18. Practical Geometry (Constructions)

Exercise 18.1

1. Question

Construct a quadrilateral $A B C D$ in which $A B=4.4 \mathrm{~cm}, B C=4 \mathrm{~cm}, C D=6.4 \mathrm{~cm}, D A=3.8 \mathrm{~cm}$ and $B D=6.6$ cm.

Answer

As four sides and diagonal of the quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A B D$. Draw line $B D$ of length 6.6 cm .

Step 2- Then using compass take a length of 4.4 cm and draw an arc by taking B as the centre. Do the same by taking D as centre and length of 3.8 cm .

Step 3-Now join the intersection point to B and D and label it as A.

Step 4- Now for vertex C, using compass take a length of 4 cm and draw an arc by taking B as the centre. Do the same by taking D as centre and length of 6.4 cm .

Step 5-Join the intersection point to B and D and label it as C.

2. Question

Construct a quadrilateral $A B C D$ in which $A B=B C=5.5 \mathrm{~cm}, C D=4 \mathrm{~cm}, D A=6.3 \mathrm{~cm}, A C=9.4 \mathrm{~cm}$ Measure $B D$.

Answer

As four sides and diagonal of the quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A B C$. Draw line $A C$ of length 9.4 cm .

Step 2- Then using compass take a length of 5.5 cm and draw an arc by taking A as the centre. Do the same by taking C as centre and length of 5.5 cm .

Step 3-Now join the intersection point to A and C and label it as B.

Step 4- Now for vertex B, using compass take a length of 4 cm and draw an arc by taking A as the centre. Do the same by taking C as the centre and length of 6.3 cm .

Step 5-Join the intersection point to A and C and label it as D .

Join $B D$ and measure length of $B D$.
$B D=5.1 \mathrm{~cm}$

3. Question

Construct a quadrilateral $X Y Z W$ in which $X Y=5 \mathrm{~cm}, Y Z=6 \mathrm{~cm}, Z W=7 \mathrm{~cm}, W X=3 \mathrm{~cm}$ and $X Z=9 \mathrm{~cm}$.

Answer

As four sides and diagonal of the quadrilateral is given.
Step 1-Using SSS construction condition first we will construct $\Delta X Y Z$. Draw line XZ of length 9 cm .

Step 2- Then using compass take a length of 5 cm and draw an arc by taking X as the centre. Do the same by taking Z as centre and length of 6 cm .

Step 3-Now join the intersection point to X and Z and label it as Y .

Step 4- For vertex W, using compass take a length of 3 cm and draw an arc by taking X as the centre. Similarly, taking Z as the centre and length of 7 cm .

Step 5-Join the intersection point to X and Z and label it as W .

4. Question

Construct a parallelogram $P Q R S$ such that $P Q=5.2 \mathrm{~cm}, P R=6.8 \mathrm{~cm}$, and $Q S=8.2 \mathrm{~cm}$.

Answer

As two diagonals and one side are given. Now for parallelogram opposite sides are equal.
Step 1- Step 1-Using SSS construction condition first we will construct $\triangle P Q S$. Draw line QS of length 8.2 cm .

Step 2- Then using compass take a length of half of diagonal QS, 4.1 cm and draw an arc by taking Q as a centre and label it as O. Now the same by taking O as centre and length half of diagonal PR, 3.4 cm draw an arc on both the sides of QS.

Step 3-Using compass take a length of 5.2 cm and draw an arc by taking Q as a centre on both the sides of

QS.

Step 4- Join sides PQ, PS, QR, RS.

5. Question

Construct a rhombus with side 6 cm and one diagonal 8 cm . Measure the other diagonal.

Answer

As all the sides of a rhombus are equal and diagonals bisect each other.
$X Y=Y Z=Z W=W X=6 \mathrm{~cm}$ and $X Z=8 \mathrm{~cm}$
Step 1-Using SSS construction condition first we will construct $\triangle X Y Z$. Draw line $X Z$ of length 8 cm .

