A function $f: A \rightarrow B$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.
So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Here, It is given (a, b) : a is a person, b is an ancestor of a
As we know any person "a" has more than one ancestor
Thus,
Given relation is not a function

10. Question

Let $A=\{1,2,3\}$. Write all one - one from A to itself.
Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
We have $A=\{1,2,3\}$
So all one - one functions from $A=\{1,2,3\}$ to itself are obtained by re - arranging elements of A.
Thus all possible one - one functions are:
$f(1)=1, f(2)=2, f(3)=3$
$f(1)=2, f(2)=3, f(3)=1$
$f(1)=3, f(2)=1, f(3)=2$
$f(1)=1, f(2)=3, f(3)=2$
$\mathrm{f}(1)=3, \mathrm{f}(2)=2, \mathrm{f}(3)=1$
$f(1)=2, f(2)=1, f(3)=3$

11. Question

If $f: R \rightarrow R$ be the function defined by $f(x)=4 x^{3}+7$, show that f is a bijection.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$, defined by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}+7$
To Prove : $-f: R \rightarrow R$ is bijective defined by $f(x)=4 x^{3}+7$

Check for Injectivity:

Let x, y be elements belongs to R i.e $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ such that
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow 4 x^{3}+7=4 y^{3}+7$
$\Rightarrow x^{3}=y^{3}$
$\Rightarrow x=y$
Hence, f is One - One function
Check for Surjectivity:
Let y be element belongs to R i.e $\mathrm{y} \in \mathrm{R}$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow 4 x^{3}+7=y$
$\Rightarrow 4 x^{3}+7-y=0$
Now, we know that for 3 degree equation has a real root
So, let $\mathrm{x}=\alpha$ be that root
$\Rightarrow 4 \alpha^{3}+7=y$
$\Rightarrow \mathrm{f}(\alpha)=\mathrm{y}$
Thus for clearly $y \in R$, there exist $\alpha \in R$ such that $f(x)=y$
Therefore f is onto
Thus, It is Bijective function
Hence Proved

12. Question

Show that the exponential function $f: R \rightarrow R$, given by $f(x)=e^{x}$, is one - one but not onto. What happens if the co - domain is replaced by $\mathrm{R}_{0}{ }^{+}$(set of all positive real numbers).

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$

Check for Injectivity:

Let x, y be elements belongs to R i.e $x, y \in R$ such that
So, from definition
$\Rightarrow f(x)=f(y)$
$\Rightarrow \mathrm{e}^{\mathrm{x}}=\mathrm{e}^{\mathrm{y}}$
$\Rightarrow \frac{e^{x}}{e^{y}}=1$
$\Rightarrow \mathrm{e}^{\mathrm{x}-\mathrm{y}}=1$
$\Rightarrow e^{x-y}=e^{0}$
$\Rightarrow \mathrm{x}-\mathrm{y}=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence f is One - One function
Check for Surjectivity:
Here range of $f=(0, \infty) \neq R$
Therefore f is not onto
Now if co - domain is replaced by $\mathrm{R}_{0}{ }^{+}$(set of all positive real numbers) i.e ($0, \infty$) then f becomes an onto function.

13. Question

Show that the logarithmic function $f: R_{+}^{0} \rightarrow R$ given by $f(x)=\log _{a} x, a>0$ is a bijection.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow a=b$ for $a l l a, b \in A$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff foreach $b \in B$, there exists $a \in B$ such that $f(a)=b$
Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

To Prove : - Logarithmic function $f: R++\rightarrow R$ given by $f(x)=\log _{a} x, a>0$ is a bijection.
Now, $f: R_{0}{ }^{+} \rightarrow R$ given by $f(x)=\log _{a} x, a>0$

Check for Injectivity:

Let x, y be elements belongs to $\mathrm{R}_{0}{ }^{+}$i.e $\mathrm{x}, \mathrm{y} \in \mathrm{R}_{0}^{+}$such that
So, from definition
$\Rightarrow f(x)=f(y)$
$\Rightarrow \log _{a} x=\log _{a} y$
$\Rightarrow \log _{a} x-\log _{a} y=0$
$\Rightarrow \log _{\mathrm{a}}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)=0$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{y}}=1$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Hence f is One - One function

Check for Surjectivity:

Let y be element belongs to R i.e. $y \in R$ be arbitrary, then
$\Rightarrow f(x)=y$
$\Rightarrow \log _{\mathrm{a}} \mathrm{x}=\mathrm{y}$
$\Rightarrow x=a^{y}$
Above value of x belongs to $R_{0}{ }^{+}$
Therefore, for all $y \in R$ there exist $x=a^{y}$ such that $f(x)=y$.
Hence, f is Onto function.
Thus, it is Bijective also

14. Question

If $A=\{1,2,3\}$, show that a one - one function $f: A \rightarrow A$ must be onto.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, $f: A \rightarrow A$ where $A=\{1,2,3\}$ and its a One - One function
To Prove: - A is Onto function
Since it is given that f is a One - One function,
Three elements of $A=\{1,2,3\}$ must be taken to 3 different elements of $c o$ - domain $A=\{1,2,3\}$ under f. Thus by definition of Onto Function
f has to be Onto function.
Hence Proved

15. Question

If $A=\{1,2,3\}$, show that an onto function $f: A \rightarrow A$ must be one - one.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, $f: A \rightarrow A$ where $A=\{1,2,3\}$ and its an Onto function
To Prove: - A is a One - One function
Let's assume f is not Onto function,
Then,
There must be two elements let it be 1 and 2 in Domain $A=\{1,2,3\}$ whose images in co-domain $A=\{1,2$, $3\}$ is same.

Also, Image of 3 under f can be only one element.
Therefore,
Range set can have at most two elements in co-domain $A=\{1,2,3\}$
$\Rightarrow \mathrm{f}$ is not an onto function
Hence it contradicts
$\Rightarrow \mathrm{f}$ must be One - One function
Hence Proved

16. Question

Find the number of all onto functions from the set $A=\{1,2,3, \ldots, n\}$ to itself.

Answer

TIP: -
Onto Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, $f: A \rightarrow A$ where $A=\{1,2,3, \ldots, n\}$
All onto function
It's a permutation of n symbols $1,2,3, \ldots . n$
Thus,
Total number of Onto maps from $A=\{1,2,3, \ldots, n\}$ to itself $=$
Total number of permutations of n symbols $1,2,3, \ldots . n$.

17. Question

Give examples of two one - one functions f_{1} and f_{2} from R to R such that $f_{1}+f_{2}: R \rightarrow R$, defined by ($f_{1}+f_{2}$) $(x)=f_{1}(x)+f_{2}(x)$ is not one - one.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$a=b$ for $a l l a, b \in A$
Let, $f_{1}: R \rightarrow R$ and $f_{2}: R \rightarrow R$ be two functions given by (Examples)
$f_{1}(x)=x$
$f_{1}(x)=-x$
From above function it is clear that both are One - One functions
Now,
$\Rightarrow\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$
$\Rightarrow\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{x})=\mathrm{x}-\mathrm{x}$
$\Rightarrow\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{x})=0$
Therefore,
$f_{1}+f_{2}: R \rightarrow R$ is a function given by
$\left(f_{1}+f_{2}\right)(x)=0$
Since $f_{1}+f_{2}$ is a constant function,
Hence it is not an One - One function.

18. Question

Give examples of two surjective function f_{1} and f_{2} from Z to Z such that $f_{1}+f_{2}$ is not surjective.

Answer

TIP: -
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Let, $f_{1}: Z \rightarrow Z$ and $f_{2}: Z \rightarrow Z$ be two functions given by (Examples)
$f_{1}(x)=x$
$f_{1}(x)=-x$
From above function it is clear that both are Onto or Surjective functions
Now,
$f_{1}+f_{2}: Z \rightarrow Z$
$\Rightarrow\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$
$\Rightarrow\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{x})=\mathrm{x}-\mathrm{x}$
$\Rightarrow\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{x})=0$
Therefore,
$f_{1}+f_{2}: Z \rightarrow Z$ is a function given by
$\left(f_{1}+f_{2}\right)(x)=0$
Since $f_{1}+f_{2}$ is a constant function,
Hence it is not an Onto/Surjective function.

19. Question

Show that if f_{1} and f_{2} are one - one maps from R to R, then the product $f_{1} \times f_{2}: R \rightarrow R$ defined by $\left(f_{1} \times f_{2}\right)(x)$ $=f_{1}(x) f_{2}(x)$ need not be one - one.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$a=b$ for $a l l a, b \in A$
Let, $f_{1}: R \rightarrow R$ and $f_{2}: R \rightarrow R$ are two functions given by
$f_{1}(x)=x$
$f_{2}(x)=x$
From above function it is clear that both are One - One functions
Now, $f_{1} \times f_{2}: R \rightarrow R$ given by
$\Rightarrow\left(f_{1} \times f_{2}\right)(x)=f_{1}(x) \times f_{2}(x)=x^{2}$
$\Rightarrow\left(f_{1} \times f_{2}\right)(x)=x^{2}$
Also,
$f(1)=1=f(-1)$
Therefore,
f is not One - One
$\Rightarrow f_{1} \times f_{2}: R \rightarrow R$ is not One - One function.
Hence Proved

20. Question

Suppose f_{1} and f_{2} are non - zero one - one functions from R to R. Is $\frac{f_{1}}{f_{2}}$ necessarily one - one? Justify your answer. Here, $\frac{f_{1}}{f_{2}}: R \rightarrow R$ is given by $\left(\frac{f_{1}}{f_{2}}\right)(x)=\frac{f_{1}(x)}{f_{2}(x)}$ for all $x \in R$.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$a=b$ for $a l l a, b \in A$
Let, $f_{1}: R \rightarrow R$ and $f_{2}: R \rightarrow R$ are two non - zero functions given by
$f_{1}(x)=x^{3}$
$f_{1}(x)=x$
From above function it is clear that both are One - One functions
Now, $\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}: \mathrm{R} \rightarrow \mathrm{R}$ given by
$\Rightarrow \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}(\mathrm{x})=\frac{\mathrm{f}_{1}(\mathrm{x})}{\mathrm{f}_{2}(\mathrm{x})}$
$\Rightarrow \frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}(\mathrm{x})=\mathrm{x}^{2}$ for all $\mathrm{x} \in \mathrm{R}$
Again,
$\frac{f_{1}}{f_{2}}=\mathrm{f}($ let $): R \rightarrow R$ defined by
$f(x)=x^{2}$
Now,
$\Rightarrow \mathrm{f}(1)=1=\mathrm{f}(-1)$
Therefore,
f is not One - One
$\Rightarrow \frac{f_{1}}{f_{2}}: R \rightarrow R$ is not One - One function.
Hence it is not necessarily to $\frac{f_{1}}{f_{2}}$ be one - one function.

21 A. Question

Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of the following:
an injective map from A to B

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Now, $f: A \rightarrow B$, denotes a mapping such that
$\Rightarrow f=\{(x, y): y=x+3\}$
It can be written as follows in roster form
$f=\{(2,5),(3,6),(4,7)\}$

Hence this is injective mapping

21 B. Question

Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of the following: a mapping from A to B which is not injective

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Now, $f: A \rightarrow B$, denotes a mapping such that
$f=\{(2,2),(3,5),(4,5)\}$
Hence this is not injective mapping

21 C. Question

Given $A=\{2,3,4\}, B=\{2,5,6,7\}$. Construct an example of each of the following:
a mapping from A to B.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Now, $f: A \rightarrow B$, denotes a mapping such that
$f=\{(2,2),(5,3),(6,4),(7,4)\}$
Here it is clear that every first component is from B and second component is from A
Hence this is mapping from B to A

22. Question

Show that $f: R \rightarrow R$, given by $f(x)=x-[x]$, is neither one - one nor onto.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$
Now, $f: A \rightarrow A$ given by $f(x)=x-[x]$
To Prove: $-f(x)=x-[x]$, is neither one - one nor onto
Check for Injectivity:
Let x be element belongs to Z i.e $x \in Z$ such that
So, from definition
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}]$
$\Rightarrow f(x)=0$ for $x \in Z$
Therefore,
Range of $f=[0,1] \neq R$
Hence f is not One - One function
Check for Surjectivity:
Since Range of $f=[0,1] \neq R$
Hence, f is not Onto function.
Thus, it is neither One - One nor Onto function
Hence Proved

23. Question

Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by
$\mathrm{f}(\mathrm{n})=\left\{\begin{array}{cl}\mathrm{n}+1, & \text { if } \mathrm{n} \text { is odd } \\ \mathrm{n}-1, & \text { if } \mathrm{n} \text { is even }\end{array}\right.$
Show that f is a bijection.

Answer

TIP: - One - One Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a one - one functions or an injection if different elements of A have different images in B.

So, $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is One - One function
$\Leftrightarrow a \neq b$
$\Rightarrow f(a) \neq f(b)$ for $a l l a, b \in A$
$\Leftrightarrow f(a)=f(b)$
$\Rightarrow \mathrm{a}=\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$
Onto Function: - A function $f: A \rightarrow B$ is said to be a onto function or surjection if every element of A i.e, if $f(A)$ $=B$ or range of f is the co-domain of f.

So, $f: A \rightarrow B$ is Surjection iff for each $b \in B$, there exists $a \in B$ such that $f(a)=b$

Bijection Function: - A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is said to be a bijection function if it is one - one as well as onto function.

Now, suppose
$\mathrm{f}\left(\mathrm{n}_{1}\right)=\mathrm{f}\left(\mathrm{n}_{2}\right)$
If n_{1} is odd and n_{2} is even, then we have
$\Rightarrow \mathrm{n}_{1}+1=\mathrm{n}_{2}-2$
$\Rightarrow \mathrm{n}_{2}-\mathrm{n}_{1}=2$
Not possible
Suppose both n_{1} even and n_{2} is odd.
Then, $\mathrm{f}\left(\mathrm{n}_{1}\right)=\mathrm{f}\left(\mathrm{n}_{2}\right)$
$\Rightarrow \mathrm{n}_{1}-1=\mathrm{n}_{2}+1$
$\Rightarrow \mathrm{n}_{1}-\mathrm{n}_{2}=2$
Not possible
Therefore, both n_{1} and n_{2} must be either odd or even
Suppose both n_{1} and n_{2} are odd.
Then, $\mathrm{f}\left(\mathrm{n}_{1}\right)=\mathrm{f}\left(\mathrm{n}_{2}\right)$
$\Rightarrow \mathrm{n}_{1}+1=\mathrm{n}_{2}+1$
$\Rightarrow \mathrm{n}_{1}=\mathrm{n}_{2}$
Suppose both n_{1} and n_{2} are even.
Then, $\mathrm{f}\left(\mathrm{n}_{1}\right)=\mathrm{f}\left(\mathrm{n}_{2}\right)$
$\Rightarrow \mathrm{n}_{1}-1=\mathrm{n}_{2}-1$
$\Rightarrow \mathrm{n}_{1}=\mathrm{n}_{2}$
Then, f is One - One
Also, any odd number $2 r+1$ in the co - domain N will have an even number as image in domain N which is $\Rightarrow \mathrm{f}(\mathrm{n})=2 \mathrm{r}+1$
$\Rightarrow \mathrm{n}-1=2 \mathrm{r}+1$
$\Rightarrow \mathrm{n}=2 \mathrm{r}+2$
Any even number $2 r$ in the co - domain N will have an odd number as image in domain N which is
$\Rightarrow f(n)=2 r$
$\Rightarrow n+1=2 r$
$\Rightarrow \mathrm{n}=2 \mathrm{r}-1$
Thus f is Onto function.

Exercise 2.2

1 A. Question

Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=2 x+3$ and $g(x)=x^{2}+5$

Answer

Since, $f: R \rightarrow R$ and $g: R \rightarrow R$
fog: $R \rightarrow R$ and gof: $R \rightarrow R$
Now, $f(x)=2 x+3$ and $g(x)=x^{2}+5$
$g \circ f(x)=g(2 x+3)=(2 x+3)^{2}+5$
$\Rightarrow \operatorname{gof}(x)=4 x^{2}+12 x+9+5=4 x^{2}+12 x+14$
$f \circ g(x)=f(g(x))=f\left(x^{2}+5\right)=2\left(x^{2}+5\right)+3$
$\Rightarrow f o g(x)=2 x^{2}+10+3=2 x^{2}+13$
Hence, $g \circ f(x)=4 x^{2}+12 x+14$ and fog $(x)=2 x^{2}+13$

1 B. Question

Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=2 x+x^{2}$ and $g(x)=x^{3}$

Answer

Since, $f: R \rightarrow R$ and $g: R \rightarrow R$
fog: $R \rightarrow R$ and gof: $R \rightarrow R$
$f(x)=2 x+x^{2}$ and $g(x)=x^{3}$
Now, $g \circ f(x)=g(f(x))=g\left(2 x+x^{2}\right)$
gof $(x)=\left(2 x+x^{2}\right)^{3}=x^{6}+8 x^{3}+6 x^{5}+12 x^{4}$
and $f o g(x)=f(g(x))=f\left(x^{3}\right)$
$\Rightarrow f \circ g(x)=2 x^{3}+x^{6}$
So, $g \circ f(x)=x^{6}+6 x^{5}+12 x^{4}+8 x^{3}$ and $f \circ g(x)=2 x^{3}+x^{6}$

1 C. Question

Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=x^{2}+8$ and $g(x)=3 x^{3}+1$

Answer

Since, $f: R \rightarrow R$ and $g: R \rightarrow R$
fog: $R \rightarrow R$ and gof: $R \rightarrow R$
$f(x)=x^{2}+8$ and $g(x)=3 x^{3}+1$
So, $\operatorname{gof}(x)=g(f(x))$
$\operatorname{gof}(x)=g\left(x^{2}+8\right)$
$\operatorname{gof}(x)=3\left(x^{2}+8\right)^{3}+1$
$\Rightarrow \operatorname{gof}(x)=3\left(x^{6}+512+24 x^{4}+192 x^{2}\right)+1$
$\Rightarrow \operatorname{gof}(x)=3 x^{6}+72 x^{4}+576 x^{2}+1537$
Similarly, $\mathrm{fog}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
$\Rightarrow \mathrm{fog}(\mathrm{x})=\mathrm{f}\left(3 \mathrm{x}^{3}+1\right)$
$\Rightarrow \mathrm{fog}(\mathrm{x})=\left(3 \mathrm{x}^{3}+1\right)^{2}+8$
$\Rightarrow f \circ g(x)=\left(9 x^{6}+1+6 x^{3}\right)+8$
$\Rightarrow f \circ g(x)=9 x^{6}+6 x^{3}+9$
So, $\operatorname{gof}(x)=3 x^{6}+72 x^{4}+576 x^{2}+1537$ and $f o g(x)=9 x^{6}+6 x^{3}+9$

1 D. Question

Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=x$ and $g(x)=|x|$

Answer

Since, $f: R \rightarrow R$ and $g: R \rightarrow R$
fog: $R \rightarrow R$ and gof: $R \rightarrow R$
$f(x)=x$ and $g(x)=|x|$
Now, $g \circ f(x)=g(f(x)=g(x)$
$\Rightarrow \operatorname{gof}(x)=|x|$
and, $f \circ g(x)=f(g(x))=f(|x|) \Rightarrow f o g(x)=|x|$
Hence, $\operatorname{gof}(x)=f \circ g(x)=|x|$
1 E. Question
Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by $f(x)=x^{2}+2 x-3$ and $g(x)=3 x-4$

Answer

Since, $f: R \rightarrow R$ and $g: R \rightarrow R$
fog: $R \rightarrow R$ and gof: $R \rightarrow R$
$f(x)=x^{2}+2 x-3$ and $g(x)=3 x-4$
Now, $g \circ f(x)=g(f(x))=g\left(x^{2}+2 x-3\right)$
$\operatorname{gof}(x)=3\left(x^{2}+2 x-3\right)-4$
$\Rightarrow \operatorname{gof}(x)=3 x^{2}+6 x-9-4$
$\Rightarrow \operatorname{gof}(x)=3 x^{2}+6 x-13$
and, $f \circ g=f(g(x))=f(3 x-4)$
$f \circ g(x)=(3 x-4)^{2}+2(3 x-4)-3$
$=9 x^{2}+16-24 x+6 x-8-3$
$\therefore \mathrm{fog}(\mathrm{x})=9 \mathrm{x}^{2}-18 \mathrm{x}+5$
Thus, $\operatorname{gof}(x)=3 x^{2}+6 x-13$ and $f o g(x)=9 x^{2}-18 x+5$

1 F. Question

Find gof and fog when $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by
$f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

Answer

Since, $f: R \rightarrow R$ and $g: R \rightarrow R$
fog: $R \rightarrow R$ and gof: $R \rightarrow R$
$f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$
Now, $g \circ f(x)=g(f(x))=g\left(8 x^{3}\right)$
$\Rightarrow \operatorname{gof}(x)=\left(8 x^{3}\right)^{\frac{1}{3}}$
$g o f(x)=2 x$
and, $f 0 g(x)=f(g(x))=f\left(x^{\frac{1}{3}}\right)$
$=8\left(x^{\frac{1}{3}}\right)^{3}$
$f \circ g(x)=8 x$
Thus, $\operatorname{gof}(x)=2 x$ and $f o g(x)=8 x$

2. Question

Let $f=\{(3,1),(9,3),(12,4)\}$ and $g=\{(1,3),(3,3),(4,9),(5,9)\}$. Show that gof and fog are both defined, Also, find fog and gof.

Answer

Let $f=\{(3,1),(9,3),(12,4)\}$ and
$g=\{(1,3),(3,3),(4,9),(5,9)\}$
Now,
range of $f=(1,3,4\}$
domain of $f=\{3,9,12\}$
range of $g=\{3,9\}$
domain of $g=(1,3,4,5\}$
since, range of $f \subset$ domain of g
\therefore gof is well defined.
Again, the range of $g \subseteq$ domain of f
$\therefore \mathrm{fog}$ in well defined.
Finally, gof $=\{(3,3),(9,3),(12,9)\}$
$\mathrm{fog}=\{(1,1),(3,1),(4,3),(5,3)\}$

3. Question

Let $f=\{(1,-1),(4,-2),(9,-3),(16,4)\}$ and $g=\{(-1,-2),(-2,-4),(-3,-6),(4,8)\}$. Show that gof is defined while fog is not defined. Also, find gof.

