17. Increasing and Decreasing Functions

Exercise 17.1

1. Question

Prove that the function $f(x)=\log _{e} x$ is increasing on $(0, \infty)$.

Answer

let $x_{1}, x_{2} \in(0, \infty)$
We have, $x_{1}<x_{2}$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}_{1}<\log _{\mathrm{e}} \mathrm{x}_{2}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
So, $f(x)$ is increasing in $(0, \infty)$

2. Question

Prove that the function $f(x)=\log _{a} x$ is increasing on $(0, \infty)$ if $a>1$ and decresing on $(0, \infty)$, if $0<a<1$.

Answer

case I
When $\mathrm{a}>1$
let $x_{1}, x_{2} \in(0, \infty)$
We have, $x_{1}<x_{2}$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}_{1}<\log _{\mathrm{e}} \mathrm{x}_{2}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
So, $f(x)$ is increasing in $(0, \infty)$
case II
When $0<a<1$
$f(x)=\log _{a} x=\frac{\log x}{\log a}$
when $\mathrm{a}<1 \Rightarrow \log \mathrm{a}<0$
let $x_{1}<x_{2}$
$\Rightarrow \log x_{1}<\log x_{2}$
$\Rightarrow \frac{\log x_{1}}{\log \mathrm{a}}>\frac{\log \mathrm{x}_{2}}{\log \mathrm{a}}[\because \log \mathrm{a}<0]$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$
So, $f(x)$ is decreasing in $(0, \infty)$

3. Question

Prove that $f(x)=a x+b$, where a, b are constants and $a>0$ is an increasing function on R.

Answer

we have,
$f(x)=a x+b, a>0$
let $x_{1}, x_{2} \in R$ and $x_{1}>x_{2}$
$\Rightarrow a x_{1}>a x_{2}$ for some $a>0$
$\Rightarrow a x_{1}+b>a x_{2}+b$ for some b
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$
Hence, $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$
So, $f(x)$ is increasing function of R

4. Question

Prove that $f(x)=a x+b$, where a, b are constants and $a<0$ is a decreasing function on R.

Answer

we have,
$f(x)=a x+b, a<0$
let $x_{1}, x_{2} \in R$ and $x_{1}>x_{2}$
$\Rightarrow a x_{1}<a x_{2}$ for some $a>0$
$\Rightarrow a x_{1}+b<a x_{2}+b$ for some b
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
Hence, $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
So, $f(x)$ is decreasing function of R

5. Question

Show that $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$ is a decreasing function on $(0, \infty)$.

Answer

we have
$f(x)=\frac{1}{x}$
let $x_{1}, x_{2} \in(0, \infty)$ We have, $x_{1}>x_{2}$
$\Rightarrow \frac{1}{\mathrm{x}_{1}}<\frac{1}{\mathrm{x}_{2}}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
Hence, $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
So, $f(x)$ is decreasing function

6. Question

Show that $\mathrm{f}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}$ decreases in the interval $[0, \infty)$ and increases in the interval $(-\infty, 0]$.

Answer

We have,
$f(x)=\frac{1}{1+x^{2}}$

Case 1

When $x \in[0, \infty)$
Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in(0, \infty]$ and $\mathrm{x}_{1}>\mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}^{2}>\mathrm{x}_{2}^{2}$
$\Rightarrow 1+x_{1}^{2}>1+x_{2}^{2}$
$\Rightarrow \frac{1}{1+\mathrm{x}_{1}^{2}}<\frac{1}{1+\mathrm{x}_{2}^{2}}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore f(x)$ is decreasing on $[0, \infty)$.

Case 2

When $x \in(-\infty, 0]$
Let $\mathrm{x}_{1}>\mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}^{2}<\mathrm{x}_{2}^{2}$
$\Rightarrow 1+\mathrm{x}_{1}^{2}<1+\mathrm{x}_{2}^{2}$
$\Rightarrow \frac{1}{1+\mathrm{x}_{1}^{2}}>\frac{1}{1+\mathrm{x}_{2}^{2}}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore f(x)$ is increasing on $(-\infty, 0]$.
Thus, $f(x)$ is neither increasing nor decreasing on R.

7. Question

Show that $f(x)=\frac{1}{1+x^{2}}$ is neither increasing nor decreasing on R.

Answer

We have,
$f(x)=\frac{1}{1+x^{2}}$
Case 1
When $x_{\in}[0, \infty)$
Let $x_{1}>x_{2}$
$\Rightarrow \mathrm{x}_{1}^{2}>\mathrm{x}_{2}^{2}$
$\Rightarrow 1+x_{1}^{2}>1+x_{2}^{2}$
$\Rightarrow \frac{1}{1+\mathrm{x}_{1}^{2}}<\frac{1}{1+\mathrm{x}_{2}^{2}}$
$\Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
$\Rightarrow \therefore f(x)$ is decreasing on $[0, \infty)$.
Case 2
When $\mathrm{x} \in(-\infty, 0$]

Let $\mathrm{x}_{1}>\mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}^{2}<\mathrm{x}_{2}^{2}$
$\Rightarrow 1+x_{1}^{2}<1+x_{2}^{2}$
$\Rightarrow \frac{1}{1+\mathrm{x}_{1}^{2}}>\frac{1}{1+\mathrm{x}_{2}^{2}}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore f(x)$ is increasing on $(-\infty, 0]$.
Thus, $f(x)$ is neither increasing nor decreasing on R.

8. Question

Without using the derivative, show that the function $f(x)=|x|$ is
A. strictly increasing in $(0, \infty)$
B. strictly decreasing in $(-\infty, 0)$.

Answer

We have,
$f(x)=|x|=\{x, x>0$
(a)Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in(0, \infty)$ and $\mathrm{x}_{1}>\mathrm{x}_{2}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$
So, $f(x)$ is increasing in $(0, \infty)$
(b) Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in(-\infty, 0)$ and $\mathrm{x}_{1}>\mathrm{x}_{2}$
$\Rightarrow-\mathrm{X}_{1}<-\mathrm{x}_{2}$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore f(x)$ is strictly decreasing on $(-\infty, 0)$.

9. Question

Without using the derivative show that the function $f(x)=7 x-3$ is strictly increasing function on R.

Answer

Given,
$f(x)=7 x-3$
Lets $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}$ and $\mathrm{x}_{1}>\mathrm{x}_{2}$
$\Rightarrow 7_{\mathrm{X}_{1}}>7_{\mathrm{X}_{2}}$
$\Rightarrow 7_{\mathrm{X}_{1}}-3>7_{\mathrm{X}_{2}}-3$
$\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\therefore f(x)$ is strictly increasing on R.

Exercise 17.2

1 A. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=10-6 x-2 x^{2}$

Answer

Given:- Function $f(x)=10-6 x-2 x^{2}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=10-6 x-2 x^{2}$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(10-6 \mathrm{x}-2 \mathrm{x}^{2}\right)$
$\Rightarrow f^{\prime}(x)=-6-4 x$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow-6-4 x>0$
$\Rightarrow-4 x>6$
$\Rightarrow \mathrm{x}<-\frac{6}{4}$
$\Rightarrow \mathrm{x}<-\frac{3}{2}$
$\Rightarrow \mathrm{x} \in\left(-\infty,-\frac{3}{2}\right)$
Thus $f(x)$ is increasing on the interval $\left(-\infty,-\frac{3}{2}\right)$
Again, For $f(x)$ to be increasing, we must have
$f^{\prime}(x)<0$
$\Rightarrow-6-4 x<0$
$\Rightarrow-4 x<6$
$\Rightarrow \mathrm{x}>-\frac{6}{4}$
$\Rightarrow \mathrm{x}>-\frac{3}{2}$
$\Rightarrow \mathrm{x} \in\left(-\frac{3}{2}, \infty\right)$
Thus $f(x)$ is decreasing on interval $x \in\left(-\frac{3}{2}, \infty\right)$

1 B. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{2}+2 x-5$

Answer

Given:- Function $f(x)=x^{2}+2 x-5$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=x^{2}+2 x-5$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}+2 \mathrm{x}-5\right)$
$\Rightarrow f^{\prime}(x)=2 x+2$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow 2 x+2>0$
$\Rightarrow 2 x<-2$
$\Rightarrow \mathrm{x}<-\frac{2}{2}$
$\Rightarrow \mathrm{x}<-1$
$\Rightarrow x \in(-\infty,-1)$
Thus $f(x)$ is increasing on interval $(-\infty,-1)$
Again, For $f(x)$ to be increasing, we must have
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow 2 \mathrm{x}+2<0$
$\Rightarrow 2 x>-2$
$\Rightarrow \mathrm{x}>-\frac{2}{2}$
$\Rightarrow x>-1$
$\Rightarrow x \in(-1, \infty)$
Thus $f(x)$ is decreasing on interval $x \in(-1, \infty)$

1 C. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=6-9 x-x^{2}$

Answer

Given:- Function $f(x)=6-9 x-x^{2}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=6-9 x-x^{2}$
$\Rightarrow f(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(6-9 \mathrm{x}-\mathrm{x}^{2}\right)$
$\Rightarrow f^{\prime}(\mathrm{x})=-9-2 \mathrm{x}$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow-9-2 x>0$
$\Rightarrow-2 x>9$
$\Rightarrow \mathrm{x}<-\frac{9}{2}$
$\Rightarrow \mathrm{x}<-\frac{9}{2}$
$\Rightarrow \mathrm{x} \in\left(-\infty,-\frac{9}{2}\right)$
Thus $f(x)$ is increasing on interval $\left(-\infty,-\frac{9}{2}\right)$
Again, $\operatorname{For} f(x)$ to be decreasing, we must have
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow-9-2 x<0$
$\Rightarrow-2 x<9$
$\Rightarrow \mathrm{x}>-\frac{9}{2}$
$\Rightarrow \mathrm{x}>-\frac{9}{2}$
$\Rightarrow \mathrm{x} \in\left(-\frac{9}{2}, \infty\right)$
Thus $f(x)$ is decreasing on interval $x \in\left(-\frac{9}{2}, \infty\right)$

1 D. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=2 x^{3}-12 x^{2}+18 x+15$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-12 \mathrm{x}^{2}+18 \mathrm{x}+15$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=2 x^{3}-12 x^{2}+18 x+15$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}-12 \mathrm{x}^{2}+18 \mathrm{x}+15\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}-24 x+18$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}-24 x+18=0$
$\Rightarrow 6\left(x^{2}-4 x+3\right)=0$
$\Rightarrow 6\left(x^{2}-3 x-x+3\right)=0$
$\Rightarrow 6(x-3)(x-1)=0$
$\Rightarrow(x-3)(x-1)=0$
$\Rightarrow x=3,1$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<1$ and $\mathrm{x}>3$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $1<\mathrm{x}<3$
Thus, $f(x)$ increases on $(-\infty, 1) \cup(3, \infty)$
and $f(x)$ is decreasing on interval $x \in(1,3)$
1 E. Question
Find the intervals in which the following functions are increasing or decreasing.
$f(x)=5+36 x+3 x^{2}-2 x^{3}$

Answer

Given:- Function $f(x)=5+36 x+3 x^{2}-2 x^{3}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=5+36 x+3 x^{2}-2 x^{3}$
$\Rightarrow f(x)=\frac{d}{d x}\left(5+36 x+3 x^{2}-2 x^{3}\right)$
$\Rightarrow f^{\prime}(x)=36+6 x-6 x^{2}$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow 36+6 x-6 x^{2}=0$
$\Rightarrow 6\left(-x^{2}+x+6\right)=0$
$\Rightarrow 6\left(-x^{2}+3 x-2 x+6\right)=0$
$\Rightarrow-x^{2}+3 x-2 x+6=0$
$\Rightarrow x^{2}-3 x+2 x-6=0$
$\Rightarrow(x-3)(x+2)=0$
$\Rightarrow x=3,-2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $-2<\mathrm{x}<3$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<-2$ and $\mathrm{x}>3$
Thus, $f(x)$ increases on $x \in(-2,3)$
and $f(x)$ is decreasing on interval $(-\infty,-2) \cup(3, \infty)$

