18. Binomial Theorem

Very Short Answer

1. Question

Write the number of terms in the expansion of $(2+\sqrt{3} x)^{10}+(2-\sqrt{3} x)^{10}$.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} a^{n-k}$
$(2+\sqrt{3} x)^{10}=\sum_{k=0}^{10}\binom{10}{k} 2^{k}(\sqrt{3 x})^{10-k}$
$=\binom{10}{0} 2^{0}(\sqrt{3 x})^{10}+\binom{10}{1} 2^{1}(\sqrt{3 x})^{10-1}+\cdots+\binom{10}{9} 2^{9}(\sqrt{3 x})^{10-9}+\binom{10}{10} 2^{10}(\sqrt{3 x})^{10-10}$
$(2-\sqrt{3 x})^{10}=\sum_{k=0}^{10}\binom{10}{k} 2^{k}(-\sqrt{3 x})^{10-k}$
$=\binom{10}{0} 2^{0}(-\sqrt{3 x})^{10}+\binom{10}{1} 2^{1}(-\sqrt{3 x})^{10-1}+\cdots+\binom{10}{9} 2^{9}(-\sqrt{3 x})^{10-9}+$
$\binom{10}{9} 2^{10}(-\sqrt{3 x})^{10-10}$
Add both equations;

$$
\begin{aligned}
& (2+\sqrt{3} x)^{10}+(2-\sqrt{3} x)^{10} \\
& \begin{array}{c}
\binom{10}{0} 2^{0}(\sqrt{3 x})^{10}+\binom{10}{1} 2^{1}(\sqrt{3 x})^{10-1}+\cdots+\binom{10}{9} 2^{9}(\sqrt{3 x})^{10-9} \\
\quad+\binom{10}{10} 2^{10}(\sqrt{3 x})^{10-10}+
\end{array} \\
& \binom{10}{0} 2^{0}(-\sqrt{3 x})^{10}+\binom{10}{1} 2^{1}(-\sqrt{3 x})^{10-1}+\cdots+\binom{10}{9} 2^{9}(-\sqrt{3 x})^{10-9} \\
& \quad+\binom{10}{9} 2^{10}(-\sqrt{3 x})^{10-10}
\end{aligned}
$$

The even terms; i.e. $k=1,3,5,7 \& 9$ cancel each other
So, we are left with only terms with $k=0,2,4,6,8 \& 10$
So total number of terms $=6$

2. Question

Write the sum of the coefficients in the expansion $\left(1-3 x+x^{2}\right)^{111}$.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(1-3 x+x^{2}\right)^{111}$
For sum of coefficients; put $x=1$
We have;
$(1-3+1)^{111}=(-1)^{111}$
$=-1$
3. Question

Write the number of terms in the expansion of $\left(1-3 x+3 x^{2}-x^{3}\right)^{8}$.

Answer

Given:
$\left(1-3 x+3 x^{2}-x^{3}\right)^{8}$
Highest power is $\left(x^{3}\right)^{8}=x^{24}$
And lowest power is x^{0}
So the expansion contains all the terms ranging from 0 to 24
Therefore, total number of terms $=25$

4. Question

Write the middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}=\sum_{k=0}^{10}\binom{10}{k}\left(\frac{2 x^{2}}{3}\right)^{10-k}\left(\frac{3}{2 x^{2}}\right)^{k}$
Total number of terms $=\mathrm{n}+1=11$
So middle term $=6^{\text {th }}$ term, i.e. $k=5$
$=\binom{10}{5}\left(\frac{2 x^{2}}{3}\right)^{10-5}\left(\frac{3}{2 x^{2}}\right)^{5}$
$=\frac{10!}{5!\times 5!}$
$=252$

5. Question

Which term is independent of x, in the expansion of $\left(x-\frac{1}{3 x^{2}}\right)^{9}$?

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(x-\frac{1}{3 x^{2}}\right)^{9}=\sum_{k=0}^{9}\binom{9}{k} x^{9-k}\left(\frac{-1}{3 x^{2}}\right)^{k}$
$=\sum_{k=0}^{9}\binom{9}{k} x^{9-k}\left(\frac{-1}{3}\right)^{k} x^{-2 k}$
$\Rightarrow x^{(9-k-2 k)}=x^{0}$
$\Rightarrow 9-3 \mathrm{k}=0$
$\Rightarrow \mathrm{k}=3$
So $4^{\text {th }}$ term is independent of x.

6. Question

If a and b denote respectively the coefficients of X^{m} and x^{n} in the expansion of $(1+x)^{m+n}$, then write the relation between a and b.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+x)^{m+n}=\sum_{k=0}^{m+n}\binom{m+n}{k} 1^{m+n-k} x^{k}$
Coefficient of $X^{m} ; k=m$
$\mathrm{a}=\binom{\mathrm{m}+\mathrm{n}}{\mathrm{m}} 1^{\mathrm{m}+\mathrm{n}-\mathrm{m}}$
$\mathrm{a}=\frac{(\mathrm{m}+\mathrm{n})!}{\mathrm{m}!\mathrm{xn}!}$.
Coefficient of $\mathrm{X}^{\mathrm{n}} ; \mathrm{k}=\mathrm{n}$
$\mathrm{b}=\binom{\mathrm{m}+\mathrm{n}}{\mathrm{n}} 1^{\mathrm{m}+\mathrm{n}-\mathrm{n}}$
$\mathrm{b}=\frac{(\mathrm{m}+\mathrm{n})!}{\mathrm{n}!\times \mathrm{m}!}$.
Divide both equations;
We get;
$a=b$

7. Question

If a and b are coefficients of x^{n} in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ respectively, then write the relation between a and b.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+x)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} 1^{2 n-k_{k}} x^{k}$
Coefficient of $\mathrm{X}^{\mathrm{n}} ; \mathrm{k}=\mathrm{n}$
$\mathrm{a}=\binom{2 \mathrm{n}}{\mathrm{n}} 1^{2 \mathrm{n}-\mathrm{n}}$
$(1+x)^{2 n-1}=\sum_{k=0}^{2 n-1}\binom{2 n-1}{k} 1^{2 n-1-k_{x}} x^{k}$
Coefficient of $x^{n} ; k=n$
$\mathrm{b}=\binom{2 \mathrm{n}-1}{\mathrm{n}} 1^{2 \mathrm{n}-1-\mathrm{n}}$
Divide both equations;
$\frac{a}{b}=\frac{2 n!}{n!\times n!} \times \frac{n!\times(n-1)!}{(2 n-1)!}$
$\frac{a}{b}=\frac{2 n(2 n-1)!}{n!\times(n-1)!} \times \frac{n!\times(n-1)!}{(2 n-1)!}$
$\frac{\mathrm{a}}{\mathrm{b}}=2 \mathrm{n}$
$a=2 b$

8. Question

Write the middle term in the expansion of $\left(x+\frac{1}{x}\right)^{1}$

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
Total terms $=\mathrm{n}+1=11$
So middle term $=6^{\text {th }}$ term ; i.e. $k=5$
$\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{10}=\sum_{\mathrm{k}=0}^{10}\binom{10}{\mathrm{k}} \mathrm{x}^{10-\mathrm{k}}\left(\frac{1}{\mathrm{x}}\right)^{\mathrm{k}}$
For $k=5$;
$=\binom{10}{5} \mathrm{x}^{10-5}\left(\frac{1}{\mathrm{x}}\right)^{5}$
$={ }^{10} C_{5}$

9. Question

If a and b denote the sum of the coefficients in the expansions of $\left(1-3 x+10 x^{2}\right)^{n}$ and $\left(1+x^{2}\right)^{n}$ respectively, then write the relation between a and b .

