17. Understanding Shapes-III (Special Types of Quadrilaterales)

Exercise 17.1

1. Question

Given below is a parallelogram $A B C D$. Complete each statement along with the definition or property used.
(i) $A D=$ (ii) $\angle D C B=$
(iii) $O C=$ (iv) $\angle D A B+\angle C D A=$

Fig. 17.21

Answer

(i) $A D=\mathrm{BC}$ [In a parallelogram diagonals bisect each other]
(ii) $\angle D C B=\angle B A D$ [alternate interior angles are equal]
(iii) $O C=O A$ [In a parallelogram diagonals bisect each other]
(iv) $\angle D A B+\angle C D A=180^{\circ}$ [Sum of adjacent angles in a parallelogram is 180°]

2. Question

The following figures are parallelograms. Find the degree values of the unknowns x, y, z.

(i)

(ii)

(vi)

Answer

(i) $\angle A B C=\angle Y=100^{\circ}$ [In a parallelogram opposite angles are equal]
$\angle x+\angle Y=180^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$\angle x+100^{\circ}=180^{\circ}$
$\angle x=180^{\circ}-100^{\circ}$
$\angle x=80^{\circ}$
$\angle x=\angle z=80^{\circ}$ [In a parallelogram opposite angles are equal]
(ii) $\angle P S R+\angle Y=180^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$\angle Y+50^{\circ}=180^{\circ}$
$\angle Y=180^{\circ}-50^{\circ}$
$\angle Y=130^{\circ}$
$\angle x=\angle Y=130^{\circ}$ [In a parallelogram opposite angles are equal]
$\angle P S R=\angle P Q R=50^{\circ}$ [In a parallelogram opposite angles are equal]
$\angle P Q R+\angle Z=180^{\circ}$ [Linear pair]
$50^{\circ}+\angle Z=180^{\circ}$
$\angle Z=180^{\circ}-50^{\circ}$
$\angle Z=130^{\circ}$
(iii) In $\mathbf{\Delta P M N}$
$\angle M P N+\angle P M N+\angle P N M=180^{\circ}$ [Sum of all the angles of a triangle is 180°]
$30^{\circ}+90^{\circ}+\angle z=180^{\circ}$
$\angle z=180^{\circ}-120^{\circ}$
$\angle z=60^{\circ}$
$\angle y=\angle z=60^{\circ}$ [In a parallelogram opposite angles are equal]
$\angle z=180^{\circ}-120^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$\angle z=60^{\circ}$
$\angle z+\angle N M L=180^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$60^{\circ}+90^{\circ}+\angle x=180^{\circ}$
$\angle x=180^{\circ}-150^{\circ}$
$\angle x=30^{\circ}$
(iv) $\angle x=90^{\circ}$ [vertically opposite angles are equal]

In \triangle DOC

$\angle x+\angle y+30^{\circ}=180^{\circ}$ [Sum of all the angles of a triangle is 180°]
$90^{\circ}+30^{\circ}+\angle y=180^{\circ}$
$\angle y=180^{\circ}-120^{\circ}$
$\angle y=60^{\circ}$
$\angle y=\angle z=60^{\circ}$ [alternate interior angles are equal]
(v) $\angle x+\angle P O R=180^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$\angle x+80^{\circ}=180^{\circ}$
$\angle x=180^{\circ}-80^{\circ}$
$\angle x=100^{\circ}$
$\angle y=80^{\circ}$ [In a parallelogram opposite angles are equal]
$\angle Q R S=\angle x=100^{\circ}$
$\angle Q R S+\angle Z=180^{\circ}$ [Linear pair]
$100^{\circ}+\angle Z=180^{\circ}$
$\angle Z=180^{\circ}-100^{\circ}$
$\angle Z=80^{\circ}$
(vi) $\angle y=112^{\circ}$ [In a parallelogram opposite angles are equal]
$\angle y+\angle T U V=180^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$\angle z+40^{\circ}+112^{\circ}=180^{\circ}$
$\angle z=180^{\circ}-152^{\circ}$
$\angle z=28^{\circ}$
$\angle z=\angle x=28^{\circ}$ [alternate interior angles are equal]

3. Question

Can the following figures be parallelograms? Justify your answer.

(i)

(ii)

(iii)
Fig. 17.23

Answer

(i) No, In a parallelogram opposite angles are equal.
(ii) Yes, In a parallelogram opposite sides are equal and parallel.
(iii) No, In a parallelogram diagonals bisect each other.

4. Question

In the adjacent figure $H O P E$ is a parallelogram. Find the angle measures x, y and z. State the geometrical truths you use to find them.

Fig. 17.24

Answer

$\angle H O P+70^{\circ}=180^{\circ}$ [Linear pair]
$\angle H O P=180^{\circ}-70^{\circ}$
$\angle H O P=110^{\circ}$
$\angle H O P=\angle x=110^{\circ}$ [In a parallelogram opposite angles are equal]
$\angle x+\angle z+40^{\circ}=180^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$110^{\circ}+\angle z+40^{\circ}=180^{\circ}$
$\angle z=180^{\circ}-150^{\circ}$
$\angle z=30^{\circ}$
$\angle z+\angle y=70^{\circ}$
$\angle y+30^{\circ}=70^{\circ}$
$\angle y=70^{\circ}-30^{\circ}$
$\angle y=40^{\circ}$

5. Question

In the following figures GUNS and RUNS are parallelograms. Find x and y.
(i)

(ii)

Fig. 17.25

Answer

(i) $3 y-1=26$ [In a parallelogram opposite sides are of equal length]
$3 y=26+1$
$\mathrm{Y}=\frac{27}{3}=9$
$Y=9$ units
$3 x=18$ [In a parallelogram opposite sides are of equal length]
$x=\frac{18}{3}=6$
$x=6$ units
(ii) y-7=20 [In a parallelogram diagonals bisect each other]
$y=20+7$
$Y=27$ units
$x-y=16$ [In a parallelogram diagonals bisect each other]
$x-27=16$
$x=16+27=43$ units

6. Question

In the following figure RISK and CLUE are parallelograms. Find the measure of x.