Step 2- Then using compass take a length of 6 cm and draw an arc by taking X as the centre. Do the same by taking Z as centre and length of 6 cm .

Step 3-Now join the intersection point to X and Z and label it as Y.

Step 4- Now for vertex W, using compass take a length of 6 cm and draw an arc by taking X as the centre. Do the same by taking Z as centre and length of 6 cm .

Step 5-Join the intersection point to X and Z and label it as W.

6. Question

Construct a kite $A B C D$ in which $A B=4 \mathrm{~cm}, B C=4.9 \mathrm{~cm}, A C=7.2 \mathrm{~cm}$.

Answer

For a kite $A B C D A B=A D$ and $A C=B C$.
Step 1-Using SSS construction condition first we will construct $\triangle A B C$. Draw line $A C$ of length 7.2 cm .

Step 2- Then using compass take a length of 4 cm and draw an arc by taking A as the centre. Do the same by taking C as centre and length of 4.9 cm .

Step 3-Now join the intersection point to A and C and label it as B.

Step 4- Now for vertex D, using compass take a length of 4 cm and draw an arc by taking A as the centre. Do the same by taking C as centre and length of 4.9 cm .

Step 5-Join the intersection point to A and C and label it as D.

Construct, if possible, a quadrilateral $A B C D$ given $A B=6 \mathrm{~cm}, B C=3.7 \mathrm{~cm}, C D=5.7 \mathrm{~cm}, A D=5.5 \mathrm{~cm}$ and $B D=6.1 \mathrm{~cm}$. Give reasons for not being able to construct it, if you cannot.

Answer

As four sides and diagonal of quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A B D$. Draw line BD of length 6.1 cm .

Step 2- Then using compass take a length of 6 cm and draw an arc by taking B as centre. Do the same by taking D as centre and length of 5.5 cm .

Step 3-Now join the intersection point to B and D and label it as A.

Step 4- Now for vertex C, using compass take a length of 3.7 cm and draw an arc by taking B as centre. Do the same by taking D as centre and length of 5.7 cm .

6.1 cm

Step 5-Join the intersection point to B and D and label it as C.

8. Question

Construct, if possible, a quadrilateral $A B C D$ in which $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}, C D=3 \mathrm{~cm}, A D=5.5 \mathrm{~cm}$ and $A C$ $=11 \mathrm{~cm}$. Give reasons for not being able to construct, if you cannot. (Not possible, because in triangle $A C D$, $A D+C D<A C$.

Answer

In a triangle, the sum of the length of its two sides must be greater than that of the third side.
In triangle ACD,
$A D+C D=5.5+3=8.5 \mathrm{~cm}$
and $\mathrm{AC}=11 \mathrm{~cm}$
$\Rightarrow A D+C D<A C$ which is not possible.
So, the construction is not possible.

Exercise 18.2

1. Question

Construct a quadrilateral $A B C D$ in which $A B=3.8 \mathrm{~cm}, B C=3.0 \mathrm{~cm}, A D=2.3 \mathrm{~cm}, A C=4.5 \mathrm{~cm}$ and $B D=3.8$ cm .

Answer

As three sides and two diagonals of quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A B D$. Draw line $B D$ of length 3.8 cm .

Step 2- Then using compass take a length of 3.8 cm and draw an arc by taking B as centre. Do the same by taking D as centre and length of 2.3 cm .

Step 3-Now join the intersection point to B and D and label it as A.

Step 4- Now for vertex C, using compass take a length of 4.5 cm and draw an arc by taking A as centre. Do the same by taking B as centre and length of 3 cm .

Step 5-Join the intersection point to B and D and label it as C .

2. Question

Construct a quadrilateral $A B C D$ in which $B C=7.5 \mathrm{~cm}, A C=A D=6 \mathrm{~cm}, C D=5 \mathrm{~cm}$ and $B D=10 \mathrm{~cm}$.

Answer

As three sides and two diagonals of quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle B C D$. Draw line $B D$ of length 10 cm .

Step 2- Then using compass take a length of 7.5 cm and draw an arc by taking B as centre. Do the same by taking D as centre and length of 5 cm .