Answer

Given:
$\left(1-3 x+10 x^{2}\right)^{n}$
Sum of coefficients $=\mathrm{a}$
$\mathrm{a}=(1-3+10)^{\mathrm{n}}$
$=\left(2^{3}\right)^{n}$
$=\left(2^{n}\right)^{3}$
$\left(1+x^{2}\right)^{n}$
Sum of coefficients $=b$
$b=(1+1)^{n}$
$=2^{n}$
Put value of b in a; we get:
$a=b^{3}$

10. Question

Write the coefficient of the middle term in the expansion of $(1+x)^{2 n}$

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+x)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} 1^{2 n-k x^{k}}$
Total terms $=2 n+1$
Middle term $=(2 n+1) / 2$
i.e. $(n+1)$ th term
so $k=n$
$=\binom{2 n}{n} 1^{2 n-n} x^{n}$
$={ }^{2 n} C_{n}$

11. Question

Write the number of terms in the expansion of $\left\{\left(2 x+y^{3}\right)^{4}\right\}^{7}$

Answer

Given:
$\left\{\left(2 x+y^{3}\right)^{4}\right\}^{7}=\left(2 x+y^{3}\right)^{28}$
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$\left(2 x+y^{3}\right)^{28}=\sum_{k=0}^{28}\binom{28}{k} 2 x^{28-k}\left(y^{3}\right)^{k}$
So total number of terms $=\mathrm{n}+1$
$=28+1$
$=29$

12. Question

Find the sum of coefficients of two middle terms in the binomial expansion of $(1+x)^{2 n-1}$

Answer

Given:
Total terms after expansion $=2 n-1+1=2 n$
Middle term $=2 \mathrm{n} / 2=\mathrm{nth}$ term
So two required middle terms are : nth \& ($n+1$)th term
$k=(n-1) \& n$ for both terms respectively.
$(\mathrm{x}+\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k}} \mathrm{a}^{\mathrm{k}}$
$(1+\mathrm{x})^{2 \mathrm{n}-1}=\sum_{\mathrm{k}=0}^{2 \mathrm{n}-1}\binom{2 \mathrm{n}-1}{\mathrm{k}} 1^{2 \mathrm{n}-1-\mathrm{k}_{\mathrm{X}}}$
Coefficient of nth term;
$={ }^{2 n-1} C_{n-1}$
Coefficient of ($n+1$)th term ;
$={ }^{2 n-1} C_{n}$
Sum of coefficients $={ }^{2 n-1} C_{n-1}+{ }^{2 n-1} C_{n}$
$={ }^{2 n-1+1} C_{n}$
$={ }^{2 n} C_{n}$

13. Question

Find the ratio of the coefficients of X^{p} and X^{q} in the expansion of $(1+x)^{p+q}$.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+\mathrm{x})^{\mathrm{p}+\mathrm{q}}=\sum_{\mathrm{k}=0}^{\mathrm{p}+\mathrm{q}}(\mathrm{p}+\mathrm{q}) 1_{\mathrm{k}}^{\mathrm{p}+\mathrm{q}-\mathrm{k}_{\mathrm{x}}^{\mathrm{k}}}$
For $x^{p} ; k=p$
Coefficient $={ }^{p+q} C_{p}$ (1)
For $\mathrm{x}^{\mathrm{q}} ; \mathrm{k}=\mathrm{q}$

Coefficient $={ }^{p+q} C_{q}(2)$
Divide both equations;
$\frac{p}{q}=\frac{(p+q)!}{p!\times q!} \times \frac{p!\times q!}{(p+q)!}$
$\frac{p}{q}=1$

14. Question

Write last two digits of the number 3^{400}.

Answer

Given:
$3^{400}=\left(3^{2}\right)^{200}$
$=9^{200}$
$=(10-1)^{200}$
By binomial expansion, $(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$(1-10)^{200}=\sum_{k=0}^{200}\binom{200}{k} 1^{200-k}(-10)^{k}$
$=\binom{200}{0}(-10)^{0}+\binom{200}{1}(-10)^{1}+\binom{200}{2}(-10)^{2}+\cdots+\binom{200}{200}(-10)^{200}$
$=1-2000+10^{2}\{\mathrm{I}\}$
$=1+100(1-20)$
So, the last two digits would be 01 .

15. Question

Find the number of terms in the expansion of $(a+b+c)^{n}$.

Answer

Given:
$T_{n}=\frac{n!}{p!\times q!\times r!} a^{p} b^{q} c^{r} ;$
Where $p+q+r=n$
Since number of ways in which we can divide n different things into r different things is: ${ }^{n+r-1} C_{r-1}$
Here, $n=n \& r=3$
So, ${ }^{n+3-1} C_{3-1}={ }^{n+2} C_{2}$
$=\frac{(\mathrm{n}+2)!}{2!\times \mathrm{n}!}$
$=\frac{(n+2)(n+1) n!}{2!\times n!}$
$=\frac{(\mathrm{n}+1)(\mathrm{n}+2)}{2}$
so, the number of terms $=\frac{(\mathrm{n}+1)(\mathrm{n}+2)}{2}$

16. Question

If a and b are the coefficients of x^{n} in the expansions $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ respectively, find $\frac{a}{b}$.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+x)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} 1^{2 n-k x^{k}}$
Coefficient of $\mathrm{X}^{\mathrm{n}} ; \mathrm{k}=\mathrm{n}$
$\mathrm{a}=\binom{2 \mathrm{n}}{\mathrm{n}} 1^{2 \mathrm{n}-\mathrm{n}}(1)$
$(1+x)^{2 n-1}=\sum_{k=0}^{2 n-1}\binom{2 n-1}{k} 1^{2 n-1-k^{k}}$
Coefficient of $\mathrm{X}^{\mathrm{n}} ; \mathrm{k}=\mathrm{n}$
$\mathrm{b}=\binom{2 \mathrm{n}-1}{\mathrm{n}} 1^{2 \mathrm{n}-1-\mathrm{n}}(2)$
Divide both equations;
$\frac{a}{b}=\frac{2 n!}{n!\times n!} \times \frac{n!\times(n-1)!}{(2 n-1)!}$
$\frac{a}{b}=\frac{2 n(2 n-1)!}{n!\times(n-1)!} \times \frac{n!\times(n-1)!}{(2 n-1)!}$
$\frac{\mathrm{a}}{\mathrm{b}}=2 \mathrm{n}$
$a=2 b$

17. Question

Write the total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$.

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$(x+a)^{100}=\sum_{k=0}^{100}\binom{100}{k} x^{100-k^{k}} a^{k}$
$=\binom{100}{0} x^{100} a^{0}+\binom{100}{1} x^{100-1} a^{1}+\cdots+\binom{100}{99} x^{1} a^{99}+\binom{100}{100} x^{0} a^{100}$

$$
\begin{aligned}
& (x-a)^{n}=\sum_{k=0}^{100}\binom{100}{k} x^{100-k}(-a)^{k} \\
& =\binom{100}{0} x^{100-0}(-a)^{0}+\binom{100}{1} x^{100-1}(-a)^{1}+\cdots+\binom{100}{99} x^{1}(-a)^{99} \\
& +\binom{100}{100} x^{0}(-a)^{100} \\
& \begin{array}{l}
(x+a)^{100}+(x-a)^{100} \\
=\binom{100}{0} x^{100} a^{0}+\binom{100}{1} x^{100-1} a^{1}+\cdots+\binom{100}{99} x^{1} a^{99}+\binom{100}{100} x^{0} a^{100}+ \\
\binom{100}{0} x^{100-0}(-a)^{0}+\binom{100}{1} x^{100-1}(-a)^{1}+\cdots+\binom{100}{99} x^{1}(-a)^{99} \\
\quad+\binom{100}{100} x^{0}(-a)^{100} \\
=2\left\{\binom{100}{0} x^{100} a^{0}+\binom{100}{2} x^{100-2} a^{2}+\cdots+\binom{100}{100} x^{0} a^{100}\right\}
\end{array}
\end{aligned}
$$

So odd powers of x cancel each other, we are left with even powers of x or say odd terms of expansion.
So total number of terms are $T_{1}, T_{3}, \ldots T_{99}, T_{101}$
$=\frac{1+101}{2}$
$=51$

18. Question

If $\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$, find the value of $a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$.