1 F. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=8+36 x+3 x^{2}-2 x^{3}$

Answer

Given:- Function $f(x)=8+36 x+3 x^{2}-2 x^{3}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=8+36 x+3 x^{2}-2 x^{3}$
$\Rightarrow f(x)=\frac{d}{d x}\left(8+36 x+3 x^{2}-2 x^{3}\right)$
$\Rightarrow f^{\prime}(x)=36+6 x-6 x^{2}$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow 36+6 x-6 x^{2}=0$
$\Rightarrow 6\left(-x^{2}+x+6\right)=0$
$\Rightarrow 6\left(-x^{2}+3 x-2 x+6\right)=0$
$\Rightarrow-x^{2}+3 x-2 x+6=0$
$\Rightarrow x^{2}-3 x+2 x-6=0$
$\Rightarrow(x-3)(x+2)=0$
$\Rightarrow x=3,-2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $-2<\mathrm{x}<3$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<-2$ and $\mathrm{x}>3$
Thus, $f(x)$ increases on $x \in(-2,3)$
and $f(x)$ is decreasing on interval $(-\infty,-2) \cup(3, \infty)$

1 G. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=5 x^{3}-15 x^{2}-120 x+3$

Answer

Given:- Function $f(x)=5 x^{3}-15 x^{2}-120 x+3$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $\mathrm{f}^{\prime}(\mathrm{x})>0$ for all $x \in(a, b)$, then $\mathrm{f}(\mathrm{x})$ is increasing on (a, b)
(ii) If $\mathrm{f}^{\prime}(\mathrm{x})<0$ for all $x \in(a, b)$, then $\mathrm{f}(\mathrm{x})$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=5 x^{3}-15 x^{2}-120 x+3$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(5 x^{3}-15 x^{2}-120 x+3\right)$
$\Rightarrow f^{\prime}(x)=15 x^{2}-30 x-120$
For $f(x)$ lets find critical point, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 15 x^{2}-30 x-120=0$
$\Rightarrow 15\left(x^{2}-2 x-8\right)=0$
$\Rightarrow 15\left(x^{2}-4 x+2 x-8\right)=0$
$\Rightarrow x^{2}-4 x+2 x-8=0$
$\Rightarrow(x-4)(x+2)=0$
$\Rightarrow x=4,-2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<-2$ and $\mathrm{x}>4$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $-2<\mathrm{x}<4$
Thus, $f(x)$ increases on $(-\infty,-2) \cup(4, \infty)$
and $f(x)$ is decreasing on interval $x \in(-2,4)$

1 H. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{3}-6 x^{2}-36 x+2$

Answer

Given:- Function $f(x)=x^{3}-6 x^{2}-36 x+2$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=x^{3}-6 x^{2}-36 x+2$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3}-6 \mathrm{x}^{2}-36 \mathrm{x}+2\right)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-12 x-36$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 3 x^{2}-12 x-36=0$
$\Rightarrow 3\left(x^{2}-4 x-12\right)=0$
$\Rightarrow 3\left(x^{2}-6 x+2 x-12\right)=0$
$\Rightarrow x^{2}-6 x+2 x-12=0$
$\Rightarrow(x-6)(x+2)=0$
$\Rightarrow x=6,-2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<-2$ and $\mathrm{x}>6$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $-2<\mathrm{x}<6$
Thus, $f(x)$ increases on $(-\infty,-2) \cup(6, \infty)$
and $f(x)$ is decreasing on interval $x \in(-2,6)$

1 I. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=2 x^{3}-15 x^{2}+36 x+1$

Answer

Given:- Function $f(x)=2 x^{3}-15 x^{2}+36 x+1$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=2 x^{3}-15 x^{2}+36 x+1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}-15 \mathrm{x}^{2}+36 \mathrm{x}+1\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}-30 x+36$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}-30 x+36=0$
$\Rightarrow 6\left(x^{2}-5 x+6\right)=0$
$\Rightarrow 3\left(x^{2}-3 x-2 x+6\right)=0$
$\Rightarrow x^{2}-3 x-2 x+6=0$
$\Rightarrow(x-3)(x-2)=0$
$\Rightarrow x=3,2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<2$ and $\mathrm{x}>3$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $2<\mathrm{x}<3$
Thus, $f(x)$ increases on $(-\infty, 2) \cup(3, \infty)$
and $f(x)$ is decreasing on interval $x \in(2,3)$

1 J. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=2 x^{3}+9 x^{2}+12 x+20$

Answer

Given:- Function $f(x)=2 x^{3}+9 x^{2}+12 x+20$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=2 x^{3}+9 x^{2}+12 x+20$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}+9 \mathrm{x}^{2}+12 \mathrm{x}+20\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}+18 x+12$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}+18 x+12=0$
$\Rightarrow 6\left(x^{2}+3 x+2\right)=0$
$\Rightarrow 6\left(x^{2}+2 x+x+2\right)=0$
$\Rightarrow x^{2}+2 x+x+2=0$
$\Rightarrow(\mathrm{x}+2)(\mathrm{x}+1)=0$
$\Rightarrow x=-1,-2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $-2<\mathrm{x}<-1$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<-1$ and $\mathrm{x}>-2$
Thus, $f(x)$ increases on $x \in(-2,-1)$
and $f(x)$ is decreasing on interval $(-\infty,-2) \cup(-2, \infty)$

1 K. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=2 x^{3}-9 x^{2}+12 x-5$

Answer

Given:- Function $f(x)=2 x^{3}-9 x^{2}+12 x-5$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=2 x^{3}-9 x^{2}+12 x-5$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(2 x^{3}-9 x^{2}+12 x-5\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}-18 x+12$
For $f(x)$ lets find critical point, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 6 x^{2}-18 x+12=0$
$\Rightarrow 6\left(x^{2}-3 x+2\right)=0$
$\Rightarrow 6\left(x^{2}-2 x-x+2\right)=0$
$\Rightarrow x^{2}-2 x-x+2=0$
$\Rightarrow(x-2)(x-1)=0$
$\Rightarrow x=1,2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<1$ and $\mathrm{x}>2$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $1<\mathrm{x}<2$
Thus, $f(x)$ increases on $(-\infty, 1) \cup(2, \infty)$
and $f(x)$ is decreasing on interval $x \in(1,2)$

1 L. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=6+12 x+3 x^{2}-2 x^{3}$

Answer

Given:- Function $f(x)=-2 x^{3}+3 x^{2}+12 x+6$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on ($\left.a, b\right)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=-2 x^{3}+3 x^{2}+12 x+6$
$\Rightarrow f(x)=\frac{d}{d x}\left(-2 x^{3}+3 x^{2}+12 x+6\right)$
$\Rightarrow f^{\prime}(x)=-6 x^{2}+6 x+12$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow-6 x^{2}+6 x+12=0$
$\Rightarrow 6\left(-x^{2}+x+2\right)=0$
$\Rightarrow 6\left(-x^{2}+2 x-x+2\right)=0$
$\Rightarrow x^{2}-2 x+x-2=0$
$\Rightarrow(\mathrm{x}-2)(\mathrm{x}+1)=0$
$\Rightarrow x=-1,2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $-1<\mathrm{x}<2$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<-1$ and $\mathrm{x}>2$
Thus, $f(x)$ increases on $x \in(-1,2)$
and $f(x)$ is decreasing on interval $(-\infty,-1) \cup(2, \infty)$

1 M. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=2 x^{3}-24 x+107$

Answer

Given:- Function $f(x)=2 x^{3}-24 x+107$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=2 x^{3}-24 x+107$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}-24 \mathrm{x}+107\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}-24$
For $f(x)$ lets find critical point, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 6 x^{2}-24=0$
$\Rightarrow 6\left(x^{2}-4\right)=0$
$\Rightarrow(x-2)(x+2)=0$
$\Rightarrow x=-2,2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<-2$ and $\mathrm{x}>2$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $-2<\mathrm{x}<2$
Thus, $f(x)$ increases on $(-\infty,-2) \cup(2, \infty)$
and $f(x)$ is decreasing on interval $x \in(-2,2)$

1 N. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=-2 x^{3}-9 x^{2}-12 x+1$

Answer

Given:- Function $f(x)=-2 x^{3}-9 x^{2}-12 x+1$

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=-2 x^{3}-9 x^{2}-12 x+1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(-2 \mathrm{x}^{3}-9 \mathrm{x}^{2}-12 \mathrm{x}+1\right)$
$\Rightarrow f^{\prime}(x)=-6 x^{2}-18 x-12$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow-6 x^{2}-18 x-12=0$
$\Rightarrow 6 x^{2}+18 x+12=0$
$\Rightarrow 6\left(x^{2}+3 x+2\right)=0$
$\Rightarrow 6\left(x^{2}+2 x+x+2\right)=0$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}+\mathrm{x}+2=0$
$\Rightarrow(x+2)(x+1)=0$
$\Rightarrow x=-1,-2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<-2$ and $\mathrm{x}>-1$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $-2<\mathrm{x}<-1$
Thus, $f(x)$ increases on $(-\infty,-2) \cup(-1, \infty)$
and $f(x)$ is decreasing on interval $x \in(-2,-1)$

1 O. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=(x-1)(x-2)^{2}$

Answer

Given:- Function $f(x)=(x-1)(x-2)^{2}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=(x-1)(x-2)^{2}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left((\mathrm{x}-1)(\mathrm{x}-2)^{2}\right)$
$\Rightarrow f^{\prime}(x)=(x-2)^{2}+2(x-2)(x-1)$
$\Rightarrow f^{\prime}(x)=(x-2)(x-2+2 x-2)$
$\Rightarrow f^{\prime}(x)=(x-2)(3 x-4)$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow(x-2)(3 x-4)=0$
$\Rightarrow \mathrm{x}=2, \frac{4}{3}$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<\frac{4}{3}$ and $\mathrm{x}>2$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\frac{4}{3}<\mathrm{x}<2$
Thus, $f(x)$ increases on $\left(-\infty, \frac{4}{3}\right) \cup(2, \infty)$
and $f(x)$ is decreasing on interval $x \in\left(\frac{4}{3}, 2\right)$

1 P. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{3}-12 x^{2}+36 x+17$
Answer
Given:- Function $f(x)=x^{3}-12 x^{2}+36 x+17$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=x^{3}-12 x^{2}+36 x+17$
$\Rightarrow f(x)=\frac{d}{d x}\left(x^{3}-12 x^{2}+36 x+17\right)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-24 x+36$
For $f(x)$ lets find critical point, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 3 x^{2}-24 x+36=0$
$\Rightarrow 3\left(x^{2}-8 x+12\right)=0$
$\Rightarrow 3\left(x^{2}-6 x-2 x+12\right)=0$
$\Rightarrow \mathrm{x}^{2}-6 \mathrm{x}-2 \mathrm{x}+12=0$
$\Rightarrow(x-6)(x-2)=0$
$\Rightarrow x=2,6$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<2$ and $\mathrm{x}>6$
and $f^{\prime}(x)<0$ if $2<x<6$
Thus, $f(x)$ increases on $(-\infty, 2) \cup(6, \infty)$
and $f(x)$ is decreasing on interval $x \in(2,6)$

1 Q. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=2 x^{3}-24 x+7$

Answer

Given:- Function $f(x)=2 x^{3}-24 x+7$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on ($\left.a, b\right)$