Step 3-Now join the intersection point to B and D and label it as C.

Step 4- Now for vertex A, using compass take a length of 6 cm and draw an arc by taking C as centre. Do the same by taking D as centre and length of 6 cm .

Step 5-Join the intersection point to B and D and label it as A .

3. Question

Construct a quadrilateral $A B C D$ when $A B=3 \mathrm{~cm}, C D=3 \mathrm{~cm}, D A=7.5 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $B D=4 \mathrm{~cm}$.

Answer

As three sides and two diagonals of quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A C D$. Draw line AC of length 8 cm .

Step 2- Then using compass take a length of 7.5 cm and draw an arc by taking A as centre. Do the same by taking C as centre and length of 3 cm .

Step 3-Now join the intersection point to A and C and label it as D.

Step 4- Now for vertex B, using compass take a length of 4 cm and draw an arc by taking D as centre. Do the same by taking A as centre and length of 3 cm .

Step 5-As arcs drawn are not intersecting it is not possible to construct quadrilateral $A B C D$ (as in $\triangle A B D$, $B D+A B<A D)$.

4. Question

Construct a quadrilateral $A B C D$ given $A D=3.5 \mathrm{~cm}, B C=2.5 \mathrm{~cm}, C D=4.1 \mathrm{~cm}, A C=7.3 \mathrm{~cm}$ and $B D=3.2$ cm.

Answer

As three sides and two diagonals of quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A C D$. Draw line $A C$ of length 7.3 cm .

Step 2- Then using compass take a length of 3.5 cm and draw an arc by taking A as centre. Do the same by taking C as centre and length of 4.1 cm .

Step 3-Now join the intersection point to A and C and label it as D.

Step 4- Now for vertex B, using compass take a length of 3.2 cm and draw an arc by taking D as centre. Do the same by taking C as centre and length of 2.5 cm .

Step 5-Join the intersection point to A and C and label it as B.

5. Question

Construct a quadrilateral $A B C D$ given $A D=5 \mathrm{~cm}, A B=5.5 \mathrm{~cm}, B C=2.5 \mathrm{~cm}, A C=7.1 \mathrm{~cm}$ and $B D=8 \mathrm{~cm}$.
Answer
As three sides and two diagonals of quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A B D$. Draw line BD of length 8 cm .

Step 2- Then using compass take a length of 5.5 cm and draw an arc by taking B as centre. Do the same by
taking D as centre and length of 5 cm .
Step 3-Now join the intersection point to B and D and label it as A.

Step 4- Now for vertex D, using compass take a length of 7.1 cm and draw an arc by taking A as centre. Do the same by taking B as centre and length of 2.5 cm .

Step 5-Join the intersection point to A and C and label it as B.

6. Question

Construct a quadrilateral $A B C D$ in which $B C=4 \mathrm{~cm}, C A=5.6 \mathrm{~cm}, A D=4.5 \mathrm{~cm}, C D=5 \mathrm{~cm}$ and $B D=6.5 \mathrm{~cm}$.

Answer

As three sides and two diagonals of quadrilateral is given.
Step 1-Using SSS construction condition first we will draw $\triangle A C D$. Draw line CA of length 5.6 cm .

Step 2- Then using compass take a length of 4.5 cm and draw an arc by taking A as centre. Do the same by taking C as centre and length of 5 cm .

Step 3-Now join the intersection point to A and C and label it as D.

Step 4- Now for vertex B, using compass take a length of 6.5 cm and draw an arc by taking D as centre. Do the same by taking C as centre and length of 4 cm .

Step 5-Join the intersection point to A and C and label it as B.

Exercise 18.3

1. Question

Construct a quadrilateral $A B C D$ in which $A B=3.8 \mathrm{~cm}, B C=3.4 \mathrm{~cm}, C D=4.5 \mathrm{~cm}, A D=5 \mathrm{~cm}$ and $\angle B=80^{\circ}$.

Answer

Steps of construction:

Step I: Draw AB $=3.8 \mathrm{~cm}$.