Answer

We have,
$f=\{(1,-1),(4,-2),(9,-3),(16,4)\}$ and
$g=\{(-1,-2),(-2,-4),(-3,-6),(4,8)\}$
Now,
Domain of $f=\{1,4,9,16\}$
Range of $f=\{-1,-2,-3,4\}$
Domain of $g=(-1,-2,-3,4\}$

Range of $g=(-2,-4,-6,8\}$
Clearly range of $f=$ domain of g
\therefore gof is defined.
but, range of $\mathrm{g} \neq$ domain of fSo , fog is not defined.
Now,
$\operatorname{gof}(1)=g(-1)=-2$
$g \circ f(4)=g(-2)=-4$
$\operatorname{gof}(9)=g(-3)=-6$
$g o f(16)=g(4)=8$
So, gof $=\{(1,-2),(4,-4),(9,-6),(16,8)\}$

4. Question

Let $A=\{a, b c\}, B=\{u, v, w\}$ and let f and g be two functions from A to B and from B to A respectively defined as: $f=\{(a, v),(b, u),(c, w)\}, g=\{(u, b),(v, a),(w, c)\}$.

Show that f and g both are bijections and find fog and gof.

Answer

Given, $A=\{a, b, c\}, B=\{u, v, w\}$ and
$f=A \rightarrow B$ and $g: B \rightarrow A$ defined by
$f=\{(a, v),(b, u),(c, w)\}$ and
$g=\{(u, b),(v, a),(w, c)\}$
For both f and g , different elements of domain have different
images
$\therefore \mathrm{f}$ and g are one - one
Again, for each element in co - domain of f and g, there is a pre - image in the domain
$\therefore \mathrm{f}$ and g are onto
Thus, f and g are bijective.
Now,
gof $=\{(a, a),(b, b),(c, c)\}$ and
$f o g=\{(u, u),(v, v),(w, w)\}$

5. Question

Find fog (2) and gof (1) when: $f: R \rightarrow R ; f(x)=x^{2}+8$ and $g: R \rightarrow R ; g(x)=3 x^{3}+1$.

Answer

We have, $f: R \rightarrow R$ given by $f(x)=x^{2}+8$ and
$g: R \rightarrow R$ given by $g(x)=3 x^{3}+1$
$\mathrm{fog}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}\left(3 \mathrm{x}^{3}+1\right)$
$=\left(3 x^{3}+1\right)^{2}+8$
fog $(2)=(3 \times 8+1)^{2}+8=625+8=633$
Again,
$g \circ f(x)=g(f(x))=g\left(x^{2}+8\right)$
$=3\left(x^{2}+8\right)^{3}+1$
$\operatorname{gof}(1)=3(1+8)^{3+1}=2188$

6. Question

Let R^{+}be the set of all non - negative real numbers. If $f: R^{+} \rightarrow R^{+}$and $g: R^{+} \rightarrow R^{+}$are defined as $f(x)=x^{2}$ and $g(x)=+\sqrt{ } x$. Find fog and gof. Are they equal functions.

Answer

We have, $f: R^{+} \rightarrow R^{+}$given by
$f(x)=x^{2}$
$\mathrm{g}: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$given by
$g(x)=\sqrt{x}$
$f \circ g(x)=f(g(x))=f(\sqrt{x})=(\sqrt{x})^{2}=x$
Also,
$g \circ f(x)=g(f(x))=g\left(x^{2}\right)=\sqrt{x^{2}}=x$
Thus,
$\mathrm{fog}(\mathrm{x})=\mathrm{gof}(\mathrm{x})$
They are equal functions as their domain and range are also equal

7. Question

Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x)=x^{2}$ and $g(x)=x+1$. Show that fog $\neq g$ of.

Answer

We have, $f: R \rightarrow R$ and $g: R \rightarrow R$ are two functions defined by
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+1$
Now,
$\mathrm{fog}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}(\mathrm{x}+1)=(\mathrm{x}+1)^{2}$
$\Rightarrow \mathrm{fog}(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}+1$
$g \circ f(x)=g(f(x))=g\left(x^{2}\right)=x^{2}+1$
from (i) \& (ii)
fog \neq gof

8. Question

Let $f: R \rightarrow R$ an $g: R \rightarrow R$ be defined by $f(x)=x+1$ and $g(x)=x-1$. Show that $f o g=g o f=I_{R}$.

Answer

Let $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined as
$\mathrm{f}(\mathrm{x})=\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}-1$
Now,

$$
\begin{align*}
& f \circ g(x)=f(g(x))=f(x-1)=x-1+1 \\
& =x=l_{R} \ldots \ldots \text { (i) } \tag{i}
\end{align*}
$$

Again,
$f \circ g(x)=f(g(x))=g(x+1)=x+1-1$
$=\mathrm{x}=\mathrm{I}_{\mathrm{R}}$
from (i)\& (ii)
$\mathrm{fog}=\mathrm{gof}=\mathrm{I}_{\mathrm{R}}$

9. Question

Verify associativity for the following three mappings: $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}_{0}$ (the set of non - zero integers), $\mathrm{g}: \mathrm{Z}_{0} \rightarrow \mathrm{Q}$ and $h: Q \rightarrow R$ given by $f(x)=2 x, g(x)=1 / x$ and $h(x)=e^{x}$.

Answer

We have, $f: N \rightarrow Z_{0}, g: Z_{0} \rightarrow Q$ and $h: Q \rightarrow R$
Also, $f(x)=2 x, g(x)=\frac{1}{x}$ and $h(x)=e^{x}$
Now, f: $N \rightarrow Z_{o}$ and hog: $Z_{0} \rightarrow R$
\therefore (hog)of: $\mathrm{N} \rightarrow \mathrm{R}$
Also, gof: $N \rightarrow Q$ and $h: Q \rightarrow R$
\therefore ho(gof): $\mathrm{N} \rightarrow \mathrm{R}$
Thus, (hog)of and ho(gof) exist and are function from N to set R .
Finally. $(\operatorname{hog}) \circ f(x)=(h \circ g)(f(x))=(h o g)(2 x)$
$=h\left(\frac{1}{2}\right)=e^{\frac{1}{2 x}}$
Now, $h o(g o f)(x)=\operatorname{ho}(g(2 x))=h\left(\frac{1}{2 x}\right)$
$=e^{\frac{1}{2 x}}$
Hence, associativity verified.

10. Question

Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x, g(y)=3 y+4$ and $h(z)=\sin z$ for all $x, y, z \in N$. Show that ho (gof) $=$ (hog) of.

Answer

We have,
$h o(g \circ f)(x)=h(g \circ f(x))=h(g(f(x)))$
$=\mathrm{h}(\mathrm{g}(2 \mathrm{x}))=\mathrm{h}(3(2 \mathrm{x})+4)$
$=h(6 x+4)=\sin (6 x+4) \forall x \in N$
$((\operatorname{hog}) \circ f)(x)=(\operatorname{hog})(f(x))=(h \circ g)(2 x)$
$=\mathrm{h}(\mathrm{g}(2 \mathrm{x}))=\mathrm{h}(3(2 \mathrm{x})+4)$
$=h(6 x+4)=\sin (6 x+4) \forall x \in N$
This shows, ho(gof) $=($ hog $)$ of

11. Question

Give examples of two functions $f: N \rightarrow N$ and $g: N \rightarrow N$ such that gof is onto, but f is not onto.

Answer

Define $f: N \rightarrow N$ by, $f(x)=x+1$ And, $g: N \rightarrow N$ by,
$g(x)=\left\{\begin{array}{c}x-1 \text { if } x>1 \\ 1 \text { if } x=1\end{array}\right.$
We first show that f is not onto.
For this, consider element 1 in co - domain N. It is clear that this element is not an image of any of the elements in domain N .

Therefore, f is not onto.

12. Question

Give examples of two functions $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ and $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z}$ such that gof is injective, but g is not injective.

Answer

Define $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ as $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{N}$ as $\mathrm{g}(\mathrm{x})=|\mathrm{x}|$.
We first show that g is not injective.
It can be observed that:
$g(-1)=|-1|=1$
$g(1)=|1|=1$
Therefore, $g(-1)=g(1)$, but $-1 \neq 1$.
Therefore, g is not injective.
Now, gof: $N \rightarrow Z$ is defined as $g o f(x)=g(f(x))=g(x)=|x|$.
Let $x, y \in N$ such that $\operatorname{gof}(x)=\operatorname{gof}(y)$.
$\Rightarrow|x|=|y|$
Since x and $y \in N$ both are positive.
$\therefore|\mathrm{x}|=|\mathrm{y}| \Rightarrow \mathrm{x}=\mathrm{y}$
Hence, gof is injective
13. Question

If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are one-one functions show that gof is a one - one function.

Answer

We have, $f: A \rightarrow B$ and $g: B \rightarrow C$ are one - one functions.
Now we have to prove : gof: $A \rightarrow C$ in one - one
let $x, y \in A$ such that
$\operatorname{gof}(x)=\operatorname{gof}(y)$
$g(f(x))=g(f(y))$
$f(x)=f(y)$ [As, g in one - one]
$x=y[A s, f$ in one - one]
gof is one - one function

14. Question

If $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto functions show that gof is an onto function.

Answer

We have, $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto functions.

Now, we need to prove: gof: $A \rightarrow C$ is onto.
let $y \in C$, then
$g o f(x)=y$
$g(f(x))=y$
Since g is onto, for each element in C , there exists a preimage in B .
$g(x)=y$
From (i) \& (ii)
$f(x)=x$
Since f is onto, for each element in B there exists a preim age in el
$f(x)=x$ \qquad
From (ii)and(iii) we can conclude that for each $y \in C$, there exists a preimage in A such that gof $(x)=y$
\therefore gof is onto.

Exercise 2.3

1 A. Question

Find fog and gof, if
$f(x)=e^{x}, g(x)=\log _{e} x$

Answer

$f(x)=e^{x}$ and $g(x)=\log _{e} x$
Now, $f \circ g(x)=f(g(x))=f\left(\log _{e} x\right)=e^{\log _{e} x}=x$
$\Rightarrow \mathrm{fog}(\mathrm{x})=\mathrm{x}$
$g \circ f(x)=g(f(x))=g\left(e^{x}\right)=\log _{e} e^{x}=x$
$\Rightarrow \operatorname{gof}(x)=x$
Hence, $f \circ g(x)=x$ and $g \circ f(x)=x$

1 B. Question

Find fog and gof, if
$f(x)=x^{2}, g(x)=\cos x$

Answer

$f(x)=x, g(x)=\cos x$
Domain of f and Domain of $g=R$
Range of $f=(0, \infty)$
Range of $g=(-1,1)$
\therefore Range of $\mathrm{f} \subset$ domain of $\mathrm{g} \Rightarrow \mathrm{gof}$ exist
Also, Range of $g \subset$ domain of $f \Rightarrow$ fog exist
Now,
$g \circ f(x)=g(f(x))=g\left(x^{2}\right)=\cos x^{2}$
And
$f \circ g(x)=f(g(x))=f(\cos x)=\cos ^{2} x$
Hence, $f \circ g(x)=\cos x^{2}$ and $g o f(x)=\cos ^{2} x$

1 C. Question

Find fog and gof, if
$f(x)=|x|, g(x)=\sin x$

Answer

$f(x)=|x|$ and $g(x)=\sin x$
Range of $f=(0, \infty) \subset$ Domain $g(R) \Rightarrow$ gof exist
Range of $g=[-1,1] \subset$ Domain $f(R) \Rightarrow$ fog exist
Now, fog $(x)=f(g(x))=f(\sin x)=|\sin x|$ and
$g o f(x)=g(f(x))=g(|x|)=\sin |x|$
Hence, $\operatorname{fog}(x)=|\sin x|$ and $\operatorname{gof}(x)=\sin |x|$

1 D. Question

Find fog and gof, if
$f(x)=x+1, g(x)=e^{x}$

Answer

$f(x)=x+1$ and $g(x)=e^{x}$
Range of $f=R \subset$ Domain of $g=R \Rightarrow$ gof exist
Range of $g=(0, \infty)=$ Domain of $f=R \Rightarrow f o g$ exist Now,
$g \circ f(x)=g(f(x))=g(x+1)=e^{x+1}$
And
$f \circ g(x)=f(g(x))=f\left(e^{x}\right)=e^{x}+1$
Hence, $\operatorname{fog}(x)=e^{x+1}$ and $\operatorname{gof}(x)=e^{x}+1$

1 E. Question

Find fog and gof, if
$f(x)=\sin ^{-1} x, g(x)=x^{2}$

Answer

$f(x)=\sin ^{-1} x$ and $g(x)=x^{2}$
Range of $f=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \subset$ Domain of $g=R \Rightarrow$ gof exist
Range of $g=(0, \infty) \subset$ Domain of $f=R \Rightarrow$ fog exist
Now,
$f \circ g(x)=f(g(x))=f\left(x^{2}\right)=\sin ^{-1} x^{2}$ and
$g o f(x)=g(f(x))=g\left(\sin ^{-1} x\right)=\left(\sin ^{-1} x\right)^{2}$
Hence, $f \circ g(x)=\sin ^{-1} x^{2}$ and $g o f(x)=\left(\sin ^{-1} x\right)^{2}$

Find fog and gof, if
$f(x)=x+1, g(x)=\sin x$

Answer

$f(x)=x+1$ and $g(x)=\sin x$
Range of $f=R \subset$ Domain of $g=R \Rightarrow$ gof exists
Range of $g=[-1,1] \subset$ Domain of $f \Rightarrow f o g$ exists
Now,
$f \circ g(x)=f(g(x))=f(\sin x)=\sin x+1$
And
$g \circ f(x)=g(f(x))=g(x+1)=\sin (x+1)$
Hence, $\operatorname{fog}(x)=\sin x+1$ and $\operatorname{gof}(x)=\sin (x+1)$

1 G. Question

Find fog and gof, if
$f(x)=x+1, g(x)=2 x+3$

Answer

$f(x)=x+1$ and $g(x)=2 x+3$
Range of $f=R \subset$ Domain of $g=R \Rightarrow$ gof exists
Range of $g=R \subset$ Domain of $f \Rightarrow$ fog exists
Now,
$f \circ g(x)=f(g(x)=f(2 x+3)=(2 x+3)+1=2 x+4$ and
$g \circ f(x)=g(f(x))=g(x+1)=2(x+1)+3=2 x+5$
So, $f \circ g(x)=2 x+4$ and $g \circ f(x)=2 x+5$

1 H. Question

Find fog and gof, if
$f(x)=c, c \in R, g(x)=\sin x^{2}$

Answer

$f(x)=c, c \in R$ and
$g(x)=\sin x^{2}$
Range of $f=R \subset$ Domain of $g=R \Rightarrow$ gof exists
Range of $g=[-1,1] \subset$ Domain of $f=R \Rightarrow$ fog exists
Now,
$g \circ f(x)=g(f(x))=g(c)=\sin c^{2}$ and
$f \circ g(x)=f(g(x))=f\left(\sin x^{2}\right)=c$
Thus, $\operatorname{gof}(x)=\sin c^{2}$ and $f \circ g(x)=c$

1 I. Question

Find fog and gof, if
$f(x)=x^{2}+2, g(x)=1-\frac{1}{1-x}$

Answer

$f(x)=x^{2}+1$ and $g(x)=1-\frac{1}{1-x}$
Range of $f=(2, \infty) \subset$ Domain of $g=R \Rightarrow$ gof exists
Range of $g=R-[-1] \subset$ Domain of $f=R \Rightarrow$ fog exists
Now,
$f 0 g(x)=f(g(x))=f\left(-\frac{x}{1-x}\right)=\frac{x^{2}}{(1-x)^{2}}+2$ and
$\operatorname{gof}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(\mathrm{x} 2+2)=-\frac{\mathrm{x}^{2}+2}{1-\left(\mathrm{x}^{2}+2\right)}$
$\operatorname{gof}(x)=\frac{x^{2}+2}{\left(x^{2}+1\right)}$
Hence, $f 0 g(x)=\frac{x^{2}}{(1-x)^{2}}+2$ and $\operatorname{gof}(x)=-\frac{x^{2}+2}{1-\left(x^{2}+2\right)}$

2. Question

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$. Show that $\mathrm{fog} \neq \mathrm{gof}$.

Answer

We have, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$
Now,
$f \circ g(x)=f(g(x))=f(\sin x)$
$\Rightarrow f o g(x)=\sin ^{2} x+\sin x+1$
Again, $g \circ f(x)=g(f(x))=g\left(x^{2}+x+1\right)$
$\Rightarrow \operatorname{gof}(x)=\sin \left(x^{2}+x+1\right)$
Clearly,
fog \neq gof

3. Question

If $f(x)=|x|$, prove that fof $=f$.

Answer

We have, $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$
We assume the domain of $f=R$ and range of $f=(0, \infty)$
Range of $f \subset$ domain of f
\therefore fof exists,
Now,
$f 0 f(x)=f(f(x))=f(|x|)=\|x\|=f(x)$
$\therefore \mathrm{fof}=\mathrm{f}$
Hence proved.

4. Question

If $f(x)=2 x+5$ and $g(x)=x^{2}+1$ be two real functions, then describe each of the following functions:
(i) fog
(ii) gof
(iii) fof
(iv) f^{2}

Also, show that fof $\neq f^{2}$.

Answer

$f(x)=2 x+5$ and $g(x)=x^{2+1}$
The range of $f=R$ and range of $g=[1, \infty]$
The range of $f \subset$ Domain of $g(R)$ and range of $g \subset$ domain of $f(R)$
\therefore both fog and gof exist.
(i) $f \circ g(x)=f(g(x))=f\left(x^{2}+1\right)$
$=2\left(x^{2}+1\right)+5$
$\Rightarrow f \circ g(x)=2 x^{2}+7$
Hence $f \circ g(x)=2 x^{2}+7$
(ii) $\operatorname{gof}(x)=g(f(x))^{-}=g(2 x+5)$
$=(2 x+5)^{2}+1$
$\operatorname{gof}(x)=4 x^{2}+20 x+26$
Hence $\operatorname{gof}(x)=4 x^{2}+20 x+26$
(iii) $f \circ f(x)=f(f(x))=f(2 x+5)$
$=2(2 x+5)+5$
$f \circ f(x)=4 x+15$
Hence $\operatorname{fof}(x)=4 x+15$
(iv) $f^{2}(x)=[f(x)]^{2}=(2 x+5)^{2}$
$=4 x^{2}+20 x+25$
\therefore from (iii) and (iv)
fof $\neq \mathrm{f}^{2}$

5. Question

If $f(x)=\sin x$ and $g(x)=2 x$ be two real functions, then describe gof and fog. Are these equal functions?

Answer

We have, $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}$.
Domain of f and g is R
Range of $f=[-1,1]$, Range of $g=R$
\therefore Range of $f \subset$ Domain g and Range of $g \subset$ Domain f
fog and gof both exist.
$\operatorname{gof}(x)=g(f(x))=g(\sin x)$
$\Rightarrow \operatorname{gof}(x)=2 \sin x$
$f \circ g(x)=f(g(x))=f(2 x)=\sin 2 x$
\therefore gof $\neq \mathrm{fog}$

6. Question

Let f, g, h be real functions given by $f(x)=\sin x, g(x)=2 x$ and $h(x)=\cos x$. Prove that $f o g=g o(f h)$.

Answer

f, g and h are real functions given by $f(x)=\sin x, g(x)=2 x$ and
$h(x)=\cos x$
To prove: $\mathrm{fog}=\mathrm{go}(\mathrm{fh})$
L.H.S
$f o g(x)=f(g(x))$
$=f(2 x)=\sin 2 x$
$\Rightarrow f o g(x)=2 \sin x \cos x$ \qquad
R.H.S
$g o(f h)(x)=g o(f(x) \cdot h(x))$
$=g(\sin x \cos x)=2 \sin x \cos x$
$g o(f h)(x)=2 \sin x \cos x$
from A and B
$\mathrm{fog}(\mathrm{x})=\mathrm{go}(\mathrm{fh})(\mathrm{x})$
Hence proved

7. Question

Let f be any real function and let g be a function given by $g(x)=2 x$. Prove that gof $=f+f$.

Answer

We are given that f is a real function and g is a function given by
$g(x)=2 x$
To prove; gof $=f+\mathrm{f}$.
L.H.S
$\operatorname{gof}(x)=g(f(x))=2 f(x)$
$=f+f=$ R.H.S
$g o f=f+f$
Hence proved

8. Question

If $\mathrm{f}(\mathrm{x})=\sqrt{1-\mathrm{x}}$ and $\mathrm{g}(\mathrm{x})=\log _{\mathrm{e}} \mathrm{x}$ are two real functions, then describe functions fog and gof.

Answer

$$
f(x)=\sqrt{1-x}, g(x)=\log _{e} x
$$

Domain of f and g are R.
Range of $f=(-\infty, 1)$ Range of $g=(0, e)$

Range of $f \subset$ Domain of $g \Rightarrow$ gof exists
Range of $g \subset$ Domain $f \Rightarrow$ fog exists
$\therefore g$ of $(x)=g(f(x))=g(\sqrt{1-x})$
\therefore gof $(x)=\log _{e} \sqrt{1-x}$
Again
$f \circ g(x)=f(g(x))=f\left(\log _{e} x\right)$
$f o g(x)=\sqrt{1-\log _{e} x}$

9. Question

If $\mathrm{f}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathrm{R}$ and $\mathrm{g}:[-1,1] \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\sqrt{1-\mathrm{x}^{2}}$ respectively. Describe fog and gof.

Answer

$f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$ and $g:[-1,1] \rightarrow R$ defined as $f(x)=\tan x$ and $g(x)=\sqrt{1-x^{2}}$
Range of f : let $y=f(x)$
$\Rightarrow y=\tan x$
$\Rightarrow x=\tan ^{-1} y$
Since, $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \in(-\infty, \infty)$
As Range of $f \subset$ Domain of g
\therefore gof exists.
Similarly, let $y=g(x)$
$\Rightarrow y=\sqrt{1-x^{2}}$
$\Rightarrow \mathrm{x}=\sqrt{1-\mathrm{y}^{2}}$
\therefore Range of g is $[-1,1]$
As, Range of $g \subset$ Domain of f
Hence, fog also exists
Now,
$f \circ g(x)=f(g(x))=f\left(\sqrt{1-x^{2}}\right)$
$\Rightarrow \mathrm{fog}(\mathrm{x})=\tan \sqrt{1-\mathrm{x}^{2}}$
Again,
$\operatorname{gof}(x)=g(f(x))=g(\tan x)$
$\Rightarrow \operatorname{gof}(\mathrm{x})=\sqrt{1-\tan ^{2} \mathrm{x}}$

10. Question

If $f(x)=\sqrt{x+3}$ and $g(x)=x^{2}+1$ be two real functions, then find fog and gof.