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=2 x^{3}-24 x+7$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}^{3}-24 \mathrm{x}+7\right)$
$\Rightarrow f^{\prime}(x)=6 x^{2}-24$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(\mathrm{x})>0$
$\Rightarrow 6 x^{2}-24>0$
$\Rightarrow \mathrm{x}^{2}<\frac{24}{6}$
$\Rightarrow x^{2}<4$
$\Rightarrow x<-2,+2$
$\Rightarrow x \in(-\infty,-2)$ and $x \in(2, \infty)$
Thus $f(x)$ is increasing on interval $(-\infty,-2) \cup(2, \infty)$

Again, For $f(x)$ to be increasing, we must have
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow 6 x^{2}-24<0$
$\Rightarrow \mathrm{X}^{2}>\frac{24}{6}$
$\Rightarrow x^{2}<4$
$\Rightarrow x>-1$
$\Rightarrow x \in(-1, \infty)$
Thus $f(x)$ is decreasing on interval $x \in(-1, \infty)$

1 R. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\frac{3}{10} \mathrm{x}^{4}-\frac{4}{5} \mathrm{x}^{3}-3 \mathrm{x}^{2}+\frac{36}{5} \mathrm{x}+11$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11\right)$
$\Rightarrow f^{\prime}(x)=4 \times \frac{3}{10} \mathrm{x}^{3}-3 \times \frac{4}{5} \mathrm{x}^{2}-6 \mathrm{x}+\frac{36}{5}$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow \frac{12}{10} \mathrm{x}^{3}-\frac{12}{5} \mathrm{x}^{2}-6 \mathrm{x}+\frac{36}{5}=0$
$\Rightarrow \frac{6}{5}(x-1)(x+2)(x-3)=0$
$\Rightarrow x=1,-2,3$
Now, lets check values of $f(x)$ between different ranges
Here points $x=1,-2,3$ divide the number line into disjoint intervals namely, $(-\infty,-2),(-2,1),(1,3)$ and (3, $\infty)$

Lets consider interval ($-\infty,-2$)

In this case, we have $x-1<0, x+2<0$ and $x-3<0$
Therefore, $\mathrm{f}^{\prime}(\mathrm{x})<0$ when $-\infty<\mathrm{x}<-2$
Thus, $f(x)$ is strictly decreasing on interval $x \in(-\infty,-2)$
consider interval ($-2,1$)
In this case, we have $x-1<0, x+2>0$ and $x-3<0$
Therefore, $\mathrm{f}^{\prime}(\mathrm{x})>0$ when $-2<\mathrm{x}<1$
Thus, $f(x)$ is strictly increases on interval $x \in(-2,1)$
Now, consider interval $(1,3)$
In this case, we have $x-1>0, x+2>0$ and $x-3<0$
Therefore, $\mathrm{f}^{\prime}(\mathrm{x})<0$ when $1<\mathrm{x}<3$
Thus, $f(x)$ is strictly decreases on interval $x \in(1,3)$
finally, consider interval $(3, \infty)$
In this case, we have $x-1>0, x+2>0$ and $x-3>0$
Therefore, $\mathrm{f}^{\prime}(\mathrm{x})>0$ when $\mathrm{x}>3$
Thus, $f(x)$ is strictly increases on interval $x \in(3, \infty)$

1 S. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{4}-4 x$

Answer

Given:- Function $f(x)=x^{4}-4 x$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a,b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=x^{4}-4 x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{4}-4 \mathrm{x}\right)$
$\Rightarrow f^{\prime}(x)=4 x^{3}-4$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 4 x^{3}-4=0$
$\Rightarrow 4\left(x^{3}-1\right)=0$
$\Rightarrow x=1$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}>1$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<1$
Thus, $f(x)$ increases on $(1, \infty)$
and $f(x)$ is decreasing on interval $x \in(-\infty, 1)$

1 T. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-6 x+7$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\frac{1}{4} \mathrm{x}^{4}+\frac{2}{3} \mathrm{x}^{3}-\frac{5}{2} \mathrm{x}^{2}-6 \mathrm{x}+7$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-6 x+7$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-6 x+7\right)$
$\Rightarrow f^{\prime}(x)=x^{3}+2 x^{2}-5 x-6$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow x^{3}+2 x^{2}-5 x-6=0$
$\Rightarrow(x+1)(x-2)(x+3)=0$
$\Rightarrow \mathrm{x}=-1,2,-3$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $-3<\mathrm{x}<-1$ and $\mathrm{x}>2$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<-3$ and $-3<\mathrm{x}<-1$
Thus, $f(x)$ increases on $(-3,-1) \cup(2, \infty)$
and $f(x)$ is decreasing on interval $(\infty,-3) \cup(-1,2)$

1 U. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{4}-4 x^{3}+4 x^{2}+15$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-4 \mathrm{x}^{3}+4 \mathrm{x}^{2}+15$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=x^{4}-4 x^{3}+4 x^{2}+15$
$\Rightarrow f(x)=\frac{d}{d x}\left(x^{4}-4 x^{3}+4 x^{2}+15\right)$
$\Rightarrow f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 4 x^{3}-12 x^{2}+8 x=0$
$\Rightarrow 4\left(x^{3}-3 x^{2}+2 x\right)=0$
$\Rightarrow \mathrm{x}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right)=0$
$\Rightarrow x\left(x^{2}-2 x-x+2\right)=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-2)(\mathrm{x}-1)$
$\Rightarrow x=0,1,2$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $0<\mathrm{x}<1$ and $\mathrm{x}>2$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<0$ and $1<\mathrm{x}<2$
Thus, $f(x)$ increases on $(0,1) \cup(2, \infty)$
and $f(x)$ is decreasing on interval $(-\infty, 0) \cup(1,2)$

1 V. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=5 x^{\frac{3}{2}}-3 x^{\frac{5}{2}}, x>0$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{\frac{3}{2}}-3 \mathrm{x}^{\frac{5}{2}}, \mathrm{x}>0$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing. Here we have,
$f(x)=5 x^{\frac{3}{2}}-3 x^{\frac{5}{2}}, x>0$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(5 \mathrm{x}^{\frac{3}{2}}-3 \mathrm{x}^{\frac{5}{2}}\right)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{15}{2} \mathrm{X}^{\frac{1}{2}}-\frac{15}{2} \mathrm{x}^{\frac{3}{2}}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{15}{2} \mathrm{x}^{\frac{1}{2}}(1-\mathrm{x})$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow \frac{15}{2} \mathrm{X}^{\frac{1}{2}}(1-\mathrm{x})=0$
$\Rightarrow X^{\frac{1}{2}}(1-x)=0$
$\Rightarrow x=0,1$
Since $x>0$, therefore only check the range on the positive side of the number line.
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $0<x<1$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}>1$
Thus, $f(x)$ increases on (0,1)
and $f(x)$ is decreasing on interval $x \in(1, \infty)$

1 W. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{8}+6 x^{2}$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{8}+6 \mathrm{x}^{2}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $\mathrm{f}(\mathrm{x})$
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=x^{8}+6 x^{2}$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(8 \mathrm{x}^{7}+12 \mathrm{x}\right)$
$\Rightarrow f(x)=8 x^{7}+12 x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=4 \mathrm{x}\left(2 \mathrm{x}^{6}+3\right)$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 4 \mathrm{x}\left(2 \mathrm{x}^{6}+3\right)=0$
$\Rightarrow \mathrm{x}\left(2 \mathrm{x}^{6}+3\right)=0$
$\Rightarrow \mathrm{x}=0, \sqrt[\frac{1}{6}]{-\frac{3}{2}}$
Since $\mathrm{x}=\sqrt[\frac{1}{6}]{-\frac{3}{2}}$ is a complex number, therefore only check range on 0 sides of number line.
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}>0$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<0$
Thus, $f(x)$ increases on $(0, \infty)$
and $f(x)$ is decreasing on interval $x \in(-\infty, 0)$

1 X. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{3}-6 x^{2}+9 x+15$

Answer

Given:- Function $f(x)=x^{3}-6 x^{2}+9 x+15$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=x^{3}-6 x^{2}+9 x+15$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(x^{3}-6 x^{2}+9 x+15\right)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-12 x+9$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 3 x^{2}-12 x+9=0$
$\Rightarrow 3\left(x^{2}-4 x+3\right)=0$
$\Rightarrow 3\left(x^{2}-3 x-x+3\right)=0$
$\Rightarrow x^{2}-3 x-x+3=0$
$\Rightarrow(x-3)(x-1)=0$
$\Rightarrow x=1,3$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<1$ and $\mathrm{x}>3$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $1<\mathrm{x}<3$
Thus, $f(x)$ increases on $(-\infty, 1) \cup(3, \infty)$
and $f(x)$ is decreasing on interval $x \in(1,3)$

1 Y. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\{x(x-2)\}^{2}$

Answer

Given:- Function $f(x)=\{x(x-2)\}^{2}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\{x(x-2)\}^{2}$
$\Rightarrow f(x)=\left\{\left[x^{2}-2 x\right]\right\}^{2}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\left[x^{2}-2 x\right]^{2}\right)$
$\Rightarrow f^{\prime}(x)=2\left(x^{2}-2 x\right)(2 x-2)$
$\Rightarrow f^{\prime}(x)=4 x(x-2)(x-1)$
For $f(x)$ lets find critical point, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow 4 x(x-2)(x-1)=0$
$\Rightarrow x(x-2)(x-1)=0$
$\Rightarrow \mathrm{x}=0,1,2$
Now, lets check values of $f(x)$ between different ranges
Here points $x=0,1,2$ divide the number line into disjoint intervals namely, $(-\infty, 0),(0,1),(1,2)$ and $(2, \infty)$
Lets consider interval $(-\infty, 0)$ and $(1,2)$
In this case, we have $x(x-2)(x-1)<0$
Therefore, $\mathrm{f}^{\prime}(\mathrm{x})<0$ when $\mathrm{x}<0$ and $1<\mathrm{x}<2$

Thus, $f(x)$ is strictly decreasing on interval $(-\infty, 0) \cup(1,2)$
Now, consider interval $(0,1)$ and $(2, \infty)$
In this case, we have $x(x-2)(x-1)>0$
Therefore, $\mathrm{f}^{\prime}(\mathrm{x})>0$ when $0<\mathrm{x}<1$ and $\mathrm{x}<2$
Thus, $f(x)$ is strictly increases on interval $(0,1) \cup(2, \infty)$

1 Z. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$

Answer

Given:- Function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $\mathrm{f}(\mathrm{x})$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$
$\Rightarrow f(x)=\frac{d}{d x}\left(3 x^{4}-4 x^{3}-12 x^{2}+5\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}^{3}-12 \mathrm{x}^{2}-24 \mathrm{x}$
$\Rightarrow f^{\prime}(x)=12 x\left(x^{2}-x-2\right)$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(\mathrm{x})>0$
$\Rightarrow 12 x\left(x^{2}-x-2\right)>0$
$\Rightarrow \mathrm{x}\left(\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-2\right)>0$
$\Rightarrow x(x-2)(x+1)>0$
$\Rightarrow-1<x<0$ and $x>2$
$\Rightarrow x \in(-1,0) \cup(2, \infty)$
Thus $f(x)$ is increasing on interval $(-1,0) \cup(2, \infty)$
Again, For $f(x)$ to be decreasing, we must have
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow 12 x\left(x^{2}-x-2\right)<0$
$\Rightarrow x\left(x^{2}-2 x+x-2\right)<0$
$\Rightarrow x(x-2)(x+1)<0$
$\Rightarrow-\infty<x<-1$ and $0<x<2$
$\Rightarrow x \in(-\infty,-1) \cup(0,2)$
Thus $f(x)$ is decreasing on interval $(-\infty,-1) \cup(0,2)$