A
$3.8 \mathrm{~cm} \quad B$
Step II: Draw $\angle A B C=80^{\circ}$.

Step III: With B as the center and radius 3.4 cm , cut off $B C=3.4 \mathrm{~cm}$.

Step IV: With C as the center and radius 4.5 cm , draw an arc.
Step V: With A as the center and radius 5 cm , draw an arc to intersect the arc drawn in Step IV at D.

Step VI: Join AD, BC and CD to obtain the required quadrilateral.

2. Question

Construct a quadrilateral $A B C D$ given that $A B=8 \mathrm{~cm}, B C=8 \mathrm{~cm}, C D=10 \mathrm{~cm}, A D=10 \mathrm{~cm}$ and $\angle A=45^{\circ}$.

Answer

Steps of construction:

Step I: Draw $A B=8 \mathrm{~cm}$.

$$
\text { A } \quad 8 \mathrm{~cm} \quad \text { B }
$$

Step II: Construct $\angle B A D=45^{\circ}$.

Step III: With A as the centre and radius 10 cm , cut off $A D=10 \mathrm{~cm}$.

Step IV: With D as the centre and radius 10 cm , draw an arc.

Step V: With B as the centre and radius 8 cm , draw an arc to intersect the arc drawn in Step IV at C. Step VI: Join BC and CD to obtain the required quadrilateral.

3. Question

Construct a quadrilateral $A B C D$ in which $A B=7.7 \mathrm{~cm}, B C=6.8 \mathrm{~cm}, C D=5.1 \mathrm{~cm}, A S=3.6 \mathrm{~cm}$ and $\angle C=$ 120°.

Answer

Steps of construction:

Step I: Draw DC $=5.1 \mathrm{~cm}$.

D	5.1 cm

Step II: Construct $\angle \mathrm{DCB}=120^{\circ}$.

Step III: With C as the center and radius 6.8 cm , cut off $\mathrm{BC}=6.8 \mathrm{~cm}$.

D $\quad 5.1 \mathrm{~cm}$
C

Step IV: With B as the center and radius 7.7 cm, draw an arc.
Step V: With D as the center and radius 3.6 cm , draw an arc to intersect the arc drawn in Step IV at A. Step $V I$: Join $A B$ and $A D$ to obtain the required quadrilateral.

4. Question

Construct a quadrilateral $A B C D$ in which $A B=B C=3 \mathrm{~cm}, A D=C D=5 \mathrm{~cm}$ and $\angle B=120^{\circ}$.
Answer

Steps of construction:

Step I: Draw $A B=3 \mathrm{~cm}$.

Step II: Construct $\angle A B C=120^{\circ}$.

Step III: With B as the center and radius 3 cm , cut off $\mathrm{BC}=3 \mathrm{~cm}$.

Step IV: With C as the center and radius 5 cm , draw an arc.
Step V: With A as the center and radius 5 cm , draw an arc to intersect the arc drawn in Step IV at D. Step VI: Join AD and CD to obtain the required quadrilateral.

5. Question

Construct a quadrilateral $A B C D$ in which $A B=2.8 \mathrm{~cm}, B C=3.1 \mathrm{~cm}, C D=2.6 \mathrm{~cm}$ and $D A=3.3 \mathrm{~cm}$ and $\angle A=$ 60°.

Answer

Steps of construction:

Step I: Draw $A B=2.8 \mathrm{~cm}$.

A	2.8 cm
A	

Step II: Draw $\angle \mathrm{BAD}=60^{\circ}$.

Step III: With A as the center and radius 3.3 cm , cut off $A D=3.3 \mathrm{~cm}$.

Step IV: With D as the center and radius 2.6 cm , draw an arc.
Step V: With B as the center and radius 3.1 cm , draw an arc to intersect the arc drawn in Step IV at C.
Step VI: Join BC and CD to obtain the required quadrilateral.

6. Question

Construct a quadrilateral $A B C D$ in which $A B=B C=6 \mathrm{~cm}, A D=D C=4.5 \mathrm{~cm}$ and $\angle B=120^{\circ}$.