Answer

$\left(1-x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$
At $x=1$
$\left(1-1+1^{2}\right)^{n}=a_{0}+a_{1}(1)+a_{2}(1)^{2}+\ldots+a_{2 n}(1)^{2 n}$
$a_{0}+a_{1}+a_{2}+\ldots+a_{2 n}=1 \ldots(1)$
At $x=-1$
$\left(1-(-1)+(-1)^{2}\right)^{n}=a_{0}+a_{1}(-1)+a_{2}(-1)^{2}+\ldots+a_{2 n}(-1)^{2 n}$
$a_{0}-a_{1}+a_{2}-\ldots+a_{2 n}=3^{n}$
On adding eq. 1 and eq. 2
$\left(a_{0}+a_{1}+a_{2}+\ldots+a_{2 n}\right)+\left(a_{0}-a_{1}+a_{2}-\ldots+a_{2 n}\right)=1+3^{n}$
$2\left(a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}\right)=1+3^{n}$
$a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}=\frac{1+3^{n}}{2}$

MCQ

1. Question

Mark the correct alternative in the following :

If in the expansion of $(1+x)^{20}$, the coefficient of r th and $(r+4)$ th terms are equal, then r is equal to
A. 7
B. 8
C. 9
D. 10

Answer

Given:
$(\mathrm{x}+\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{k} \mathrm{a}^{\mathrm{n}-\mathrm{k}} .}$
In rth term; $k=r-1$
\& in ($r+4$)th term ; $k=r+3$
So, the terms are;

$$
\binom{20}{r-1} 1^{21-r} x^{r-1} \&\binom{20}{r+3} 1^{17-r} x^{r+3}
$$

Coefficients of both terms are equal:
$\binom{20}{r-1}=\binom{20}{r+3}$
$\frac{20!}{(r-1)!(21-r)!}=\frac{20!}{(r+3)!(17-r)!}$
$\frac{1}{(r-1)!(21-r)(20-r)(19-r)(18-r)(17-r)!}$

$$
=\frac{1}{(r+3)(r+2)(r+1) r(r-1)!(17-r)!}
$$

$\frac{1}{(21-r)(20-r)(19-r)(18-r)}=\frac{1}{(r+3)(r+2)(r+1) r}$

]

$(r+3)(r+2)(r+1) r=(21-r)(20-r)(19-r)(18-r)$
So, $r=(21-r)$;
$(r+1)=(20-r)$;
$(r+2)=(19-r) ;$
$(r+3)=(18-r)$
We get;
$r=9$

2. Question

Mark the correct alternative in the following :
The term without x in the expansion of $\left(2 \mathrm{x}-\frac{1}{2 \mathrm{x}^{2}}\right)^{12}$ is
B. -495
C. -7920
D. 7920

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} a^{n-k}$
$\left(2 x-\frac{1}{2 x^{2}}\right)^{12}=\sum_{k=0}^{12}\binom{12}{k}(2 x)^{12-k}\left(\frac{-1}{2 x^{2}}\right)^{k}$
$=\sum_{\mathrm{k}=0}^{12}\binom{12}{\mathrm{k}} 2^{12-\mathrm{k}}(\mathrm{x})^{12-\mathrm{k}}\left(\frac{-1}{2}\right)^{\mathrm{k}} \mathrm{x}^{-2 \mathrm{k}}$
The term without x is where :
$\mathrm{X}^{12-\mathrm{k}-2 \mathrm{k}}=\mathrm{X}^{0}$
$12-3 k=0$
$k=4$
for $k=4$; the term is :
$=\binom{12}{4}(2 x)^{12-4}\left(\frac{-1}{2 x^{2}}\right)^{4}$
$=\frac{12!}{4!\times 8!} \times 2^{8} \times x^{8} \times\left(\frac{-1}{2}\right)^{4} \times x^{-8}$
$=7920$

3. Question

Mark the correct alternative in the following :
If r th term in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{12}$ is without x, then r is equal to.
A. 8
B. 7
C. 9
D. 10

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} a^{n-k}$
$\left(2 x^{2}-\frac{1}{x}\right)^{12}=\sum_{k=0}^{12}\binom{12}{k}\left(2 x^{2}\right)^{12-k}\left(\frac{-1}{x}\right)^{k}$
$=\sum_{k=0}^{12}\binom{12}{k} 2^{k}(-1)^{12-k} x^{2(12-k)} x^{-k}$
For term without x :
$\mathrm{x}^{2(12-\mathrm{k})-\mathrm{k}}=\mathrm{x}^{0}$
$24-2 k-k=0$
$24-3 k=0$
$k=8$
for $k=8$;
term $=8+1=9^{\text {th }}$ term

4. Question

Mark the correct alternative in the following :
If in the expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$ and $(\mathrm{a}+\mathrm{b})^{\mathrm{n}+3}$, the ratio of the coefficients of second and third terms, and third and fourth terms respectively are equal, then n is
A. 3
B. 4
C. 5
D. 6

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k x^{k}}$
$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$
$T_{2}=\binom{n}{1} a^{n-1} b^{1} ; T_{3}=\binom{n}{2} a^{n-2} b^{2}$
$\frac{\mathrm{T} 1}{\mathrm{~T} 3}=\frac{\binom{\mathrm{n}}{1} \mathrm{a}^{\mathrm{n}-1} b^{1}}{\binom{\mathrm{n}}{2} \mathrm{a}^{\mathrm{n}-2} b^{2}}$
$=\frac{n!\times 2!\times(n-2)!\times a^{n} a^{-1} b}{n!\times 1!\times(n-1)!\times a^{n} a^{-2} b^{2}}$
$=\frac{2 \times(n-2)!\times a}{(n-1)(n-2)!\times b}$
$=\frac{2 \mathrm{a}}{(\mathrm{n}-1) \mathrm{b}}(1)$
$(a+b)^{n+3}=\sum_{k=0}^{n+3}\binom{n+3}{k} a^{n+3-k} b^{k}$
$\mathrm{T}_{3}=\binom{\mathrm{n}+3}{2} \mathrm{a}^{\mathrm{n}+3-2} \mathrm{~b}^{2} ; \mathrm{T}_{4}=\binom{\mathrm{n}+3}{3} \mathrm{a}^{\mathrm{n}+3-3} \mathrm{~b}^{3}$
$\frac{\mathrm{T} 3}{\mathrm{~T} 4}=\frac{\binom{\mathrm{n}+3}{2} \mathrm{a}^{\mathrm{n}+1} \mathrm{~b}^{2}}{\binom{\mathrm{n}+3}{3} \mathrm{a}^{\mathrm{n}} \mathrm{b}^{3}}$
$=\frac{n!\times 3!\times n!\times a^{n} a^{1} b^{2}}{n!\times 2!\times(n+1)!\times a^{n} b^{3}}$
$=\frac{3!\times n!\times a}{2!\times(n+1) n!\times b}$
$=\frac{3 \mathrm{a}}{(\mathrm{n}+1) \mathrm{b}}(2)$
Equating both equations:
$\frac{2 a}{(n-1) b}=\frac{3 a}{(n+1) b}$
$2(n+1)=3(n-1)$
$2 n+2=3 n-3$
$\mathrm{n}=5$

5. Question

Mark the correct alternative in the following :
If A and B are the sums of odd and even terms respectively in the expansion of $(x+a)^{n}$, then $(x+a)^{2 n}-(x-a)^{2 n}$ is equal to
A. $4(A+B)$
B. $4(A-B)$
C. $A B$
D. 4 AB