1 A1. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\frac{3}{2} \mathrm{x}^{4}-4 \mathrm{x}^{3}-45 \mathrm{x}^{2}+51$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51\right)$
$\Rightarrow f^{\prime}(x)=6 x^{3}-12 x^{2}-90 x$
$\Rightarrow f^{\prime}(x)=6 x\left(x^{2}-2 x-15\right)$
$\Rightarrow f^{\prime}(x)=6 x\left(x^{2}-5 x+3 x-15\right)$
$\Rightarrow f^{\prime}(x)=6 x(x-5)(x+3)$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow 6 x(x-5)(x+3)>0$
$\Rightarrow x(x-5)(x+3)>0$
$\Rightarrow-3<x<0$ or $5<x<\infty$
$\Rightarrow x \in(-3,0) \cup(5, \infty)$
Thus $f(x)$ is increasing on interval $(-3,0) \cup(5, \infty)$
Again, For $f(x)$ to be decreasing, we must have
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\Rightarrow 6 x(x-5)(x+3)>0$
$\Rightarrow x(x-5)(x+3)>0$
$\Rightarrow-\infty<x<-3$ or $0<x<5$
$\Rightarrow x \in(-\infty,-3) \cup(0,5)$
Thus $f(x)$ is decreasing on interval $(-\infty,-3) \cup(0,5)$

1 B1. Question

Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\log (2+x)-\frac{2 x}{2+x}$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\log (2+\mathrm{x})-\frac{2 \mathrm{x}}{2+\mathrm{x}}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=\log (2+x)-\frac{2 x}{2+x}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\log (2+\mathrm{x})-\frac{2 \mathrm{x}}{2+\mathrm{x}}\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2+\mathrm{x}}-\frac{(2+\mathrm{x}) 2-2 \mathrm{x} \times 1}{(2+\mathrm{x})^{2}}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2+\mathrm{x}}-\frac{4+2 \mathrm{x}-2 \mathrm{x}}{(2+\mathrm{x})^{2}}$
$\Rightarrow f^{\prime}(x)=\frac{1}{2+\mathrm{x}}-\frac{4}{(2+\mathrm{x})^{2}}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{2+\mathrm{x}-4}{(2+\mathrm{x})^{2}}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{x}-2}{(2+\mathrm{x})^{2}}$
For $f(x)$ to be increasing, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
$\Rightarrow \frac{x-2}{(2+x)^{2}}>0$
$\Rightarrow(\mathrm{x}-2)>0$
$\Rightarrow 2<x<\infty$
$\Rightarrow x \in(2, \infty)$
Thus $f(x)$ is increasing on interval $(2, \infty)$
Again, For $f(x)$ to be decreasing, we must have
$f^{\prime}(x)<0$
$\Rightarrow \frac{x-2}{(2+x)^{2}}<0$
$\Rightarrow(\mathrm{x}-2)<0$
$\Rightarrow-\infty<x<2$
$\Rightarrow x \in(-\infty, 2)$
Thus $f(x)$ is decreasing on interval $(-\infty, 2)$

2. Question

Determine the values of x for which the function $f(x)=x^{2}-6 x+9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y=x^{2}-6 x+9$ where the normal is parallel to the liney $=x+5$.

Answer

Given:- Function $f(x)=x^{2}-6 x+9$ and a line parallel to $y=x+5$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $\mathrm{f}(\mathrm{x})$
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=x^{2}-6 x+9$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-6 \mathrm{x}+9\right)$
$\Rightarrow f^{\prime}(x)=2 x-6$
$\Rightarrow f^{\prime}(\mathrm{x})=2(\mathrm{x}-3)$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow 2(x-3)=0$
$\Rightarrow(x-3)=0$
$\Rightarrow x=3$
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}>3$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}<3$
Thus, $\mathrm{f}(\mathrm{x})$ increases on $(3, \infty)$
and $f(x)$ is decreasing on interval $x \in(-\infty, 3)$
Now, lets find coordinates of point
Equation of curve is
$f(x)=x^{2}-6 x+9$
slope of this curve is given by
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-6 \mathrm{x}+9\right)$
$\Rightarrow \mathrm{m}_{1}=2 \mathrm{x}-6$
and Equation of line is
$y=x+5$
slope of this curve is given by
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}+5)$
$\Rightarrow \mathrm{m}_{2}=1$
Since slope of curve (i.e slope of its normal) is parallel to line
Therefore, they follow the relation
$\Rightarrow \frac{-1}{m_{1}}=\mathrm{m}_{2}$
$\Rightarrow \frac{-1}{2 \mathrm{x}-6}=1$
$\Rightarrow 2 \mathrm{x}-6=-1$
$\Rightarrow \mathrm{x}=\frac{5}{2}$
Thus putting the value of x in equation of curve, we get
$\Rightarrow y=x^{2}-6 x+9$
$\Rightarrow y=\left(\frac{5}{2}\right)^{2}-6\left(\frac{5}{2}\right)+9$
$\Rightarrow \mathrm{y}=\frac{25}{4}-15+9$
$\Rightarrow \mathrm{y}=\frac{25}{4}-6$
$\Rightarrow \mathrm{y}=\frac{1}{4}$
Thus the required coordinates is $\left(\frac{5}{2}, \frac{1}{4}\right)$

3. Question

Find the intervals in which $f(x)=\sin x-\cos x$, where $0<x<2 \pi$ is increasing or decreasing.

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\cos \mathrm{x}, 0<\mathrm{x}<2 \pi$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\sin x-\cos x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x}-\cos \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\cos x+\sin x$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(\mathrm{x})=0$
$\Rightarrow \cos x+\sin x=0$
$\Rightarrow \tan (x)=-1$
$\Rightarrow \mathrm{x}=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
Here these points divide the angle range from 0 to 2Π since we have x as angle
clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $0<\mathrm{x}<\frac{3 \pi}{4}$ and $\frac{7 \pi}{4}<\mathrm{x}<2 \pi$
and $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\frac{3 \pi}{4}<\mathrm{x}<\frac{7 \pi}{4}$
Thus, $f(x)$ increases on $\left(0, \frac{3 \pi}{4}\right) \cup\left(\frac{7 \pi}{4}, 2 \pi\right)$
and $f(x)$ is decreasing on interval $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$

4. Question

Show that $f(x)=e^{2 x}$ is increasing on R.

Answer

Given:- Function $f(x)=e^{2 x}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a,b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=e^{2 x}$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{2 \mathrm{x}}\right)$
$\Rightarrow f^{\prime}(x)=2 e^{2 x}$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow 2 \mathrm{e}^{2 \mathrm{x}}>0$
$\Rightarrow e^{2 x}>0$
since, the value of e lies between 2 and 3
so, whatever be the power of e (i.e x in domain R) will be greater than zero.
Thus $f(x)$ is increasing on interval R

5. Question

Show that $f(x)=e^{\frac{1}{x}}, x \neq 0$ is a decreasing function for all $x \neq 0$.

Answer

Given:- Function $f(x)=e^{\frac{1}{x}}$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=e^{\frac{1}{x}}$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\frac{1}{\mathrm{x}}}\right)$
$\Rightarrow f^{\prime}(x)=e^{\frac{1}{x}} \cdot\left(\frac{-1}{x^{2}}\right)$
$\Rightarrow f^{\prime}(\mathrm{x})=-\frac{e^{\frac{1}{x}}}{\mathrm{x}^{2}}$
As given $x \in R, x \neq 0$
$\Rightarrow \frac{1}{\mathrm{x}^{2}}>0$ and $\mathrm{e}^{\frac{1}{\mathrm{x}}}>0$
Their ratio is also greater than 0
$\Rightarrow \frac{e^{\frac{1}{x}}}{x^{2}}>0$
$\Rightarrow-\frac{e^{\frac{1}{x}}}{\mathrm{x}^{2}}<0$; as by applying -ve sign change in comparision sign
$\Rightarrow f^{\prime}(x)<0$
Hence, condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing for all $x \neq 0$

6. Question

Show that $f(x)=\log _{a} x, 0<a<1$ is a decreasing function for all $x>0$.

Answer

Given:- Function $f(x)=\log _{a} x, 0<a<1$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\log _{a} x, 0<a<1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\log _{\mathrm{a}} \mathrm{x}\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{x \log a}$
As given $0<a<1$
$\Rightarrow \log (\mathrm{a})<0$
and for $\mathrm{x}>0$
$\Rightarrow \frac{1}{\mathrm{x}}>0$
Therefore $f^{\prime}(x)$ is
$\Rightarrow \frac{1}{\mathrm{xlog} \mathrm{a}}<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
Hence, condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing for all $x>0$

7. Question

Show that $f(x)=\sin x$ is increasing on $(0, \pi / 2)$ and decreasing on $(\pi / 2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.

Answer
Given:- Function $f(x)=\sin x$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\sin x$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\cos x$
Taking different region from 0 to 2π
a) let $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow \cos (x)>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Thus $f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$
b) let $x \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow \cos (x)<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
Thus $f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Therefore, from above condition we find that
$\Rightarrow f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$ and decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Hence, condition for $f(x)$ neither increasing nor decreasing in $(0, \pi)$

8. Question

Show that $f(x)=\log \sin x$ is increasing on $(0, \pi / 2)$ and decreasing on $(\pi / 2, \pi)$.

Answer

Given:- Function $f(x)=\log \sin x$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\log \sin x$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}(\log \sin \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\frac{1}{\sin x} \times \cos x$
$\Rightarrow f^{\prime}(x)=\cot (x)$
Taking different region from 0 to π
a) let $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow \cot (x)>0$
$\Rightarrow f^{\prime}(x)>0$
Thus $f(x)$ is increasing in ($0, \frac{\pi}{2}$)
b) let $x \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow \cot (x)<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
Thus $f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Hence proved

9. Question

Show that $f(x)=x-\sin x$ is increasing for all $x \in R$.

Answer

Given:- Function $f(x)=x-\sin x$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=x-\sin x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}-\sin \mathrm{x})$
$\Rightarrow f^{\prime}(x)=1-\cos x$
Now, as given
$x \in R$
$\Rightarrow-1<\cos x<1$
$\Rightarrow-1>\cos x>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
hence, Condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in R$

10. Question

Show that $f(x)=x^{3}-15 x^{2}+75 x-50$ is an increasing function for all $x \in R$.

Answer

Given:- Function $f(x)=x^{3}-15 x^{2}+75 x-50$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=x^{3}-15 x^{2}+75 x-50$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3}-15 \mathrm{x}^{2}+75 \mathrm{x}-50\right)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-30 x+75$
$\Rightarrow f^{\prime}(x)=3\left(x^{2}-10 x+25\right)$
$\Rightarrow f^{\prime}(x)=3(x-5)^{2}$
Now, as given
$x \in R$
$\Rightarrow(x-5)^{2}>0$
$\Rightarrow 3(x-5)^{2}>0$
$\Rightarrow f^{\prime}(\mathrm{x})>0$
hence, Condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in R$

11. Question

Show that $f(x)=\cos ^{2} x$ is a decreasing function on $(0, \pi / 2)$.

Answer

Given:- Function $f(x)=\cos ^{2} x$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=\cos ^{2} x$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{2} \mathrm{x}\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \cos \mathrm{x}(-\sin \mathrm{x})$
$\Rightarrow f^{\prime}(\mathrm{x})=-2 \sin (\mathrm{x}) \cos (\mathrm{x})$
$\Rightarrow f^{\prime}(x)=-\sin 2 x ; a s \sin 2 A=2 \sin A \cos A$
Now, as given
$x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow 2 x \in(0, \pi)$
$\Rightarrow \operatorname{Sin}(2 x)>0$
$\Rightarrow-\operatorname{Sin}(2 x)<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
hence, Condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval $\left(0, \frac{\pi}{2}\right)$
Hence proved

12. Question

Show that $f(x)=\sin x$ is an increasing function on $(-\pi / 2, \pi / 2)$.

Answer

Given:- Function $f(x)=\sin x$
Theorem:- Let f be a differentiable real function defined on an open interval (a,b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\sin x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\cos x$
Now, as given
$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
That is $4^{\text {th }}$ quadrant, where
$\Rightarrow \cos x>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
hence, Condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

13. Question

Show that $f(x)=\cos x$ is a decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor
decreasing in $(-\pi, \pi)$.