Answer

$f(x)=\sqrt{x+3}, g(x)=x^{2}+1$
Now,
Domain of $f=[-3, \infty]$, domain of $g=(-\infty, \infty)$
Range of $f=[0, \infty)$, range of $g=[1, \infty)$
Then, range of $f \subset$ Domain of g and range of $g \subset$ Domain of f
Hence, fog and gof exists
Now,
$f \circ g(x)=f(g(x))=f\left(x^{2}+1\right)$
$\Rightarrow \mathrm{fog}(\mathrm{x})=\sqrt{\mathrm{x}^{2}+4}$
Again,
$g o f(x)=g(f(x))=g(\sqrt{x+3})$
$\Rightarrow \operatorname{gof}(x)=(\sqrt{x+3})^{2}+1$
$\Rightarrow \operatorname{gof}(x)=x+4$

11 A. Question

Let f be a real function given by $f(x)=\sqrt{x-2}$. Find each of the following:
fof

Answer

We have, $f(x)=\sqrt{x-2}$
Clearly, domain of $f=[2, \infty]$ and range of $f=[0, \infty)$
We observe that range of f is not a subset of domain of f
\therefore Domain of (fof) $=\{x: x \in$ Domain of f and $f(x) \in$ Domain of $f\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \in[2, \infty)\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \geq 2\}$
$=\{x: x \in[2, \infty)$ and $x-2 \geq 4\}$
$=\{x: x \in[2, \infty)$ and $x \geq 6\}$
$=[6, \infty)$
Now,
$f \circ f(x)=f(f(x))=f(\sqrt{x-2})=\sqrt{\sqrt{x-2}-2}$

11 B. Question

Let f be a real function given by $f(x)=\sqrt{x-2}$. Find each of the following:
fofof

Answer

We have, $f(x)=\sqrt{x-2}$
Clearly, domain of $f=[2, \infty]$ and range of $f=[0, \infty)$
We observe that range of f is not a subset of domain of f
\therefore Domain of (fof) $=\{x: x \in$ Domain of f and $f(x) \in$ Domain of $f\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \in[2, \infty)\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \geq 2\}$
$=\{x: x \in[2, \infty)$ and $x-2 \geq 4\}$
$=\{x: x \in[2, \infty)$ and $x \geq 6\}$
$=[6, \infty)$
Clearly, range of $f=[0, \infty) \notin$ Domain of (fof)
\therefore Domain of ((fof)of) $=\{x: x \in$ Domain of f and $f(x) \in$ Domain of (fof) $\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \in[6, \infty)\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \geq 6\}$
$=\{x: x \in[2, \infty)$ and $x-2 \geq 36\}$
$=\{x: x \in[2, \infty)$ and $x \geq 38\}$
$=[38, \infty)$
Now,
$(f \circ f)(x)=f(f(x))=f(\sqrt{x-2})=\sqrt{\sqrt{x-2}-2}$
$(f \circ f o f)(x)=(f \circ f)(f(x))=(f \circ f)(\sqrt{x-2})=\sqrt{\sqrt{\sqrt{x-2}-2}-2}$
\therefore fofof : $[38, \infty) \rightarrow \mathrm{R}$ defined as
(fofof) $(x)=\sqrt{\sqrt{\sqrt{x-2}-2}-2}$

11 C. Question

Let f be a real function given by $f(x)=\sqrt{x-2}$. Find each of the following:
(fofof)(38)

Answer

We have, $f(x)=\sqrt{x-2}$
Clearly, domain of $f=[2, \infty]$ and range of $f=[0, \infty)$
We observe that range of f is not a subset of domain of f
\therefore Domain of (fof) $=\{x: x \in$ Domain of f and $f(x) \in$ Domain of $f\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \in[2, \infty)\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \geq 2\}$
$=\{x: x \in[2, \infty)$ and $x-2 \geq 4\}$
$=\{x: x \in[2, \infty)$ and $x \geq 6\}$
$=[6, \infty)$
Clearly, range of $f=[0, \infty) \notin$ Domain of (fof)
\therefore Domain of ((fof) of) $=\{x: x \in$ Domain of f and $f(x) \in$ Domain of (fof) $\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \in[6, \infty)\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \geq 6\}$
$=\{x: x \in[2, \infty)$ and $x-2 \geq 36\}$
$=\{x: x \in[2, \infty)$ and $x \geq 38\}$
$=[38, \infty)$
Now,
$(f \circ f)(x)=f(f(x))=f(\sqrt{x-2})=\sqrt{\sqrt{x-2}-2}$
$($ fofof $)(x)=($ fof $)(f(x))=($ fof $)(\sqrt{x-2})=\sqrt{\sqrt{\sqrt{x-2}-2}-2}$
\therefore fofof $:[38, \infty) \rightarrow R$ defined as
$(f \circ f)(x)=f(f(x))=f(\sqrt{x-2})=\sqrt{\sqrt{x-2}-2}$
$(f \circ f \circ f)(x)=(f \circ f)(f(x))=(f \circ f)(\sqrt{x-2})=\sqrt{\sqrt{\sqrt{x-2}-2}-2}$
\therefore fofof : $[38, \infty) \rightarrow \mathrm{R}$ defined as
(fofof) $(x)=\sqrt{\sqrt{\sqrt{x-2}-2}-2}$
(fofof)(38) $=\sqrt{\sqrt{\sqrt{38-2}-2}-2}=\sqrt{\sqrt{\sqrt{36}-2}-2}$
$=\sqrt{\sqrt{6-2}-2}=\sqrt{\sqrt{4}-2}=\sqrt{2-2}=0$

11 D. Question

Let f be a real function given by $f(x)=\sqrt{x-2}$. Find each of the following:
f^{2}
Also, show that fof $\neq \mathrm{f}^{2}$.

Answer

We have, $f(x)=\sqrt{x-2}$
Clearly, domain of $f=[2, \infty]$ and range of $f=[0, \infty)$
We observe that range of f is not a subset of domain of f
\therefore Domain of (fof) $=\{x: x \in$ Domain of f and $f(x) \in$ Domain of $f\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \in[2, \infty)\}$
$=\{x: x \in[2, \infty)$ and $\sqrt{x-2} \geq 2\}$
$=\{x: x \in[2, \infty)$ and $x-2 \geq 4\}$
$=\{x: x \in[2, \infty)$ and $x \geq 6\}$
$=[6, \infty)$
Now,
$(f \circ f)(x)=f(f(x))=f(\sqrt{x-2})=\sqrt{\sqrt{x-2}-2}$
\therefore fof: $[6, \infty) \rightarrow \mathrm{R}$ defined as
$(f o f)(x)=\sqrt{\sqrt{x-2}-2}$
$f^{2}(x)=[f(x)]^{2}=[\sqrt{x-2}]^{2}=x-2$
$\therefore \mathrm{f}^{2}:[2, \infty) \rightarrow \mathrm{R}$ defined as
$f^{2}(x)=x-2$
\therefore fof $\neq \mathrm{f}^{2}$

12. Question

Let $f(x)=\left\{\begin{array}{ll}1+x, & 0 \leq x \leq 2 \\ 3-x, & 2<x \leq 3\end{array}\right.$. Find fof.

Answer

$f(x)=\left\{\begin{array}{l}1+x 0 \leq x \leq 2 \\ 3-x 2<x \leq 3\end{array}\right.$
Range of $f=[0,3] \subset$ Domain of f
$\therefore f \circ f(x)=f(f(x))=f\left(\left\{\begin{array}{c}1+x 0 \leq x \leq 2 \\ 3-x 2<x \leq 3\end{array}\right)=f\left(\left\{\begin{array}{c}1+(1+x) 0 \leq x \leq 1 \\ 3-(1+x) 1<x \leq 2 \\ 1+(3-x) 2<x \leq 3\end{array}\right)\right.\right.$
So, fof $(x)=\left\{\begin{array}{l}2+x 0 \leq x \leq 1 \\ 2-x 1<x \leq 2 \\ 4-x 2<x \leq 3\end{array}\right.$

13. Question

If $f, g: R \rightarrow R$ be two functions defined as $f(x)=|x|+x$ and
$g(x)=|x|-x$ for all $x \in R$. Then, find fog and gof. Hence, find fog (-3),
fog (5) and gof(-2).

Answer

Domain of $f(x)$ and $g(x)$ is R.
Range of $f(x)=[0, \infty)$ and range of $g(x)=[0, \infty)$
As, range of $f \subset$ Domain of g and range of $g \subset$ Domain of f
So, gof and fog exists
Now,
$f \circ g(x)=f(g(x))=f(|x|-x)$
$\Rightarrow f o g(x)=||x|-x|+|x|-x$
As, range of $g(x) \geq 0$ so, $||x|-x|=|x|-x$
So, $f o g(x)=||x|-x|+|x|-x=|x|-x+|x|-x$
$\Rightarrow \mathrm{fog}(\mathrm{x})=2(|\mathrm{x}|-\mathrm{x})$
Also,
$\operatorname{gof}(x)=g(f(x))=g(|x|+x)=||x|+x|-(|x|+x)$
As, range of $f(x) \geq 0$ so, $||x|+x|=|x|+x$
So, $\operatorname{gof}(x)=||x|+x|-(|x|+x)=|x|+x-(|x|+x)=0$
Thus, $\operatorname{gof}(x)=0$

Now, fog $(-3)=2(|-3|-(-3))=2(3+3)=6$,
$f \circ g(5)=2(|5|-5)=0, \operatorname{gof}(-2)=0$

Exercise 2.4

1. Question

State with reasons whether the following functions have inverse:
(i) $f:[1,2,3,4] \rightarrow\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}$
(ii) $\mathrm{g}:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g=\{(5,4),(6,3),(7,4),(8,2)\}$
(iii) $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$

Answer

(i) $f:[1,2,3,4] \rightarrow\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}$

Recall that a function is invertible only when it is both one-one and onto.
Here, we have $\mathrm{f}(1)=10=\mathrm{f}(2)=\mathrm{f}(3)=\mathrm{f}(4)$
Hence, f is not one-one.
Thus, the function f does not have an inverse.
(ii) $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g=\{(5,4),(6,3),(7,4),(8,2\}$

Recall that a function is invertible only when it is both one-one and onto.
Here, we have $\mathrm{g}(5)=4=\mathrm{g}(7)$
Hence, g is not one-one.
Thus, the function g does not have an inverse.
(iii) $\mathrm{h}:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$

Recall that a function is invertible only when it is both one-one and onto.
Here, observe that distinct elements of the domain $\{2,3,4,5\}$ are mapped to distinct elements of the codomain $\{7,9,11,13\}$.

Hence, h is one-one.
Also, each element of the range $\{7,9,11,13\}$ is the image of some element of $\{2,3,4,5\}$.
Hence, h is also onto.
Thus, the function h has an inverse.

2. Question

Find f^{-1} if it exists for $f: A \rightarrow B$ where
(i) $A=\{0,-1,-3,2\} ; B=\{-9,-3,0,6\} \& f(x)=3 x$
(ii) $A=\{1,3,5,7,9\} ; B=\{0,1,9,25,49,81\} \& f(x)=\chi^{2}$

Answer

(i) $A=\{0,-1,-3,2\} ; B=\{-9,-3,0,6\} \& f(x)=3 x$

We have $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$.
$\Rightarrow \mathrm{f}=\{(0,3 \times 0),(-1,3 \times(-1)),(-3,3 \times(-3)),(2,3 \times 2)\}$
$\therefore \mathrm{f}=\{(0,0),(-1,-3),(-3,-9),(2,6)\}$
Recall that a function is invertible only when it is both one-one and onto.

Here, observe that distinct elements of the domain $\{0,-1,-3,2\}$ are mapped to distinct elements of the codomain $\{0,-3,-9,6\}$.

Hence, f is one-one.
Also, each element of the range $\{-9,-3,0,6\}$ is the image of some element of $\{0,-1,-3,2\}$.
Hence, f is also onto.
Thus, the function f has an inverse.
We have $f^{-1}=\{(0,0),(-3,-1),(-9,-3),(6,2)\}$
(ii) $A=\{1,3,5,7,9\} ; B=\{0,1,9,25,49,81\} \& f(x)=A^{2}$

We have $f: A \rightarrow B$ and $f(x)=x^{2}$.
$\Rightarrow f=\left\{\left(1,1^{2}\right),\left(3,3^{2}\right),\left(5,5^{2}\right),\left(7,7^{2}\right),\left(9,9^{2}\right)\right\}$
$\therefore f=\{(1,1),(3,9),(5,25),(7,49),(9,81)\}$
Recall that a function is invertible only when it is both one-one and onto.
Here, observe that distinct elements of the domain $\{1,3,5,7,9\}$ are mapped to distinct elements of the codomain $\{1,9,25,49,81\}$.

Hence, f is one-one.
However, the element 0 of the range $\{0,1,9,25,49,81\}$ is not the image of any element of $\{1,3,5,7,9\}$.
Hence, f is not onto.
Thus, the function f does not have an inverse.

3. Question

Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow\{$ apple, ball, cat $\}$ defined as $f(1)=a, f(2)=b, f(3)=c$, $g(a)=$ apple, $g(b)=$ ball and $g(c)=$ cat. Show that f, g and gof are invertible. Find $f^{-1}, g^{-1},(g \circ f)^{-1}$ and show that $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$.

Answer

$f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $f(1)=a, f(2)=b, f(3)=c$
$\Rightarrow f=\{(1, a),(2, b),(3, c)\}$
Recall that a function is invertible only when it is both one-one and onto.
Here, observe that distinct elements of the domain $\{1,2,3\}$ are mapped to distinct elements of the codomain $\{a, b, c\}$.

Hence, f is one-one.
Also, each element of the range $\{a, b, c\}$ is the image of some element of $\{1,2,3\}$.
Hence, f is also onto.
Thus, the function f has an inverse.
We have $\mathrm{f}^{-1}=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3)\}$
$g:\{a, b, c\} \rightarrow\{$ apple, ball, cat $\}$ and $g(a)=$ apple, $g(b)=$ ball, $g(c)=c a t$
$\Rightarrow g=\{(a$, apple $),(b$, ball $),(c$, cat $)\}$
Similar to the function f, g is also one-one and onto.
Thus, the function g has an inverse.
We have $g^{-1}=\{($ apple, $a),($ ball, $b),($ cat, $c)\}$
We know $(g \circ f)(x)=g(f(x))$

Thus, gof : $\{1,2,3\} \rightarrow\{$ apple, ball, cat $\}$ and
$(g \circ f)(1)=g(f(1))=g(a)=$ apple
$(\mathrm{gof})(2)=\mathrm{g}(\mathrm{f}(2))=\mathrm{g}(\mathrm{b})=$ ball
$(\mathrm{gof})(3)=\mathrm{g}(\mathrm{f}(3))=\mathrm{g}(\mathrm{c})=\mathrm{cat}$
\Rightarrow gof $=\{(1$, apple $),(2$, ball $),(3$, cat $)\}$
As the functions f and g, gof is also both one-one and onto.
Thus, the function gof has an inverse.
We have (gof) ${ }^{-1}=\{($ apple, 1), (ball, 2), (cat, 3) $\}$
Now, let us consider $\mathrm{f}^{-1} \mathrm{og}^{-1}$.
We know $\left(f^{-1} \circ g^{-1}\right)(x)=f^{-1}\left(g^{-1}(x)\right)$
Thus, $f^{-1} \mathrm{og}^{-1}:\{$ apple, ball, cat $\} \rightarrow\{1,2,3\}$ and
$\left(f^{-1} \mathrm{og}^{-1}\right)($ apple $)=f^{-1}\left(g^{-1}(\right.$ apple $\left.)\right)=f^{-1}($ a $)=1$
$\left(f^{-1} \mathrm{og}^{-1}\right)($ ball $)=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\right.$ ball $\left.)\right)=\mathrm{f}^{-1}($ b $)=2$
$\left(f^{-1} \mathrm{og}^{-1}\right)($ cat $)=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{cat})\right)=\mathrm{f}^{-1}(\mathrm{c})=3$
$\Rightarrow \mathrm{f}^{-1} \mathrm{og}^{-1}=\{($ apple, 1$),($ ball, 2$),($ cat, 3$)\}$
Therefore, we have (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

4. Question

Let $A=\{1,2,3,4\} ; B=\{3,5,7,9\} ; C=\{7,23,47,79\}$ and $f: A \rightarrow B, g: B \rightarrow C$ be defined as $f(x)=2 x+1$ and $g(x)=x^{2}-2$. Express (gof) ${ }^{-1}$ and $f^{-1} \mathrm{og}^{-1}$ as the sets of ordered pairs and verify (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

Answer

We have $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} \& \mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$
$\Rightarrow f=\{(1,2 \times 1+1),(2,2 \times 2+1),(3,2 \times 3+1),(4,2 \times 4+1)\}$
$\therefore f=\{(1,3),(2,5),(3,7),(4,9)\}$
Function f is clearly one-one and onto.
Thus, f^{-1} exists and $f^{-1}=\{(3,1),(5,2),(7,3),(9,4)\}$
We have $g: B \rightarrow C \& g(x)=x^{2}-2$
$\Rightarrow g=\left\{\left(3,3^{2}-2\right),\left(5,5^{2}-2\right),\left(7,7^{2}-2\right),\left(9,9^{2}-2\right)\right\}$
$\therefore \mathrm{g}=\{(3,7),(5,23),(7,47),(9,79)\}$
Function g is clearly one-one and onto.
Thus, g^{-1} exists and $\mathrm{g}^{-1}=\{(7,3),(23,5),(47,5),(79,9)\}$
We know (gof)(x) $=g(f(x))$
Thus, gof : A \rightarrow C and
$(\mathrm{gof})(1)=g(f(1))=g(3)=7$
$(g \circ f)(2)=g(f(2))=g(5)=23$
$(g \circ f)(3)=g(f(3))=g(7)=47$
$(g \circ f)(4)=g(f(4))=g(9)=79$
$\Rightarrow \operatorname{gof}=\{(1,7),(2,23),(3,47),(4,79)\}$

Clearly, gof is also both one-one and onto.
Thus, the function gof has an inverse.
We have (gof) ${ }^{-1}=\{(7,1),(23,2),(47,3),(79,4)\}$
Now, let us consider $\mathrm{f}^{-1} \mathrm{og}^{-1}$.
We know $\left(f^{-1} \mathrm{og}^{-1}\right)(x)=f^{-1}\left(g^{-1}(x)\right)$
Thus, $\mathrm{f}^{-1} \mathrm{og}^{-1}: \mathrm{C} \rightarrow \mathrm{A}$ and
$\left(f^{-1} \mathrm{og}^{-1}\right)(7)=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(7)\right)=\mathrm{f}^{-1}(3)=1$
$\left(f^{-1} \mathrm{og}^{-1}\right)(23)=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(23)\right)=\mathrm{f}^{-1}(5)=2$
$\left(f^{-1} \mathrm{og}^{-1}\right)(47)=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(47)\right)=\mathrm{f}^{-1}(7)=3$
$\left(f^{-1} \mathrm{og}^{-1}\right)(79)=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(79)\right)=\mathrm{f}^{-1}(9)=4$
$\Rightarrow f^{-1} \mathrm{og}^{-1}=\{(7,1),(23,2),(47,3),(79,4)\}$
Therefore, we have (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

5. Question

Show that the function $f: Q \rightarrow Q$ defined by $f(x)=3 x+5$ is invertible. Also, find f^{-1}.

Answer

We have $\mathrm{f}: \mathrm{Q} \rightarrow \mathrm{Q}$ and $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+5$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in Q$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 3 x_{1}+5=3 x_{2}+5$
$\Rightarrow 3 x_{1}=3 x_{2}$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in Q$ (co-domain) such that $f(x)=y$
$\Rightarrow 3 x+5=y$
$\Rightarrow 3 x=y-5$
$\therefore x=\frac{y-5}{3}$
Clearly, for every $y \in Q$, there exists $x \in Q$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{y-5}{3}$
Hence, $f^{-1}(y)=\frac{y-5}{3}$

Thus, $f(x)$ is invertible and $f^{-1}(x)=\frac{x-5}{3}$

6. Question

Show that the function $f: R \rightarrow R$ defined by $f(x)=4 x+3$ is invertible. Find the inverse of f.

Answer

We have $f: R \rightarrow R$ and $f(x)=4 x+3$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in R$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 4 x_{1}+3=4 x_{2}+3$
$\Rightarrow 4 x_{1}=4 x_{2}$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in R$ (co-domain) such that $f(x)=y$
$\Rightarrow 4 x+3=y$
$\Rightarrow 4 x=y-3$
$\therefore x=\frac{y-3}{4}$
Clearly, for every $y \in R$, there exists $x \in R$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{y-3}{4}$
Hence, $f^{-1}(y)=\frac{y-3}{4}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\frac{x-3}{4}$

7. Question

Consider $f: R^{+} \rightarrow[4, \infty)$ given by $f(x)=x^{2}+4$. Show that f is invertible with f^{-1} of f given by $f^{-1}(x)=\sqrt{x-4}$, where R^{+}is the set of all non-negative real numbers.

Answer

We have $f: R^{+} \rightarrow[4, \infty)$ and $f(x)=x^{2}+4$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in R^{+}$(domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}^{2}+4=x_{2}^{2}+4$
$\Rightarrow x_{1}^{2}=x_{2}^{2}$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}\left(\mathrm{x}_{1} \neq-\mathrm{x}_{2}\right.$ as $\left.\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}^{+}\right)$
So, we have $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in[4, \infty)$ (co-domain) such that $f(x)=y$
$\Rightarrow x^{2}+4=y$
$\Rightarrow x^{2}=y-4$
$\therefore \mathrm{x}=\sqrt{\mathrm{y}-4}$
Clearly, for every $y \in[4, \infty)$, there exists $x \in R^{+}$(domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\sqrt{y-4}$
Hence, $f^{-1}(y)=\sqrt{y-4}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\sqrt{x-4}$

8. Question

If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $(f o f)(x)=x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?

Answer

We have $\mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}+3}{6 \mathrm{x}-4}, \mathrm{x} \neq \frac{2}{3}$
We know $(f \circ f)(x)=f(f(x))$
$\Rightarrow(f o f)(x)=f\left(\frac{4 x+3}{6 x-4}\right)$
$\Rightarrow($ fof $)(x)=\frac{4\left(\frac{4 x+3}{6 x-4}\right)+3}{6\left(\frac{4 x+3}{6 x-4}\right)-4}$
$\Rightarrow(f o f)(x)=\frac{4(4 x+3)+3(6 x-4)}{6(4 x+3)-4(6 x-4)}$
$\Rightarrow(f \circ f)(x)=\frac{16 x+12+18 x-12}{24 x+18-24 x+16}$
$\Rightarrow(f o f)(x)=\frac{34 x}{34}$
\therefore (fof) $(\mathrm{x})=\mathrm{x}$
As (fof) $(x)=x=I_{x}$ (the identity function), $f(x)=f^{-1}(x)$.
Thus, $\mathrm{f}^{-1}(\mathrm{x})=\frac{4 \mathrm{x}+3}{6 \mathrm{x}-4}$

9. Question

Consider $f: R^{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(x)=\frac{\sqrt{x+6}-1}{3}$.