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k_{a}}{ }^{k}$
$=\binom{n}{0} x^{n} a^{0}+\binom{n}{1} x^{n-1} a^{1}+\cdots+\binom{n}{n-1} x^{1} a^{n-1}+\binom{n}{n} x^{0} a^{n}$
$(x-a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k}(-a)^{k}$
$=\binom{n}{0} x^{n-0}(-a)^{0}+\binom{n}{1} x^{n-1}(-a)^{1}+\cdots+\binom{n}{n-1} x^{1}(-a)^{99}+\binom{n}{n} x^{0}(-a)^{n}$
So, $(x+a)^{n}+(x-a)^{n}=\binom{n}{0} x^{n} a^{0}+\binom{n}{1} x^{n-1} a^{1}+\cdots+\binom{n}{n-1} x^{1} a^{n-1}+\binom{n}{n} x^{0} a^{n}+$
$\binom{n}{0} x^{n-0}(-a)^{0}+\binom{n}{1} x^{n-1}(-a)^{1}+\cdots+\binom{n}{n-1} x^{1}(-a)^{n-1}+\binom{n}{n} x^{0}(-a)^{n}$
$=2\left\{\binom{n}{0} x^{n} a^{0}+\binom{n}{2} x^{n-2} a^{2}+\cdots+\binom{n}{n} x^{0} a^{n}\right\}$
$=2 \mathrm{~A}$

So, $(x+a)^{n}-(x-a)^{n}=\binom{n}{0} x^{n} a^{0}+\binom{n}{1} x^{n-1} a^{1}+\cdots+\binom{n}{n-1} x^{1} a^{n-1}+\binom{n}{n} x^{0} a^{n}-$ $\binom{n}{0} x^{n-0}(-a)^{0}+\binom{n}{1} x^{n-1}(-a)^{1}+\cdots+\binom{n}{n-1} x^{1}(-a)^{n-1}+\binom{n}{n} x^{0}(-a)^{n}$
$=2\left\{\binom{n}{1} x^{n-1} a^{1}+\binom{n}{1} x^{n-3} a^{3}+\cdots+\binom{n}{n-1} x^{1} a^{n-1}\right\}$
$=2 \mathrm{~B}$
$(x+a)^{2 n}-(x-a)^{2 n}=\left[(x+a)^{n}\right]^{2}-\left[(x-a)^{n}\right]^{2}$
$=\left\{(x+a)^{n}+(x-a)^{n}\right\} \times\left\{(x+a)^{n}-(x-a)^{n}\right\}$
$=2 A \times 2 B$
$=4 \mathrm{AB}$

6. Question

Mark the correct alternative in the following :
The number of irrational terms in the expansion of $\left(4^{1 / 5}+7^{1 / 10}\right)^{45}$ is
A. 40
B. 5
C. 41
D. None of these

Answer

Given:
$(\mathrm{x}+\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{k} \mathrm{a}^{\mathrm{n}-\mathrm{k}}}$
$\left(4^{1 / 5}+7^{1 / 10}\right)^{45}=\sum_{\mathrm{k}=0}^{45}\binom{45}{\mathrm{k}}\left(4^{1 / 5}\right)^{\mathrm{k}}\left(7^{1 / 10}\right)^{4}$
Total number of terms in expansion $=n+1$
$=45+1$
$=46$
irrational terms $=$ total terms - rational terms
For rational terms; the power of each term should be integer.
Therefore, k must be divisible by 5 and ($45-\mathrm{k}$) by 10 .
i.e. the terms having power as multiples of 5 .
i.e. $0,5,10,15,20,25,30,35,40 \& 45$
for $k=5,15,25,35 \& 45$;
(45-k) do not give an integral power, so these powers have to be rejected.
Now, we have $k=0,10,20,30 \& 40$ which give us rational terms.
Hence, irrational terms $=46-5=41$

7. Question

Mark the correct alternative in the following :
The coefficient of x^{-17} in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$ is
A. 1365
B. -1365
C. 3003
D. -3003

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(x^{4}-\frac{1}{x^{3}}\right)^{15}=\sum_{k=0}^{15}\binom{15}{k}\left(x^{4}\right)^{15-k}\left(\frac{-1}{x^{3}}\right)^{k}$
$=\sum_{k=0}^{15}\binom{15}{k} x^{4(15-k)}(-1)^{k} x^{-3 k}$
$\mathrm{x}^{4(15-\mathrm{k})-3 \mathrm{k}}=\mathrm{x}^{-17}$
$60-4 k-3 k=-17$
$-7 k=-77$
$k=11$
$=\binom{15}{11} \mathrm{x}^{4(15-11)}(-1)^{11} \mathrm{x}^{-3 \times 11}$
$=\binom{15}{11} x^{16}(-1)^{11} x^{-33}$
$=-\frac{15!}{11!\times 4!} x^{-17}$
Coefficient $=-1365$

8. Question

Mark the correct alternative in the following :
In the expansion of $\left(x^{2}-\frac{1}{3 x}\right)^{9}$, the term without x is equal to
A. $\frac{28}{81}$
B. $\frac{-28}{243}$
C. $\frac{28}{243}$
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(x^{2}-\frac{1}{3 x}\right)^{9}=\sum_{k=0}^{9}\binom{9}{k}\left(x^{2}\right)^{9-k}\left(\frac{-1}{3 x}\right)^{k}$
$=\sum_{k=0}^{9}\binom{9}{k} x^{2(9-k)}\left(\frac{-1}{3}\right)^{k} x^{-k}$
$\Rightarrow x^{2(9-k)-k}=x^{0}$
$\Rightarrow 18-2 \mathrm{k}-\mathrm{k}=0$
$\Rightarrow 18-3 \mathrm{k}=0$
$\Rightarrow k=6$
$=\frac{9!}{6!\times 3!}\left(\frac{-1}{3}\right)^{6}$
$=\frac{28}{243}$

9. Question

Mark the correct alternative in the following :
If in the expansion of $(1+x)^{15}$, the coefficients of $(2 r+3)^{\text {th }}$ and $(r-1)^{\text {th }}$ terms are equal, then the value of r is
A. 5
B. 6
C. 4
D. 3

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$(1+x)^{15}=\sum_{k=0}^{15}\binom{15}{k} 1^{15-k_{k}} x^{k}$
For $(2 r+3)$ th term; $k=(2 r+2)$
$\binom{15}{2 \mathrm{r}+2} 1^{15-2 \mathrm{r}-2} \mathrm{x}^{2 \mathrm{r}+2}$
For ($\mathrm{r}-1$)th term; $\mathrm{k}=\mathrm{r}-2$
$\binom{15}{r-2} 1^{15-r+2} x^{r-2}$

Coefficients of both terms are equal;
$\binom{15}{2 r+2}=\binom{15}{r-2}$
$\Rightarrow \frac{15!}{(2 r+2)!(13-2 r)!}=\frac{15!}{(r-2)!(17-r)!}$
$\Rightarrow \frac{1}{(2 r+2)(2 r+1)(2 r)!(13-2 r)!}=\frac{1}{(r-2)(r-1) r!(17-r)!}$
$\Rightarrow \frac{1}{2(2 r+2)(2 r+1)(13-2 r)!}=\frac{1}{(r-2)(r-1)(17-r)!}$

10. Question

Mark the correct alternative in the following :
The middle term in the expansion of $\left(\frac{2 x^{2}}{3}+\frac{3}{2 x^{2}}\right)^{10}$ is
A. 251
B. 252
C. 250
D. None of these

Answer

Given:
$\mathrm{n}=10$
Total number of terms on expansion $=n+1=11$
So middle term is $6^{\text {th }}$ term; i.e. $\mathrm{k}=5$
$=\frac{10!}{5!\times 5!}\left(\frac{2 x^{2}}{3}\right)^{5}\left(\frac{3}{2 x^{2}}\right)^{5}$
$=252$

11. Question

Mark the correct alternative in the following :
If in the expansion of $\left(x^{4}-\frac{1}{3}\right)^{15}, x^{-17}$ occurs in $r^{\text {th }}$ term, then
A. $\mathrm{r}=10$
B. $r=11$
C. $r=12$
D. $r=13$

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(x^{4}-\frac{1}{x^{3}}\right)^{15}=\sum_{k=0}^{15}\binom{15}{k}\left(x^{4}\right)^{15-k}\left(\frac{-1}{x^{3}}\right)^{k}$
$=\sum_{k=0}^{15}\binom{15}{k} x^{4(15-k)}(-1)^{k} x^{-3 k}$
$\Rightarrow \mathrm{x}^{4(15-\mathrm{k})-3 \mathrm{k}}=\mathrm{x}^{-17}$
$\Rightarrow 60-4 \mathrm{k}-3 \mathrm{k}=-17$
$\Rightarrow-7 \mathrm{k}=-77$
$\Rightarrow \mathrm{k}=11$
So, the term is $12^{\text {th }}$ term.