Fig. 17.26

Answer

In parallelogram RISK
$\angle S K R+\angle I S K=180^{\circ}$ [In a parallelogram sum of the adjacent angles is equal to 180°]
$120^{\circ}+\angle I S K=180^{\circ}$
$\angle I S K=180^{\circ}-120^{\circ}$
$\angle z=60^{\circ}$
In parallelogram CLUE
$\angle U E C=\angle z=70^{\circ}$ [In a parallelogram opposite angles are equal]
In $\triangle \mathrm{EOS}$
$70^{\circ}+\angle x+60^{\circ}=180^{\circ}$ [Sum of angles of a triangles is 180°]
$\angle x=180^{\circ}-130^{\circ}$
$\angle x=50^{\circ}$

7. Question

Two opposite angles of a parallelogram are $(3 x-2)^{\circ}$ and $(50-x)^{\circ}$. Find the measure of each angle of the parallelogram.

Answer

We know that opposite angles of a parallelogram are equal.
Therefore $(3 x-2)^{\circ}=(50-x)^{\circ}$
$3 x-2^{\circ}=50^{\circ}-x$
$3 x^{\circ}+x=50^{\circ}+2^{\circ}$
$4 x=52^{\circ}$
$x=\frac{52^{\circ}}{4}=13^{\circ}$
Measure of opposite angles are: $3 x-2=3 \times 13^{\circ}-2=37^{\circ}$
$(50-x)^{\circ}=50-13=37^{\circ}$
Sum of adjacent angles $=180^{\circ}$
Other two angles are $180^{\circ}-37^{\circ}=143^{\circ}$ each

8. Question

If an angle of a parallelogram is two-third of its adjacent angle, find the angles of the parallelogram.

Answer

Let one of the adjacent angle is x°
Therfore other adjacent angle $=\frac{2 x^{0}}{3}$
Sum of adjacent angles $=180^{\circ}$
$x^{\circ}+\frac{2 x^{\circ}}{3}=180^{\circ}$
$\frac{3 x^{\circ}+2 x^{\circ}}{3}=180^{\circ}$
$\frac{5 x^{\circ}}{3}=180^{\circ}$
$x^{\circ}=\frac{180^{\circ} \times 3}{5}$
$x^{\circ}=108^{\circ}$
Other angle $=180^{\circ}-108^{\circ}=72^{\circ}$
Therefore angles of the parallelograms are $72^{\circ}, 72^{\circ}, 108^{\circ}$ and 108°

9. Question

The measure of one angle of a parallelogram is 70°. What are the measures of the remaining angles?

Answer

Let one of the adjacent angle is x°
Therfore other adjacent angle $=70^{\circ}$

Sum of adjacent angles $=180^{\circ}$
$x^{\circ}+70^{\circ}=180^{\circ}$
$x^{\circ}=180^{\circ}-70^{\circ}$
$x^{\circ}=110^{\circ}$
Therefore angles of the parallelograms are $70^{\circ}, 70^{\circ}, 110^{\circ}$ and 110°

10. Question

Two adjacent angles of a parallelogram are as $1: 2$. Find the measures of all the angles of the parallelogram.

Answer

Let one of the adjacent angles are x°
Therfore adjacent angles are $=x^{\circ}$ and $2 x^{\circ}$
Sum of adjacent angles $=180^{\circ}$
$x^{\circ}+2 x^{\circ}=180^{\circ}$
$3 x^{\circ}=180^{\circ}$
$x^{\circ}=\frac{180^{\circ}}{3}$
$x^{\circ}=60^{\circ}$
Other angle $=180^{\circ}-60^{\circ}=120^{\circ}$
Therefore angles of the parallelograms are $60^{\circ}, 60^{\circ}, 120^{\circ}$ and 120°

11. Question

In a parallelogram $A B C D, \angle D=135^{\circ}$, determine the measure of $\angle A$ and $\angle B$.

Answer

Let one of the adjacent angle $\angle D=135^{\circ}$
Therfore other adjacent angle $\angle A=x^{\circ}$
Sum of adjacent angles $=180^{\circ}$
$x^{\circ}+135^{\circ}=180^{\circ}$
$x^{\circ}=180^{\circ}-135^{\circ}$
$\angle A=x^{\circ}=45^{\circ}$

$\angle A=\angle C=45^{\circ}$ and $\angle D=\angle B=135^{\circ}$ [Measure of opposite angles of a parallelogram are equal]

12. Question

$A B C D$ is a parallelogram in which $\angle A=70^{\circ}$. Compute $\angle B, \angle C$ and $\angle D$.