Answer

We have $f: R^{+} \rightarrow[-5, \infty)$ and $f(x)=9 x^{2}+6 x-5$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in R^{+}$(domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 9 x_{1}^{2}+6 x_{1}-5=9 x_{2}^{2}+6 x_{2}-5$
$\Rightarrow 9 x_{1}^{2}+6 x_{1}=9 x_{2}^{2}+6 x_{2}$
$\Rightarrow 9 x_{1}^{2}-9 x_{2}^{2}+6 x_{1}-6 x_{2}=0$
$\Rightarrow 9\left(x_{1}^{2}-x_{2}^{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow 9\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow\left(x_{1}-x_{2}\right)\left[9\left(x_{1}+x_{2}\right)+6\right]=0$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{2}=0\left(\right.$ as $\left.\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}^{+}\right)$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in[-5, \infty$) (co-domain) such that $f(x)=y$
$\Rightarrow 9 x^{2}+6 x-5=y$
Adding 6 to both sides, we get
$9 x^{2}+6 x-5+6=y+6$
$\Rightarrow 9 x^{2}+6 x+1=y+6$
$\Rightarrow(3 x+1)^{2}=y+6$
$\Rightarrow 3 x+1=\sqrt{y+6}$
$\Rightarrow 3 x=\sqrt{y+6}-1$
$\therefore x=\frac{\sqrt{y+6}-1}{3}$
Clearly, for every $y \in[4, \infty)$, there exists $x \in R^{+}$(domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{\sqrt{y+6}-1}{3}$
Hence, $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\frac{\sqrt{x+6}-1}{3}$
10. Question

If $f: R \rightarrow R$ be defined by $f(x)=x^{3}-3$, then prove that f^{-1} exists and find a formula for f^{-1}. Hence, find $f^{-1}(24)$
and $f^{-1}(5)$.

Answer

We have $f: R \rightarrow R$ and $f(x)=x^{3}-3$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in R$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}{ }^{3}-3=x_{2}{ }^{3}-3$
$\Rightarrow x_{1}{ }^{3}=x_{2}{ }^{3}$
$\Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)=0$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{2}=0\left(\mathrm{as} \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}^{+}\right)$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in R$ (co-domain) such that $f(x)=y$
$\Rightarrow x^{3}-3=y$
$\Rightarrow x^{3}=y+3$
$\therefore \mathrm{x}=\sqrt[3]{\mathrm{y}+3}$
Clearly, for every $y \in R$, there exists $x \in R$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $\mathrm{f}(\mathrm{x})=\mathrm{y} \Rightarrow \mathrm{x}=\mathrm{f}^{-1}(\mathrm{y})$
But, we found $f(x)=y \Rightarrow x=\sqrt[3]{y+3}$
Hence, $f^{-1}(y)=\sqrt[3]{y+3}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\sqrt[3]{x+3}$
Hence, we have
$\mathrm{f}^{-1}(24)=\sqrt[3]{24+3}=\sqrt[3]{27}=3$
$\mathrm{f}^{-1}(5)=\sqrt[3]{5+3}=\sqrt[3]{8}=2$
Thus, $f^{-1}(24)=3$ and $f^{-1}(5)=2$.

11. Question

A function $f: R \rightarrow R$ is defined as $f(x)=x^{3}+4$. Is it a bijection or not? In case it is a bijection, find $f^{-1}(3)$.

Answer

We have $f: R \rightarrow R$ and $f(x)=x^{3}+4$.
Recall that a function is a bijection only if it is both one-one and onto.
First, we will check if f is one-one.
Let $x_{1}, x_{2} \in R$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}{ }^{3}+4=x_{2}^{3}+4$
$\Rightarrow x_{1}{ }^{3}=x_{2}{ }^{3}$
$\Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)=0$
As $x_{1}, x_{2} \in R$ and the second factor has no real roots,
$\mathrm{x}_{1}-\mathrm{x}_{2}=0$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will check if f is onto.
Let $y \in R$ (co-domain) such that $f(x)=y$
$\Rightarrow x^{3}+4=y$
$\Rightarrow x^{3}=y-4$
$\therefore \mathrm{x}=\sqrt[3]{\mathrm{y}-4}$
Clearly, for every $y \in R$, there exists $x \in R$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f is a bijection and has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\sqrt[3]{y-4}$
Hence, $f^{-1}(y)=\sqrt[3]{y-4}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\sqrt[3]{y-4}$
Hence, we have
$\mathrm{f}^{-1}(3)=\sqrt[3]{3-4}=\sqrt[3]{-1}=-1$
Thus, $\mathrm{f}^{-1}(3)=-1$.

12. Question

If $f: Q \rightarrow Q, g: Q \rightarrow Q$ are two functions defined by $f(x)=2 x$ and $g(x)=x+2$, show that f and g are bijective maps. Verify that (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

Answer

We have $f: Q \rightarrow Q$ and $f(x)=2 x$.
Recall that a function is a bijection only if it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in Q$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2}$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.

Let $y \in Q$ (co-domain) such that $f(x)=y$
$\Rightarrow 2 \mathrm{x}=\mathrm{y}$
$\therefore \mathrm{x}=\frac{\mathrm{y}}{2}$
Clearly, for every $y \in Q$, there exists $x \in Q$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f is a bijection and has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{y}{2}$
Hence, $\mathrm{f}^{-1}(\mathrm{y})=\frac{\mathrm{y}}{2}$
Thus, $\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}}{2}$
Now, we have $\mathrm{g}: \mathrm{Q} \rightarrow \mathrm{Q}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+2$.
First, we will prove that g is one-one.
Let $x_{1}, x_{2} \in Q$ (domain) such that $g\left(x_{1}\right)=g\left(x_{2}\right)$
$\Rightarrow x_{1}+2=x_{2}+2$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $g\left(x_{1}\right)=g\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function g is one-one.
Now, we will prove that g is onto.
Let $y \in Q$ (co-domain) such that $g(x)=y$
$\Rightarrow \mathrm{x}+2=\mathrm{y}$
$\therefore \mathrm{x}=\mathrm{y}-2$
Clearly, for every $y \in Q$, there exists $x \in Q$ (domain) such that $g(x)=y$ and hence, function g is onto.
Thus, the function g is a bijection and has an inverse.
We have $g(x)=y \Rightarrow x=g^{-1}(y)$
But, we found $g(x)=y \Rightarrow x=y-2$
Hence, $g^{-1}(y)=y-2$
Thus, $g^{-1}(x)=x-2$
We have $\left(f^{-1} \mathrm{og}^{-1}\right)(x)=f^{-1}\left(g^{-1}(x)\right)$
We found $\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}}{2}$ and $\mathrm{g}^{-1}(\mathrm{x})=\mathrm{x}-2$
$\Rightarrow\left(f^{-1} \mathrm{og}^{-1}\right)(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{x}-2)$
$\therefore\left(\mathrm{f}^{-1} \mathrm{og}^{-1}\right)(\mathrm{x})=\frac{\mathrm{x}-2}{2}$
We know $(g \circ f)(x)=g(f(x))$ and gof : $Q \rightarrow Q$
$\Rightarrow(\mathrm{gof})(\mathrm{x})=\mathrm{g}(2 \mathrm{x})$
\therefore (gof) $(\mathrm{x})=2 \mathrm{x}+2$
Clearly, gof is a bijection and has an inverse.

Let $y \in Q$ (co-domain) such that (gof)(x) $=y$
$\Rightarrow 2 x+2=y$
$\Rightarrow 2 x=y-2$
$\therefore x=\frac{y-2}{2}$
We have $(g \circ f)(x)=y \Rightarrow x=(g \circ f)^{-1}(y)$
But, we found $(g \circ f)(x)=y \Rightarrow x=\frac{y-2}{2}$
Hence, $(\mathrm{gof})^{-1}(\mathrm{y})=\frac{\mathrm{y}-2}{2}$
Thus, $(\mathrm{gof})^{-1}(\mathrm{x})=\frac{\mathrm{x}-2}{2}$
So, it is verified that (gof) ${ }^{-1}=f^{-1} \mathrm{og}^{-1}$.

13. Question

Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$. Show that f is oneone and onto and hence find f^{-1}.

Answer

We have $\mathrm{f}: A \rightarrow B$ where $A=R-\{3\}$ and $B=R-\{1\}$
$f(x)=\frac{x-2}{x-3}$
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in A$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3}$
$\Rightarrow\left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{1}-3\right)\left(x_{2}-2\right)$
$\Rightarrow x_{1} x_{2}-3 x_{1}-2 x_{2}+6=x_{1} x_{2}-2 x_{1}-3 x_{2}+6$
$\Rightarrow-3 x_{1}-2 x_{2}=-2 x_{1}-3 x_{2}$
$\Rightarrow-3 x_{1}+2 x_{1}=2 x_{2}-3 x_{2}$
$\Rightarrow-\mathrm{x}_{1}=-\mathrm{x}_{2}$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in B$ (co-domain) such that $f(x)=y$
$\Rightarrow \frac{x-2}{x-3}=y$
$\Rightarrow \frac{(x-3)+1}{x-3}=y$
$\Rightarrow 1+\frac{1}{x-3}=y$
$\Rightarrow \frac{1}{x-3}=y-1$
$\Rightarrow \frac{1}{y-1}=x-3$
$\Rightarrow x=3+\frac{1}{y-1}$
$\therefore \mathrm{x}=\frac{3 \mathrm{y}-2}{\mathrm{y}-1}$
Clearly, for every $y \in B$, there exists $x \in A$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{3 y-2}{y-1}$
Hence, $\mathrm{f}^{-1}(\mathrm{y})=\frac{3 \mathrm{y}-2}{\mathrm{y}-1}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\frac{3 x-2}{x-1}$
14. Question

Consider the function $f: R^{+} \rightarrow[-9, \infty)$ given by $f(x)=5 x^{2}+6 x-9$. Prove that f is invertible with $\mathrm{f}^{-1}(\mathrm{y})=\frac{\sqrt{54+5 \mathrm{y}}-3}{4}$.

Answer

We have $\mathrm{f}: \mathrm{R}^{+} \rightarrow[-9, \infty)$ and $f(x)=5 x^{2}+6 x-9$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in R^{+}$(domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 5 x_{1}^{2}+6 x_{1}-9=5 x_{2}^{2}+6 x_{2}-9$
$\Rightarrow 5 x_{1}{ }^{2}+6 x_{1}=5 x_{2}{ }^{2}+6 x_{2}$
$\Rightarrow 5 x_{1}^{2}-5 x_{2}^{2}+6 x_{1}-6 x_{2}=0$
$\Rightarrow 5\left(x_{1}^{2}-x_{2}^{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow 5\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow\left(x_{1}-x_{2}\right)\left[5\left(x_{1}+x_{2}\right)+6\right]=0$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{2}=0\left(\right.$ as $\left.\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}^{+}\right)$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $\mathrm{y} \in[-9, \infty$) (co-domain) such that $f(x)=y$
$\Rightarrow 5 x^{2}+6 x-9=y$
$\Rightarrow 5\left(x^{2}+\frac{6}{5} x-\frac{9}{5}\right)=y$
$\Rightarrow x^{2}+\frac{6}{5} x-\frac{9}{5}=\frac{y}{5}$
$\Rightarrow x^{2}+\frac{6}{5} x=\frac{y+9}{5}$
Adding $\frac{9}{25}$ to both sides, we get
$\Rightarrow x^{2}+\frac{6}{5} x+\frac{9}{25}=\frac{y+9}{5}+\frac{9}{25}$
$\Rightarrow\left(x+\frac{3}{5}\right)^{2}=\frac{(5 y+45)+9}{25}$
$\Rightarrow\left(x+\frac{3}{5}\right)^{2}=\frac{5 y+54}{25}$
$\Rightarrow x+\frac{3}{5}=\sqrt{\frac{5 y+54}{25}}$
$\Rightarrow x+\frac{3}{5}=\frac{\sqrt{5 y+54}}{5}$
$\Rightarrow x=\frac{\sqrt{5 y+54}}{5}-\frac{3}{5}$
$\therefore x=\frac{\sqrt{5 y+54}-3}{5}$
Clearly, for every $y \in[-9, \infty)$, there exists $x \in R^{+}$(domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{\sqrt{5 y+54}-3}{5}$
Hence, $\mathrm{f}^{-1}(\mathrm{y})=\frac{\sqrt{5 \mathrm{y}+54-3}}{5}$

15. Question

Let $f: N \rightarrow N$ be a function defined as $f(x)=9 x^{2}+6 x-5$. Show that $f: N \rightarrow S$, where S is the range of f, is invertible. Find the inverse of f and hence find $f^{-1}(43)$ and $f^{-1}(163)$.

Answer

We have $f: N \rightarrow N$ and $f(x)=9 x^{2}+6 x-5$.
We need to prove $f: N \rightarrow S$ is invertible.
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in N$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 9 x_{1}^{2}+6 x_{1}-5=9 x_{2}^{2}+6 x_{2}-5$
$\Rightarrow 9 x_{1}^{2}+6 x_{1}=9 x_{2}^{2}+6 x_{2}$
$\Rightarrow 9 x_{1}^{2}-9 x_{2}^{2}+6 x_{1}-6 x_{2}=0$
$\Rightarrow 9\left(x_{1}^{2}-x_{2}^{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow 9\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)+6\left(x_{1}-x_{2}\right)=0$
$\Rightarrow\left(x_{1}-x_{2}\right)\left[9\left(x_{1}+x_{2}\right)+6\right]=0$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{2}=0\left(\right.$ as $\left.\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}^{+}\right)$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in S$ (co-domain) such that $f(x)=y$
$\Rightarrow 9 x^{2}+6 x-5=y$
Adding 6 to both sides, we get
$9 x^{2}+6 x-5+6=y+6$
$\Rightarrow 9 x^{2}+6 x+1=y+6$
$\Rightarrow(3 x+1)^{2}=y+6$
$\Rightarrow 3 x+1=\sqrt{y+6}$
$\Rightarrow 3 x=\sqrt{y+6}-1$
$\therefore x=\frac{\sqrt{y+6}-1}{3}$
Clearly, for every $y \in S$, there exists $x \in N$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{\sqrt{y+6}-1}{3}$
Hence, $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\frac{\sqrt{x+6}-1}{3}$
Hence, we have
$\mathrm{f}^{-1}(43)=\frac{\sqrt{43+6}-1}{3}=\frac{\sqrt{49}-1}{3}=\frac{7-1}{3}=2$
$\mathrm{f}^{-1}(163)=\frac{\sqrt{163+6}-1}{3}=\frac{\sqrt{169}-1}{3}=\frac{13-1}{3}=4$
Thus, $f^{-1}(43)=2$ and $f^{-1}(163)=4$.

16. Question

Let $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function defined as $f(x)=\frac{4 x}{3 x+4}$. Show that $f: R-\left\{-\frac{4}{3}\right\} \rightarrow$ range(f) is one-one and onto. Hence, find f^{-1}.

Answer

We have $\mathrm{f}: \mathrm{R}-\left\{-\frac{4}{3}\right\} \rightarrow R$ and $f(x)=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$
We need to prove $f: R-\left\{-\frac{4}{3}\right\} \rightarrow$ range(f) is invertible.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in A$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \frac{4 \mathrm{x}_{1}}{3 \mathrm{x}_{1}+4}=\frac{4 \mathrm{x}_{2}}{3 \mathrm{x}_{2}+4}$
$\Rightarrow\left(4 x_{1}\right)\left(3 x_{2}+4\right)=\left(3 x_{1}+4\right)\left(4 x_{2}\right)$
$\Rightarrow 12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{1}=12 \mathrm{x}_{1} \mathrm{x}_{2}+16 \mathrm{x}_{2}$
$\Rightarrow 16 \mathrm{x}_{1}=16 \mathrm{x}_{2}$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in \operatorname{range}(f)$ (co-domain) such that $f(x)=y$
$\Rightarrow \frac{4 x}{3 x+4}=y$
$\Rightarrow 4 \mathrm{x}=3 \mathrm{xy}+4 \mathrm{y}$
$\Rightarrow 4 \mathrm{x}-3 \mathrm{xy}=4 \mathrm{y}$
$\Rightarrow \mathrm{x}(4-3 \mathrm{y})=4 \mathrm{y}$
$\therefore x=\frac{4 y}{4-3 y}$
Clearly, for every $y \in$ range (f), there exists $x \in A$ (domain) such that $f(x)=y$ and hence, function f is onto.
Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{4 y}{4-3 y}$
Hence, $\mathrm{f}^{-1}(\mathrm{y})=\frac{4 \mathrm{y}}{4-3 \mathrm{y}}$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\frac{4 x}{4-3 x}$

17. Question

If $f: R \rightarrow(-1,1)$ defined by $f(x)=\frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}$ is invertible, find f^{-1}.

Answer

We have f: $\mathrm{R} \rightarrow(-1,1)$ and $\mathrm{f}(\mathrm{x})=\frac{10^{\mathrm{x}}-10^{-\mathrm{x}}}{10^{\mathrm{x}}+10^{-x}}$
Given that f^{-1} exists.
Let $y \in(-1,1)$ such that $f(x)=y$
$\Rightarrow \frac{10^{x}-10^{-x}}{10^{x}+10^{-x}}=y$
$\Rightarrow \frac{10^{x}-\frac{1}{10^{x}}}{10^{x}+\frac{1}{10^{x}}}=y$
$\Rightarrow \frac{10^{2 \mathrm{x}}-1}{10^{2 \mathrm{x}}+1}=\mathrm{y}$
$\Rightarrow 10^{2 x}-1=y\left(10^{2 x}+1\right)$
$\Rightarrow 10^{2 \mathrm{x}}-1=10^{2 \mathrm{x}} \mathrm{y}+\mathrm{y}$
$\Rightarrow 10^{2 \mathrm{x}}-10^{2 \mathrm{x}} \mathrm{y}=1+\mathrm{y}$
$\Rightarrow 10^{2 x}(1-y)=1+y$
$\Rightarrow 10^{2 \mathrm{x}}=\frac{1+\mathrm{y}}{1-\mathrm{y}}$
Taking $\log _{10}$ on both sides, we get
$\log _{10} 10^{2 \mathrm{x}}=\log _{10}\left(\frac{1+\mathrm{y}}{1-\mathrm{y}}\right)$
$\Rightarrow 2 x \log _{10} 10=\log _{10}\left(\frac{1+y}{1-y}\right)$
$\Rightarrow 2 \mathrm{x}=\log _{10}\left(\frac{1+\mathrm{y}}{1-\mathrm{y}}\right)$
$\therefore \mathrm{x}=\frac{1}{2} \log _{10}\left(\frac{1+\mathrm{y}}{1-\mathrm{y}}\right)$
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{1}{2} \log _{10}\left(\frac{1+y}{1-y}\right)$
Hence, $\mathrm{f}^{-1}(\mathrm{y})=\frac{1}{2} \log _{10}\left(\frac{1+\mathrm{y}}{1-\mathrm{y}}\right)$
Thus, $\mathrm{f}^{-1}(\mathrm{x})=\frac{1}{2} \log _{10}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$

18. Question

If $f: R \rightarrow(0,2)$ defined by $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+1$ is invertible, find f^{-1}.

Answer

We have $f: R \rightarrow(0,2)$ and $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+1$
Given that f^{-1} exists.
Let $y \in(0,2)$ such that $f(x)=y$
$\Rightarrow \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+1=y$
$\Rightarrow \frac{e^{x}-e^{-x}+\left(e^{x}+e^{-x}\right)}{e^{x}+e^{-x}}=y$
$\Rightarrow \frac{2 e^{x}}{e^{x}+e^{-x}}=y$
$\Rightarrow \frac{2 e^{x}}{e^{x}+\frac{1}{e^{x}}}=y$
$\Rightarrow \frac{2 \mathrm{e}^{2 \mathrm{x}}}{\mathrm{e}^{2 \mathrm{x}}+1}=\mathrm{y}$
$\Rightarrow 2 \mathrm{e}^{2 \mathrm{x}}=\mathrm{y}\left(\mathrm{e}^{2 \mathrm{x}}+1\right)$
$\Rightarrow 2 e^{2 x}=e^{2 x} y+y$
$\Rightarrow 2 e^{2 x}-e^{2 x} y=y$
$\Rightarrow e^{2 x}(2-y)=y$
$\Rightarrow \mathrm{e}^{2 \mathrm{x}}=\frac{\mathrm{y}}{2-\mathrm{y}}$
Taking In on both sides, we get
$\ln \mathrm{e}^{2 \mathrm{x}}=\ln \left(\frac{\mathrm{y}}{2-\mathrm{y}}\right)$
$\Rightarrow 2 \mathrm{x} \ln \mathrm{e}=\ln \left(\frac{\mathrm{y}}{2-\mathrm{y}}\right)$
$\Rightarrow 2 \mathrm{x}=\ln \left(\frac{\mathrm{y}}{2-\mathrm{y}}\right)$
$\therefore \mathrm{x}=\frac{1}{2} \ln \left(\frac{\mathrm{y}}{2-\mathrm{y}}\right)$
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\frac{1}{2} \ln \left(\frac{y}{2-y}\right)$
Hence, $\mathrm{f}^{-1}(\mathrm{y})=\frac{1}{2} \ln \left(\frac{\mathrm{y}}{2-\mathrm{y}}\right)$
Thus, $\mathrm{f}^{-1}(\mathrm{x})=\frac{1}{2} \ln \left(\frac{\mathrm{x}}{2-\mathrm{x}}\right)$

19. Question

Let $f:[-1, \infty) \rightarrow[-1, \infty)$ is given by $f(x)=(x+1)^{2}-1$. Show that f is invertible. Also, find the set $S=\{x: f(x)$ $\left.=\mathrm{f}^{-1}(\mathrm{x})\right\}$

Answer

We have $\mathrm{f}:[-1, \infty) \rightarrow[-1, \infty)$ and $f(x)=(x+1)^{2}-1$
Recall that a function is invertible only when it is both one-one and onto.
First, we will prove that f is one-one.
Let $x_{1}, x_{2} \in[-1, \infty)$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow\left(x_{1}+1\right)^{2}-1=\left(x_{2}+1\right)^{2}-1$
$\Rightarrow\left(x_{1}+1\right)^{2}=\left(x_{2}+1\right)^{2}$
$\Rightarrow x_{1}^{2}+2 x_{1}+1=x_{2}^{2}+2 x_{2}+1$
$\Rightarrow x_{1}^{2}+2 x_{1}=x_{2}^{2}+2 x_{2}$
$\Rightarrow x_{1}^{2}-x_{2}^{2}+2 x_{1}-2 x_{2}=0$
$\Rightarrow\left(x_{1}^{2}-x_{2}^{2}\right)+2\left(x_{1}-x_{2}\right)=0$
$\Rightarrow\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+2\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0$
$\Rightarrow\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left[\mathrm{x}_{1}+\mathrm{x}_{2}+2\right]=0$
$\Rightarrow x_{1}-x_{2}=0\left(a s x_{1}, x_{2} \in R^{+}\right)$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function f is one-one.
Now, we will prove that f is onto.
Let $y \in[-1, \infty$) (co-domain) such that $f(x)=y$
$\Rightarrow(\mathrm{x}+1)^{2}-1=\mathrm{y}$
$\Rightarrow(x+1)^{2}=y+1$
$\Rightarrow x+1=\sqrt{y+1}$
$\therefore x=\sqrt{y+1}-1$
Clearly, for every $y \in[-1, \infty)$, there exists $x \in[-1, \infty)$ (domain) such that $f(x)=y$ and hence, function f is onto.