Answer

Given:- Function $f(x)=\cos x$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have,
$f(x)=\cos x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\cos \mathrm{x})$
$\Rightarrow f^{\prime}(x)=-\sin x$
Taking different region from 0 to 2π
a) let $x \in(0, \pi)$
$\Rightarrow \sin (x)>0$
$\Rightarrow-\sin x<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
Thus $f(x)$ is decreasing in $(0, \pi)$
b) let $x \in(-\pi, 0)$
$\Rightarrow \sin (x)<0$
$\Rightarrow-\sin x>0$
$\Rightarrow f^{\prime}(x)>0$
Thus $f(x)$ is increasing in $(-\pi, 0)$
Therefore, from above condition we find that
$\Rightarrow f(x)$ is decreasing in $(0, \pi)$ and increasing in $(-\pi, 0)$
Hence, condition for $f(x)$ neither increasing nor decreasing in $(-\pi, \pi)$

14. Question

Show that $f(x)=\tan x$ is an increasing function on $(-\pi / 2, \pi / 2)$.

Answer

Given:- Function $f(x)=\tan x$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})$
$\Rightarrow f^{\prime}(x)=\sec ^{2} x$
Now, as given
$x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
That is $4^{\text {th }}$ quadrant, where
$\Rightarrow \sec ^{2} x>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
hence, Condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

15. Question

Show that $f(x)=\tan ^{-1}(\sin x+\cos x)$ is a decreasing function on the interval $(\pi / 4, \pi / 2)$.

Answer

Given:- Function $f(x)=\tan ^{-1}(\sin x+\cos x)$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\tan ^{-1}(\sin x+\cos x)$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1}(\sin \mathrm{x}+\cos \mathrm{x})\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{1+(\sin x+\cos x)^{2}} \times(\cos x-\sin x)$
$\Rightarrow f^{\prime}(x)=\frac{(\cos x-\sin x)}{1+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}$
$\Rightarrow f(x)=\frac{\cos x-\sin x}{2(1+\sin x \cos x)}$
Now, as given
$\mathrm{x} \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
$\Rightarrow \operatorname{Cos} x-\sin x<0 ;$ as here cosine values are smaller than sine values for same angle
$\Rightarrow \frac{\cos x-\sin x}{2(1+\sin x \cos x)}<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
hence, Condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

16. Question

Show that the function $\mathrm{f}(\mathrm{x})=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$ is decreasing on $\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$

Answer

Given:- Function $\mathrm{f}(\mathrm{x})=\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\sin \left(2 x+\frac{\pi}{4}\right)$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\sin \left(2 \mathrm{x}+\frac{\pi}{4}\right)\right\}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\cos \left(2 \mathrm{x}+\frac{\pi}{4}\right) \times 2$
$\Rightarrow \mathrm{f}(\mathrm{x})=2 \cos \left(2 \mathrm{x}+\frac{\pi}{4}\right)$
Now, as given
$\mathrm{x} \in\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$
$\Rightarrow \frac{3 \pi}{8}<x<\frac{5 \pi}{8}$
$\Rightarrow \frac{3 \pi}{4}<2 \mathrm{x}<\frac{5 \pi}{4}$
$\Rightarrow \pi<2 \mathrm{x}+\frac{\pi}{4}<\frac{3 \pi}{2} ;$
as here $2 \mathrm{x}+\frac{\pi}{4}$ lies in $3^{\text {rd }}$ quadrant
$\Rightarrow \cos \left(2 x+\frac{\pi}{4}\right)<0$
$\Rightarrow 2 \cos \left(2 x+\frac{\pi}{4}\right)<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
hence, Condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval $\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$

17. Question

Show that the function $f(x)=\cot ^{-1}(\sin x+\cos x)$ is decreasing on $(0, \pi / 4)$ and increasing on $(\pi / 4, \pi / 2)$.

Answer

Given:- Function $f(x)=\cot ^{-1}(\sin x+\cos x)$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\cot ^{-1}(\sin x+\cos x)$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\cot ^{-1}(\sin \mathrm{x}+\cos \mathrm{x})\right\}$
$\Rightarrow f^{\prime}(x)=\frac{1}{1+(\sin x+\cos x)^{2}} \times(\cos x-\sin x)$
$\Rightarrow f^{\prime}(x)=\frac{(\cos x-\sin x)}{1+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}$
$\Rightarrow f^{\prime}(x)=\frac{\cos x-\sin x}{2(1+\sin x \cos x)}$
Now, as given
$x \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
$\Rightarrow \cos x-\sin x<0$; as here cosine values are smaller than sine values for same angle
$\Rightarrow \frac{\cos x-\sin x}{2(1+\sin x \cos x)}<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
hence, Condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

18. Question

Show that $f(x)=(x-1) e^{x}+1$ is an increasing function for all $x>0$.

Answer

Given:- Function $f(x)=(x-1) e^{x}+1$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=(x-1) e^{x}+1$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left((\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}+1\right)$
$\Rightarrow f^{\prime}(x)=e^{x}+(x-1) e^{x}$
$\Rightarrow f^{\prime}(x)=e^{x}(1+x-1)$
$\Rightarrow f^{\prime}(x)=x e^{x}$
as given
$x>0$
$\Rightarrow \mathrm{e}^{\mathrm{x}}>0$
$\Rightarrow \mathrm{xe}^{\mathrm{x}}>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x>0$

19. Question

Show that the function $x^{2}-x+1$ is neither increasing nor decreasing on $(0,1)$.

Answer

Given:- Function $f(x)=x^{2}-x+1$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.

Here we have,
$f(x)=x^{2}-x+1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-\mathrm{x}+1\right)$
$\Rightarrow f^{\prime}(x)=2 x-1$
Taking different region from $(0,1)$
a) let $x \in\left(0, \frac{1}{2}\right)$
$\Rightarrow 2 \mathrm{x}-1<0$
$\Rightarrow f^{\prime}(x)<0$
Thus $f(x)$ is decreasing in $\left(0, \frac{1}{2}\right)$
b) let $x \in\left(\frac{1}{2}, 1\right)$
$\Rightarrow 2 \mathrm{x}-1>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Thus $f(x)$ is increasing in $\left(\frac{1}{2}, 1\right)$
Therefore, from above condition we find that
$\Rightarrow f(x)$ is decreasing in $\left(0, \frac{1}{2}\right)$ and increasing in $\left(\frac{1}{2}, 1\right)$
Hence, condition for $f(x)$ neither increasing nor decreasing in $(0,1)$

20. Question

Show that $f(x)=x^{9}+4 x^{7}+11$ is an increasing function for all $x \in R$.

Answer

Given:- Function $f(x)=x^{9}+4 x^{7}+11$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=x^{9}+4 x^{7}+11$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{9}+4 \mathrm{x}^{7}+11\right)$
$\Rightarrow f^{\prime}(x)=9 x^{8}+28 x^{6}$
$\Rightarrow f^{\prime}(x)=x^{6}\left(9 x^{2}+28\right)$
as given
$x \in R$
$\Rightarrow x^{6}>0$ and $9 x^{2}+28>0$
$\Rightarrow x^{6}\left(9 x^{2}+28\right)>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in R$

21. Question

Prove that the function $f(x)=x^{3}-6 x^{2}+12 x-18$ is increasing on R.

Answer

Given:- Function $f(x)=x^{3}-6 x^{2}+12 x-18$
Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing. Here we have,
$f(x)=x^{3}-6 x^{2}+12 x-18$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3}-6 \mathrm{x}^{2}+12 \mathrm{x}-18\right)$
$\Rightarrow f^{\prime}(x)=3 x^{2}-12 x+12$
$\Rightarrow f^{\prime}(x)=3\left(x^{2}-4 x+4\right)$
$\Rightarrow f^{\prime}(x)=3(x-2)^{2}$
as given
$x \in R$
$\Rightarrow(x-2)^{2}>0$
$\Rightarrow 3(x-2)^{2}>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in R$

22. Question

State when a function $f(x)$ is said to be increasing on an interval $[a, b]$. Test whether the function $f(x)=x^{2}-$ $6 x+3$ is increasing on the interval $[4,6]$.

Answer

Given:- Function $f(x)=f(x)=x^{2}-6 x+3$

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on (a, b)
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on (a, b)

Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=f(x)=x^{2}-6 x+3$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-6 \mathrm{x}+3\right)$
$\Rightarrow f^{\prime}(x)=2 x-6$
$\Rightarrow f^{\prime}(x)=2(x-3)$
Here A function is said to be increasing on $[a, b]$ if $f(x)>0$
as given
$x \in[4,6]$
$\Rightarrow 4 \leq x \leq 6$
$\Rightarrow 1 \leq(x-3) \leq 3$
$\Rightarrow(\mathrm{x}-3)>0$
$\Rightarrow 2(x-3)>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in[4,6]$

23. Question

Show that $f(x)=\sin x-\cos x$ is an increasing function on $(-\pi / 4, \pi / 4)$?

Answer

we have,
$f(x)=\sin x-\cos x$
$f^{\prime}(x)=\cos x+\sin x$
$=\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x\right)$
$=\sqrt{2}\left(\frac{\sin \pi}{4} \cos x+\frac{\cos \pi}{4} \sin x\right)$
$=\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)$
Now,
$x \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow-\frac{\pi}{4}<x<\frac{\pi}{4}$
$\Rightarrow 0<\frac{\pi}{4}+x<\frac{\pi}{2}$
$\Rightarrow \sin 0^{\circ}<\sin \left(\frac{\pi}{4}+x\right)<\sin \frac{\pi}{2}$
$\Rightarrow 0<\sin \left(\frac{\pi}{4}+x\right)<1$
$\Rightarrow \sqrt{2} \sin \left(\frac{\pi}{4}+x\right)>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, $f(x)$ is an increasing function on ($-\pi / 4, \pi / 4$)

24. Question

Show that $f(x)=\tan ^{-1} x-x$ is a decreasing function on R ?

Answer

we have,
$f(x)=\tan ^{-1} x-x$
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}-1$
$=-\frac{x^{2}}{1+x^{2}}$
Now,
$x \in R$
$\Rightarrow x^{2}>0$ and $1+x^{2}>0$
$\Rightarrow \frac{\mathrm{x}^{2}}{1+\mathrm{x}^{2}}>0$
$\Rightarrow-\frac{\mathrm{x}^{2}}{1+\mathrm{x}^{2}}<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$
Hence, $f(x)$ is an decreasing function for R

25. Question

Determine whether $f(x)=x / 2+\sin x$ is increasing or decreasing on $(-\pi / 3, \pi / 3)$?

Answer

we have,
$f(x)=-\frac{x}{2}+\sin x$
$=f^{\prime}(x)=-\frac{1}{2}+\cos x$
Now,
$x \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$
$\Rightarrow-\frac{\pi}{3}<x<\frac{\pi}{3}$
$\Rightarrow \cos \left(-\frac{\pi}{3}\right)<\cos x<\cos \frac{\pi}{3}$
$\Rightarrow \cos \left(\frac{\pi}{3}\right)<\cos x<\cos \frac{\pi}{3}$
$\Rightarrow \frac{1}{2}<\cos x<\frac{1}{2}$
$\Rightarrow-\frac{1}{2}+\cos x>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, $f(x)$ is an increasing function on ($-\pi / 3, \pi / 3$)

26. Question

Find the interval in which $f(x)=\log (1+x)-\frac{x}{1+x}$ is increasing or decreasing?