Answer

Let one of the adjacent angle $\angle A=70^{\circ}$
Therfore other adjacent angle $\angle B=\mathrm{x}^{\circ}$
Sum of adjacent angles $=180^{\circ}$
$x^{\circ}+70^{\circ}=180^{\circ}$
$x^{\circ}=180^{\circ}-70^{\circ}$
$\angle B=x^{\circ}=110^{\circ}$
$\angle A=\angle C=70^{\circ}$ and $\angle D=\angle B=110^{\circ}$ [Measure of opposite angles of a parallelogram are equal]

13. Question

The sum of two opposite angles of a parallelogram is 130°. Find all the angles of the parallelogram.

Answer

Let one of the adjacent angle $\angle A=130^{\circ}$
Therfore other adjacent angle $\angle B=\mathrm{x}^{\circ}$
Sum of adjacent angles $=180^{\circ}$
$x^{\circ}+130^{\circ}=180^{\circ}$
$x^{\circ}=180^{\circ}-130^{\circ}$
$\angle B=x^{\circ}=50^{\circ}$

$\angle A=\angle C=130^{\circ}$ and $\angle D=\angle B=70^{\circ}$ [Measure of opposite angles of a parallelogram are equal]

14. Question

All the angles of a quadrilateral are equal to each other. Find the measure of each. Is the quadrilateral a parallelogram? What special type of parallelogram is it?

Answer

Let each angle of parallelogram $\mathrm{ABCD}=\mathrm{x}^{\circ}$
Sum of all the angles $=360^{\circ}$
$x^{\circ}+x^{\circ}+x^{\circ}+x^{\circ}=360^{\circ}$
$4 x^{\circ}=360^{\circ}$
$x^{\circ}=\frac{360^{\circ}}{4}=90^{\circ}$

Therfore each angle of the parallelogram is equal to 90°
Yes, this quadrilateral is a parallelogram. Aparallelogram with each angle equal to 90° is a rectangle.

15. Question

Two adjacent sides of a parallelogram are 4 cm and 3 cm respectively. Find its perimeter.

Answer

We know that opposite sides of a parallelogram are equal and parallel.
Perimeter $=$ Sum of all sides
Perimeter $=4+3+4+3=14 \mathrm{~cm}$

16. Question

The perimeter of a parallelogram is 150 cm . One of its sides is greater than the other by 25 cm . Find the length of the sides of the parallelogram.

Answer

Perimeter of the parallelogram $=150 \mathrm{~cm}$
Let one of the sides $=x \mathrm{~cm}$
Other side $=(x+25) \mathrm{cm}$
We know that opposite sides of a parallelogram are equal and parallel.
Perimeter $=$ Sum of all sides
$x+x+25+x+x+25=150$
$4 x+50=150$
$4 x=150-50$
$x=\frac{100}{4}=25$
Therefore sides of the parallelogram are 25 cm and 50 cm .

17. Question

The shorter side of a parallelogram is 4.8 cm and the longer side is half as much again as the shorter side. Find the perimeter of the parallelogram.

Answer

Shorter side of the parallelogram $=4.8 \mathrm{~cm}$
Longer side of the parallelogram $=4.8+\frac{4.9}{2}$
$=4.8+2.4=7.2 \mathrm{~cm}$
We know that opposite sides of a parallelogram are equal and parallel.
Perimeter $=$ Sum of all sides
Perimeter of the parallelogram $=4.8+7.2+4.8+7.2=24 \mathrm{~cm}$
Therefore perimeter of the parallelogram 24 cm .

18. Question

Two adjacent angles of a parallelogram are $(3 x-4)^{\circ}$ and $(3 x+10)^{\circ}$. Find the angles of the parallelogram.

Answer

We know that sum of the adjacent angles of a parallelogram $=180^{\circ}$
$(3 x-4)^{\circ}+(3 x+10)^{\circ}=180^{\circ}$
$3 x^{\circ}-4^{\circ}+3 x^{\circ}+10^{\circ}=180^{\circ}$
$6 x^{\circ}=180^{\circ}-6^{\circ}$
$x=\frac{174^{\circ}}{6}=29^{\circ}$
Measure of one angle: $3 x-4=3 \times 29^{\circ}-4=83^{\circ}$
Measure of other angle $=(3 x+10)^{\circ}=3 \times 29+10=97^{\circ}$
Therefore angles of the parallelogram are $83^{\circ} 83^{\circ}, 97^{\circ}$ and 97°

19. Question

In a parallelogram $A B C D$, the diagonals bisect each other at O. If $\angle A B C=30^{\circ}, \angle B D C=10^{\circ}$ and $\angle C A B=70^{\circ}$. Find:
$\angle D A B, \angle A D C, \angle B C D, \angle A O D, \angle D O C, \angle B O C, \angle A O B, \angle A C D, \angle C A B, \angle A D B, \angle A C B, \angle D B C$, and $\angle D B A$.