Answer

Steps of construction:

Step I: Draw $A B=6 \mathrm{~cm}$.
\square
A
6 cm
B

Step II: Construct $\angle A B C=120^{\circ}$.

A

6 cm

Step III: With B as the centre and radius 6 cm , cut off $B C=6 \mathrm{~cm}$. Now, we can see that $A C$ is about 10.3 cm which is greater than $A D+C D=4.5+4.5=9 \mathrm{~cm}$.

We know that sum of the lengths of two sides of the triangle is always greater than the third side but here, the sum of $A D$ and $C D$ is less than $A C$.

So, construction of the given quadrilateral is not possible.

Exercise 18.4

1. Question

Construct a quadrilateral $A B C D$ in which $A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}, C D=4 \mathrm{~cm}, \angle B=95^{\circ}$ and $\angle C=150^{\circ}$.

Answer

Steps of construction:

Step I: Draw BC $=4 \mathrm{~cm}$.

Step II: Construct $\angle \mathrm{ABC}=95^{\circ}$.

Step III: With B as the center and radius 6 cm , cut off $B A=6 \mathrm{~cm}$.
Step IV: Construct $\angle B C D=150^{\circ}$.

Step V: With C as the center and radius 4 cm , cut off $C D=4 \mathrm{~cm}$.

Step VI: Join DA.

2. Question

Construct a quadrilateral $A B C D$ where $A B=4.2 \mathrm{~cm}, B C=3.6 \mathrm{~cm}, C D=4.8 \mathrm{~cm}, \angle B=30^{\circ}$ and $\angle C=150^{\circ}$.

Answer

Steps of construction:

Step I: Draw BC $=3.6 \mathrm{~cm}$.

B	
.6 cm	C

Step II: Construct $\angle A B C=30^{\circ}$.

Step III: With B as the center and radius 4.2 cm , cut off BA $=4.2 \mathrm{~cm}$.
Step IV: Construct $\angle B C D=150^{\circ}$.

Step V: With C as the center and radius 4.8 cm , cut off $C D=4.8 \mathrm{~cm}$.
Step VI: Join AD.

The quadrilateral so obtained is the required quadrilateral.

3. Question

Construct a quadrilateral $P Q R S$ in which $P Q=3.5 \mathrm{~cm}, Q R=2.5 \mathrm{~cm}, R S=4.1 \mathrm{~cm}, \angle Q=75^{\circ}$ and $\angle R=120^{\circ}$.

Answer

Steps of construction:

Step I: Draw QR $=2.5 \mathrm{~cm}$.

Q $\quad 2.5 \mathrm{~cm} \quad \mathrm{R}$
Step II: Construct $\angle P Q R=75^{\circ}$.

Step III: With Q as the center and radius 3.5 cm , cut off $\mathrm{QP}=3.5 \mathrm{~cm}$.
Step IV: Construct $\angle Q R S=120$.

Step V: With R as the center and radius 4.1 cm , cut off $\mathrm{RS}=4.1 \mathrm{~cm}$.
Step VI: Join PS.

4. Question

Construct a quadrilateral $A B C D$ given $B C=6.6 \mathrm{~cm}, C D=4.4 \mathrm{~cm}, A D=5.6 \mathrm{~cm} \angle D=100^{\circ}$ and $\angle C=95^{\circ}$.

Answer

Steps of construction:

Step I: Draw DC $=4.4 \mathrm{~cm}$.
D $\quad 4.4 \mathrm{~cm} \quad$ C

Step II: Construct $\angle A D C=100^{\circ}$.

Step III: With D as the center and radius 5.6 cm , cut off $\mathrm{DA}=5.6 \mathrm{~cm}$.
Step IV: Construct $\angle B C D=95^{\circ}$.

Step V: With C as the center and radius 6.6 cm , cut off $C B=6.6 \mathrm{~cm}$.
Step VI: Join AB.