Answer

we have
$f(x)=\log (1+x)-\frac{x}{1+x}$
$f^{\prime}(x)=\frac{1}{1+x}-\left(\frac{(1+x)-x}{(1+x)^{2}}\right)$
$=\frac{1}{1+x}-\left(\frac{1}{(1+x)^{2}}\right)$
$=\frac{x}{(1+x)^{2}}$
Critical points
$\mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow \frac{x}{(1+x)^{2}}=0$
$\Rightarrow x=0,-1$
Clearly, $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}>0$
And $\mathrm{f}^{\prime}(\mathrm{x})<0$ if $-1<\mathrm{x}<0$ or $\mathrm{x}<-1$
Hence, $f(x)$ increases in $(0, \infty)$, decreases in $(-\infty,-1) \cup(-1,0)$

27. Question

Find the intervals in which $f(x)=(x+2) e^{-x}$ is increasing or decreasing?

Answer

we have,
$f(x)=(x+2) e^{-x}$
$f^{\prime}(x)=e^{-x}-e^{-x}(x+2)$
$=e^{-x}(1-x-2)$
$=-e^{-x}(x+1)$
Critical points
$f^{\prime}(x)=0$
$\Rightarrow-\mathrm{e}^{-\mathrm{x}}(\mathrm{x}+1)=0$
$\Rightarrow x=-1$
Clearly $\mathrm{f}^{\prime}(\mathrm{x})>0$ if $\mathrm{x}<-1$
$\mathrm{f}^{\prime}(\mathrm{x})<0$ if $\mathrm{x}>-1$
Hence $f(x)$ increases in $(-\infty,-1)$, decreases in $(-1, \infty)$

28. Question

Show that the function f given by $f(x)=10^{x}$ is increasing for all x ?

Answer

we have,
$\mathrm{f}(\mathrm{x})=10^{\mathrm{x}}$
$\therefore f^{\prime}(x)=10^{x} \log 10$
Now,
$x \in R$
$\Rightarrow 10^{x}>0$
$\Rightarrow 10^{\mathrm{x}} \log 10>0$
$\Rightarrow f^{\prime}(\mathrm{x})>0$
Hence, $f(x)$ in an increasing function for all x

29. Question

Prove that the function f given by $f(x)=x-[x]$ is încreasing in $(0,1)$?

Answer

we have,
$f(x)=x-[x]$
$\therefore f^{\prime}(x)=1>0$
$\therefore f(x)$ is an increasing function on $(0,1)$
30. Question

Prove that the following function is increasing on r ?
i. $f(x)=3 x^{5}+40 x^{3}+240 x$
ii. $f(x)=4 x^{3}-18 x^{2}+27 x-27$

Answer

(i) we have
$f(x)=3 x^{5}+40 x^{3}+240 x$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=15 \mathrm{x}^{4}+120 \mathrm{x}^{2}+240$
$=15\left(\mathrm{x}^{4}+8 \mathrm{x}^{2}+16\right)$
$=15\left(x^{2}+4\right)^{2}$
Now,
$x \in R$
$\Rightarrow\left(\mathrm{x}^{2}+4\right)^{2}>0$
$\Rightarrow 15\left(x^{2}+4\right)^{2}>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, $f(x)$ is an increasing function for all x
(ii) we have
$f(x)=4 x^{3}-18 x^{2}+27 x-27$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=12 \mathrm{x}^{2}-36 \mathrm{x}+27$
$=12 \mathrm{x}^{2}-18 \mathrm{x}-18 \mathrm{x}+27$
$=3(2 x-3)^{2}$
Now,
$x \in R$
$\Rightarrow(2 \mathrm{x}-3)^{2}>0$
$\Rightarrow 3(2 \mathrm{x}-3)^{2}>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, $f(x)$ is an increasing fuction for all x

31. Question

Prove that the function f given by $f(x)=\log \cos x$ is strictly increasing on $(-\pi / 2,0)$ and strictly decreasing on $(0, \pi / 2)$?

Answer

we have,
$\mathrm{f}(\mathrm{x})=\log \cos \mathrm{x}$
$\therefore f^{\prime}(x)=\frac{1}{\cos x}(-\sin x)=-\tan x$
In Interval $\left(0, \frac{\pi}{2}\right), \tan x>0 \Rightarrow-\tan x<0$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})<0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore \mathrm{f}$ is strickly decreasing on $\left(0, \frac{\pi}{2}\right)$
In interval $\left(\frac{\pi}{2}, \pi\right), \tan x<0 \Rightarrow-\tan x>0$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})>0$ on $\left(\frac{\pi}{2}, \pi\right)$

32. Question

Prove that the function f given by $f(x)=x^{3}-3 x^{2}+4 x$ is strictly increasing on R ?

Answer

given $f(x)=x^{3}-3 x^{2}+4 x$
$\therefore f(x)=3 x^{2}-6 x+4$
$=3\left(\mathrm{x}^{2}-2 \mathrm{x}+1\right)+1$
$=3(x-1)^{2}+1>0$ for all $x \in R$
Hence $f(x)$ is strickly increasing on R

33. Question

33 Prove that the function $f(x)=\cos x$ is :
i. strictly decreasing on $(0, \pi)$
ii. strictly increasing in ($\pi, 2 \pi$)
iii. neither increasing nor decreasing in ($0,2 \pi$)

Answer

Given $f(x)=\cos x$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=-\sin \mathrm{x}$
(i) Since for each $x \in(0, \pi), \sin x>0$
$\Rightarrow \therefore \mathrm{f}^{\prime}(\mathrm{x})<0$
So f is strictly decreasing in $(0, \pi)$
(ii) Since for each $x \in(\pi, 2 \pi), \sin x<0$
$\Rightarrow \therefore \mathrm{f}^{\prime}(\mathrm{x})>0$
So f is strictly increasing in $(\pi, 2 \pi)$
(iii) Clearly from (1) and (2) above, f is neither increasing nor decreasing in $(0,2 \pi)$

34. Question

Show that $f(x)=x^{2}-x \sin x$ is an increasing function on $(0, \pi / 2)$?

Answer

We have,
$f(x)=x^{2}-x \sin x$
$f^{\prime}(x)=2 x-\sin x-x \cos x$
Now,
$x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow 0 \leq \sin x \leq 1,0 \leq \cos x \leq 1$,
$\Rightarrow 2 \mathrm{x}-\sin \mathrm{x}-\mathrm{x} \cos \mathrm{x}>0$
$\Rightarrow f^{\prime}(x) \geq 0$
Hence, $f(x)$ is an increasing function on ($0, \frac{\pi}{2}$).

35. Question

Find the value(s) of a for which $f(x)=x^{3}-a x$ is an increasing function on R ?

Answer

We have,
$f(x)=x^{3-a x}$
$f^{\prime}(x)=3 x^{2}-a$
Given that $f(x)$ is on increasing function
$\therefore f^{\prime}(x) 0$ for all $x \in R$
$\Rightarrow 3 x^{2}-a>0$ for all $x \in R$
$\Rightarrow a<3 x^{2}$ for all $x \in R$
But the last value of $3 x^{2}=0$ for $x=0$
$\therefore \mathrm{a} \leq 0$

36. Question

Find the values of b for which the function $f(x)=\sin x-b x+c$ is a decreasing function on R ?

Answer

We have,
$f(x)=\sin x-b x+c$
$f^{\prime}(x)=\cos x-b$
Given that $f(x)$ is on decreasing function on R
$\therefore \mathrm{f}^{\prime}(\mathrm{x})<0$ for all $\mathrm{x} \in \mathrm{R}$
$\Rightarrow \cos \mathrm{x}-\mathrm{b}>0$ for all $\mathrm{x} \in \mathrm{R}$
$\Rightarrow b<\cos x$ for all $x \in R$
But the last value of $\cos x$ in 1
$\therefore \mathrm{b} \geq 1$

37. Question

Show that $f(x)=x+\cos x-a$ is an increasing function on R for all values of a ?

Answer

We have,
$f(x)=x+\cos x-a$
$f^{\prime}(x)=1-\sin x=\frac{2 \cos ^{2} x}{2}$
Now,
$x \in R$
$\Rightarrow \frac{\cos ^{2} x}{2}>0$
$\Rightarrow \frac{2 \cos ^{2} x}{2}>0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
Hence, $f(x)$ is an increasing function for $x \in R$

38. Question

Let F defined on $[0,1]$ be twice differentiable such that $\mid f^{\prime \prime}(x) \leq 1$ for all $x \in[0,1]$. If $f(0)=f(1)$, then show that $\left|f^{\prime}(x)\right|<1$ for all $x \in[0,1]$?

Answer

As $f(0)=f(1)$ and f is differentiable, hence by Rolles theorem:
$f^{\prime}(c)=0$ for some $c \in[0,1]$
let us now apply LMVT (as function is twice differentiable) for point c and $x \in[0,1]$,
hence,
$\frac{\left|f^{\prime}(x)-f(c)\right|}{x-c}=f "(d)$
$\Rightarrow \frac{\left|f^{\prime}(x)-0\right|}{x-c}=f^{\prime \prime}(d)$
$\Rightarrow \frac{\left|f^{\prime}(x)\right|}{x-c}=f^{\prime \prime}(d)$
A given that $|\mathrm{f} "(\mathrm{~d})|<=1$ for $\mathrm{x} \in[0,1]$
$\Rightarrow \frac{\left|f^{\prime}(\mathrm{x})\right|}{\mathrm{x}-\mathrm{c}} \leq 1$
$\Rightarrow\left|f^{\prime}(\mathrm{x})\right| \leq \mathrm{x}-\mathrm{c}$
Now both x and c lie in $[0,1]$, hence $x-c \in[0,1]$

39. Question

Find the intervals in which $f(x)$ is increasing or decreasing :
i. $f(x)=x|x|, x \in R$
ii. $f(x)=\sin x+|\sin x|, 0<x \leq 2 \pi$
iii. $f(x)=\sin x(1+\cos x), 0<x<\pi / 2$

Answer

(i): Consider the given function,
$f(x)=x|x|, x \in R$
$\Rightarrow f(x)=\left\{\begin{array}{l}-x^{2}, x<0 \\ x^{2}, x>0\end{array}\right.$
$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{l}-2 x, x<0 \\ 2 x, x>0\end{array}\right.$
$\Rightarrow f^{\prime}(\mathrm{x})>0$
Therefore, $f(x)$ is an increasing function for all real values.
(ii): Consider the given function,
$f(x)=\sin x+|\sin x|, 0<x \leq 2 \pi$
$\Rightarrow f(x)=\left\{\begin{array}{c}2 \sin x, 0<x \leq \pi \\ 0, \pi<x \leq 2 \pi\end{array}\right.$
$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{c}2 \cos x, 0<x \leq \pi \\ 0, \pi<x \leq 2 \pi\end{array}\right.$
The function $2 \cos x$ will be positive between $\left(0, \frac{\pi}{2}\right)$
Hence the function $f(x)$ is increasing in the interval $\left(0, \frac{\pi}{2}\right)$
The function $2 \cos x$ will be negative between $\left(\frac{\pi}{2}, \pi\right)$
Hence the function $f(x)$ is decreasing in the interval $\left(\frac{\pi}{2}, \pi\right)$
The value of $f^{\prime}(x)=0$, when, $\pi<x \leq 2 \pi$
Therefore, the function $f(x)$ is neither increasing nor decreasing in the interval ($\pi, 2 \pi$)
(iii): consider the function,
$f(x)=\sin x(1+\cos x), 0<x<\frac{\pi}{2}$
$\Rightarrow f^{\prime}(x)=\cos x+\sin x(-\sin x)+\cos x(\cos x)$
$\Rightarrow f^{\prime}(x)=\cos x-\sin ^{2} x+\cos ^{2} x$
$\Rightarrow f^{\prime}(\mathrm{x})=\cos \mathrm{x}+\left(\cos ^{2} \mathrm{x}-1\right)+\cos ^{2} \mathrm{x}$
$\Rightarrow f^{\prime}(x)=\cos x+2 \cos ^{2} x-1$
$\Rightarrow f^{\prime}(x)=(2 \cos x-1)(\cos x+1)$
for $f(x)$ to be increasing, we must have,
$f^{\prime}(x)>0$
$\left.\Rightarrow f^{\prime}(\mathrm{x})\right)=(2 \cos \mathrm{x}-1)(\cos \mathrm{x}+1)$
$\Rightarrow 0<x<\frac{\pi}{3}$
So, $f(x)$ to be decreasing, we must have,
$\mathrm{f}^{\prime}(\mathrm{x})<0$
$\left.\Rightarrow f^{\prime}(x)\right)=(2 \cos x-1)(\cos x+1)$
$\Rightarrow \frac{\pi}{3}<x<\frac{\pi}{2}$
$\Rightarrow x \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
So, $f(x)$ is decreasing in $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