Thus, the function f has an inverse.
We have $f(x)=y \Rightarrow x=f^{-1}(y)$
But, we found $f(x)=y \Rightarrow x=\sqrt{y+1}-1$
Hence, $f^{-1}(y)=\sqrt{y+1}-1$
Thus, $f(x)$ is invertible and $f^{-1}(x)=\sqrt{x+1}-1$
Now, we need to find the values of x for which $f(x)=f^{1}(x)$.
We have $f(x)=f^{-1}(x)$
$\Rightarrow(x+1)^{2}-1=\sqrt{x+1}-1$
$\Rightarrow(x+1)^{2}=\sqrt{x+1}$
We can write $(x+1)^{2}=(\sqrt{x+1})^{4}$
$\Rightarrow(\sqrt{x+1})^{4}=\sqrt{x+1}$
On substituting $t=\sqrt{x+1}$, we get
$t^{4}=t$
$\Rightarrow \mathrm{t}^{4}-\mathrm{t}=0$
$\Rightarrow t\left(t^{3}-1\right)=0$
$\Rightarrow t(t-1)\left(\mathrm{t}^{2}+\mathrm{t}+1\right)=0$
$t^{2}+t+1 \neq 0$ because this equation has no real root t.
$\Rightarrow t=0$ or $\mathrm{t}-1=0$
$\Rightarrow t=0$ or $t=1$
Case - $: ~ t=0$
$\Rightarrow \sqrt{x+1}=0$
$\Rightarrow x+1=0$
$\therefore \mathrm{x}=-1$
Case - II: $\mathrm{t}=1$
$\Rightarrow \sqrt{x+1}=1$
$\Rightarrow \mathrm{x}+1=1$
$\therefore \mathrm{x}=0$
Thus, $\mathrm{S}=\{0,-1\}$

20. Question

Let $A=\{x \in R \mid-1 \leq x \leq 1\}$ and let $f: A \rightarrow A, g: A \rightarrow A$ be two functions defined by $f(x)=x^{2}$ and $g(x)=\sin$ $\pi x / 2$. Show that g^{-1} exists but f^{-1} does not exist. Also, find g^{-1}.

Answer

We have $f: A \rightarrow A$ where $A=\{x \in R \mid-1 \leq x \leq 1\}$ defined by $f(x)=x^{2}$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will check if f is one-one.
Let $x_{1}, x_{2} \in A$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}^{2}=x_{2}^{2}$
$\Rightarrow x_{1}^{2}-x_{2}^{2}=0$
$\Rightarrow\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)=0$
$\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{2}=0$ or $\mathrm{x}_{1}+\mathrm{x}_{2}=0$
$\therefore \mathrm{x}_{1}= \pm \mathrm{x}_{2}$
So, we have $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}= \pm x_{2}$.
This means that two different elements of the domain are mapped to the same element by the function f . For example, consider $f(-1)$ and $f(1)$.

We have $\mathrm{f}(-1)=(-1)^{2}=1$ and $\mathrm{f}(1)=1^{2}=1=\mathrm{f}(-1)$
Thus, f is not one-one and hence f^{-1} doesn't exist.
Now, let us consider $g: A \rightarrow A$ defined by $g(x)=\sin \frac{\pi x}{2}$
First, we will prove that g is one-one.
Let $x_{1}, x_{2} \in A$ (domain) such that $g\left(x_{1}\right)=g\left(x_{2}\right)$
$\Rightarrow \sin \frac{\pi x_{1}}{2}=\sin \frac{\pi x_{2}}{2}$
$\Rightarrow \frac{\pi x_{1}}{2}=\frac{\pi x_{2}}{2}$ (in the given range)
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$
So, we have $g\left(x_{1}\right)=g\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function g is one-one.
Let $y \in A$ (co-domain) such that $g(x)=y$
$\Rightarrow \sin \frac{\pi x}{2}=y$
$\Rightarrow \frac{\pi x}{2}=\sin ^{-1} y$
$\Rightarrow \pi x=2 \sin ^{-1} y$
$\therefore \mathrm{x}=\frac{2}{\pi} \sin ^{-1} \mathrm{y}$
Clearly, for every $\mathrm{y} \in \mathrm{A}$, there exists $\mathrm{x} \in \mathrm{A}$ (domain) such that $\mathrm{g}(\mathrm{x})=\mathrm{y}$ and hence, function g is onto.
Thus, the function g has an inverse.
We have $g(x)=y \Rightarrow x=g^{-1}(y)$
But, we found $g(x)=y \Rightarrow x=\frac{2}{\pi} \sin ^{-1} y$
Hence, $g^{-1}(y)=\frac{2}{\pi} \sin ^{-1} y$
Thus, $g(x)$ is invertible and $\mathrm{g}^{-1}(\mathrm{x})=\frac{2}{\pi} \sin ^{-1} \mathrm{x}$

21. Question

Let f be a function from R to R such that $f(x)=\cos (x+2)$. Is f invertible? Justify your answer.

Answer

We have $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{f}(\mathrm{x})=\cos (\mathrm{x}+2)$.
Recall that a function is invertible only when it is both one-one and onto.
First, we will check if f is one-one.
Let $x_{1}, x_{2} \in R$ (domain) such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \cos \left(\mathrm{x}_{1}+2\right)=\cos \left(\mathrm{x}_{2}+2\right)$
As the cosine function repeats itself with a period 2π, we have
$x_{1}+2=x_{2}+2$ or $x_{1}+2=2 \pi+\left(x_{2}+2\right)$
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$ or $\mathrm{x}_{1}=2 \pi+\mathrm{x}_{2}$
So, we have $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$ or $2 \pi+\mathrm{x}_{2}$
This means that two different elements of the domain are mapped to the same element by the function f.
For example, consider $f(0)$ and $f(2 \pi)$.
We have $f(0)=\cos (0+2)=\cos 2$ and
$f(2 \pi)=\cos (2 \pi+2)=\cos 2=f(0)$
Thus, f is not one-one.
Hence, f is not invertible and f^{-1} does not exist.

22. Question

If $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$, define any four bijections from A to B. Also, give their inverse function.

Answer

Given $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$.
We need to define bijections f_{1}, f_{2}, f_{3} and f_{4} from A to B.

Consider $f_{1}=\{(1, a),(2, b),(3, c),(4, d)\}$
(1) f_{1} is one-one because no two elements of the domain are mapped to the same element.
f_{1} is also onto because each element in the co-domain has a pre-image in the domain.
Thus, f_{1} is a bijection from A to B.
We have $f_{1}{ }^{-1}=\{(a, 1),(b, 2),(c, 3),(d, 4)\}$
Using similar explanation, we also have the following bijections defined from A to B -
$(2) f_{2}=\{(1, b),(2, c),(3, d),(4, a)\}$
We have $f_{2}{ }^{-1}=\{(b, 1),(c, 2),(d, 3),(a, 4)\}$
(3) $f_{3}=\{(1, c),(2, d),(3, a),(4, b)\}$

We have $f_{3}{ }^{-1}=\{(c, 1),(d, 2),(a, 3),(b, 4)\}$
$(4) f_{4}=\{(1, d),(2, a),(3, b),(4, c)\}$
We have $f_{4}{ }^{-1}=\{(d, 1),(a, 2),(b, 3),(c, 4)\}$

23. Question

Let A and B be two sets each with finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.

Answer

Given A and B are two finite sets. There are injective maps from both A to B and B to A.
Let f be the injective map defined from A to B.
Thus, we have f is one-one.
We also know that there is a one-one mapping from B to A.
This means that each element of B is mapped to a distinct element of A.
But, B is the co-domain of f and A is the domain of f.
So, every element of the co-domain of the function f has a pre-image in the domain of the function f.
Thus, f is also onto.
Therefore, f is a bijection as it is both one-one and onto.
Hence, there exists a bijection defined from A to B.

24. Question

If $f: A \rightarrow A$ and $g: A \rightarrow A$ are two bijections, then prove that
(i) fog is an injection
(ii) fog is a surjection

Answer

Given $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ and $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{A}$ are two bijections. So, both f and g are one-one and onto functions.
We know $(f \circ g)(x)=f(g(x))$
Thus, fog is also defined from A to A.
(i) First, we will prove that fog is an interjection.

Let $x_{1}, x_{2} \in A$ (domain) such that $(f o g)\left(x_{1}\right)=(f o g)\left(x_{2}\right)$
$\Rightarrow \mathrm{f}\left(\mathrm{g}\left(\mathrm{x}_{1}\right)\right)=\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}_{2}\right)\right)$
$\Rightarrow g\left(x_{1}\right)=g\left(x_{2}\right)$ [since f is one-one]
$\therefore \mathrm{x}_{1}=\mathrm{x}_{2}$ [since g is one-one]
So, we have $(f o g)\left(x_{1}\right)=(f o g)\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Thus, function fog is an interjection.
(ii) Now, we will prove that fog is a surjection.

Let $z \in A$, the co-domain of fog.
As f is onto, we have $y \in A$ (domain of f) such that $f(y)=z$.
However, as g is also onto and y belongs to the co-domain of g, we have $x \in A$ (domain of g) such that $g(x)=$ y.

Hence, $(\mathrm{fog})(x)=f(g(x))=f(y)=z$.
Here, x belongs to the domain of fog (A) and z belongs to the co-domain of fog (A).
Thus, function fog is a surjection.

Very short answer

1. Question

Which one of the following graphs represent a function?

Answer

(a) It have unique image therefore a function
(b) It have more than one image
2. Question

Which one of the following graphs represent a one-one function?

(a)

(b)

Answer

Formula:-
(i) A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is one-one function or an injection if
$f(x)=f(y)$
$\Rightarrow x=y$ for all $x, y \in A$
or $f(x) \neq f(y)$
$\Rightarrow x \neq y$ for all $x, y \in A$
(a) It is not one-one function as it has same image on x axis
(b) It is one-one function s it have unique image
3. Question

If $A=\{1,2,3\}$ and $B=\{a, b\}$, write total number of functions from A to B.

Answer

Formula:-if A and B are two non-empty finite sets containing m and n
(i) Number of function from A to $B=n^{m}$
(ii) Number of one-one function from A to $B=\left\{\begin{array}{c}C_{m}^{n} \cdot m!\text {, if } n \geq m \\ 0, \text { if } n<m\end{array}\right.$
(iii) Number of one-one and onto function from A to $B=\left\{\begin{array}{l}n!\text {, if } m=n \\ 0, \text { if } m \neq n\end{array}\right.$
(iv) Number of onto function from A to $B=\sum_{r=1}^{n}(-1)^{n-r} C_{r}^{n} r^{m}$, if $m \geq n$ given: -
$A=\{1,2,3\}$ and $B=\{a, b\}$
$n(A)=3$, and $n(B)=2$
total number of functions $=2^{3}=8$

4. Question

If $A=\{a, b, c\}$ and $B=\{-2,-1,0,1,2\}$, write total number of one-one functions from A to B.

Answer

Formula:-
(I)A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is one-one function or an injection if
$f(x)=f(y)$
$\Rightarrow x=y$ for all $x, y \in A$
or $f(x)_{\neq f} f(y)$
$\Rightarrow x \neq y$ for all $x, y \in A$
(II)if A and B are two non-empty finite sets containing m and n
(i) Number of function from A to $B=n^{m}$
(ii) Number of one-one function from A to $B=\left\{\begin{array}{c}C_{m}^{n} \cdot m!\text {, if } n \geq m \\ 0, \text { if } n<m\end{array}\right.$
(iii) Number of one-one and onto function from A to $B=\left\{\begin{array}{c}n!\text {, if } m=n \\ 0 \text {, if } m \neq n\end{array}\right.$
(iv) Number of onto function from A to $B=\sum_{r=1}^{n}(-1)^{n-r} C_{r}^{n} r^{m}$, if $m \geq n$

Let $f: A \rightarrow B$ be one-one function
$F(a)=3$ and $f(B)=5$
Using formula

Number of one-one function from A to $B=\left\{\begin{array}{c}C_{m}^{n} \cdot m!\text {, if } n \geq m \\ 0, \text { if } n<m\end{array}\right.$
$\Rightarrow{ }^{3} C_{5} .5!=60$

5. Question

Write total number of one-one functions from set $A=\{1,2,3,4\}$ to set $B=\{a, b c\}$.

Answer

Formula:-
(I) A function $f: A \rightarrow B$ is one-one function or an injection if
$\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$
$\Rightarrow x=y$ for all $x, y \in A$
or $f(x) \neq f(y)$
$\Rightarrow x \neq y$ for all $x, y \in A$
(II) if A and B are two non-empty finite sets containing m and n
(i) Number of function from A to $B=n^{m}$
(ii) Number of one-one function from A to $B=\left\{\begin{array}{c}C_{m}^{n} \cdot m!\text {, if } n \geq m \\ 0 \text {, if } n<m\end{array}\right.$
(iii) Number of one-one and onto function from A to $B=\left\{\begin{array}{l}n!\text {, if } m=n \\ 0, \text { if } m \neq n\end{array}\right.$
(iv) Number of onto function from A to $B=\sum_{r=1}^{n}(-1)^{n-r} C_{r}^{\mathrm{n}} r^{m} /$ if $m \geq n$
$\mathrm{F}(\mathrm{A})=4$ and $\mathrm{f}(\mathrm{B})=3$
Using formula
Number of one-one function from A to $B=\left\{C_{m}^{n} \cdot m!\right.$, if $n \geq m$
Number of one-one function from A to $B=0$
6. Question

If $f: R \rightarrow R$ is defined by $f(x)=x^{2}$, write $f^{-1}(25)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{1}
$\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow f^{-1}(y)=x$
$\Rightarrow x^{2}=25$
$\Rightarrow x=-5,5$
$\Rightarrow f^{-1}(25)=\{-5,5\}$

7. Question

If $f: C \rightarrow C$ is defined by $f(x)=x^{2}$, write $f^{-1}(-4)$. Here, C denotes the set of all complex numbers.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and $f o g=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f(x)=y$
$\Rightarrow f^{-1}(y)=x$
$\Rightarrow f(x)=-4$
$\Rightarrow x^{2}=-4$
$\Rightarrow x=2 i,-2 i$

8. Question

If $f: R \rightarrow R$ is given by $f(x)=x^{3}$, write $f^{-1}(1)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f(x)=y$
$\Rightarrow f^{-1}(y)=x$
$\Rightarrow f^{-1}(1)=x$
$\Rightarrow f(x)=1$
$\Rightarrow x^{3}=1$
$\Rightarrow x^{3}-1=0$
$\Rightarrow(x-1)\left(x^{2}+x+1\right)=0$
$\Rightarrow X=1$

9. Question

Let C denote the set of all complex numbers. A function $f: C \rightarrow C$ is defined by $f(x)=x^{3}$.
Write $\mathrm{f}^{-1}(1)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f(x)=y$
$\Rightarrow f^{-1}(y)=x$
$\Rightarrow f^{-1}(1)=x$
$\Rightarrow f(x)=1$
$\Rightarrow x^{3}=1$
$\Rightarrow x^{3}-1=0$
$\Rightarrow(x-1)\left(x^{2}+x+1\right)=0$
$\Rightarrow \mathrm{x}=1, \mathrm{w}, \mathrm{w}^{2}$

10. Question

Let f be a function from C (set of all complex numbers) to itself given by $f(x)=x^{3}$. Write $f^{-1}(-1)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f(x)=y$
$\Rightarrow f^{-1}(y)=x$
$\Rightarrow f(x)=-1$
$\Rightarrow f^{-1}(-1)=x$
$\Rightarrow x^{3}=-1$
$\Rightarrow x^{3}+1=0$
$\Rightarrow(x+1)\left(x^{2}-x+1\right)=0$
$\Rightarrow x=-1,-w,-w^{2}$

11. Question

Let $f: R \rightarrow R$ be defined by $f(x)=x^{4}$, write $f^{-1}(1)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f(x)=y$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{y})=\mathrm{x}$
$\Rightarrow f(x)=1$
$\Rightarrow f^{-1}(1)=x$
$\Rightarrow x^{4}=1$
$\Rightarrow x^{4}-1=0$
$\Rightarrow(x-1)\left(x^{2}+1\right)=0$
$\Rightarrow x=-1,1$
$\Rightarrow f^{-1}(1)=\{-1,1\}$

12. Question

If $f: C \rightarrow C$ is defined by $f(x)=x^{4}, f^{-1}(1)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$ such that gof $=I_{x}$ and $f 0 g=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1} $f(x)=y$
$\Rightarrow f^{-1}(y)=x$
$\Rightarrow f(x)=1$
$\Rightarrow f^{-1}(1)=x$
$\Rightarrow x^{4}=1$
$\Rightarrow x^{4}-1=0$
$\Rightarrow(x-1)\left(x^{2}+1\right)=0$
$\Rightarrow x=-1,1, i,-i$
$\Rightarrow f^{-1}(1)=\{-1,-i, 1, i\}$

13. Question

If $f: R \rightarrow R$ is defined by $f(x)=x^{2}, f^{-1}(-25)$.

Answer

Formula:-

(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and $f \circ g=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f(x)=y$
$\Rightarrow f^{-1}(y)=x$
$\Rightarrow x^{2}=-25$
but x should be Real number
$\mathrm{f}^{-1}(-25)=\emptyset$

14. Question

If $f: C \rightarrow C$ is defined by $f(x)=(x-2)^{3}$, write $f^{-1}(-1)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=l_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f(x)=y$
$f^{-1}(y)=x$
$\Rightarrow(x-2)^{3}=-1$
$\Rightarrow x-2=-1, x-2=w$ and $x-2=-w^{2}$
$\Rightarrow x=1,-w+2,2-w^{2}$
$\Rightarrow f^{-1}(25)=\left\{1,2-w, 2-w^{2}\right\}$

15. Question

If $f: R \rightarrow R$ is defined by $f(x)=10 x-7$, then write $f^{-1}(x)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=l_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
$f^{-1}(x)=y$
$\Rightarrow f(y)=x$
$\Rightarrow 10 y-7=x$
$\Rightarrow y=\frac{x+7}{10}$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+7}{10}$

16. Question

Let $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$ be a function defined by $f(x)=\cos [x]$. Write range (f).

Answer

Given:-
(i) $\mathrm{f}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(ii) $f(x)=\cos [x]$

Domain $=-\frac{\pi}{2}, \frac{\pi}{2}$
For $f(x)=\cos [x]$
Range $=\{1, \cos 1, \cos 2\}$

17. Question

If $f: R \rightarrow R$ defined by $f(x)=3 x-4$ is invertible then write $f^{-1}(x)$.

Answer

Given:- (i) f:R $\rightarrow R$
(ii) $f(x)=3 x-4$

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
For $f^{-1}(x)=y$
$\Rightarrow f(y)=x$
$\Rightarrow 3 y-4=x$
$\Rightarrow y=\frac{x+4}{3}$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+4}{3}$

18. Question

If $f: R \rightarrow R, g: R \rightarrow R$ are given by $f(x)=(x+1)^{2}$ and $g(x)=x^{2}+1$, then write the value of fog (-3).

Answer

Formula:-
(I)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f andg, denoted by g of, is defined as the function g of : $A \rightarrow C$
given by g of $(x)=g(f(x))$
Given:-
(i) $f: R \rightarrow R$
(ii) $g: R \rightarrow R$
(iii) $f(x)=(x+1)^{2}$
(iv) $g(x)=x^{2}+1$
$f \circ g(-3)=f(g(-3))$
$\Rightarrow \mathrm{fog}(-3)=\mathrm{f}\left((-3)^{2}+1\right)$
$\Rightarrow f \circ g(-3)=f(10)$
$\Rightarrow f \circ g(-3)=(10+1)^{2}$
$\Rightarrow \mathrm{fog}(-3)=121$

19. Question

Let $A=\{x \in R:-4 \leq x \leq x \leq 4$ and $x \neq 0\}$ and $f: A \rightarrow R$ be defined by $f(x)=\frac{|x|}{x}$. Write the range of f.

Answer

Given:-
(i) $A=\{x \in R:-4 \leq x \leq x \leq 4$ and $x \neq 0\}$
(ii) $f: A \rightarrow R$
(iii) $f(x)=\frac{|x|}{x}$

For $f(x)=\frac{|x|}{x}$
Range $=\{-1,1\}$
20. Question

Let $\mathrm{f}:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow$ A be defined by $f(x)=\sin x$. If f is a bijection, write set A .

Answer

Formula:-
(i)A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a bijection if it is one-one as well as onto
(ii)A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is onto function or surjection if

Range (f)=co-domain(f)
Given:-
(i)f: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(ii) $f(x)=\sin x$
(ii) f is bijection

For $f(x)=\sin x$
Codomain =range
Set $A=[-1,1]$
21. Question

Let $f: R \rightarrow R^{+}$be defined by $f(x)=a^{x}, a>0$ and $a \neq 1$. Write $f^{-1}(x)$.

Answer

Given:-
(i)f: $R \rightarrow R^{+}$
(ii) $f(x)=a^{x}, a>0$ and $a \neq 1$

Let
$f(y)=x$
$a^{y}=x$
$\Rightarrow y=\log _{a} x$
$\Rightarrow f^{-1}(x)=\log _{a} x$

22. Question

Let $f: R-\{-1\} \rightarrow R-\{1\}$ be given by $f(x)=\frac{x}{x+1}$. Write $f^{-1}(x)$.

Answer

Given:-
(i)f: $\mathrm{R}-\{-1\} \rightarrow \mathrm{R}-\{1\}$
(ii) $f(x)=\frac{x}{x+1}$
$F(y)=x$
$\Rightarrow \frac{y}{y+1}=x$
$\Rightarrow Y=x y+x$
$\Rightarrow y=\frac{x}{1-x}$
$\Rightarrow \mathrm{f}^{-1}=\frac{\mathrm{x}}{1-\mathrm{x}}$

23. Question

Let $\mathrm{f}: \mathrm{R}-\left\{-\frac{3}{5}\right\} \rightarrow \mathrm{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}}{5 \mathrm{x}+3}$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{1} Given:-
(i) $\mathrm{f}: \mathrm{R}-\left\{-\frac{3}{5}\right\} \rightarrow \mathrm{R}$
(ii) $f(x)=\frac{2 x}{5 x+3}$
$F(y)=x$
$\Rightarrow \frac{2 y}{5 x+3}=x$
$\Rightarrow 2 y-3 x-5 x y=0$
$\Rightarrow \mathrm{y}=\frac{3 \mathrm{x}}{2-5 \mathrm{x}}$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=\frac{3 \mathrm{x}}{2-5 \mathrm{x}}$

24. Question

Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions defined by $f(x)=x^{2}+x+1$ and $g(x)=1-x^{2}$. Write fog(-2).