5. Question

Construct a quadrilateral $A B C D$ in which $A D=3.5 \mathrm{~cm}, A B=4.4 \mathrm{~cm}, B C=4.7 \mathrm{~cm}, \angle A=125^{\circ}$ and $\angle B=120^{\circ}$.

Answer

Steps of construction:

Step I: Draw $A B=4.4 \mathrm{~cm}$.

Step II: Construct $\angle B A D=125^{\circ}$.
D

Step III: With A as the centre and radius 3.5 cm , cut off $\mathrm{AD}=3.5 \mathrm{~cm}$.
Step IV: Construct $\angle A B C=125^{\circ}$.

Step V: With B as the centre and radius 4.7 cm , cut off $B C=4.7 \mathrm{~cm}$.
Step VI: Join CD.

6. Question

Construct a quadrilateral $P Q R S$ in which $\angle Q=45^{\circ}$ and $\angle R=90^{\circ}, Q R=5 \mathrm{~cm}, P Q=9 \mathrm{~cm}$ and $R S=7 \mathrm{~cm}$.

Answer

Steps of construction:

Step I: Draw QR $=5 \mathrm{~cm}$.

Q	5 cm	R

Step II: Construct $\angle P Q R=45^{\circ}$.

Step III: With Q as the center and radius 9 cm , cut off $\mathrm{QP}=9 \mathrm{~cm}$.
Step IV: Construct $\angle \mathrm{QRS}=90^{\circ}$.

Step V: With R as the center and radius 7 cm , cut off $\mathrm{RS}=7 \mathrm{~cm}$.
Step VI: Join PS.

7. Question

Construct a quadrilateral $A B C D$ in which $A B=B C=3 \mathrm{~cm}, A D=5 \mathrm{~cm}, \angle A=90^{\circ}$ and $\angle B=105^{\circ}$.

Answer

Steps of construction:

Step I: Draw $A B=3 \mathrm{~cm}$.

A $\quad 3 \mathrm{~cm} \quad$ B

Step II: Construct $\angle \mathrm{DAB}=90^{\circ}$.

Step III: With A as the center and radius 5 cm , cut off $A D=5 \mathrm{~cm}$.
Step IV: Construct $\angle A B C=105^{\circ}$

Step V: With B as the center and radius 3 cm , cut off $B C=3 \mathrm{~cm}$.
Step VI: Join CD.

8. Question

Construct a quadrilateral $B D E F$, where $D E=4.5 \mathrm{~cm}, E F=3.5 \mathrm{~cm}, F B=6.5 \mathrm{~cm}, \angle F=50^{\circ}$ and $\angle E=100^{\circ}$.

Answer

Steps of construction:

Step I: Draw EF $=3.5 \mathrm{~cm}$.
E $\quad 3.5 \mathrm{~cm} \quad \mathrm{~F}$
Step II: Construct $\angle D E F=100^{\circ}$.
Step III: With E as the center and radius 4.5 cm , cut off $D E=4.5 \mathrm{~cm}$.

Step IV: Construct $\angle E F B=50^{\circ}$.
Step V : With F as the center and radius 6.5 cm , cut off $\mathrm{FB}=6.5 \mathrm{~cm}$.
Step VI: Join BD.

Exercise 18.5

1. Question

Construct a quadrilateral $A B C D$ given that $A B=4 \mathrm{~cm}, B C=3 \mathrm{~cm}, \angle A=75^{\circ}, \angle B=80^{\circ}$ and $\angle C=120^{\circ}$.

Answer

Steps of construction:

Step I: Draw $A B=4 \mathrm{~cm}$.
A $\quad 4 \mathrm{~cm} \quad$ B

Step II: Construct $\angle X A B=75^{\circ}$ at A and $\angle A B Y=80^{\circ}$ at B.

Step III: With B as the center and radius 3 cm , cut off $\mathrm{BC}=3 \mathrm{~cm}$.

Step IV: At C, draw $\angle B C D=120^{\circ}$ such that it meets $A X$ at D.