12. Question

Mark the correct alternative in the following :
In the expansion of $\left(x-\frac{1}{3 x^{2}}\right)^{9}$, the term independent of x is
A. T_{3}
B. T_{4}
C. T_{5}
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k_{2}} a^{n}$
$\left(x-\frac{1}{3 x^{2}}\right)^{9}=\sum_{k=0}^{9}\binom{9}{k} x^{9}-k\left(\frac{-1}{3 x^{2}}\right)^{k}$
$=\sum_{k=0}^{9}\binom{9}{k} x^{9-k}\left(\frac{-1}{3}\right)^{k} x^{-2 k}$
$\Rightarrow x^{9-k-2 k}=x^{0}$
$\Rightarrow 9-3 \mathrm{k}=0$
$\Rightarrow \mathrm{k}=3$
So, the term is $4^{\text {th }}$ term.

13. Question

Mark the correct alternative in the following :
If in the expansion of $(1+y)^{n}$, the coefficients of $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ terms are in A.P., then n is equal to
A.7, 11
B. 7,14
C. 8,16
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{n-k} y^{k}$
$T_{5}=\binom{n}{4} 1^{n-4} y^{4} ; T_{6}=\binom{n}{5} 1^{n-5} y^{5} \& T_{7}=\binom{n}{6} 1^{n-6} y^{6}$
Since $T_{5}, T_{6} \& T_{7}$ are in AP
Then; $2\left(T_{6}\right)=T_{5}+T_{7}$
i.e. $\binom{n}{4} 1^{n-4} y^{4}+\binom{n}{6} 1^{n-6} y^{6}=2 \times\binom{ n}{5} 1^{n-5} y^{5}$
$\frac{n!}{4!(n-4)!}+\frac{n!}{6!(n-6)!}=2 \times \frac{n!}{5!(n-5)!}$
$\frac{1}{4!(n-4)(n-5)(n-6)!}+\frac{1}{6!(n-6)!}=2 \times \frac{1}{5!(n-5)(n-6)!}$
$\frac{1}{(n-4)(n-5)}+\frac{1}{30}-\frac{2}{5(n-5)}=0$
$\frac{30+(\mathrm{n}-4)(\mathrm{n}-5)-12(\mathrm{n}-4)}{30(\mathrm{n}-4)(\mathrm{n}-5)}=0$
$\Rightarrow 30+(n-4)(n-5)-12(n-4)=0$
$\Rightarrow 30+n^{2}-9 n+20-12 n+48=0$
$\Rightarrow \mathrm{n}^{2}-21 \mathrm{n}+98=0$
$\Rightarrow(\mathrm{n}-7)(\mathrm{n}-14)=0$
$\Rightarrow \mathrm{n}=7,14$

14. Question

Mark the correct alternative in the following :
In the expansion of $\left(\frac{1}{2} x^{1 / 3}+x^{-1 / 5}\right)^{8}$, the term independent of x is
A. T_{5}
B. T_{6}
C. T_{7}
D. T_{8}

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(\frac{1}{2^{3}} x^{\frac{1}{3}}+x^{-\frac{1}{5}}\right)^{8}=\sum_{k=0}^{8}\binom{8}{k}\left(\frac{1}{2} x^{1 / 3}\right)^{8-k}\left(x^{-1 / 5}\right)^{k}$
$=\sum_{k=0}^{8}\binom{8}{k}\left(\frac{1}{2}\right)^{8-k} x^{\frac{(8-k)}{3}} x^{\frac{-k}{5}}$
$\Rightarrow x^{\frac{(8-k)}{3} 5}=x^{0}$
$\Rightarrow \frac{(8-\mathrm{k})}{3}-\frac{\mathrm{k}}{5}=0$
$\Rightarrow \frac{5(8-\mathrm{k})-3 \mathrm{k}}{15}=0$
$\Rightarrow 40-5 \mathrm{k}-3 \mathrm{k}=0$
$\Rightarrow 40-8 \mathrm{k}=0$
$\Rightarrow \mathrm{k}=5$
So, the term is $6^{\text {th }}$ term.

15. Question

Mark the correct alternative in the following :
If the sum of odd numbered terms and the sum of even humbered terms in the expansion of $(x+a)^{n}$ are A and B respectively, then the value of $\left(x^{2}-a^{2}\right)^{n}$ is.
A. $A^{2}-B^{2}$
B. $\mathrm{A}^{2}+\mathrm{B}^{2}$
C. 4 AB
D. None of these

Answer

Given:
$(\mathrm{x}+\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k}^{\mathrm{k}}}$
$=\binom{n}{0} x^{n} a^{0}+\binom{n}{1} x^{n-1} a^{1}+\cdots+\binom{n}{n-1} x^{1} a^{n-1}+\binom{n}{n} x^{0} a^{n}$
$=A+B$
$(\mathrm{x}-\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k}}(-\mathrm{a})^{\mathrm{k}}$
$=\binom{n}{0} x^{n-0}(-a)^{0}+\binom{n}{1} x^{n-1}(-a)^{1}+\cdots+\binom{n}{n-1} x^{1}(-a)^{99}+\binom{n}{n} x^{0}(-a)^{n}$
$=A-B$
$\left(x^{2}-a^{2}\right)^{n}=[(x+a)(x-a)]^{n}$
$=(x+a)^{n}(x-a)^{n}$
$=(A+B)(A-B)$
$=A^{2}-B^{2}$

16. Question

Mark the correct alternative in the following :
If the coefficient of x in $\left(x^{2}+\frac{\lambda}{x}\right)^{5}$ is 270 , then $\lambda=$
A. 3
B. 4
C. 5
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$\left(x^{2}+\frac{\lambda}{x}\right)^{5}=\sum_{k=0}^{5}\binom{5}{k}\left(x^{2}\right)^{5-k}\left(\frac{\lambda}{x}\right)^{k}$
$=\sum_{k=0}^{5}\binom{5}{k} x^{2(5-k)} \lambda^{k} x^{-k}$
$\Rightarrow x^{2(5-k)-k}=x^{1}$
$\Rightarrow 10-2 \mathrm{k}-\mathrm{k}=1$
$\Rightarrow 9-3 \mathrm{k}=0$
$\Rightarrow \mathrm{k}=3$
for $k=3$;
$\Rightarrow\binom{5}{3} x^{2(5-3)} \lambda^{3} x^{-3}$
$\Rightarrow \frac{5!}{3!\times 2!} \lambda^{3}=270$
$\Rightarrow \lambda^{3}=27$
$\Rightarrow \lambda=3$