Answer

Formula :- (I)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.
Then, the composition of f and g, denoted by $g \circ f$, is defined as the function g of : $A \rightarrow C$
given by $\mathrm{g} \circ \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$
Given:-
(i) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$
(ii) $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$
(iii) $f(x)=x^{2}+x+1$
(iv) $g(x)=1-x^{2}$

Fog $(-2)=f(g(-2))$
$\Rightarrow \operatorname{Fog}(-2)=f\left(1-(-2)^{2}\right)$
$\Rightarrow \mathrm{Fog}(-2)=\mathrm{f}(-3)$
$\Rightarrow \operatorname{Fog}(-2)=(-3)^{2}-3+1=7$

25. Question

Let $f: R \rightarrow R$ be defined as $f(x)=\frac{2 x-3}{4}$. Write fof ${ }^{-1}(1)$.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
(II)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f and g, denoted by g of, is defined as the function g of : $A \rightarrow C$ given by g of $(x)=g(f(x))$

Given:-
(i)f: $\mathrm{R} \rightarrow \mathrm{R}$
(ii) $f(x)=\frac{2 x-3}{4}$
$F(y)=x$
$\Rightarrow \frac{2 y-3}{4}=x$
$\Rightarrow 2 y-3-4 x=0$
$\Rightarrow \mathrm{y}=\frac{4 \mathrm{x}+3}{2}$
Now
$\Rightarrow \mathrm{fof}^{-1}(1)=\mathrm{f}\left(\frac{7}{2}\right)$
\Rightarrow fof $^{-1}(1)=\frac{7-3}{4}=1$

26. Question

Let f be an invertible real function. Write (f^{-1} of) $(1)+\left(f^{-1}\right.$ of) $(2)+\ldots+\left(f^{-1}\right.$ of) (100).

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
(II)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f and g, denoted by g of, is defined as the function g of: $A \rightarrow C$
given by g of $(x)=g(f(x))$
Given:-
(i)f be an invertible real function
$\left(\mathrm{f}^{-1}\right.$ of) $(1)+\left(\mathrm{f}^{-1}\right.$ of) $(2)+\ldots+\left(\mathrm{f}^{-1}\right.$ of) (100)
$=1+2+3+$ \qquad $+100$
$=\frac{100(100+1)}{2}=5050$

27. Question

Let $A=\{1,2,3,4\}$ and $B=\{a, b\}$ be two sets. Write total number of onto functions from A to B.
Answer

Formula:-
(I)A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is onto function or surjection if

Range (f)=co-domain(f)
(II) if A and B are two non-empty finite sets containing m and n
(i) Number of function from A to $B=n^{m}$
(ii) Number of one-one function from A to $B=\left\{\begin{array}{c}C_{m}^{n} \cdot m!\text {, if } n \geq m \\ 0, \text { if } n<m\end{array}\right.$
(iii) Number of one-one and onto function from A to $B=\left\{\begin{array}{c}n!, \text { if } m=n \\ 0 \text {, if } m \neq n\end{array}\right.$
(iv) Number of onto function from A to $B=\sum_{r=1}^{n}(-1)^{n-r} C_{r}^{n} r^{m}$, if $m \geq n$

Given:-
(i) $A=\{1,2,3,4\}=4$
(ii) $B=\{a, b\}=2$

Using formula (iv)
Number of onto function from A to $B=\sum_{r=1}^{n}(-1)^{n-r} C_{r}^{n} r^{m}$, if $m \geq n$ Where $m=4, n=2$
$\sum_{r=1}^{n}(-1)^{n-r} C_{r}^{n} r^{m}=(-1)^{2} C_{1}^{2}(1)^{4}+(-1)^{0} C_{2}^{2}(2)^{4}$
$=-2+16=14$

28. Question

Write the domain of the real function $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}-[\mathrm{x}]}$

Answer

$\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}-[\mathrm{x}]}$ where x is for all real number
Then,
domain $=R$

129. Question

Write the domain of the real function $f(x)=\sqrt{[x]-x}$.

Answer

$f(x)=\sqrt{[x]-x}$ where x is not for real number
Domain=ø
30. Question

Write the domain of the real function $f(x)=\frac{1}{\sqrt{|X|-x}}$

Answer

$f(x)=\frac{1}{\sqrt{|x|-x}}$

When $x<0$ negative
$\frac{1}{\sqrt{|x|-x}}=\frac{1}{\sqrt{-x-x}}$
$=\frac{1}{\sqrt{-2 \mathrm{x}}}$
When $x>0$
$\frac{1}{\sqrt{|x|-x}}=\frac{1}{\sqrt{x-x}}=\infty$
Domain $=(-\infty, 0)$

31. Question

Write whether $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}+\sqrt{\mathrm{x}^{2}}$ is one-one, many-one, onto or into.

Answer

(I)A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is one-one function or an injection if
$f(x)=f(y) \Rightarrow x=y$ for all $x, y \in A$
or $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{y}) \Rightarrow \mathrm{x} \neq \mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}$
(II) A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is onto function or surjection if

Range (f)=co-domain (f)
(III) A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is not onto function, then
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is always an onto function
Given:-
(i)f : R $\rightarrow R$
(ii) $f(x)=x+\sqrt{x^{2}}$
$f(x)=x+\sqrt{x^{2}}$
$=x \pm x$
$=0,2 x$
Now putting $x=0$
$F(0)=0+\sqrt{0^{2}}=0$
Again putting $x=-1$
$\mathrm{F}(-1)=-1+\sqrt{-1^{2}}=0$
Hence f is many one

32. Question

If $f(x)=x+7$ and $g(x)=x-7, x \in R$, write $f o g(7)$.

Answer

Formula:-
(i)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f and g, denoted by g of, is defined as the function g of : $A \rightarrow C$
given by g of $(x)=g(f(x))$
Given:-
(i) $f(x)=x+7$
(ii) $g(x)=x-7, x \in R$

Fog(7) $=f(g(7))$
$\Rightarrow F o g(7)=f(7-7)$
$\Rightarrow \operatorname{Fog}(7)=f(0)$
$\Rightarrow F o g(7)=0+7$
$\Rightarrow \operatorname{Fog}(7)=7$

33. Question

What is the range of the function $f(x)=\frac{|x-1|}{x-1}$?

Answer

$f(x)=\frac{|x-1|}{x-1}$
$= \pm 1$
Range of $f=\{-1,1\}$

34. Question

If $f: R \rightarrow R$ be defined by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then find fof (x).

Answer

Formula:-
(i)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f and g, denoted by g of, is defined as the function g of : $A \rightarrow C$ given by g of $(x)=g(f(x))$

Given:-
(i) $f: R \rightarrow R$
(ii) $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$
$\operatorname{Fof}(x)=f(f(x))$
$\Rightarrow \mathrm{fof}(\mathrm{x})=\mathrm{f}\left(\left(3-\mathrm{x}^{3}\right)^{\frac{1}{3}}\right)$
$\Rightarrow \mathrm{fof}(\mathrm{x})=\left(3-\left(3-\mathrm{x}^{3}\right)\right)^{\frac{1}{3}}$
$\Rightarrow \operatorname{fof}(\mathrm{x})=\left(\mathrm{x}^{3}\right)^{\frac{1}{3}}=\mathrm{x}$

35. Question

If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$, find $f(f(x))$.

Answer

Given:-
(i)f: $R \rightarrow R$
$F(f(x))=f(3 x+2)$
$\Rightarrow F(f(x))=3(3 x+2)+2$
$\Rightarrow F(f(x))=9 x+8$

36. Question

Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.

Answer

Given:-
(i) $\mathrm{A}=\{1,2,3\}$
(ii) $B=\{4,5,6,7\}$
(iii) $f=\{(1,4),(2,5),(3,6)\}$
each element has a unique image
hence f is one-one
37. Question

If $f:\{5,6\} \rightarrow\{2,3\}$ and $g:\{2,3\} \rightarrow\{5,6\}$ are given by $f=\{(5,2),(6,3)\}$ and $g=\{(2,5),(3,6)\}$, find fog.

Answer

Formula:-

(i)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f and g, denoted by g o f, is defined as the function g of : $A \rightarrow C$ given by $\mathrm{g} \circ \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$

Given:-
(i) $f:\{5,6\} \rightarrow\{2,3\}$
(ii) $\mathrm{g}:\{2,3\} \rightarrow\{5,6\}$
(iv) $f=\{(5,2),(6,3)\}$
(v) $\mathrm{g}=\{(2,5),(3,6)\}$
for $\mathrm{fog}(2)=\mathrm{f}(\mathrm{g}(2))$
$\Rightarrow \mathrm{fog}(2)=\mathrm{f}(5)$
$\Rightarrow \mathrm{fog}(2)=2$

38. Question

Let $f: R \rightarrow R$ be the function defined by $f(x)=4 x-3$ for all $x \in R$. Then write f^{-1}.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that g of $=I_{x}$ and $f o g=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
Given:-
(i) $f: R \rightarrow R$
(ii) $f(x)=4 x-3$ for all $x \in R$.
$f(x)=y$
$\Rightarrow 4 x-3=y$
$\Rightarrow x=\frac{y+3}{4}$
$f^{-1}(y)=x=\frac{y+3}{4}$
$\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+3}{4}$

39. Question

Which one the following relations on $A=\{1,2,3\}$ is a function?
$f=\{(1,3),(2,3),(3,2)\}, g=\{(1,2),(1,3),(3,1)\}$.

Answer

Given:-
(i) $A=\{1,2,3\}$
(ii)f $=\{(1,3),(2,3),(3,2)\}$
(iii) $g=\{(1,2),(1,3),(3,1)\}$.

In case of set A and f
Every element in A has a unique image in f
So, f is a function
In case of set A and g
Only one element has image in g
So, g is not a function
40. Question

Write the domain of the real function f defined by $\mathrm{f}(\mathrm{x})=\sqrt{25-\mathrm{x}^{2}}$.

Answer

$f(x)=\sqrt{25-x^{2}}$
$\Rightarrow 25-x^{2} \geq 0$
$\Rightarrow-(x+5)(x-5) \geq 0$
$\Rightarrow(x+5)(x-5) \leq 0$
$\Rightarrow x \leq-5$ or 5
Domain $=[-5,5]$

41. Question

Let $A=\{a, b, c, d\}$ and $f: A \rightarrow A$ be given by $f=\{(a, b),(b, d),(c, a),(d, c)\}$, write f^{1}.

Answer

Formula:-
(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
(ii)A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is onto function or surjection if

Range (f)=co-domain(f)
Given:-
(i) $A=\{a, b, c, d\}$
(ii)f : $A \rightarrow A$
(iii)f $=\{(a, b),(b, d),(c, a),(d, c)\}$
f is one-one since each element of A is assigned to distinct element of the set A. Also, f is onto since $f(A)=$ A.
$f^{-1}=\{(b, a),(d, b),(a, c),(c, d)\}$.

42. Question

Let $f, g: R \rightarrow R$ be defined by $f(x)=2 x+1$ and $g(x)=x^{2}-2$ for all $x \in R$, respectively. Then, find gof.

Answer

Formula:-
(i)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f and g, denoted by g of, is defined as the function $g \circ f: A \rightarrow C$ given by g of $(x)=g(f(x))$

Given:-
(i)f, $g: R \rightarrow R$
(ii) $f(x)=2 x+1$
(ii) $g(x)=x^{2}-2$ for all $x \in R$
$g \circ f(x)=g(f(x))$
$\Rightarrow \operatorname{gof}(x)=g(2 x+1)$
$\Rightarrow \operatorname{gof}(x)=(2 x+1)^{2}-2$
$\Rightarrow \operatorname{gof}(x)=4 x^{2}+4 x-1$

43. Question

If the mapping $f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$, given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)$, write fog.

Answer

Formula:-
(i)Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions.

Then, the composition of f and g, denoted by g of, is defined as the function g of : $A \rightarrow C$ given by g of $(x)=g(f(x))$

Given:-
(i)f: $\{1,3,4\} \rightarrow\{1,2,5\}$
(ii) $g:\{1,2,5\} \rightarrow\{1,3\}$
(iii)f $=\{(1,2),(3,5),(4,1)\}$
$(i v) g=\{(2,3),(5,1),(1,3)$
$f \circ g(1)=f(g(1))=f(3)=5$
$f \circ g(2)=f(g(2))=f(3)=5$
$\mathrm{fog}(5)=f(g(5))=f(1)=2$
$\Rightarrow f o g=\{(1,5)(2,5)(5,2)\}$

44. Question

If a function $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is described by $g(x)=\alpha x+\beta$, find the values of α and β.

Answer

Given:-
$(i) g=\{(1,1),(2,3),(3,5),(4,7)\}$
(ii) $g(x)=\alpha x+\beta$

For $x=1$ and $\alpha x+\beta$
$g(1)=\alpha(1)+\beta=1$
$\Rightarrow \alpha+\beta=1$
For $x=2$
$g(2)=\alpha(2)-\beta=3$
$\Rightarrow 2 \alpha-\beta=3$
Similarly with $g(3)$ and $g(4)$
Using above value
$\alpha=2$
$\beta=1$

45. Question

If $f(x)=4-(x-7)^{3}$, write $f^{-1}(x)$.

Answer

Formula:-

(i)A function $f: X \rightarrow Y$ is defined to be invertible, if there exists a function $g: Y \rightarrow X$
such that gof $=I_{x}$ and fog $=I_{y}$. The function g is called the inverse of f and is denoted by f^{-1}
Given:-
(i) $f(x)=4-(x-7)^{3}$

Let $f(x)=y$
$y=4-(x-7)^{3^{*}}$
$x=7+\sqrt[3]{4-y}$
$\mathrm{f}^{-1}(\mathrm{x})=7+\sqrt[3]{4-\mathrm{x}}$

MCQ

1. Question

Mark the correct alternative in each of the following:
Let $A=\{x \in R:-1 \leq x \leq 1\}=B$ and $C=\{x \in R: X \geq 0\}$ and let $S=\left\{(x, y) \in A \times B: x^{2}+y^{2}=1\right\}$ and $S_{0}=$
$\left\{(x, y) \in A \times C: x^{2}+y^{2}=1\right\}$ Then
A. S defines a function from A to B
B. S_{0} defines a function from A to C
C. S_{0} defines a function from A to B
D. S defines a function from A to C

Answer

Given that
$A=\{x \in R:-1 \leq x \leq 1\}=B$
$C=\{x \in R: X \geq 0\}$
$S=\left\{(x, y) \in A \times B: x^{2}+y^{2}=1\right\}$
$S_{0}=\left\{(x, y) \in A \times C: x^{2}+y^{2}=1\right\}$
$x^{2}+y^{2}=1$
$\Rightarrow y^{2}=1-x^{2}$
$\Rightarrow y=\sqrt{1-x^{2}}$
$\therefore \mathrm{y} \in \mathrm{B}$
Hence, S defines a function from A to B.

2. Question

Mark the correct alternative in each of the following:
$f: R \rightarrow R$ given by $f(x)=x+\sqrt{x^{2}}$ is
A. injective B. surjective
C. bijective D. none of these

Answer

Given function is $f: R \rightarrow R$ given
$f(x)=x+\sqrt{ } x^{2}$
For this function if we take $x=2$,
$f(x)=2+\sqrt{ } 4$
$\Rightarrow \mathrm{f}(\mathrm{x})=2$
For this function if we take $x=-2$,
$f(x)=-2+\sqrt{ } 4$
$\Rightarrow \mathrm{f}(\mathrm{x})=0$
So, in general for every negative $x, f(x)$ will be always 0 . There is no $x \in R$ for which $f(x) \in(-\infty, 0)$. Hence, it is neither injective nor surjective and so it is not bijective either.

3. Question

Mark the correct alternative in each of the following:
If $f: A \rightarrow B$ given by $3^{f(x)}+2^{-x}=4$ is a bijection, then
A. $A=\{x \in R:-1<x<\infty\}, B=\{x \in R: 2<x<4\}$
B. $A=\{x \in R:-3<x<\infty\}, B=\{x \in R: 0<x<4\}$
C. $A=\{x \in R:-2<x<\infty\}, B=\{x \in R: 0<x<4\}$
D. none of these

Answer

Given that $f: A \rightarrow B$ given by $3^{f(x)}+2^{-x}=4$ is a bijection.
$3^{f(x)}+2^{-x}=4$
$\Rightarrow 3^{f(x)}=4-2^{-x}$
$\Rightarrow 4-2^{-x} \geq 0$
$\Rightarrow 4 \geq 2^{-x}$
$\Rightarrow 2 \geq-x$
$\Rightarrow x \geq-2$
So, $x \in(-2, \infty)$
But, for $x=0, f(x)=1$.
Hence, the correct option is none of these.

4. Question

Mark the correct alternative in each of the following:
The function $f: R \rightarrow R$ defined by $f(x)=2^{x}+2^{|x|}$ is
A. one-one and onto
B. many-one and onto
C. one-one and into
D. many-one and into

Answer

Given that $f: R \rightarrow R$ where $f(x)=2^{x}+2^{|x|}$
Here, for each value of x we will get different value of $f(x)$.
So, it is one-one.
Also, $f(x)$ is always positive for $x \in R$.
There is no $x \in R$ for which $f(x) \in(-\infty, 0)$.
So, it is into.
Hence, the given function is one-one and into.
5. Question

Mark the correct alternative in each of the following:

Let the function $f: R-\{-b\} \rightarrow R-\{1\}$ be defined by $f(x)=\frac{x+a}{x+b}, a \neq b$, then
A. f is one-one but not onto
B. f is onto but not one-one
C. f is both one-one and onto
D. none of these

Answer

Given that $f: R-\{-b\} \rightarrow R-\{1\}$ where
$f(x)=\frac{x+a}{x+b}, a \neq b$.
Here, $f(x)=f(y)$ only when $x=y$.
Hence, it is one-one.
Now, $f(x)=y$
$\Rightarrow \frac{x+a}{x+b}=y$
$\Rightarrow \mathrm{x}+\mathrm{a}=\mathrm{y}(\mathrm{x}+\mathrm{b})$
$\Rightarrow \mathrm{x}-\mathrm{yx}=\mathrm{yb}-\mathrm{a}$
$\Rightarrow x=\frac{y b-a}{1-y}, y \neq 1$
So, $x \in R-\{1\}$
Hence, it is onto.

6. Question

Mark the correct alternative in each of the following:
The function $f: A \rightarrow B$ defined by $f(x)=-x^{2}+6 x-8$ is a bijection, if
A. $A=(-\infty, 5]$ and $B=(-\infty, 1]$
B. $A=[-3, \infty]$ and $B=(-\infty, 1]$
C. $A=(-\infty, 3]$ and $B=[1, \infty)$
D. $A=[3, \infty)$ and $B=[1, \infty)$

Answer

Given that $f: A \rightarrow B$ defined by $f(x)=-x^{2}+6 x-8$ is a bijection.
$f(x)=-x^{2}+6 x-8$
$\Rightarrow f(x)=-\left(x^{2}-6 x+8\right)$
$\Rightarrow f(x)=-\left(x^{2}-6 x+8+1-1\right)$
$\Rightarrow f(x)=-\left(x^{2}-6 x+9-1\right)$
$\Rightarrow f(x)=-\left[(x-3)^{2}-1\right]$
Hence, $x \in(-\infty, 5]$ and $f(x) \in(-\infty, 1]$

7. Question

Mark the correct alternative in each of the following:
Let $A=\{x \in R:-1 \leq x \leq 1\}=B$. Then, the mapping $f: A \rightarrow B$ given by $f(x)=x|x|$ is
A. injective but not surjective
B. surjective but not injective
C. bijective
D. none of these

Answer

Given that $A=\{x \in R:-1 \leq x \leq 1\}=B$. Then, the mapping $f: A \rightarrow B$ given by $f(x)=x|x|$.
For $x<0, f(x)<0$
$\Rightarrow y=-x^{2}$
$\Rightarrow x=\sqrt{-y}$, which is not possible for $x>0$.
Hence, f is one-one and onto.
\therefore the given function is bijective.
8. Question

Mark the correct alternative in each of the following:
Let $f: R \rightarrow R$ be given by $f(x)=[x]^{2}+[x+1]-3$, where $[x]$ denotes the greatest integer less than or equal to x. Then, $f(x)$ is
A. many-one and onto
B. many-one and into
C. one-one and into
D. one-one and onto

Answer

Given that $f: R \rightarrow R$ be given by $f(x)=[x]^{2}+[x+1]-3$
As $[x]$ is the greatest integer so for different values of x, we will get same value of $f(x)$.
$[x]^{2}+[x+1]$ will always be an integer.
So, f is many-one.
Similarly, in this function co domain is mapped with at most one element of domain because for every $x \in R$, $f(x) \in Z$.

So, f is into.
9. Question

Mark the correct alternative in each of the following:
Let M be the set of all 2×2 matrices with entries from the set R of real numbers. Then the function $f: M \rightarrow R$ defined by $f(A)=|A|$ for every $A \in M$, is
A. one-one and onto
B. neither one-one nor onto
C. one-one not one-one
D. onto but not one-one

Answer
Given that M is the set of all 2×2 matrices with entries from the set R of real numbers. Then the function f : $M \rightarrow R$ defined by $f(A)=|A|$ for every $A \in M$.

If $f(a)=f(b)$
$\Rightarrow|a|=|b|$
But this does not mean that $a=b$.
So, f is not one-one.
As $\mathrm{a} \neq \mathrm{b}$ but $|\mathrm{a}|=|\mathrm{b}|$
So, f is onto.

10. Question

Mark the correct alternative in each of the following:
The function $f:[0, \infty) \rightarrow R$ given by $f(x) f(x)=\frac{x}{x+1}$ is
A. one-one and onto
B. one-one but not onto
C. onto but not one-one
D. neither one-one nor onto

Answer

Given that $f:[0, \infty) \rightarrow R$ where $f(x)=\frac{x}{x+1}$
Let $f(x)=f(y)$
$\Rightarrow \frac{x}{x+1}=\frac{y}{y+1}$
$\Rightarrow x y+x=x y+y$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Now, $y=f(x)$
$\Rightarrow y=\frac{x}{x+1}$
$\Rightarrow x y+y=x$
$\Rightarrow y=x-x y$
$\Rightarrow \frac{y}{1-y}=x$
Here, $y \neq 1$ i.e. $y \in R$.
So, f is not onto.