2. Question

Construct a quadrilateral $A B C D$ where $A B=5.5 \mathrm{~cm}, B C=3.7 \mathrm{~cm}, \angle A=60^{\circ}, \angle B=105^{\circ}$ and $\angle D=90^{\circ}$.

Answer

We know that the sum of all the angles in a quadrilateral is 360 .
i.e. $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle C=105^{\circ}$

Steps of construction:

Step I: Draw $A B=5.5 \mathrm{~cm}$.

A	5.5 cm	B

Step II: Construct $\angle X A B=60^{\circ}$ at A and $\angle A B Y=105^{\circ}$.

Step III: With B as the center and radius 3.7 cm , cut off $B C=3.7 \mathrm{~cm}$.

Step IV: At C, draw $\angle B C Z=105^{\circ}$ such that it meets $A X$ at D.

3. Question

Construct a quadrilateral $P Q R S$ where $P Q=3.5 \mathrm{~cm}, Q R=6.5 \mathrm{~cm}, \angle P=\angle R=105^{\circ}$ and $\angle S=75^{\circ}$.

Answer

We know that the sum of all the angles in a quadrilateral is 360 .
i.e., $\angle P+\angle Q+\angle R+\angle S=360^{\circ}$
$\angle \mathrm{Q}=75^{\circ}$

Steps of construction:

Step I: Draw PQ $=3.5 \mathrm{~cm}$.

P	3.5 cm	Q

Step II: Construct $\angle X P Q=75^{\circ}$ and $\angle P Q Y=75^{\circ}$.

Step III: With Q as the center and radius 6.5 cm , cut off $\mathrm{QR}=6.5$
Step IV: At R, draw $\angle \mathrm{QRZ}=105^{\circ}$ such that it meets PX at S .

4. Question

Construct a quadrilateral $A B C D$ when $B C=5.5 \mathrm{~cm}, C D=4.1 \mathrm{~cm}, \angle A=70^{\circ}, \angle B=110^{\circ}$ and $\angle D=85^{\circ}$.

Answer

We know that the sum of all the angles in a quadrilateral is 360 .
i.e. $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle C=95^{\circ}$

Steps of construction:

Step I: Draw BC $=5.5 \mathrm{~cm}$.

B	5.5 cm	C

Step II: Construct $\angle X B C=110^{\circ}$ at A and $\angle B C Y=95^{\circ}$.

Step III: With C as the center and radius 4.1 cm , cut off $C D=4.1 \mathrm{~cm}$.
Step IV: At D, draw $\angle C D Z=85^{\circ}$ such that it meets BY at A.

5. Question

Construct a quadrilateral $A B C D \angle A=65^{\circ}, \angle B=105^{\circ}, \angle C=75^{\circ}, B C=5.7 \mathrm{~cm}$ and $C D=6.8 \mathrm{~cm}$.
Answer
We know that the sum of all the angles in a quadrilateral is 360
i.e. $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle D=115^{\circ}$

Steps of Construction:

Step I: Draw BC $=5.7 \mathrm{~cm}$.

Step II: Construct $\angle X B C=105^{\circ}$ and $\angle B C Y=75$.

Step III: With C as the center and radius 6.8 cm , cut off $C D=6.8 \mathrm{~cm}$.
Step IV: At D, draw $\angle C D Z=115^{\circ}$ such that it meets BY at A.

6. Question

Construct a quadrilateral $P Q R S$ in which $P Q=4 \mathrm{~cm}, Q R=5 \mathrm{~cm} \angle P=50^{\circ}, \angle Q=110^{\circ}$ and $\angle R=70^{\circ}$.

Answer

Steps of construction:

Step I: Draw PQ $=4 \mathrm{~cm}$.
$\bar{P} \quad 4 \mathrm{~cm} \quad Q$

Step II: Construct $\angle X P Q=50^{\circ}$ and $\angle P Q Y=110^{\circ}$.

Step III: With Q as the center and radius 5 cm , cut off $Q R=5 \mathrm{~cm}$.
Step IV: At R, draw $\angle \mathrm{QRZ}=70^{\circ}$ such that it meets PX at S .