Answer

$\angle A B C=\angle A D C=30^{\circ}$ [Measure of opposite angles is equal in a parallelogram]
$\angle B D C=10^{\circ}$ given
$\angle B D A=30^{\circ}-10^{\circ}=20^{\circ}$
$\angle D A B=180^{\circ}-30^{\circ}=150^{\circ}$
$\angle B C D=\angle D A B=150^{\circ}$ [Measure of opposite angles is equal in a parallelogram]
$\angle D B A=\angle B D C=10^{\circ}$ [Alternate interior angles are equal]
In $\triangle D O C$
$\angle B D C+\angle A C D+\angle D O C=180^{\circ}$ [Sum of all angles og a triangle is 180°]
$10^{\circ}+70^{\circ}+\angle D O C=180^{\circ}$
$\angle D O C=180^{\circ}-80^{\circ}$
$\angle D O C=100^{\circ}$
$\angle D O C=\angle A O B=100^{\circ}$ [Vertically opposite angles are equal]
$\angle D O C+\angle A O D=180^{\circ}$ [Linear pair]
$100^{\circ}+\angle A O D=180^{\circ}$
$\angle A O D=180^{\circ}-100^{\circ}$
$\angle A O D=80^{\circ}$
$\angle A O D=\angle B O C=80^{\circ}$ [Vertically opposite angles are equal]
$\angle A B C+\angle B C D=180^{\circ}$ [In a parallelogram sum of adjacent angles is 180°]
$30^{\circ}+\angle A C B+\angle A C D=180^{\circ}$
$30^{\circ}+\angle A C B+70^{\circ}=180^{\circ}$
$\angle A C B=180^{\circ}-100^{\circ}$
$\angle A C B=80^{\circ}$
$\angle A C B=\angle A C B=80^{\circ}$ [Alternate interior angles are equal]

20. Question

Find the angles marked with a question mark shown in Fig. 17.27

Fig. 17.27

Answer

In $\triangle B E C$
$\angle B E C+\angle E C B+\angle C B C=180^{\circ}$ [Sum of angles of a triangle is 180°]
$90^{\circ}+40^{\circ}+\angle C B C=180^{\circ}$
$\angle C B C=180^{\circ}-130^{\circ}$
$\angle C B C=50^{\circ}$
$\angle B=\angle D=50^{\circ}$ [Opposite angles of a parallelogram are equal]
$\angle A+\angle B=180^{\circ}$ [Sum of adjacent angles of a triangle is 180°]
$\angle A+50^{\circ}=180^{\circ}$
$\angle A=180^{\circ}-50^{\circ}$
$\angle A=130^{\circ}$
In \triangle DFC
$\angle D F C+\angle F C D+\angle C D F=180^{\circ}$ [Sum of angles of a tríangle is 180°]
$90^{\circ}+\angle F C D+50^{\circ}=180^{\circ}$
$\angle F C D=180^{\circ}-140^{\circ}$
$\angle F C D=40^{\circ}$
$\angle A=\angle C=130^{\circ}$ [Opposite angles of a parallelogram are equal]
$\angle C=\angle F C E+\angle B C E+\angle F C D$
$\angle D C F+40^{\circ}+40^{\circ}=130^{\circ}$
$\angle D C F=130^{\circ}-80^{\circ}$
$\angle D C F=50^{\circ}$

21. Question

The angle between the altitudes of a parallelogram, through the same vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.

Answer

Given $A B C D$ is a parallelogram in which $D P \perp A B$ and $A Q \perp B C$.Given $\angle P D Q=60^{\circ}$ In quad. $D P B Q \angle P D Q+\angle D P B$ $+\angle B+\angle B Q D=360^{\circ}$ [Sum of all the angles of a Quad is $\left.360^{\circ}\right] 60^{\circ}+90^{\circ}+\angle B+90^{\circ}=360^{\circ} \angle B=360^{\circ}-$
240° Therefore, $\angle \mathrm{B}=120^{\circ} \mathrm{But} \angle \mathrm{B}=\angle \mathrm{D}=120^{\circ}$ [Opposite angles of parallelogram are equal] $\angle \mathrm{B}+\angle \mathrm{C}=$ 180° [Sum of adjacent interior angles in a parallelogram is 180°] $120^{\circ}+\angle \mathrm{C}=180^{\circ} \angle \mathrm{C}=180^{\circ}-120^{\circ}=$ 60° Therefore, $\angle \mathrm{A}=\angle \mathrm{C}=70^{\circ}$ (Opposite angles of parallelogram are equal)

22. Question

In Fig. 17.28, $A B C D$ and $A E F G$ are parallelograms. If $\angle C=55^{\circ}$, what is the measure of $\angle F$? Figure

Fig. 17.28

Answer

In parallelogram ABCD
$\angle C=\angle A=55^{\circ}$ [In a parallelogram opposite angles are equal]
In parallelogram AEFG
$\angle A=\angle F=55^{\circ}$ [In a parallelogram opposite angles are equal]

23. Question

In Fig. 17.29, $B D E F$ and $D C E F$ are each a parallelogram. Is it true that $B D=D C$? Why or why not?

Answer

In parallelogram BDEF
$B D=E F$ \qquad (i) [In a parallelogram opposite sides are equal]

In parallelogram DCEF
$D C=E F$ \qquad (ii) [In a parallelogram opposite sides are equal]

From equations (i) and (ii), we get
$B D=E F=D C$
Hence, BD = DC Proved

24. Question

In Fig. 17.29, suppose it is known that $D E=D F$. Then, is $\triangle A B C$ isosceles? Why or why not?