11. Question

Mark the correct alternative in each of the following:
The range of the function $f(x)={ }^{7-x} P_{x-3}$ is
A. $\{1,2,3,4,5\}$
B. $\{1,2,3,4,5,6\}$
C. $\{1,2,3,4\}$
D. $\{1,2,3\}$

Answer

Given that $f(x)={ }^{7-x} P_{x-3}$
Here, $7-x \geq x-3$
$\Rightarrow 10 \geq 2 x$
$\Rightarrow 5 \geq x$
So, domain $=\{3,4,5\}$

Range $=\left\{{ }^{4} P_{0},{ }^{3} P_{1},{ }^{2} P_{2}\right\}=\{1,3,2\}$

12. Question

Mark the correct alternative in each of the following:
A function f from the set on natural numbers to integers defined by
$f(n)=\left\{\begin{array}{cl}\frac{n-1}{2}, & \text { when } n \text { is odd } \\ -\frac{n}{2}, & \text { when } n \text { is even }\end{array}\right.$ is
A. neither one-one nor onto
B. one-one but not onto
C. onto but not one-one
D. one-one and onto both

Answer

Given that a function f from the set on natural numbers to integers where
$f(n)=\left\{\begin{array}{l}\frac{n-1}{2}, \text { when } n \text { is odd } \\ \frac{-n}{2}, \text { when } n \text { is even }\end{array}\right\}$
For n is odd
Let $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m})$
$\Rightarrow \frac{\mathrm{n}-1}{2}=\frac{\mathrm{m}-1}{2}$
$\Rightarrow \mathrm{n}=\mathrm{m}$
For n is even
Let $f(n)=f(m)$
$\Rightarrow \frac{-\mathrm{n}}{2}=\frac{-\mathrm{m}}{2}$
$\Rightarrow \mathrm{n}=\mathrm{m}$
So, f is one-one.
Also, each element of y is associated with at least one element of x , so f is onto.
Hence, f is one-one and onto.

13. Question

Mark the correct alternative in each of the following:
Let f be an injective map with domain $\{x, y, z\}$ and range $\{1,2,3\}$ such that exactly one of the following statements is correct and the remaining are false.
$\mathrm{f}(\mathrm{x})=1, \mathrm{f}(\mathrm{y}) \neq 1, \mathrm{f}(\mathrm{z}) \neq 2$.
The value of $f^{-1}(1)$ is
A. x
B. y
C. z
D. none of these

Answer

Given that f is an injective map with domain $\{x, y, z\}$ and range $\{1,2,3\}$.

Case-1

Let us assume that $\mathrm{f}(\mathrm{x})=1$ is true and $\mathrm{f}(\mathrm{y}) \neq 1, \mathrm{f}(\mathrm{z}) \neq 2$ is false.
Then $f(x)=1, f(y)=1$ and $f(z)=2$.
This violates the injectivity of f because it is one-one.

Case-2

Let us assume that $\mathrm{f}(\mathrm{y}) \neq 1$ is true and $\mathrm{f}(\mathrm{x})=1, \mathrm{f}(\mathrm{z}) \neq 2$ is false.
Then $\mathrm{f}(\mathrm{x}) \neq 1, \mathrm{f}(\mathrm{y}) \neq 1$ and $\mathrm{f}(\mathrm{z})=2$.
This means there is no pre image of 1 which contradicts the fact that the range of f is $\{1,2,3\}$.

Case-3

Let us assume that $f(z) \neq 2$ is true and $f(x)=1, f(y) \neq 1$ is false.
Then $\mathrm{f}(\mathrm{z}) \neq 2, \mathrm{f}(\mathrm{y})=1$ and $\mathrm{f}(\mathrm{x}) \neq 1$.
$\Rightarrow f^{-1}(1)=y$

14. Question

Mark the correct alternative in each of the following:
Which of the following functions from Z to itself are bijections?
A. $f(x)=x^{3}$
B. $f(x)=x+2$
C. $f(x)=2 x+1$
D. $f(x)=x^{2}+x$

Answer

a. $f(x)=x^{3}$
\Rightarrow For no value of $x \in Z, f(x)=2$.
Hence, it is not bijection.
b. $f(x)=x+2$

If $f(x)=f(y)$
$\Rightarrow x+2=y+2$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Also, $y=x+2$
$\Rightarrow x=y-2 \in Z$
So, f is onto.
Hence, this function is bijection.
c. $f(x)=2 x+1$

If $f(x)=f(y)$
$\Rightarrow 2 x+1=2 y+1$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
Also, $y=2 x+1$
$\Rightarrow 2 \mathrm{x}=\mathrm{y}-1$
$\Rightarrow x=\frac{y-1}{2}$
So, f is into because x can never be odd for any value of y.
d. $f(x)=x^{2}+x$

For this function if we take $x=2$,
$f(x)=4+2$
$\Rightarrow f(x)=6$
For this function if we take $x=-2$,
$f(x)=4-2$
$\Rightarrow f(x)=2$
So, in general for every negative $x, f(x)$ will be always 0 . There is no $x \in R$ for which $f(x) \in(-\infty, 0)$.
It is not bijection.

15. Question

Mark the correct alternative in each of the following:
Which of the following functions from $A=\{x:-1 \leq x \leq 1\}$ to itself are bijections?
A. $f(x)=\frac{x}{2}$
B. $g(x)=\sin \left(\frac{\pi x}{2}\right)$
C. $h(x)=|x|$
D. $k(x)=x^{2}$

Answer

Given that $A=\{x:-1 \leq x \leq 1\}$
a. $f(x)=\frac{x}{2}$

It is one-one but not onto.
b. $\mathrm{g}(\mathrm{x})=\sin \left(\frac{\pi \mathrm{x}}{2}\right)$

It is bijective as it is one-one and onto with range [-1, 1].
c. $h(x)=|x|$

It is not one-one because $h(-1)=1$ and $h(1)=1$.
d. $k(x)=x^{2}$

It is not one-one because $k(-1)=1$ and $k(1)=1$.

16. Question

Mark the correct alternative in each of the following:

Let $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ such that $f(x)=x|x|$, then f is
A. a bijection
B. injective but not surjective
C. surjective but not injective
D. neither injective nor surjective

Answer

Given that $A=\{x:-1 \leq x \leq 1\}$ and $f: A \rightarrow A$ such that $f(x)=x|x|$.
For $\mathrm{x}<0, \mathrm{f}(\mathrm{x})<0$
$\Rightarrow y=-x^{2}$
$\Rightarrow x=\sqrt{ }-y$, which is not possible for $x>0$.
Hence, f is one-one and onto.
\therefore the given function is bijective.

17. Question

Mark the correct alternative in each of the following:
If the function $f: R \rightarrow A$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is a surjection, then $A=$
A. R
B. $[0,1]$
C. $(0,1]$
D. $[0,1)$

Answer

Given that $f: R \rightarrow A$ such that $f(x)=\frac{x^{2}}{x^{2}+1}$ is a surjection.
$f(x)=y$
$\Rightarrow y=\frac{x^{2}}{x^{2}+1}$
$\Rightarrow y\left(x^{2}+1\right)=x^{2}$
$\Rightarrow y x^{2}+y=x^{2}$
$\Rightarrow y x^{2}-x^{2}=-y$
$\Rightarrow x^{2}=\frac{y}{1-y}$
$\Rightarrow x=\sqrt{\frac{y}{1-y}}$
Here, $\frac{y}{1-y} \geq 0$
So, $y \in[0,1)$
18. Question

Mark the correct alternative in each of the following:

If a function $f:[2, \infty) \rightarrow B$ defined by $f(x)=x^{2}-4 x+5$ is a bijection, then $B=$
A. R
B. $[1, \infty)$
C. $[4, \infty)$
D. $[5, \infty)$

Answer

Given that a function $f:[2, \infty) \rightarrow B$ defined by $f(x)=x^{2}-4 x+5$ is a bijection.
Put $x=2$ in $f(x)$,
$f(x)=2^{2}-4 \times 2+5$
$\Rightarrow f(x=2)=4-8+5$
$\Rightarrow f(x=2)=1$
So, $B \in[1, \infty)$

19. Question

Mark the correct alternative in each of the following:
The function $f: R \rightarrow R$ defined by $f(x)=(x-1)(x-2)(x-3)$ is
A. one-one but not onto
B. onto but not one-one
C. both one and onto
D. neither one-one nor onto

Answer

Given that function $f: R \rightarrow R$ where $f(x)=(x-1)(x-2)(x-3)$
If $f(x)=f(y)$
Then
$(x-1)(x-2)(x-3)=(y-1)(y-2)(y-3)$
$\Rightarrow \mathrm{f}(1)=\mathrm{f}(2)=\mathrm{f}(3)=0$
So, f is not one-one.
$y=f(x)$
$\because x \in R$ also $y \in R$ so f is onto.

20. Question

Mark the correct alternative in each of the following:
The function $f:[-1 / 2,1 / 2] \rightarrow[\pi / 2, \pi / 2]$ defined by $f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$ is
A. bijection
B. injection but not a surjection
C. surjection but not an injection
D. neither an injection nor a surjection

Answer

Given that $\mathrm{f}:[-1 / 2,1 / 2] \rightarrow[\pi / 2, \pi / 2]$ where $f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$

Put $x=\sin \theta$ in $f(x)=\sin ^{-1}\left(3 x-4 x^{3}\right)$
$\Rightarrow f(x=\sin \theta)=\sin ^{-1}\left(3 \sin \theta-4 \sin \theta^{3}\right)$
$\Rightarrow f(x)=\sin ^{-1}(\sin 3 \theta)$
$\Rightarrow f(x)=3 \theta$
$\Rightarrow f(x)=3 \sin ^{-1} x$
If $f(x)=f(y)$
Then
$3 \sin ^{-1} x=3 \sin ^{-1} y$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
$y=3 \sin ^{-1} x$
$\Rightarrow x=\sin \frac{y}{3}$
$\because x \in R$ also $y \in R$ so f is onto.
Hence, f is bijection.

21. Question

Mark the correct alternative in each of the following:
Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$. Then
A. f is a bijection
B. f is an injection only
C. f is surjection on only
D. f is neither an injection nor a surjection

Answer

Given that $f: R \rightarrow R$ is a function defined as
$f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$
Here, $e^{|x|}$ is always positive whether x is negative or positive. So, we will get same values of $f(x)$ for different values of x.

Hence, it is not one-one and onto.
$\therefore \mathrm{f}$ is neither an injection nor a surjection

22. Question

Mark the correct alternative in each of the following:
Let $f: R-\{n\} \rightarrow R$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$. Then,
A. f is one-one onto
B. f is one-one into
C. f is many one onto
D. f is many one into

Answer

Given that $f: R-\{n\} \rightarrow R$ where
$\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-\mathrm{m}}{\mathrm{x}-\mathrm{n}}$, such that $\mathrm{m} \neq \mathrm{n}$
Let $f(x)=f(y)$
$\Rightarrow \frac{x-m}{x-n}=\frac{y-m}{y-n}$
$\Rightarrow(x-m)(y-n)=(x-n)(y-m)$
$\Rightarrow x y-x n-m y+m n=x y-x m-n y+m n$
$\Rightarrow \mathrm{x}=\mathrm{y}$
So, f is one-one.
$f(x)=\frac{x-m}{x-n}$
$\Rightarrow y=\frac{x-m}{x-n}$
$\Rightarrow y(x-n)=(x-m)$
$\Rightarrow \mathrm{xy}-\mathrm{ny}=\mathrm{x}-\mathrm{m}$
$\Rightarrow \mathrm{x}(\mathrm{y}-1)=\mathrm{ny}-\mathrm{m}$
$\Rightarrow x=\frac{n y-m}{y-1}, y \neq 1$
For $\mathrm{y}=1$, no x is defined.
So, f is into.

23. Question

Mark the correct alternative in each of the following:
Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{x^{2}-8}{x^{2}+2}$. Then, f is
A. one-one but not onto
B. one-one and onto
C. onto but not one-one
D. neither one-one nor onto

Answer

Given that $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function where
$f(x)=\frac{x^{2}-8}{x^{2}+2}$
Here, we can see that for negative as well as positive x we will get same value.
So, it is not one-one.
$y=f(x)$
$\Rightarrow y=\frac{x^{2}-8}{x^{2}+2}$
$\Rightarrow y\left(x^{2}+2\right)=\left(x^{2}-8\right)$
$\Rightarrow x^{2}(y-1)=-2 y-8$
$\Rightarrow x=\sqrt{\frac{2 y+8}{1-y}}$
For $\mathrm{y}=1$, no x is defined.
So, f is not onto.

24. Question

Mark the correct alternative in each of the following:
$f: R \rightarrow R$ is defined by $f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}$ is
A. one-one but not onto
B. one-one and onto
C. onto but not one-one
D. neither one-one nor onto

Answer

Given that $f: R \rightarrow R$ where
$f(x)=\frac{e^{x^{2}}-e^{-x^{2}}}{e^{x^{2}}+e^{-x^{2}}}$
Here, we can see that for negative as well as positive x we will get same value.
So, it is not one-one.
$f(x)=y$
By definition of onto, each element of y is not mapped to at least one element of x .
So, it is not onto.

25. Question

Mark the correct alternative in each of the following:
The function $f: R \rightarrow R, f(x)=x^{2}$ is
A. injective but not surjective
B. surjective but not injective
C. injective as well as surjective
D. neither injective nor surjective

Answer

Given that $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$
Let $f(x)=y(x)$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow x= \pm y$
So, it is not one-one.
$f(x)=y$
$\Rightarrow x^{2}=y$
$\Rightarrow x= \pm \sqrt{ } y$
But co domain is R .
Hence, f is neither injective nor surjective.

26. Question

Mark the correct alternative in each of the following:
A function from the set of natural, numbers to the set of integers defined by
$f(n)= \begin{cases}\frac{n-1}{2}, & \text { when } n \text { is odd } \\ -\frac{n}{2}, & \text { when } n \text { is even }\end{cases}$
A. neither one-one nor onto
B. one-one but not onto
C. onto but not one-one
D. one-one and onto both

Answer
Given that a function f from the set on natural numbers to integers where
$f(n)=\left\{\begin{array}{l}\frac{n-1}{2}, \text { when } n \text { is odd } \\ \frac{-n}{2}, \text { when } n \text { is even }\end{array}\right\}$
For n is odd
Let $f(n)=f(m)$
$\Rightarrow \frac{\mathrm{n}-1}{2}=\frac{\mathrm{m}-1}{2}$
$\Rightarrow \mathrm{n}=\mathrm{m}$
For n is even
Let $f(n)=f(m)$
$\Rightarrow \frac{-\mathrm{n}}{2}=\frac{-\mathrm{m}}{2}$
$\Rightarrow \mathrm{n}=\mathrm{m}$
So, f is one-one.
Also, each element of y is associated with at least one element of x , so f is onto.
Hence, f is one-one and onto.

27. Question

Mark the correct alternative in each of the following:
Which of the following functions from $A=\{x \in R:-1 \leq x \leq 1\}$ to itself are bijections?
A. $f(x)=|x|$
B. $\mathrm{f}(\mathrm{x})=\sin \frac{\pi \mathrm{x}}{2}$
C. $\mathrm{f}(\mathrm{x})=\sin \frac{\pi \mathrm{x}}{4}$
D. none of these

Answer

Given that $\mathrm{A}=\{\mathrm{x}:-1 \leq \mathrm{x} \leq 1\}$
a. $f(x)=|x|$

It is not one-one because $f(-1)=1$ and $f(1)=1$.
b. $f(x)=\sin \left(\frac{\pi \mathrm{x}}{2}\right)$

It is bijective as it is one-one and onto with range $[-1,1]$.

28. Question

Mark the correct alternative in each of the following:
Let $f: Z \rightarrow Z$ be given by $f(x)=\left\{\begin{array}{ll}\frac{x}{2}, & \text { if } x \text { is even } \\ 0, & \text { if } x \text { is odd }\end{array}\right.$.Then, f is
A. onto but not one-one
B. one-one but not onto
C. one-one and onto
D. neither one-one nor onto

Answer

Given function $f: Z \rightarrow Z$ defined as
$f(x)=\left\{\begin{array}{c}x \\ \frac{x}{2}, \text { when } x \text { is even } \\ 0, \text { when } x \text { is odd }\end{array}\right\}$
For $x=3, f(x)=0$
For $\mathrm{x}=5, \mathrm{f}(\mathrm{x})=0$
But $3 \neq 5$
So, f is not one-one.
$Y=f(x)$
$\because x \in R \Rightarrow y \in R$
\therefore Domain $=$ Range
Hence, f is not one-one but onto.

29. Question

Mark the correct alternative in each of the following:
The function $f: R \rightarrow R$ defined by $f(x)=6^{x}+6^{|x|}$ is
A. one-one and onto
B. many one and onto
C. one-one and into
D. many one and into

Answer

Given that function $f: R \rightarrow R$ defined by $f(x)=6^{x}+6^{|x|}$
Let $f(x)=f(y)$
$\Rightarrow 6^{x}+6^{|x|}=6^{y}+6^{|y|}$
Only when $x=y$
So, f is one-one.
Now for $y=f(x)$
y can never be negative which means for $n o x \in R y$ is negative.
So, f is not onto but into.

30. Question

Mark the correct alternative in each of the following:
Let $f(x)=x^{2}$ and $g(x)=2^{x}$. Then the solution set of the equation $f o g(x)=g \circ f(x)$ is
A. R
B. $\{0\}$
C. $\{0,2\}$
D. none of these

Answer

Given that $f(x)=x^{2}$ and $g(x)=2^{x}$.
Also, $\mathrm{fog}(\mathrm{x})=\mathrm{gof}(\mathrm{x})$
$\Rightarrow \mathrm{f}\left(2^{\mathrm{x}}\right)=\mathrm{g}\left(\mathrm{x}^{2}\right)$
$\Rightarrow 2^{2 \mathrm{x}}=2^{\mathrm{x}^{2}}$
$\Rightarrow 2 \mathrm{x}=\mathrm{x}^{2}$
$\Rightarrow x^{2}-2 x=0$
$\Rightarrow x(x-2)=0$
$\Rightarrow x=0$ or $x=2$

31. Question

Mark the correct alternative in each of the following:
If $f: R \rightarrow R$ is given by $f(x)=3 x-5$, then $f^{-1}(x)$
A. is given by $\frac{1}{3 x-5}$
B. is given by $\frac{x+5}{3}$
C. does not exist because f is not one-one
D. does not exist because f is not onto

Answer

Given that $f: R \rightarrow R$ is given by $f(x)=3 x-5$
To find $f^{-1}(x)$:
$y=f(x)$
$\Rightarrow y=3 x-5$
$\Rightarrow y+5=3 x$
$\Rightarrow x=\frac{y+5}{3}$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+5}{3}$

32. Question

Mark the correct alternative in each of the following:
If $g(f(x))=|\sin x|$ and $f(g(x))=(\sin \sqrt{x})^{2}$, then
A. $f(x)=\sin ^{2} x, g(x)=\sqrt{ } x$
B. $f(x)=\sin x, g(x)=|x|$
C. $f(x)=x^{2}, g(x)=\sin \sqrt{ } x$
D. f and g cannot be determined

Answer

Given that $g(f(x))=|\sin x|$ and $f(g(x))=(\sin \sqrt{x})^{2}$
a. For $f(x)=\sin ^{2} x, g(x)=\sqrt{ } x$
$f(g(x))=f(\sqrt{ } x)=(\sin \sqrt{ } x)^{2}$
$g(f(x))=g\left(\sin ^{2} x\right)=\sqrt{ } \sin ^{2} x=|\sin x|$

Correct

b. For $f(x)=\sin x, g(x)=|x|$
$f(g(x))=f(|x|)=\sin |x|$
$g(f(x)=g(\sin x)=|\sin x|$
Incorrect
c. $f(x)=x^{2}, g(x)=\sin \sqrt{ } x$
$f(g(x))=f(\sin \sqrt{ } x)=(\sin \sqrt{ } x)^{2}$
$g(f(x))=g\left(x^{2}\right)=\sin |x|$
Incorrect

33. Question

Mark the correct alternative in each of the following:
The inverse of the function $f: R \rightarrow[x \in R: x<1]$ given by $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$, ${ }^{\text {s }}$
A. $\frac{1}{2} \log \frac{1+\mathrm{x}}{1-\mathrm{x}}$
B. $\frac{1}{2} \log \frac{2+\mathrm{x}}{2-\mathrm{x}}$
C. $\frac{1}{2} \log \frac{1-\mathrm{x}}{1+\mathrm{x}}$
D. none of these

Answer

Given that $f: R \rightarrow[x \in R: x<1]$ defined by
$f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Put $y=f(x)$
$\Rightarrow y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
$\Rightarrow y=\frac{e^{2 x}-1}{e^{2 x}+1}$
$\Rightarrow y\left(e^{2 x}+1\right)=e^{2 x}-1$
$\Rightarrow e^{2 x}(y-1)=-y-1$
$\Rightarrow \mathrm{e}^{2 \mathrm{x}}=\frac{\mathrm{y}+1}{1-\mathrm{y}}$
$\Rightarrow 2 \mathrm{x}=\log \left(\frac{\mathrm{y}+1}{1-\mathrm{y}}\right)$
$\Rightarrow \mathrm{x}=\frac{1}{2} \log \left(\frac{\mathrm{y}+1}{1-\mathrm{y}}\right)$
So, $\mathrm{f}^{-1}(\mathrm{x})=\frac{1}{2} \log \left(\frac{\mathrm{x}+1}{1-\mathrm{x}}\right)$

34. Question

Mark the correct alternative in each of the following:
Let $A=\{x \in R: x \geq 1\}$. The inverse of the function $f: A \rightarrow A$ given by $f(x)=2^{x(x-1)}$, is
A. $\left(\frac{1}{2}\right)^{\mathrm{x}(\mathrm{x}-1)}$
B. $\frac{1}{2}\left\{1+\sqrt{1+4 \log _{2} \mathrm{x}}\right\}$
C. $\frac{1}{2}\left\{1-\sqrt{1+4 \log _{2} \mathrm{x}}\right\}$
D. not defined

Answer

Given that $A=\{x \in R: x \geq 1\}$. The function $f: A \rightarrow A$ given by $f(x)=2^{x(x-1)}$
Put $y=f(x)$
$\Rightarrow \mathrm{y}=2^{\mathrm{x}(\mathrm{x}-1)}$
$\Rightarrow \log _{2} y=x(x-1)$
$\Rightarrow \log _{2} y=x^{2}-x$
$\Rightarrow \log _{2} y+\frac{1}{4}=x^{2}-x+\frac{1}{4}$
$\Rightarrow \log _{2} y+\frac{1}{4}=\left(x-\frac{1}{2}\right)^{2}$
$\Rightarrow \sqrt{\frac{4 \log _{2} y+1}{4}}+\frac{1}{2}=x$
$\Rightarrow \frac{1+\sqrt{4 \log _{2} y+1}}{2}=\mathrm{x}$
$\mathrm{f}^{-1}(\mathrm{x})=\frac{1+\sqrt{4 \log _{2} \mathrm{x}+1}}{2}$

35. Question

Mark the correct alternative in each of the following:
Let $A=\{x \in R: x \leq 1\}$ and $f: A \rightarrow A$ given by $f(x)=x(2-x)$.Then, $f^{-1}(x)$ is
A. $1+\sqrt{1-\mathrm{x}}$
B. $1-\sqrt{1-\mathrm{x}}$
C. $\sqrt{1-\mathrm{x}}$
D. $1 \pm \sqrt{1-\mathrm{x}}$

Answer

Given that $A=\{x \in R: x \leq 1\}$ and $f: A \rightarrow A$ given by $f(x)=x(2-x)$.
$y=f(x)$
$\Rightarrow y=x(2-x)$
$\Rightarrow y=2 x-x^{2}$
$\Rightarrow \mathrm{y}-1=2 \mathrm{x}-\mathrm{x}^{2}-1$
$\Rightarrow y-1=-\left(x^{2}+1-2 x\right)$
$\Rightarrow(x-1)^{2}=1-y$
$\Rightarrow \mathrm{x}=1-\sqrt{1-\mathrm{y}}$
$\mathrm{f}^{-1}(\mathrm{x})=1-\sqrt{1-\mathrm{x}}$

36. Question

Mark the correct alternative in each of the following:
Let $\mathrm{f}(\mathrm{x})=\frac{1}{1-\mathrm{x}}$. Then, $\{\mathrm{fo}(\mathrm{fof})\}(\mathrm{x})$
A. x for all $x \in R$
B. x for all $x \in R-\{1\}$
C. x for all $x \in R-\{0,1\}$
D. none of these

Answer

Given that $\mathrm{f}(\mathrm{x})=\frac{1}{1-\mathrm{x}}$
$\mathrm{fof}(\mathrm{x})=\mathrm{f}\left(\frac{1}{1-\mathrm{x}}\right)$, for $\mathrm{x} \neq 1$
$\Rightarrow \mathrm{fof}=\frac{1}{1-\frac{1}{1-\mathrm{x}}}$
$\Rightarrow \mathrm{fof}=\frac{1-\mathrm{x}}{1-\mathrm{x}-1}$
$\Rightarrow f o f=\frac{x-1}{x}$
fofof $(x)=f\left(\frac{x-1}{x}\right)$, for $x \neq 0$
\Rightarrow fofof $=\frac{1}{1-\frac{x-1}{x}}$
\Rightarrow fofof $=\frac{x}{x-x+1}$
\Rightarrow fofof $=x$ for all $x \in R-\{0,1\}$

37. Question

Mark the correct alternative in each of the following:
If the function $f: R \rightarrow R$ be such that $f(x)=x-[x]$, where $[x]$ denotes the greatest integer less than or equal to x, then $f^{-1}(x)$ is
A. $\frac{1}{x-[x]}$
B. $[x]-x$
C. not defined
D. none of these

Answer

Given that $f: R \rightarrow R$ be such that $f(x)=x-[x]$, where $[x]$ denotes the greatest integer less than or equal to x We will have same value of f for different values of x.