MCQ

1. Question

Mark the correct alternative in the following:
The interval of increase of the function $f(x)=x-e^{x}+\tan \left(\frac{2 \pi}{7}\right)$ is
A. $(0, \infty)$
B. $(-\infty, 0)$
C. $(1, \infty)$
D. $(-\infty, 1)$

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$\mathrm{f}(\mathrm{x})=\mathrm{x}-\mathrm{e}^{\mathrm{x}}+\tan \left(\frac{2 \pi}{7}\right)$
$d\left(\frac{f(x)}{d x}\right)=1-e^{x}=f^{\prime}(x)$
Now
$\mathrm{f}^{\prime}(\mathrm{x})>0$
$\Rightarrow 1-e$
$x>0$
$X<0$
$x \in(-\infty, 0)$

2. Question

Mark the correct alternative in the following:
The function $f(x)=\cos ^{-1} x+x$ increases in the interval.
A. $(1, \infty)$
B. $(-1, \infty)$
C. $(-\infty, \infty)$
D. $(0, \infty)$

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=\cos ^{-1} x+x$
$d\left(\frac{f(x)}{d x}\right)=\frac{x^{2}}{1+x^{2}}=f^{\prime}(x)$
Now
$f^{\prime}(x)>0$
$\Rightarrow \frac{\mathrm{x}^{2}}{1+\mathrm{x}^{2}}>0$
$x \in R$
$\Rightarrow x \in(-\infty, \infty)$

3. Question

Mark the correct alternative in the following:
The function $f(x)=x^{x}$ decreases on the interval.
A. $(0, \mathrm{e})$
B. $(0,1)$
C. $(0,1 / e)$
D. $(1 / \mathrm{e}, \mathrm{e})$

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=x^{x}$
$d\left(\frac{f(x)}{d x}\right)=x^{x}(1+\log x)=f^{\prime}(x)$
now for decreasing
$f^{\prime}(x)<0$
$\Rightarrow x^{x}(1+\log x)<0$
$\Rightarrow(1+\log x)<0$
$\Rightarrow \log x<-1$
$\Rightarrow \mathrm{x}<\mathrm{e}^{-1}$
$x \in\left(0, \frac{1}{\mathrm{e}}\right)$

4. Question

Mark the correct alternative in the following:
The function $f(x)=2 \log (x-2)-x^{2}+4 x+1$ increases on the interval.
A. $(1,2)$
B. $(2,3)$
C. $((1,3)$
D. $(2,4)$

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=2 \log (x-2)-x^{2}+4 x+1$
$d\left(\frac{f(x)}{d x}\right)=\frac{2}{x-2}-2 x+4=f^{\prime}(x)$
$\Rightarrow f^{\prime}(x)=-\frac{2(x-1)(x-3)}{x-2}$
now for increasing
$f^{\prime}(x)>0$
$\Rightarrow-\frac{2(x-1)(x-3)}{x-2}<0$
$x-3<0$ and $x-2>0$
$x<3$ and $x>2$
$x \in(2,3)$

5. Question

Mark the correct alternative in the following:
If the function $f(x)=2 x^{2}-k x+5$ is increasing on [1, 2], then k lies in the interval.
A. $(-\infty, 4)$
B. $(4, \infty)$
C. $(-\infty, 8)$
D. $(8, \infty)$

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
$f(x)=2 x^{2}-k x+5$
$d\left(\frac{f(x)}{d x}\right)=4 x-k=f(x)$
$f^{\prime}(x)>0$
$\Rightarrow 4 x-k>0$
$\Rightarrow K<4 x$
For $x=1$
$\Rightarrow K<4$

6. Question

Mark the correct alternative in the following:
Let $f(x)=x^{3}+a x^{2}+b x+5 \sin ^{2} x$ be an increasing function on the set R. Then, a and b satisfy.
A. $a^{2}-3 b-15>0$
B. $a^{2}-3 b+15>0$
C. $a^{2}-3 b+15<0$
D. $a>0$ and $b>0$

Answer

Formula:- (i) $a x^{2}+b x+c>0$ for all $x \Rightarrow a>0$ and $b^{2}-4 a c<0$
(ii) $a x^{2}+b x+c<0$ for all $x \Rightarrow a<0$ and $b^{2}-4 a c<0$
(iii)The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=x^{3}+a x^{2}+b x+5 \sin ^{2} x$
$d\left(\frac{f(x)}{d x}\right)=3 x^{2}+2 a x+b+5 \sin ^{2} x=f(x)$
For increasing function $\mathrm{f}^{\prime}(\mathrm{x})>0$
$3 x^{2}+2 a x+b+5 \sin 2 x>0$
Then
$3 x^{2}+2 a x+b-5<0$
And $b^{2}-4 a c<0$
$\Rightarrow 4 \mathrm{a}^{2}-12(\mathrm{~b}-5)<0$
$\Rightarrow a^{2}-3 b+15<0$
$\Rightarrow \mathrm{a}^{2}-3 \mathrm{~b}+15<0$

7. Question

Mark the correct alternative in the following:
The function $\mathrm{f}(\mathrm{x})=\log _{e}\left(\mathrm{x}^{3}+\sqrt{\mathrm{x}^{6}+1}\right)$ is of the following types:
A. even and increasing
B. odd and increasing
C. even and decreasing
D. odd and decreasing

Answer

Formula:- (i)if $f(-x)=f(x)$ then function is even
(ii) if $f(-x)=-f(x)$ then function is odd
(iii) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=\log _{e}\left(x^{3}+\sqrt{x^{6}+1}\right)$
$d\left(\frac{f(x)}{d x}\right)=\frac{1}{x^{3}\left(x^{6}+1\right)^{\frac{1}{2}}}\left(3 x^{2}+\frac{6 x^{5}}{2\left(x^{6}+1\right)^{\frac{1}{2}}}\right)$
$f^{\prime}(x)>0$
hence function is increasing function
$f(-x)=-\log \left(\log _{e}\left(x^{3}+\sqrt{x^{6}+1}\right)\right.$
$\Rightarrow f(-x)=-f(x)$ is odd function

8. Question

Mark the correct alternative in the following:
If the function $f(x)=2 \tan x+(2 a+1) \log _{e}|\sec x|+(a-2) x$ is increasing on R, then
A. $\mathrm{a} \in\left(\frac{1}{2}, \infty\right)$
B. $\mathrm{a} \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
C. $\mathrm{a}=\frac{1}{2}$
D. $a \in R$

Answer

Formula:- (i) $a x^{2}+b x+c>0$ for all $x \Rightarrow a>0$ and $b^{2}-4 a c<0$
(ii) $a x^{2}+b x+c<0$ for all $x \Rightarrow a<0$ and $b^{2}-4 a c<0$
(iii) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=2 \tan x+(2 a+1) \log _{e}|\sec x|+(a-2) x$
$d\left(\frac{f(x)}{d x}\right)=2 \sec ^{2} x+\frac{(2 a+1) \sec x \cdot \tan x}{\sec x}+(a-2)=f^{\prime}(x)$
$\Rightarrow f^{\prime}(x)=2 \sec ^{2} x+(2 a+1) \tan x+(a-2)$
$\Rightarrow f^{\prime}(x)=2\left(\tan ^{2}+1\right)+(2 a+1) \cdot \tan x+(a-2)$
$\Rightarrow f^{\prime}(x)=2 \tan ^{2} x+2 \operatorname{atan} x+\tan x+a$
For increasing function
$f^{\prime}(x)>0$
$\Rightarrow 2 \tan ^{2} x+2 \operatorname{atan} x+\tan x+a>0$
From formula (i)
$(2 a+1)^{2}-8 a<0$
$\Rightarrow 4\left(\mathrm{a}-\frac{1}{2}\right)^{2}<0$
$\Rightarrow \mathrm{a}=\frac{1}{2}$

9. Question

Mark the correct alternative in the following:
Let $f(x)=\tan ^{-1}(g(x))$, where $g(x)$ is monotonically increasing for $0<x<\frac{\pi}{2}$. Then, $f(x)$ is
A. increasing on $\left(0, \frac{\pi}{2}\right)$
B. decreasing on $\left(0, \frac{\pi}{2}\right)$
C. increasing on $\left(0, \frac{\pi}{4}\right)$ and decreasing on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
D. none of these

Answer

Formula:-
(i)The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:- $f(x)=\tan ^{-1}(g(x))$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=\frac{\mathrm{g}^{\prime}(\mathrm{x})}{1+(\mathrm{g}(\mathrm{x}))^{2}}=\mathrm{f}^{\prime}(\mathrm{x})$
For increasing function
$f^{\prime}(x)>0$
$x \in\left(0, \frac{\pi}{2}\right)$

10. Question

Mark the correct alternative in the following:
Let $f(x)=x^{3}-6 x^{2}+15 x+3$. Then,
A. $f(x)>0$ for all $x \in R$
B. $f(x)>f(x+1)$ for all $x \in R$
C. $f(x)$ in invertible
D. $f(x)<0$ for all $x \in R$

Answer

Formula:- (i)The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
(ii)If $f(x)$ is strictly increasing function on interval [a, b], then f^{-1} exist and it is also a strictly increasing function

Given:- $f(x)=x^{3}-6 x^{2}+15 x+3$
$\frac{d(f(x))}{d x}=3 x^{2}-12 x+15=f^{\prime}(x)$
$\Rightarrow f^{\prime}(x)=3(x-2)^{2}+\frac{1}{3}$
$\Rightarrow f^{\prime}(x)=3(x-2)^{2}+\frac{1}{3}$
Therefore $f^{\prime}(x)$ will increasing
Also $f^{-1}(x)$ is possible
Therefore $f(x)$ is invertible function.