17. Question

Mark the correct alternative in the following :
The coefficient of x^{4} in $\left(\frac{x}{2}-\frac{3}{2}\right)^{10}$ is.
A. $\frac{405}{256}$
B. $\frac{504}{259}$
C. $\frac{450}{263}$
D. None of these

Answer

Given:
$\Rightarrow(\mathrm{x}+\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k} \mathrm{a}^{\mathrm{k}}}$
$\Rightarrow\left(\frac{\mathrm{x}}{2}-\frac{3}{2}\right)^{10}=\sum_{\mathrm{k}=0}^{10}\binom{10}{\mathrm{k}}\left(\frac{\mathrm{X}}{2}\right)^{10-\mathrm{k}}\left(\frac{-3}{2}\right)^{\mathrm{k}}$
$\Rightarrow x^{10-k}=x^{4}$
$\Rightarrow 10-\mathrm{k}=4$
$\Rightarrow \mathrm{k}=6$
for $\mathrm{k}=6$;
$=\binom{10}{6}\left(\frac{X}{2}\right)^{10-6}\left(\frac{-3}{2}\right)^{6}$
$=\frac{10!}{6!\times 4!} \times \frac{(-3)^{6}}{2^{10}} \mathrm{x}^{4}$
So, the coefficient of $\mathrm{x}^{4}=105 \times \frac{729}{512}$

18. Question

Mark the correct alternative in the following :
The total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification is
A. 202
B. 51
C. 50
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(x+a)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{2 n-k} a^{k}$
$=\binom{2 n}{0} x^{2 n} a^{0}+\binom{2 n}{1} x^{2 n-1} a^{1}+\cdots+\binom{2 n}{99} x^{1} a^{99}+\binom{2 n}{2 n} x^{0} a^{2 n}$
$(\mathrm{x}-\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{2 \mathrm{n}}\binom{2 \mathrm{n}}{\mathrm{k}} \mathrm{x}^{2 \mathrm{n}-\mathrm{k}}(-\mathrm{a})^{\mathrm{k}}$
$=\binom{2 \mathrm{n}}{0} \mathrm{x}^{2 \mathrm{n}-0}(-\mathrm{a})^{0}+\binom{2 \mathrm{n}}{1} \mathrm{x}^{2 \mathrm{n}-1}(-\mathrm{a})^{1}+\cdots+\binom{2 \mathrm{n}}{99} x^{1}(-\mathrm{a})^{99}+\binom{2 \mathrm{n}}{2 \mathrm{n}} \mathrm{x}^{0}(-\mathrm{a})^{2 \mathrm{n}}$
$(x+a)^{100}+(x-a)^{100}$
$=\binom{2 n}{0} x^{2 n} a^{0}+\binom{2 n}{1} x^{2 n-1} a^{1}+\cdots+\binom{2 n}{99} x^{1} a^{99}+\binom{2 n}{2 n} x^{0} a^{2 n}+$
$\binom{2 \mathrm{n}}{0} \mathrm{x}^{2 \mathrm{n}-0}(-\mathrm{a})^{0}+\binom{2 \mathrm{n}}{1} \mathrm{x}^{2 \mathrm{n}-1}(-\mathrm{a})^{1}+\cdots+\binom{2 \mathrm{n}}{99} \mathrm{x}^{1}(-\mathrm{a})^{99}+\binom{2 \mathrm{n}}{2 \mathrm{n}} \mathrm{x}^{0}(-\mathrm{a})^{2 \mathrm{n}}$
$=2\left\{\binom{2 n}{0} x^{2 n} a^{0}+\binom{2 n}{2} x^{2 n-2} a^{2}+\cdots+\binom{2 n}{2 n} x^{0} a^{2 n}\right\}$
So odd powers of x cancel each other, we are left with even powers of x or say odd terms of expansion.
So total number of terms are $T_{1}, T_{3}, \ldots T_{99}, T_{101}$
$=\frac{1+101}{2}$
$=51$

19. Question

Mark the correct alternative in the following :
If $\mathrm{T}_{2} / \mathrm{T}_{3}$ in the expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$ and $\mathrm{T}_{3} / \mathrm{T}_{4}$ in the expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}+3}$ are equal, then $\mathrm{n}=$
A. 3
B. 4
C. 5
D. 6

Answer

Given:
$(\mathrm{x}+\mathrm{a})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} \mathrm{a}^{\mathrm{n}-\mathrm{k}^{\mathrm{k}}}$
$(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$
$\mathrm{T}_{2}=\binom{\mathrm{n}}{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}^{1} ; \mathrm{T}_{3}=\binom{\mathrm{n}}{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}$
$\frac{\mathrm{T} 1}{\mathrm{~T} 3}=\frac{\binom{\mathrm{n}}{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}^{1}}{\binom{\mathrm{n}}{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}}$
$=\frac{n!\times 2!\times(n-2)!\times a^{n} a^{-1} b}{n!\times 1!\times(n-1)!\times a^{n} a^{-2} b^{2}}$
$=\frac{2 \times(n-2)!\times a}{(n-1)(n-2)!\times b}$
$=\frac{2 \mathrm{a}}{(\mathrm{n}-1) \mathrm{b}}(1)$
$(a+b)^{n+3}=\sum_{k=0}^{n+3}\binom{n+3}{k} a^{n+3-k} b^{k}$
$\mathrm{T}_{3}=\binom{\mathrm{n}+3}{2} \mathrm{a}^{\mathrm{n}+3-2} \mathrm{~b}^{2} ; \mathrm{T}_{4}=\binom{\mathrm{n}+3}{3} \mathrm{a}^{\mathrm{n}+3-3} \mathrm{~b}^{3}$
$\frac{\mathrm{T} 3}{\mathrm{~T} 4}=\frac{\left(\begin{array}{c}\mathrm{n}+3\end{array}\right) \mathrm{a}^{\mathrm{n}+1} \mathrm{~b}^{2}}{\binom{\mathrm{n}+3}{3} \mathrm{a}^{\mathrm{n}} \mathrm{b}^{3}}$
$=\frac{n!\times 3!\times n!\times a^{n} a^{1} b^{2}}{n!\times 2!\times(n+1)!\times a^{n} b^{3}}$
$=\frac{3!\times n!\times a}{2!\times(n+1) n!\times b}$
$=\frac{3 \mathrm{a}}{(\mathrm{n}+1) \mathrm{b}}(2)$
Equating both equations:
$\frac{2 \mathrm{a}}{(\mathrm{n}-1) \mathrm{b}}=\frac{3 \mathrm{a}}{(\mathrm{n}+1) \mathrm{b}}$
$\Rightarrow 2(n+1)=3(n-1)$
$\Rightarrow 2 \mathrm{n}+2=3 \mathrm{n}-3$
$\Rightarrow n=5$

20. Question

Mark the correct alternative in the following
The coefficient of $\frac{1}{x}$ in the expansion of $(1+x)^{n}\left(1+\frac{1}{x}\right)^{n}$ is.
A. $\frac{n!}{\{(n-1)!(n+1)!\}}$
B. $\frac{(2 n)!}{[(n-1)!(n+1)!}$
C. $\frac{(2 n)!}{(2 n-1)!(2 n+1)!}$
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+\mathrm{x})^{\mathrm{n}}\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{n}}=\frac{(1+\mathrm{x})^{\mathrm{n}}(1+\mathrm{x})^{\mathrm{n}}}{\mathrm{x}^{\mathrm{n}}}$
$=\frac{(1+\mathrm{x})^{2 \mathrm{n}}}{\mathrm{x}^{\mathrm{n}}}$
$=\frac{1}{x^{n}} \sum_{\mathrm{k}=0}^{2 \mathrm{n}}\binom{2 \mathrm{n}}{\mathrm{k}} 1^{2 \mathrm{n}-\mathrm{k}_{\mathrm{X}} \mathrm{k}}$
For x^{-1};
$\Rightarrow \frac{x^{k}}{x^{n}}=x^{-1}$
$\Rightarrow x^{k-n}=x^{-1}$
$\Rightarrow k-n=-1$
$\Rightarrow \mathrm{k}=\mathrm{n}-1$
So, coefficient $=\frac{2 n!}{(n-1)!(n+1)!}$