Answer

In parallelogram BDEF
$B D=E F$ and $B F=D E \ldots \ldots$....(i) [In a parallelogram opposite sides are equal]
In parallelogram DCEF
$D C=E F$ and $D F=C E \ldots \ldots$. (ii) [In a parallelogram opposite sides are equal]
In parallelogram AFDE
$A F=D E$ and $D F=A E$ \qquad (ii) [In a parallelogram opposite sides are equal]

Therefore $D E=A F=B F$ \qquad
Similarly: $D F=C E=A E$
But, DE = DF \qquad given

From equations (iv) and (v), we get
$A F+B F=A E+E C$
$A B=A C$
Therefore $\triangle \mathrm{ABC}$ is an isosceles triangle.

25. Question

Diagonals of parallelogram $A B C D$ intersect at O as shown in Fig. 17.30. $X Y$ contains O, and x, Y are points on opposite sides of the parallelogram. Give reasons for each of the following:

Fig. 17.30

Answer

(i) $O B=O D$
$O B=O D$ [In a parallelogram diagonals bisect each other]
(ii) $\angle O B Y=\angle O D X$ [Alternate interior angles are equal]
(iii) $\angle B O Y=\angle D O X$ [Vertically opposite angles are equal]
(iv) $\triangle B O Y \cong \triangle D O X$

In $\triangle B O Y$ and $\triangle D O X$
$O B=O D$ [In a parallelogram diagonals bisect each other]
$\angle O B Y=\angle O D X$ [Alternate interior angles are equal]
$\angle B O Y=\angle D O X$ [Vertically opposite angles are equal]
$\triangle B O Y \cong \triangle D O X$ [ASA rule]
Now, state if $X Y$ is bisected at O.
Hence OX = OY [Corresponding parts of congruent triangles]
26. Question

In Fig. 17.31, $A B C D$ is a parallelogram, $C E$ bisects $\angle C$ and $A F$ bisects $\angle A$. In each of the following, if the statement is true, give a reason for the same.

Fig. 17.31

Answer

(i) $\angle A=\angle C$

True,
$\angle C=\angle A=55^{\circ}$ [In a parallelogram opposite angles are equal]
(ii) $\angle F A B=\frac{1}{2} \angle A$

True,
AF is the angle bisectoe of angle A
(iii) $\angle D C E=\frac{1}{2} \angle C$

True,
$C E$ is the angle bisectoe of angle A
(iv) $\angle C E B=\angle F A B$

True,
$\angle C=\angle A$ [In a parallelogram opposite angles are equal]
$\frac{1}{2} \angle C=\frac{1}{2} \angle A$ [AF and CE are angle bisectors]
(v) $C E \| A F$

True, Since one pair of opposite angles are equal, therefore Quad AEFC is aparallelogram.

27. Question

Diagonals of a parallelogram $A B C D$ intersect at O. $A L$ and $C M$ are drawn perpendiculars to $B D$ such that L and M lie on $B D$. Is $A L=C M$? Why or why not?

Answer

$A L$ and $C M$ are perpendiculars on diagonal BD.
$A L=C M$ [In a parallelogram length of perpendiculars drawn on diagonal from opposite vertices are equal]

28. Question

Points E and F lie on diagonals $A C$ of a parallelogram $A B C D$ such that $A E=C F$. What type of quadrilateral is BFDE?

Answer

In parallelogram $A B C D$:
$A B=C D$ \qquad (i) [In aparallelogram opposite sides are equal and parallel]
$A E=C F$ (ii) given

On subtracting (ii) from (i)
$A B-A E=C D-C F$
$B E=D F$
BE parallel to DF
Therefore quad BFDE is aparallelogram, since one pair of opposite sides are equal and parallel.

29. Question

In a parallelogram $A B C D, A B=10 \mathrm{~cm}, A D=6 \mathrm{~cm}$. The bisector of $\angle A$ meets $D C$ in $E, A E$ and $B C$ produced meet at F. Find the length $C F$.

Answer

In a parallelogram $A B C D$
$A B=10 \mathrm{~cm}, A D=6 \mathrm{~cm} \Rightarrow D C=A B=10 \mathrm{~cm}$ and $A D=B C=6 \mathrm{~cm}$ [In a parallelogram opposite sides are equal] Given that bisector of $\angle A$ intersects $D E$ at E and $B C$ produced at F.Draw $P F$ || CDFrom the figure, $C D$ || FP and CF || DPHence PDCF is a parallelogram. [Since one pair of opposite sides are equal and parallel]AB || $F P$ and $A P|\mid B F \Rightarrow A B F P$ is also a parallelogramConsider $\triangle A P F$ and $\triangle A B F \angle A P F=\angle A B F$ [Since opposite angles of a parallelogram are equal $] A F=A F$ (Common side) $\angle P A F=\angle A F B$ (Alternate angles) $\triangle A P F \cong \triangle A B F$ (By ASA congruence criterion $) \Rightarrow A B=A P(C P C T) \Rightarrow A B=A D+D P=A D+C F$ [Since DCFP is a parallelogram] $\therefore C F=A B$ $-\mathrm{ADCF}=(10-6) \mathrm{cm}=4 \mathrm{~cm}$

Exercise 17.2

1. Question

Which of the following statements are true for a rhombus?
(i) It has two pairs of parallel sides.
(ii) It has two pairs of equal sides.
(iii) It has only two pairs of equal sides.
(iv) Two of its angles are at right angles.
(v) Its diagonals bisect each other at right angles.
(vi) Its diagonals are equal and perpendicular.
(vii) It has all its sides of equal lengths.
(viii) It is a parallelogram.
(ix) It is a quadrilateral.
(x) It can be a square.
(xi) It is a square.