11. Question

Mark the correct alternative in the following:
The function $f(x)=x^{2} e^{-x}$ is monotonic increasing when
A. $x \in R-[0,2]$
B. $0<x<2$
C. $2<x<\infty$
D. $x<0$

Answer

$f(x)=x^{2} e^{-x}$
$\frac{d(f(x))}{d x}=x e^{-x}(2-x)=f^{\prime}(x)$
for
$f^{\prime}(x)=0$
$\Rightarrow x^{2} e^{-x}=0$
$\Rightarrow x(2-x)=0$
$x=2, x=0$
$f(x)$ is increasing in $(0,2)$

12. Question

Mark the correct alternative in the following:
Function $f(x)=\cos x-2 \lambda x$ is monotonic decreasing when
A. $\lambda>\frac{1}{2}$
B. $\lambda<\frac{1}{2}$
C. $\lambda<2$
D. $\lambda>2$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly decreasing on (a, b) is that $f^{\prime}(x)<0$ for all $x \in(a, b)$

Given:-
$f(x)=\cos x-2 \lambda x$
$\frac{d(f(x))}{d x}=-\sin x-2 \lambda=f^{\prime}(x)$
for decreasing function $f^{\prime}(x)<0$
$-\sin x-2 \lambda<0$
$\Rightarrow \operatorname{Sin} x+2 \lambda>0$
$\Rightarrow 2 \lambda>-\sin x$
$\Rightarrow 2 \lambda>1$
$\Rightarrow \lambda>\frac{1}{2}$

13. Question

Mark the correct alternative in the following:
In the interval $(1,2)$, function $f(x)=2|x-1|+3|x-2|$ is
A. monotonically increasing
B. monotonically decreasing
C. not monotonic
D. constant

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly decreading on (a, b) is that $f^{\prime}(x)<0$ for all $x \in(a, b)$

Given:-
$f(x)=2(x-1)+3(2-x)$
$f(x)=-x+4$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=-1=\mathrm{f}(\mathrm{x})$
Therefore $\mathrm{f}^{\prime}(\mathrm{x})<0$
Hence decreasing function

14. Question

Mark the correct alternative in the following:
Function $f(x)=x^{3}-27 x+5$ is monotonically increasing when
A. $x<-3$
B. $|x|>3$
C. $x \leq-3$
D. $|x| \geq 3$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=x^{3}-27 x+5$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=3 \mathrm{x}^{2}-27=\mathrm{f}^{\prime}(\mathrm{x})$
for increasing function $f^{\prime}(x)>0$
$3 x^{2}-27>0$
$\Rightarrow(x+3)(x-3)>0$
$\Rightarrow|x|>3$

15. Question

Mark the correct alternative in the following:
Function $f(x)=2 x^{3}-9 x^{2}+12 x+29$ is monotonically decreasing when
A. $x<2$
B. $x>2$
C. $x>3$
D. $1<x<2$

Answer
Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly decreasing on (a, b) is that $f^{\prime}(x)<0$ for all $x \in(a, b)$

Given:-
$f(x)=2 x^{3}-9 x^{2}+12 x+29$
$\frac{d(f(x))}{d x}=f^{\prime}(x)=6(x-1)(x-2)$
for decreasing function $f^{\prime}(x)<0$
$f^{\prime}(x)<0$
$\Rightarrow 6(x-1)(x-2)<0$
$\Rightarrow 1<x<2$

16. Question

Mark the correct alternative in the following:
If the function $f(x)=k x^{3}-9 x^{2}+9 x+3$ is monotonically increasing in every interval, then
A. $\mathrm{k}<3$
B. $k \leq 3$
C. $k>3$
D. $k<3$

Answer

Formula:- (i) $a x^{2}+b x+c>0$ for all $x \Rightarrow a>0$ and $b^{2}-4 a c<0$
(ii) $a x^{2}+b x+c<0$ for all $x \Rightarrow a<0$ and $b^{2}-4 a c<0$
(iii) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=k x^{3}-9 x^{2}+9 x+3$
$\frac{d(f(x))}{d x}=f^{\prime}(x)=3 k x^{2}-18 x+9$
for increasing function $f^{\prime}(x)>0$
$f^{\prime}(x)>0$
$\Rightarrow 3 k x^{2}-18 x+9>0$
$\Rightarrow k x^{2}-6 x+3>0$
using formula (i)
$36-12 k<0$
$\Rightarrow k>3$

17. Question

Mark the correct alternative in the following:
$f(x)=2 x-\tan ^{-1} x-\log \left\{x+\sqrt{x^{2}+1}\right\}$ is monotonically increasing when
A. $x>0$
B. $x<0$
C. $x \in R$
D. $x \in R-\{0\}$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=2 x-\tan ^{-1} x-\log \left\{x+\sqrt{x^{2}+1}\right\}$
$\frac{\mathrm{df}(\mathrm{x})}{\mathrm{dx}}=2-\frac{1}{1+\mathrm{x}^{2}}-\frac{1}{\sqrt{\mathrm{x}^{2}+1}}=\mathrm{f}^{\prime}(\mathrm{x})$
For increasing function $f^{\prime}(x)>0$
$\Rightarrow 2-\frac{1}{1+x^{2}}-\frac{1}{\sqrt{x^{2}+1}}>0$
$x \in R$

18. Question

Mark the correct alternative in the following:
Function $f(x)=|x|-|x-1|$ is monotonically increasing when
A. $x<0$
B. $x>1$
C. $x<1$
D. $0<x<1$

Answer
Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
For $\mathrm{x}<0$
$f(x)=-1$
for $0<x<1$
$f(x)=2 x-1$
for $x>1$
$\mathrm{f}(\mathrm{x})=1$
Hence $f(x)$ will increasing in $0<x<1$

19. Question

Mark the correct alternative in the following:
Every invertible function is
A. monotonic function
B. constant function
C. identity function
D. not necessarily monotonic function

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

If $f(x)$ is strictly increasing function on interval $[a, b]$, then f^{-1} exist and it is also a strictly increasing function

20. Question

Mark the correct alternative in the following:

In the interval $(1,2)$, function $f(x)=2|x-1|+3|x-2|$ is
A. increasing
B. decreasing
C. constant
D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly decreasing on (a, b) is that $f^{\prime}(x)<0$ for all $x \in(a, b)$

Given:-
$f(x)=2(x-1)+3(2-x)$
$\Rightarrow \mathrm{f}(\mathrm{x})=-\mathrm{x}+4$
$\frac{d(f(x))}{d x}=f^{\prime}(x)=-1$
Therefore $\mathrm{f}^{\prime}(\mathrm{x})<0$
Hence decreasing function

21. Question

Mark the correct alternative in the following:
If the function $f(x)=\cos |x|-2 a x+b$ increases along the entire number scale, then
A. $a=b$
B. $\mathrm{a}=\frac{1}{2} \mathrm{~b}$
C. $\mathrm{a} \leq-\frac{1}{2}$
D. $\mathrm{a}>-\frac{3}{2}$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=\cos |x|-2 a x+b$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=-\sin \mathrm{x}-2 \mathrm{a}=\mathrm{f}^{\prime}(\mathrm{x})$
For increasing $f^{\prime}(x)>0$
$\Rightarrow-\sin x-2 a>0$
$\Rightarrow 2 a<-\sin x$
$\Rightarrow 2 \mathrm{a} \leq-1$
$\Rightarrow \mathrm{a} \leq-\frac{1}{2}$

22. Question

Mark the correct alternative in the following:
The function $f(x)=\frac{x}{1+|x|}$ is
A. strictly increasing
B. strictly decreasing
C. neither increasing nor decreasing
D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
$\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{1+|\mathrm{x}|}$
For $x>0$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}=\mathrm{f}^{\prime}(\mathrm{x})$
For $x<0$
$\frac{d(f(x))}{d x}=\frac{1}{1-\mathrm{x}^{2}}=\mathrm{f}^{\prime}(\mathrm{x})$
Both are increasing for $f^{\prime}(x)>0$

23. Question

Mark the correct alternative in the following:
The function $\mathrm{f}(\mathrm{x})=\frac{\lambda \sin \mathrm{x}+2 \cos \mathrm{x}}{\sin \mathrm{x}+\cos \mathrm{x}}$ is increasing, if
A. $\lambda<1$
B. $\lambda>1$
C. $\lambda<2$
D. $\lambda>2$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$\mathrm{f}(\mathrm{x})=\frac{\lambda \sin \mathrm{x}+2 \cos \mathrm{x}}{\sin \mathrm{x}+\cos \mathrm{x}}$
For increasing function $\mathrm{f}^{\prime}(\mathrm{x})<0$
$\frac{d(f(x))}{d x}=f(x)=\frac{\lambda-2}{(\sin x+\cos x)^{2}}>0$
$\Rightarrow \lambda>2$

24. Question

Mark the correct alternative in the following:
Function $f(x)=a^{x}$ is increasing or R, if
A. $a>0$
B. $a<0$
C. $a>1$
D. $a>0$

Answer

Let $x_{1}<x_{2}$ and both are real number
$\mathrm{a}^{\mathrm{x}_{1}}<\mathrm{a}^{\mathrm{x}_{2}}$
$\Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
$\Rightarrow x_{1}<x_{2} \in$
only possible on $a>1$

25. Question

Mark the correct alternative in the following:
Function $f(x)=\log _{a} x$ is increasing on R, if
A. $0<a<1$
B. $a>1$
C. $\mathrm{a}<1$
D. $a>0$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
$f(x)=\log _{a} x$
$\frac{d(f(x))}{d x}=\frac{1}{x \log _{e} a}=f^{\prime}(x)$
For increasing $f^{\prime}(x)>0$
$\Rightarrow \frac{1}{x \log _{\mathrm{e}} \mathrm{a}}>0$
For $\log \mathrm{a}>1$

26. Question

Mark the correct alternative in the following:
Let $\phi(x)=f(x)+f(2 a-x)$ and $f^{\prime \prime}(x)>0$ for all $x \in[0, a]$. The, $\phi(x)$
A. increases on [0, a]
B. decreases on [0, a]
C. increases on [-a, 0]
D. decreases on [a, 2a]

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
$\phi(x)=f(x)+f(2 a-x)$
$\Rightarrow \phi^{\prime}(x)=f^{\prime}(x)-f^{\prime}(2 a-x)$
$\Rightarrow \phi^{\prime \prime}(x)=f^{\prime \prime}(x)+f^{\prime \prime}(2 a-x)$
checking the condition
$\phi(x)$ is decreasing in [0,a]

27. Question

Mark the correct alternative in the following:
If the function $f(x)=x^{2}-k x+5$ is increasing on $[2,4]$, then
A. $k \in(2, \infty)$
B. $k \in(-\infty, 2)$
C. $k \in(4, \infty)$
D. $k \in(-\infty, 4)$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=x^{2}-k x+5$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=2 \mathrm{x}-\mathrm{k}=\mathrm{f}^{\prime}(\mathrm{x})$
For increasing function $f^{\prime}(x)>0$
$2 x-k>0$
$\Rightarrow \mathrm{K}<2 \mathrm{x}$
Putting $x=2$
$K<4$
$\Rightarrow k \in(-\infty, 4)$

28. Question

Mark the correct alternative in the following:
The function $\mathrm{f}(\mathrm{x})=-\frac{\mathrm{x}}{2}+\sin \mathrm{x}$ defined on $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$ is
A. increasing
B. decreasing
C. constant
D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=-\frac{x}{2}+\sin x$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=-\frac{1}{2}+\cos \mathrm{x}=\mathrm{f}^{\prime}(\mathrm{x})$
checking the value of x
$\cos -\frac{1}{2}>0$
hence increasing

29. Question

Mark the correct alternative in the following:
If the function $f(x)=x^{3}-9 k x^{2}+27 x+30$ is increasing on R, then
A. $-1 \leq k<1$
B. $k<-1$ or $k>1$
C. $0<k<1$
D. $-1<k<0$

Answer

Formula:- (i) $a x^{2}+b x+c>0$ for all $x \Rightarrow a>0$ and $b^{2}-4 a c<0$
(ii) $a x^{2}+b x+c<0$ for all $x \Rightarrow a<0$ and $b^{2}-4 a c<0$
(iii) The necessary and sufficient condition for differentiable function defined on (a, b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=x^{3}-9 k x^{2}+27 x+30$
$\frac{d(f(x))}{d x}=f^{\prime}(x)=3 x^{2}-18 k x+27$
for increasing function $f^{\prime}(x)>0$
$3 x^{2}-18 k x+27>0$
$\Rightarrow x^{2}-6 k x+9>0$
Using formula (i)
$36 k^{2}-36>0$
$\Rightarrow K^{2}>1$
Therefore $-1<k<1$

30. Question

Mark the correct alternative in the following:
The function $f(x)=x^{9}+3 x^{7}+64$ is increasing on
A. R
B. $(-\infty, 0)$
C. $(0, \infty)$
D. R_{0}

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-
$f(x)=x^{9}+3 x^{7}+64$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=9 \mathrm{x}^{8}+21 \mathrm{x}^{6}=\mathrm{f}^{\prime}(\mathrm{x})$
For increasing $f^{\prime}(x)>0$
$\Rightarrow 9 x^{8}+21 x^{6}>0$
$\Rightarrow x \in R$