21. Question

Mark the correct alternative in the following :
If the sum of the binomial coefficients of the expansion $\left(2 x+\frac{1}{x}\right)^{\mathrm{n}}$ is equal to 256 , then the term independent of x is
A. 1120
B. 1020
C. 512
D. None of these

Answer

Given:
Sum of binomial coefficients $=2^{\text {n }}$
$=256$
$\Rightarrow 2^{n}=2^{8}$
$\Rightarrow \mathrm{n}=8$
so total terms $=\mathrm{n}+1$
$=9$
Middle term $=5^{\text {th }}$ term; i.e. $\mathrm{k}=4$
So, term independent of $\mathrm{x}=\binom{8}{4}(2 \mathrm{x})^{8-4}\left(\frac{1}{\mathrm{x}}\right)^{4}$
$=\frac{8!}{4!\times 4!} 2^{4}$
$=1120$
22. Question

Mark the correct alternative in the following :
If the fifth term of the expansion $\left(a^{2 / 3}+a^{-1}\right)^{n}$ does not contain ' a^{\prime}. Then n is equal to
A. 2
B. 5
C. 10
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(a^{\frac{2}{3}}+a^{-1}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(a^{\frac{2}{3}}\right)^{n-k}\left(a^{-1}\right)^{k}$
$=\sum_{k=0}^{n}\binom{n}{k} a^{\frac{2(n-k)}{3}-k}$
Term 5 ; i.e. $\mathrm{k}=4$:
$a^{\frac{2(n-k)}{3}-k}=a^{0}$
$\frac{2(n-4)-3(4)}{3}=0$
$\Rightarrow 2 n-8-12=0$
$\Rightarrow \mathrm{n}=10$

23. Question

Mark the correct alternative in the following :
The coefficient of x^{-3} in the expansion of $\left(x-\frac{m}{x}\right)^{11}$ is
A. $-924 \mathrm{~m}^{7}$
B. $-792 \mathrm{~m}^{5}$
C. $-792 \mathrm{~m}^{6}$
D. $-330 m^{7}$

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(x-\frac{m}{x}\right)^{11}=\sum_{k=0}^{11}\binom{11}{k} x^{11-k}\left(\frac{-m}{x}\right)^{k}$
$=\sum_{k=0}^{11}\binom{11}{k} x^{11-k}(-m)^{k} x^{-k}$
$\Rightarrow \mathrm{x}^{11-\mathrm{k}-\mathrm{k}}=\mathrm{x}^{-3}$
$\Rightarrow 11-2 \mathrm{k}=-3$
$\Rightarrow 14-2 \mathrm{k}=0$
$\Rightarrow k=7$
for $k=7$; coefficient is:
$=\frac{11!}{7!\times 4!}(-m)^{7}$
$=-330 \mathrm{~m}^{7}$

24. Question

Mark the correct alternative in the following :
The coefficient of the term independent of x in the expansion of $\left(\frac{a x+\frac{b}{x}}{)^{14}}\right.$ is
A. $14!a^{7} b^{7}$
B. $\frac{14!}{7!} a^{7} b^{7}$
C. $\frac{14!}{(7!)^{2}} a^{7} b^{7}$
D. $\frac{14!}{(7!)^{3}} a^{7} b^{7}$

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(a x+\frac{b}{x}\right)^{14}=\sum_{k=0}^{14}\binom{14}{k}(a x)^{14-k}\left(\frac{b}{x}\right)^{k}$
$=\sum_{k=0}^{14}\binom{14}{k} a^{14-k} b^{k} x^{14-k} x^{-k}$
$\mathrm{x}^{14-\mathrm{k}-\mathrm{k}}=\mathrm{x}^{0}$
$14-2 \mathrm{k}=0$
$k=7$
So, the coefficient is:
$=\frac{14!}{7!\times 7!} a^{7} b^{7}$

25. Question

Mark the correct alternative in the following :
The coefficient of X^{5} in the expansion of $(1+\mathrm{x})^{21}+(1+\mathrm{x})^{22}+\ldots+(1+\mathrm{x})^{30}$ is.
A. ${ }^{51} \mathrm{C}_{5}$
B. ${ }^{9} \mathrm{C}_{5}$
C. ${ }^{31} \mathrm{C}_{6}-{ }^{21} \mathrm{C}_{6}$
D. ${ }^{30} \mathrm{C}_{5}+{ }^{20} \mathrm{C}_{5}$

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$(1+x)^{21}+(1+x)^{22}+\ldots+(1+x)^{30}$
Coefficient of x^{5} in any expansion $=\binom{n}{5} 1^{n-5} x^{5}$; i.e. ${ }^{n} C_{5}$
So, coefficient of x^{5} in above expansion $={ }^{21} C_{5}+{ }^{22} C_{5}+{ }^{23} C_{5}+\ldots+{ }^{30} C_{5}$

26. Question

Mark the correct alternative in the following
The coefficient of $x^{8} y^{10}$ in the expansion $(x+y)^{18}$ is.
A. ${ }^{18} \mathrm{C}_{8}$
B. ${ }^{18} \mathrm{P}_{10}$
C. 2^{18}
D. None of these

Answer

Given:
$(x+y)^{18}=\sum_{k=0}^{18}\binom{18}{k} x^{18-k y^{k}}$
For $x^{8} y^{10} ; k=10$
So coefficient is ${ }^{18} \mathrm{C}_{10}$
Also ${ }^{18} \mathrm{C}_{10}={ }^{18} \mathrm{C}_{8}$

So coefficient $={ }^{18} \mathrm{C}_{8}$

27. Question

Mark the correct alternative in the following :
If the coefficients of the $(\mathrm{n}+1)^{\text {th }}$ term and the $(\mathrm{n}+3)^{\text {th }}$ term in the expansion of $(1+\mathrm{x})^{20}$ are equal, then the value of n is
A. 10
B. 8
C. 9
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$(1+x)^{20}=\sum_{k=0}^{20}\binom{20}{k} 1^{20-k_{x}}$
For nth term ; k=n-1
So for $(\mathrm{n}+1)$ th term ; $\mathrm{k}=\mathrm{n}$
\& for $(n+3)$ th term ; $k=n+2$
Coefficients for the above terms are equal;
$\frac{20!}{n!(20-n)!}=\frac{20!}{(n+2)!(18-n)!}$
$\frac{1}{n!\times(20-n)(19-n)(18-n)!}=\frac{1}{(n+2)(n+1) n!\times(18-n)!}$
$(20-n)(19-n)=(n+2)(n+1)$
$380-39 n+n^{2}=n^{2}+3 n+2$
$42 n-378=0$
$\mathrm{n}=9$