Answer

(i) True, Rhombus is a parallelogram.
(ii) True, Rhombus has all four sides equal.
(iii) False, Rhombus has all four sides equal.
(iv) False, In rhombus no angle is right angle.
(v) True, in rhombus diagonals bisect each other at right angles.
(vi) False, in rhombus diagonals are of unequal length.
(vii) True, Rhombus has all four sides equal.
(viii) True, Rhombus is a parallelogram since opposite sides equal and parallel.
(ix) True, Rhombus is a quadrilateral since it has four sides.
(x) True, Rhombus becomes square when any one angle is 90°.
(xi) False, Rhombus is never a square. Since in a square each angle is 90°.

2. Question

Fill in the blanks, in each of the following, so as to make the statement true:
(i) A rhombus is a parallelogram in which \qquad .
(ii) A square is a rhombus in which \qquad .
(iii) A rhombus has all its sides of \qquad length.
(iv) The diagonals of a rhombus \qquad each other at \qquad angles.
(v) If the diagonals of a parallelogram bisect each other at right angles, then it is a \qquad .

Answer

(i) A rhombus is a parallelogram in which opposite sides are equal and parallel.
(ii) A square is a rhombus in which all four sides are equal.
(iii) A rhombus has all its sides of equal length.
(iv) The diagonals of a rhombus bisect each other at right angles.
(v) If the diagonals of a parallelogram bisect each other at right angles, then it is a rhombus.

3. Question

The diagonals of a parallelogram are not perpendicular. Is it a rhombus? Why or why not?

Answer

No, Diagonals of a rhombus bisect each other at 90°.
A parallelogram is rhombus only when its diagonals bisect each other at right angles.

4. Question

The diagonals of a quadrilateral are perpendicular to each other. Is such a quadrilateral always a rhombus? If your answer is 'No', draw a figure to justify your answer.

Answer

No it is not always a rhombus.

5. Question

$A B C D$ is a rhombus. If $\angle A C B=40^{\circ}$, find $\angle A D B$.

Answer

In rhombus $A B C D$
$\angle A C B=40^{\circ}$ given
$\angle A C B=\angle C A D=40^{\circ}$ [Altermate interior angles are equal]
In $\triangle A O D$
$\angle A O D=90^{\circ}$ [In rhombus diagonals bisect eact other at right angles]
$\angle A O D+\angle C A D+\angle A D B=180^{\circ}$ [Angle sum property of a triangle]
$90^{\circ}+40^{\circ}+\angle A D B=180^{\circ}$
$\angle A D B=180^{\circ}-130^{\circ}$
$\angle A D B=50^{\circ}$

6. Question

If the diagonals of a rhombus are 12 cm and 16 cm , find the length of each side.

Answer

We know in rhombus diagonals bisect each other at right angle.
In $\triangle \mathrm{AOB}$
$\mathrm{AO}=\frac{12}{2}=6 \mathrm{~cm}, \mathrm{BO}=\frac{16}{2}=8 \mathrm{~cm}$
Using pythagorous theorem in $\triangle A O B$
$A B^{2}=A O^{2}+B O^{2}$
$A B^{2}=6^{2}+8^{2}$
$A B^{2}=36+64$
$A B^{2}=100$
$A B=\sqrt{100}=10 \mathrm{~cm}$
Therefore each side of a rhombus is 10 cm .

7. Question

Construct a rhombus whose diagonals are of length 10 cm and 6 cm .
Answer

Steps of Construction:
(i) Draw diagonal AC of length 10 cm .
(ii) Draw perpendicular bisector of AC at point O .
(iii) From point ' O ' out two arcs of length 3 cm to get points B and D .
(iv) Join $A D$ and $D C$ to get rhombus $A B C D$.

8. Question

Draw a rhombus, having each side of lengfth 3.5 cm and one of the angles as 40°.

Answer

Steps of construction:
(i) Draw a line segment $A B$ of length 3.5 cm
(ii) From point A and B draw angles of 40 and 140 respectively.
(iii) From points A and B draw two arcs of length 3.5 cm each is get points D and C.
(iv) Join ABCD to get rhombus ABCD.

9. Question

One side of a rhombus is of length 4 cm and the length of an altitude is 3.2 cm . Draw the rhombus.

Answer

Steps of construction:
(i) Draw a line segment of 4 cm
(ii) From point A draw a perpendicular from point A and cut a length of 3.2 cm to get point E .
(iii) From point E and a line parallel to AB .
(iv) From points A and B cut two arcs of length 4 cm on the drawn parallel line to get points D and C.
(v) Join $A D$ and $B C$ to get rhombus $A B C D$.

10. Question

Draw a rhombus $A B C D$, if $A B=6 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.
Answer

Steps of construction:
(i) Draw a line segment $A B$ of length 6 cm .
(ii) From point ' A ' draw an arc of length 5 cm and from point B draw an arc of length 6 cm . Such that both the arcs intersect at ' C '.
(iii) Join $A C$ and $B C$.
(iv) From point A draw an arc of length 6 cm and from point C draw an arc of 6 cm , so that both the arcs intersect at point D.
(v) Joint $A D$ and $D C$ to get rhombus $A B C D$.

11. Question

$A B C D$ is a rhombus and its diagonals intersect at O.
(i) Is $\triangle B O C \cong \triangle D O C$? State the condruence condition used?
(ii) Also state, if $\angle B C O=\angle D C O$.