So, the function is not one-one.
$\because \mathrm{f}$ is not bijective
$\therefore \mathrm{f}$ does not have inverse.

38. Question

Mark the correct alternative in each of the following:
If $F:[1, \infty) \rightarrow[2, \infty)$ is given by $f(x)=x+\frac{1}{x}$, then $f^{-1}(x)$ equals.
A. $\frac{x+\sqrt{x^{2}-4}}{2}$
B. $\frac{x}{1+x^{2}}$.
C. $\frac{x-\sqrt{x^{2}-4}}{2}$
D. $1+\sqrt{\mathrm{x}^{2}-4}$.

Answer

Given that F: $[1, \infty) \rightarrow[2, \infty)$ defined as
$f(x)=x+\frac{1}{x}$
$y=f(x)$
$\Rightarrow \mathrm{y}=\mathrm{x}+\frac{1}{\mathrm{x}}$
$\Rightarrow y=\frac{x^{2}+1}{x}$
$\Rightarrow x y=x^{2}+1$
$\Rightarrow x^{2}-x y+\frac{y^{2}}{4}=\frac{y^{2}}{4}-1$
$\Rightarrow\left(x-\frac{y}{2}\right)^{2}=\frac{y^{2}}{4}-1$
$\Rightarrow x=\frac{y}{2}+\sqrt{\frac{y^{2}-4}{4}}$
$\Rightarrow x=\frac{y}{2}+\frac{1}{2} \sqrt{y^{2}-4}$
$\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+\sqrt{\mathrm{x}^{2}-4}}{2}$

39. Question

Mark the correct alternative in each of the following:

$$
(-1, x<0
$$

Let $\mathrm{g}(\mathrm{x})=1+\mathrm{x}-[\mathrm{x}]$ and $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}0, & \mathrm{x}=0 \\ 1, & \mathrm{x}>0\end{array}\right.$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x .
Then for all $x, f(g(x))$ is equal to
A. x
B. 1
C. $f(x)$
D. $g(x)$

Answer

Given that $\mathrm{g}(\mathrm{x})=1+\mathrm{x}-[\mathrm{x}]$ and
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}-1, \mathrm{x}<0 \\ 0, \mathrm{x}=0 \\ 1, \mathrm{x}>0\end{array}\right\}$
where $[x]$ denotes the greatest integer less than or equal to x.
(i) $-1<x<0$
$g(x)=1+x-[x]$
$\Rightarrow g(x)=1+x+1\{\because[x]=-1\}$
$\Rightarrow g(x)=2+x$
$f(g(x))=f(2+x)$
$\Rightarrow f(g(x))=1+2+x-[2+x]$
$\Rightarrow \mathrm{f}(\mathrm{g}(\mathrm{x}))=3+\mathrm{x}-2-\mathrm{x}$
$\Rightarrow f(g(x))=1$
(ii) $x=0$
$f(g(x))=f(1+x-[x])$
$\Rightarrow \mathrm{f}(\mathrm{g}(\mathrm{x}))=1+1+\mathrm{x}-[\mathrm{x}]-[1+\mathrm{x}+[\mathrm{x}]]$
$\Rightarrow f(g(x))=2+0-1$
$\Rightarrow f(g(x))=1$
(iii) $x>1$
$f(g(x))=f(1+x-[x])$
$\Rightarrow f(g(x))=f(x>0)=1$
Hence, $f(g(x))=1$ for all cases.

40. Question

Mark the correct alternative in each of the following:
Let $f(x)=\frac{\alpha x}{x+1}, x \neq-1$. Then, for what value of α is $f(f(x))=x$?
A. $\sqrt{ } 2$
B. $-\sqrt{ } 2$
C. 1
D. -1

Answer

Given that $(x)=\frac{\alpha x}{x+1}, x \neq-1$ and $f(f(x))=x$
$\Rightarrow f\left(\frac{\alpha x}{x+1}\right)=x$
$\Rightarrow \frac{\alpha \frac{\alpha x}{x+1}}{\frac{\alpha x}{x+1}+1}=x$
$\Rightarrow \frac{\alpha^{2} x}{x+1}=x\left(\frac{\alpha x}{x+1}+1\right)$
$\Rightarrow \alpha^{2} x=x(\alpha x+x+1)$
$\Rightarrow \alpha^{2}=\alpha x+x+1$
$\Rightarrow \alpha^{2}-\alpha x=x+1$
On comparing - αx with x ,
We get $\alpha=-1$

41. Question

Mark the correct alternative in each of the following:
The distinct linear functions which map $[-1,1]$ onto $[0,2]$ are
A. $f(x)=x+1, g(x)=-x+1$
B. $f(x)=x-1, g(x)=x+1$
C. $f(x)=-x-1 g(x)=x-1$
D. none of these

Answer

a. $f(x)=x+1, g(x)=-x+1$
$f(-1)=-1+1=0$
$f(1)=1+1=2$
Also, $g(-1)=1+1=2$
$g(1)=-1+1=0$
These functions map [-1, 1] onto [0, 2].
b. $f(x)=x-1, g(x)=x+1$
$f(-1)=-1-1=-2$
$f(1)=1-1=0$
Also, $g(-1)=-1+1=0$
$g(1)=1+1=2$
These functions do not map $[-1,1]$ onto $[0,2]$.
c. $f(x)=-x-1 g(x)=x-1$
$f(-1)=1-1=0$
$f(1)=-1-1=-2$
Also, $g(-1)=-1-1=-2$
$g(1)=1-1=0$
These functions do not map $[-1,1]$ onto $[0,2]$.

42. Question

Mark the correct alternative in each of the following:
Let $f:[2, \infty) \rightarrow X$ be defined by $f(x)=4 x-x^{2}$. Then, f is invertible, if $X=$
A. $[2, \infty)$
B. $(-\infty, 2]$
C. $(-\infty, 4]$
D. $[4, \infty)$

Answer

Given that $\mathrm{f}:[2, \infty) \rightarrow X$ be defined by
$f(x)=4 x-x^{2}$
Let $y=f(x)$
$\Rightarrow y=4 x-x^{2}$
$\Rightarrow-y+4=4-4 x+x^{2}$
$\Rightarrow 4-y=(x-2)^{2}$
$\Rightarrow x-2=\sqrt{4-y}$
$\Rightarrow x=2+\sqrt{4-y}$
So, $\mathrm{f}^{-1}(\mathrm{x})=2+\sqrt{4-\mathrm{x}}$
where $\mathrm{x}<4$
So, $x \in(-\infty, 4]$

43. Question

Mark the correct alternative in each of the following:
If $f: R \rightarrow(-1,1)$ is defined by $f(x)=\frac{-x|x|}{1+x^{2}}$, then $f^{-1}(x)$ equals
A. $\sqrt{\frac{|x|}{1-|x|}}$
B. $-\operatorname{Sgn}(x) \sqrt{\frac{|x|}{1-|x|}}$
C. $-\sqrt{\frac{x}{1-x}}$
D. none of these

Answer

Given that $f: R \rightarrow(-1,1)$ is defined by
$f(x)=\frac{-x|x|}{1+x^{2}}$
Here for mod function we will consider three cases, $x=0, x<0$ and $x>0$.
For $\mathrm{x}<0$
$f(x)=\frac{-x(-x)}{1+x^{2}}$
$y=\frac{x^{2}}{1+x^{2}}$
$\Rightarrow y\left(1+x^{2}\right)=x^{2}$
$\Rightarrow x^{2}(1-y)=y$
$\Rightarrow x=-\sqrt{\frac{y}{1-y}}$
$\Rightarrow x=-\sqrt{\frac{|y|}{1-|y|}}, x<0$
Also, checking on $x>0$ and $x=0$ we find that
$f^{-1}(x)=-\operatorname{sgn}(x) \sqrt{\frac{|y|}{1-|y|}}$,

44. Question

Mark the correct alternative in each of the following:
Let $[x]$ denote the greatest integer less than or equal to x. If $f(x)=\sin ^{-1} x, g(x)=\left[x^{2}\right]$ and $h(x)=2 x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}$, then
A. $\operatorname{fogoh}(x)=\pi / 2$
B. $\mathrm{fogoh}(\mathrm{x})=\pi$
C. hofog = hogof
D. hofog \neq hogof

Answer

Given that $f(x)=\sin ^{-1} x, g(x)=\left[x^{2}\right]$ and $h(x)=2 x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}$
a. $g o h(x)=g(2 x)$
$\Rightarrow \operatorname{goh}(\mathrm{x})=\left[4 \mathrm{x}^{2}\right]$
fogoh $(x)=f\left(\left[4 x^{2}\right]\right)$
\Rightarrow fogoh $(x)=\sin ^{-1}\left[4 x^{2}\right]$
Hence, given option is incorrect.
b. Similarly, this option is also incorrect.
c. $f \circ g(x)=f\left(\left[x^{2}\right]\right)$
$\Rightarrow f o g(x)=\sin ^{-1}\left[x^{2}\right]$
hofog $(x)=h\left(\sin ^{-1}\left[x^{2}\right]\right)$
$\Rightarrow \operatorname{hofog}(x)=2\left(\sin ^{-1}\left[x^{2}\right]\right)$
$g \circ f(x)=g\left(\sin ^{-1} x\right)$
$\Rightarrow \operatorname{gof}(x)=\left[\left(\sin ^{-1} x\right)^{2}\right]$
$\operatorname{hogof}(x)=h\left(\left[\left(\sin ^{-1} x\right)^{2}\right]\right)$
$\Rightarrow \operatorname{hogof}(x)=2\left[\left(\sin ^{-1} x\right)^{2}\right]$
Hence, $\operatorname{hogof}(x) \neq \operatorname{hofog}(x)$

45. Question

Mark the correct alternative in each of the following:
If $g(x)=x^{2}+x-2$ and $\frac{1}{2}$ gof $(x)=2 x^{2}-5 x+2$, then $f(x)$ is equal to
A. $2 x-3$
B. $2 x+3$
C. $2 x^{2}+3 x+1$
D. $2 x^{2}-3 x-1$

Answer

Given that $g(x)=x^{2}+x-2$ and
$\frac{1}{2} \operatorname{gof}(x)=2 x^{2}-5 x+2$
a. Let $f(x)=2 x-3$
$g \circ f(x)=g(2 x-3)$
$\Rightarrow \operatorname{gof}(x)=(2 x-3)^{2}+2 x-3-2$
$\Rightarrow \operatorname{gof}(x)=4 x^{2}-12 x+9+2 x-5$
$\Rightarrow \operatorname{gof}(x)=4 x^{2}-10 x+4$
$\frac{1}{2} \operatorname{gof}(x)=\frac{4 x^{2}-10 x+4}{2}$
$\Rightarrow \frac{1}{2} \operatorname{gof}(x)=2 x^{2}-5 x+2$
Hence, this option is the required value of $f(x)$.
b. Let $f(x)=2 x+3$
$g o f(x)=g(2 x+3)$
$\Rightarrow \operatorname{gof}(x)=(2 x+3)^{2}+2 x+3-2$
$\Rightarrow \operatorname{gof}(x)=4 x^{2}+12 x+9+2 x+1$
$\Rightarrow \operatorname{gof}(x)=4 x^{2}+14 x+10$
$\frac{1}{2} \operatorname{gof}(x)=\frac{4 x^{2}+14 x+10}{2}$
$\Rightarrow \frac{1}{2} \operatorname{gof}(x)=2 x^{2}+7 x+10$
Hence, this option is not the required value of $f(x)$.
c and d option are incorrect because their degree is more than 1 . So, the degree of gof will be more than 2.

46. Question

Mark the correct alternative in each of the following:
If $f(x)=\sin ^{2} x$ and the composite function $g(f(x))=|\sin x|$, then $g(x)$ is equal to
A. $\sqrt{x-1}$
B. $\sqrt{\mathrm{x}}$
C. $\sqrt{\mathrm{x}+1}$
D. $-\sqrt{\mathrm{x}}$

Answer

Given that $f(x)=\sin ^{2} x$ and the composite function $g(f(x))=|\sin x|$.
$g(f(x))=g\left(\sin ^{2} x\right)$
a. If $g(x)=\sqrt{x-1}$
$g(f(x))=\sqrt{\sin ^{2} x-1}$

Hence, given option is incorrect.
b. If $g(x)=\sqrt{x}$
$g(f(x))=\sqrt{\sin ^{2} x}$
$\Rightarrow g(f(x))=|\sin x|$
Hence, given option is correct.
c. If $g(x)=\sqrt{x+1}$
$\mathrm{g}(\mathrm{f}(\mathrm{x}))=\sqrt{\sin ^{2} \mathrm{x}+1}$
Hence, given option is incorrect.
d. If $g(x)=-\sqrt{x}$
$g(f(x))=-\sqrt{\sin ^{2} x}$
$\Rightarrow g(f(x))=-\sin x$
Hence, given option is incorrect.

47. Question

Mark the correct alternative in each of the following:
If $f: R \rightarrow R$ is given by $f(x)=x^{3}+3$, then $f^{-1}(x)$ is equal to
A. $x^{1 / 3}-3$
B. $x^{1 / 3}+3$
C. $(x-3)^{1 / 3}$
D. $x+3^{1 / 3}$

Answer

Given that $f: R \rightarrow R$ is given by $f(x)=x^{3}+3$
Then $\mathrm{f}^{-1}(\mathrm{x})$:
$y=f(x)$
$\Rightarrow y=x^{3}+3$
$\Rightarrow y-3=x^{3}$
$\Rightarrow \mathrm{x}=\sqrt[3]{\mathrm{y}-3}$
So, $\mathrm{f}^{-1}(\mathrm{x})=\sqrt[3]{\mathrm{x}-3}$

48. Question

Mark the correct alternative in each of the following:
Let $f(x)=x^{3}$ be a function with domain $\{0,1,2,3\}$. Then domain of f^{-1} is
A. $\{3,2,1,0\}$
B. $\{0,-1,-2,-3\}$
C. $\{0,1,8,27\}$
D. $\{0,-1,-8,-27\}$

Answer

Given that $f(x)=x^{3}$ be a function with domain $\{0,1,2,3\}$.
Then range $=\{0,1,8,27\}$
f can be written as $\{(0,0),(1,1),(2,8),(3,27)\}$
f^{-1} can be written as $\{(0,0),(1,1),(8,2),(27,3)\}$
So, the domain of f^{-1} is $\{0,1,8,27\}$

49. Question

Mark the correct alternative in each of the following:
Let $f: R \rightarrow R$ be given by $f(x)=x^{2}-3$. Then, f^{-1} is given by
A. $\sqrt{\mathrm{x}+3}$
B. $\sqrt{\mathrm{x}}+3$
C. $\mathrm{x}+\sqrt{3}$
D. none of these

Answer

Given that $f: R \rightarrow R$ defined by $f(x)=x^{2}-3$
For f^{-1} :
$y=f(x)$
$\Rightarrow y=x^{2}-3$
$\Rightarrow x= \pm \sqrt{y+3}$
$f^{-1}(x)= \pm \sqrt{x+3}$
50. Question

Mark the correct alternative in each of the following:
Let $f: R \rightarrow R$ be given by $f(x)=\tan x$. Then, $f^{-1}(1)$ is
A. $\frac{\pi}{4}$
B. $\left\{\mathrm{n} \pi+\frac{\pi}{4}: \mathrm{n} \in \mathrm{Z}\right\}$
C. does not exist
D. none of these

Answer

Given that $f: R \rightarrow R$ be given by $f(x)=\tan x$
For f^{-1} :
$y=f(x)$
$\Rightarrow y=\tan x$
$\Rightarrow \mathrm{x}=\tan ^{-1} \mathrm{y}$
$\mathrm{f}^{-1}=\tan ^{-1} \mathrm{x}$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=\mathrm{n} \pi+\frac{\pi}{4} ; \mathrm{n} \in \mathrm{Z}$

51. Question

Mark the correct alternative in each of the following:
Let $f: R \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{c}2 x, \text { if } x>3 \\ x^{2} \text {, if } 1<x \leq 3 \text {. } \\ 3 x, \text { if } x \leq 1\end{array}\right.$.
Then, find $f(-1)+f(2)+f(4)$
A. 9
B. 14
C. 5
D. none of these

Answer

Given that $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$f(x)=\left\{\begin{array}{c}2 x, \text { if } x>3 \\ x^{2}, \text { if } 1<x \leq 3 \\ 3 x, \text { if } x \leq 1\end{array}\right\}$
For $f(-1)$:
$f(x)=3 x$
$\Rightarrow f(-1)=-3$
For f(2):
$f(x)=x^{2}$
$\Rightarrow f(2)=4$
For f(4):
$\mathrm{f}(\mathrm{x})=2 \mathrm{x}$
$\Rightarrow \mathrm{f}(4)=8$
$\mathrm{f}(-1)+\mathrm{f}(2)+\mathrm{f}(4)=-3+4+8$
$\Rightarrow \mathrm{f}(-1)+\mathrm{f}(2)+\mathrm{f}(4)=9$

52. Question

Mark the correct alternative in each of the following:
Let $A=\{1,2, \ldots, n\}$ and $B=\{a, b\}$. Then the number of subjections from A into B is
A. ${ }^{n} P_{2}$
B. $2^{n}-2$
C. 0
D. none of these

Answer

Given that $A=\{1,2, \ldots, n\}$ and $B=\{a, b\}$
The number of functions from a set with n number of elements into a set of 2 number of elements $=2^{n}$

But two functions can be many-one into functions.
Hence, answer is $2^{n}-2$.

53. Question

Mark the correct alternative in each of the following:
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
A. 720
B. 120
C. 0
D. none of these

Answer

Given that set A contains 5 elements and set B contains 6 elements.
Number of one-one and onto mappings from A to B means bijections from A to B.
Number of bijections are possible only when $n(B)<n(A)$.
But here, $\mathrm{n}(\mathrm{A})<\mathrm{n}(\mathrm{B})$
So, the number of one-one and onto mappings from A to B is 0 .

54. Question

Mark the correct alternative in each of the following:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is
A. ${ }^{10} C_{7}$
B. ${ }^{10} \mathrm{C}_{7} \times 7!$
C. 7^{10}
D. 10^{7}

Answer
Given that set A contains 7 elements and set B contains 10 elements.
The number one-one functions from A to B is ${ }^{10} C_{7} \times 7$!.

55. Question

Mark the correct alternative in each of the following:
Let $\mathrm{f}: \mathrm{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\frac{3 \mathrm{x}+2}{5 \mathrm{x}-3}$. Then,
A. $f^{-1}(x)=x$
B. $f^{-1}(x)=-f(x)$
C. $f o f(x)=x$
D. $f^{-1}(x)=\frac{1}{19} f(x)$

Answer

Given that $\mathrm{f}: \mathrm{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathrm{R}$ defined as $\mathrm{f}(\mathrm{x})=\frac{3 \mathrm{x}+2}{5 \mathrm{x}-3}$
For f^{-1} :
$y=\frac{3 x+2}{5 x-3}$
$\Rightarrow y(5 x-3)=3 x+2$
$\Rightarrow x(5 y-3)=2+3 y$
$\Rightarrow x=\frac{2+3 y}{5 y-3}$
So, $\mathrm{f}^{-1}(\mathrm{x})=\frac{2+3 \mathrm{x}}{5 \mathrm{x}-3}$
$f \circ f(x)=f\left(\frac{3 x+2}{5 x-3}\right)$
$\Rightarrow f o f(x)=\frac{3 \frac{3 x+2}{5 x-3}+2}{5 \frac{3 x+2}{5 x-3}-3}$
\Rightarrow fof $(x)=\frac{3(3 x+2)+2(5 x-3)}{5(3 x+2)-3(5 x-3)}$
$\Rightarrow \operatorname{fof}(\mathrm{x})=\frac{19 \mathrm{x}}{19}$
$\Rightarrow \operatorname{fof}(x)=x$
Hence, option C is correct.