28. Question

Mark the correct alternative in the following :
If the coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion of $(1+\mathrm{x})^{\mathrm{n}}, \mathrm{n} \in \mathrm{N}$ are in A.P., then $\mathrm{n}=$
A. 7
B. 14
C. 2
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(1+\mathrm{x})^{\mathrm{n}}=\sum_{\mathrm{k}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}} 1^{\mathrm{n}-\mathrm{k} \mathrm{X}^{\mathrm{k}}}$
$\mathrm{T}_{2}=\binom{\mathrm{n}}{1} 1^{\mathrm{n}-1} \mathrm{x}^{1} ; \mathrm{T}_{3}=\binom{\mathrm{n}}{2} 1^{\mathrm{n}-2} \mathrm{X}^{2} \& \mathrm{~T}_{4}=\binom{\mathrm{n}}{3} 1^{\mathrm{n}-3} \mathrm{X}^{3}$
Since $T_{2}, T_{3} \& T_{4}$ are in AP
Then; $2\left(T_{3}\right)=T_{2}+T_{4}$
i.e. $\binom{n}{1} 1^{n-1} x^{1}+\binom{n}{3} 1^{n-3} x^{3}=2 \times\binom{ n}{2} 1^{n-2} x^{2}$
$\frac{n!}{1!(n-1)!}+\frac{n!}{3!(n-3)!}=2 \times \frac{n!}{2!(n-2)!}$
$\frac{1}{1!(n-1)(n-2)(n-3)!}+\frac{1}{3!(n-3)!}=2 \times \frac{1}{2!(n-2)(n-3)!}$
$\frac{1}{(n-1)(n-2)}+\frac{1}{6}=\frac{1}{(n-2)}$
$\frac{1}{(n-1)(n-2)}+\frac{1}{6}-\frac{1}{(n-2)}=0$
$\frac{6}{6(n-1)(n-2)}+\frac{(n-1)(n-2)}{6(n-1)(n-2)}-\frac{6(n-1)}{6(n-1)(n-2)}=0$
$(n-1)(n-2)-6(n-1)+6=0$
$n^{2}-3 n+2-6 n+6+6=0$
$n^{2}-9 n+14=0$
$(n-2)(n-7)=0$
$n=2,7$
$\mathrm{n}=2$ rejected for term $3^{\text {rd }}$
So $n=7$

29. Question

Mark the correct alternative in the following :
The middle term in the expansion of $\left(\frac{2 \mathrm{x}}{3}-\frac{3}{2 \mathrm{x}^{2}}\right)^{2 \mathrm{n}}$ is.
A. ${ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
B. $(-1)^{\mathrm{n}}{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{X}^{-\mathrm{n}}$
C. ${ }^{2 n} \mathrm{C}_{\mathrm{n}} \mathrm{X}^{-\mathrm{n}}$
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$\left(\frac{2 \mathrm{x}}{3}-\frac{3}{2 \mathrm{x}^{2}}\right)^{2 \mathrm{n}}=\sum_{\mathrm{k}=0}^{2 \mathrm{n}}\binom{2 \mathrm{n}}{\mathrm{k}}\left(\frac{2 \mathrm{x}}{3}\right)^{2 \mathrm{n}-\mathrm{k}}\left(\frac{-3}{2 \mathrm{x}^{2}}\right)^{\mathrm{k}}$
For middle term,
$\mathrm{T}_{\mathrm{n}}=\binom{2 \mathrm{n}}{\mathrm{n}}\left(\frac{2 \mathrm{x}}{3}\right)^{2 \mathrm{n}-\mathrm{k}=\frac{2 \mathrm{n}}{2}=\mathrm{nn}}\left(\frac{-3}{2 \mathrm{x}^{2}}\right)^{\mathrm{n}}$
$=\binom{2 \mathrm{n}}{\mathrm{n}}\left(\frac{2}{3}\right)^{\mathrm{n}}\left(\frac{3}{2}\right)^{\mathrm{n}}(-1)^{\mathrm{n}} \mathrm{X}^{\mathrm{n}} \mathrm{X}^{-2 \mathrm{n}}$
$=\binom{2 \mathrm{n}}{\mathrm{n}}(-1)^{\mathrm{n}} \mathrm{X}^{-\mathrm{n}}$
$=(-1)^{n}{ }^{2 n} C_{n} x^{-n}$
30. Question

Mark the correct alternative in the following :
If $r^{\text {th }}$ term is the middle term in the expansion of $\left(x^{2}-\frac{1}{2 x}\right)^{20}$, then $(r+3)^{\text {th }}$ term is
A. ${ }^{20} \mathrm{C}_{14}\left(\frac{\mathrm{x}}{2^{14}}\right)$
B. ${ }^{20} \mathrm{C}_{12} \mathrm{x}^{2} 2^{-12}$
C. $-{ }^{20} \mathrm{C}_{7}$ x. 22^{-13}
D. None of these

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(x^{2}-\frac{1}{2 x}\right)^{20}=\sum_{k=0}^{20}\binom{20}{k}\left(x^{2}\right)^{20-k}\left(\frac{-1}{2 x}\right)^{k}$
Total terms $=\mathrm{n}+1=21$
Mid term $=21 / 2=11^{\text {th }}$ term
For $\mathrm{k}=10$, it is rth term.
So $(r+3)$ th term $=11^{\text {th }}$ term
$k=13$
$\mathrm{T}_{14}=\binom{20}{13}\left(\mathrm{x}^{2}\right)^{20-13}\left(\frac{-1}{2 \mathrm{x}}\right)^{13}$
$=\binom{20}{13}\left(x^{2}\right)^{7}\left(\frac{-1}{2}\right)^{13} x^{-13}$
$=\binom{20}{13}\left(\frac{-1}{2}\right)^{13} \mathrm{x}^{-13} \mathrm{x}^{14}$
$={ }^{20} C_{13} \times .2^{-13}$
$={ }^{20} C_{7}$ x. 2^{-13}

31. Question

Mark the correct alternative in the following :
The number of terms with integral coefficients in the expansion of $\left(17^{1 / 3}+35^{1 / 2} \mathrm{x}\right)^{600}$ is
A. $2 n$
B. 50
C. 150
D. 101

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(17^{\frac{1}{3}}+35^{\frac{1}{2}} \mathrm{x}\right)^{600}=\sum_{k=0}^{600}\binom{600}{k}\left(17^{1 / 3}\right)^{600-k}\left(35^{1 / 2} x\right)^{k}$
For integral coefficients; (600-k) should be divisible by 3 and k should be disable bye 2 .
It indicates that k should be multiple of 6 .
So, the values of k would be $=6,12,18 \ldots, 594,600$

32. Question

Mark the correct alternative in the following :
Constant term in the expansion of $\left(x-\frac{1}{x}\right)^{10}$ is
A. 152
B. -152
C. -252
D. 252

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
$\left(x-\frac{1}{x}\right)^{10}=\sum_{k=0}^{10}\binom{10}{k} x^{10-k}\left(\frac{-1}{x}\right)^{k}$
$=\sum_{k=0}^{10}\binom{10}{k} x^{10-k}(-1)^{k} x^{-k}$
For constant term,
$\mathrm{x}^{10-\mathrm{k}-\mathrm{k}}=\mathrm{x}^{0}$
$10-2 k=0$
$k=5$
Term $=\binom{10}{5} \mathrm{x}^{10-5}(-1)^{5} \mathrm{X}^{-5}$
$=-252$

33. Question

Mark the correct alternative in the following :
If the coefficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are the same, then the value of a is.
A. $-\frac{7}{9}$
B. $-\frac{9}{7}$
C. $\frac{7}{9}$
D. $\frac{9}{7}$

Answer

Given:
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k a^{k}}$
$(3+a x)^{9}=\sum_{\mathrm{k}=0}^{9}\binom{9}{\mathrm{k}} 3^{9-\mathrm{k}}(\mathrm{ax})^{\mathrm{k}}$
Coefficient of $x^{2} ; k=2$
$=\binom{9}{2} 3^{9-2} a^{2}$
$=\binom{9}{2} 3^{7} a^{2}(1)$
Coefficient of $x^{3} ; k=3$
$=\binom{9}{3} 3^{9-3} a^{3}$
$=\binom{9}{3} 3^{6} \mathrm{a}^{3}(2)$

Equate both equations;

$$
\begin{aligned}
& \binom{9}{2} 3^{7} a^{2}=\binom{9}{3} 3^{6} a^{3} \\
& \frac{9!}{2!\times 7!} \times 3=\frac{9!}{3!\times 6!} a \\
& \frac{1}{7} \times 3=\frac{1}{3} a \\
& \frac{9}{7}=a
\end{aligned}
$$