Answer

(i) In $\triangle B O C$ and $\triangle D O C$
$\mathrm{BO}=\mathrm{DO}$ [In a rhombus diagonals bisect each other]
$\mathrm{CO}=\mathrm{CO}$ Common
$B C=C D[$ All sides of a rhombus are equal]
$\triangle B O C \cong \triangle D O C$ [SSS Congurency]
(ii) $\angle B C O=\angle D C O$ from above [corresponding parts of congruent triangles]

12. Question

Show that each diagonal of a rhombus bisects the angle through which it passes.

Answer

(i) In $\triangle B O C$ and $\triangle D O C$
$B O=D O$ [In a rhombus diagonals bisect each other]
$\mathrm{CO}=\mathrm{CO}$ Common

$B C=C D$ [All sides of a rhombus are equal]
$\triangle B O C \cong \triangle D O C$ [SSS Congurency]
$\angle B C O=\angle D C O$ from above [corresponding parts of congruent triangles]
Hence, each diagonal of a rhombus bisect the angle through whichitpasses.

13. Question

$A B C D$ is a rhombus whose diagonals interesct at O. If $A B=10 \mathrm{~cm}$, diagonal $B D=16 \mathrm{~cm}$, find the length of diagonal $A C$.

Answer

We know in rhombus diagonals bisect each other at right angle.
In $\triangle A O B$
$\mathrm{BO}=\frac{B D}{2}=\frac{16}{2}=8 \mathrm{~cm}$
Using pythagorous theorem in $\triangle A O B$
$A B^{2}=A O^{2}+B O^{2}$
$10^{2}=A O^{2}+8^{2}$
$100-64=\mathrm{AO}^{2}$
$A O^{2}=36$
$A O=\sqrt{36}=6 \mathrm{~cm}$
Therefore length of diagonal $A C$ of rhombus $A B C D$ is $6 \times 2=12 \mathrm{~cm}$.

14. Question

The diagonal of a quadrilateral are of lengths 6 cm and 8 cm . If the diagonals bisect each other at right angles, what is the length of each side of the quadrilateral?

Answer

We know in rhombus diagonals bisect each other at right angle.
In $\triangle A O B$
$\mathrm{BO}=\frac{B D}{2}=\frac{6}{2}=3 \mathrm{~cm}$
$A O=\frac{A C}{2}=\frac{8}{2}=4 \mathrm{~cm}$
Using pythagorous theorem in $\triangle A O B$
$A B^{2}=A O^{2}+B O^{2}$
$A B^{2}=4^{2}+3^{2}$
$A B^{2}=16+9$
$A B^{2}=25$
$A B=\sqrt{25}=6 \mathrm{~cm}$
Therefore length of each side of a rhombus $A B C D$ is 5 cm .

Exercise 17.3

1. Question

Which of the following statements are true for a rectangle?
(i) It has two pairs of equal sides.
(ii) It has all its sides of equal length.
(iii) Its diagonals are equal.
(iv) Its diagonals bisect each other.
(v) Its diagonals are perpendicular.
(vi) Its diagonals are perpendicular and bisect each other.
(vii) Its diagonals are equal and bisect each other.
(viii) Its diagonals are equal and perpendicular, and bisect each other.
(ix) All rectangles are squares.
(x) All rhombuses are parallelograms.
(xi) All squares are rhombuses and also rectangles.
(xii) All squares are not parallelograms.

Answer

(i) True, In a rectangle two pairs of sides are equal.
(ii) False, In a rectangle two pairs of sides are equal.
(iii) True, In a rectangle diagonals are of equal length.
(iv) True, In a rectangle diagonals bisect each other.
(v) False, Diagonals of a rectangle need not be perpendicular.
(vi) False, Diagonals of a rectangle need not be perpendicular. Diagonals only bisect each other.
(vii) True, Diagonals are of equal length and bisect each other.
(viii) False, Diagonals are of equal length and bisect each other. Diagonals of a rectangle need not be perpendicular
(ix) False, In a square all sides are of equal length.
(x) True, All rhombuses are parallelograms, since opposite sides are equal and parallel.
(xi) True, All squares are rhombuses, since all sides are equal in a square and rhombus. All squares are rectangles, since opposite sides are equal and parallel.
(xii) False, All squares are parallelograms, since opposite sides are parallel and equal.

2. Question

Which of the following statements are true for a square?
(i) It is a rectangle.
(ii) It has all its sides of equal length.
(iii) Its diagonals bisect each other at right angle.
(v) Its diagonals are equal to its sides.

Answer

(i) True, square is a rectangle, since opposite sides are equal and parallel and each angle is right angle.
(ii) True, In a square all sides are of equal length.
(iii) True, in a square diagonals bisect each other at right angle.
(v) False, in a square diagonals are of equal length. Length of diagonals is not equal to the length of sides

3. Question

Fill in the blanks in each of the following, so as to make the statement true :
(i) A rectangle is a parallelogram in which
(ii) A square is a rhombus in which \qquad
(iii) A square is a rectangle in which

Answer

(i) A rectangle is a parallelogram in which opposite sides are parallel and equal.
(ii) A square is a rhombus in which all the sides are of equal length.
(iii) A square is a rectangle in which opposite sides are equal and parallel and each angle is a right angle.

4. Question

A window frame has one diagonal longer then the other. Is the window frame a rectangle? Why or why not?

Answer

No, diagonals of a rectangle are of equal length equal.

5. Question

In a rectangle $A B C D$, prove that $\triangle A C B \cong \triangle C A D$.

Answer

In $\triangle A C B$ and $\triangle C A D$
$A B=C D$ [Opposite sides of a rectangle are equal]
$B C=D A$
$A C=C A$ Common
$\triangle A C B \cong \triangle C A D$ (SSS Congurency)

6. Question

The sides of a rectangle are in the ratio $2: 3$, and its perimeter is 20 cm . Draw the rectangle.

Answer

$A B C D$ is a rectangle
Let the side is x
Length of rectangle $=3 x$
Breadth of the rectangle $=2 x$
Given perimeter of rectangle $=20 \mathrm{~cm}$
Perimeter of the rectangle $=2$ (length + breadth $)$
$20=2(3 x+2 x)$
$10 x=20$
$x=2$
Therefore Length of the rectangle $=3 \times 2=6 \mathrm{~cm}$
Therefore breadth of the rectangle $=2 \times 2=4 \mathrm{~cm}$

7. Question

The sides of a rectangle are in the ratio $4: 5$. Find its sides if the perimeter is 90 cm .

Answer

$A B C D$ is a rectangle
Let the side is x
Length of rectangle $=5 x$
Breadth of the rectangle $=4 x$
Given perimeter of rectangle $=90 \mathrm{~cm}$
Perimeter of the rectangle $=2$ (length + breadth $)$

$90=2(5 x+4 x)$
$18 x=90$
$x=5$
Therefore Length of the rectangle $=5 \times 5=25 \mathrm{~cm}$
Therefore breadth of the rectangle $=4 \times 5=20 \mathrm{~cm}$

8. Question

Find the length of the diagonal of a rectangle whose sides are 12 cm and 5 cm .

Answer

$A B C D$ is a rectangle

In $\triangle A B C$ using pythagorous theorem,
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=12^{2}+5^{2}$
$A C^{2}=144+25$
$A C^{2}=169$
$A C=\sqrt{169}$
$A C=13 \mathrm{~cm}$
Therefore length of diagonal is 13 cm .

9. Question

Draw a rectangle whose one side measures 8 cm and the length of each of whose diagonals is 10 cm .

Answer

Steps of construction:
(i) Draw a lien segment $A B$ of length 8 cm
(ii) From point ' A ' draw an arc of length 10 cm .
(iii) From point B draw an angle of 90°, and the arc from point A cuts it at point C.
(iv) Join Ac
(v) From point A draw an angle of 90° and point C drawn an arc of length 8 cm to get point D .
(vi) Join $C D$ and $A D$ to get required rectangle.

10. Question

Draw a square whose each side measures 4.8 cm .
Answer

Steps of construction:
(i) Draw a line segment $A B$ of length 4.8 cm .
(ii) From points A and B draw perpendiculars.
(iii) Cut and arc of 4.8 cm from point A and B on the perpendiculars to get point D and C.
(iv) Join $D C$ and $A D$ to get required rectangle.

11. Question

Identify all the quadrilaterals that have:
Answer
(i) Four sides of equal length

Rhombus and square are the quadrilaterals that have all four sides of equal length.
(ii) Four right angles

Rectangle and square have all four angles right angles.

12. Question

Explain how a square is
(i) a quadrilateral?
(ii) a parallelogram?
(iii) a rhombus?
(iv) a rectangle?

Answer
(i) a quadrilateral?

A square is a quadrilateral because it has four equal sides.
(ii) a parallelogram?

A square is a parallelogram since it has opposite sides equal and parallel.
(iii) a rhombus?

A square is a rhombus because it has all four sides of equal length.
(iv) a rectangle?

A square is a rectangle because its opposite sides are equal and parallel and each angle is right angle.

13. Question

Name the quadrilaterals whose diagonals:
(i) bisect each other
(ii) are perpendicular bisector of each other
(iii) are equal.

Answer

(i) bisect each other

In a Parallelogram, rectangle, rhombus and square diagonals bisect each other.
(ii) are perpendicular bisector of each other

In a Rhombus and square diagonals are perpendicular bisector of each other
(iii) are equal.

In a square and rectangle diagonals are of equal length.

14. Question

$A B C$ is a right angled triangle and O is the mid-point of the side opposite to the right angle. Explain why O is equidistant from A, B, and C.

Answer

$A B C$ is a right angled triangle. O is the mid point of hypotenuse $A C$, such that $O A=O C$
Draw $C D \| A B$ and join $A D$, such that $A B=C D$ and $A D=B C$
Now quad $A B C D$ is a rectangle, since each angle is a right angle and opposite sides are equal and parallel.

We know in a rectangle diagonals are of equal length and they bisect each other.
Therefore, $\mathrm{AC}=\mathrm{BD}$
And also, $A O=O C=B O=O D$
Hence, O is equidistant from A, B and C.

15. Question

A mason has made a concrete slab. He needs it to be rectangular. In what different ways can he make sure that it is rectangular?

Answer

a. By measuring each angle, because in a rectangle each angle is a right ange.
b. By measuring opposite sides. Since in a rectangle opposite sides are of equal length.
c. By measuring the lengths of diagonals. Since in a rectangle diagonals are of equal length.

