17. Constructions

Exercise 17.1

1. Question

Draw a line segment of length 8.6 cm . Bisect it and measure the length of each part.

Answer

Steps of construction:
(i) Draw a line segment $A B=8.6 \mathrm{~cm}$.

(ii) Draw a circle with centre A with radius $1 / 2 A B$ on upper and lower side of $A B$.

Similarly, Draw a circle with centre B with radius $1 / 2 A B$ on upper and lower side of $A B$ which intersect above a circle at M and N respectively.

(iii) Draw line segment $M N$ which intersect $A B$ at point O.

On measuring,
$\mathrm{AO}=\mathrm{BO}=1 / 2 \mathrm{AB}=4.3$

2. Question

Draw a line segment $A B$ of length 5.8 cm . Draw the perpendicular bisector of this line segment.

Answer

Steps of construction:
(i) Draw a line segment $A B=5.8 \mathrm{~cm}$.

(ii) Draw a circle with centre A with radius more than 1/2 AB.

Similarly, Draw a circle with centre B with same radius which intersect above circle at M and N respectively.

(iii) Draw line segment $M N$ which intersect $A B$ at point O.

$\mathrm{m} \angle A O M=\mathrm{m} \angle B O M=90^{\circ}$

3. Question

Draw a circle with centre at point O and radius 5 cm . Draw its chord $A B$, draw the perpendicular bisector of line segment $A B$. Does it pass through the centre of the circle?

Answer

Steps of construction:
(i) Draw a circle with centre O and radius 5 cm .

(ii) Draw its chord AB.

(iii) Draw a circle with centre A with radius more than $1 / 2 \mathrm{AB}$.

Similarly, Draw a circle with centre B with same radius $1 / 2 \mathrm{AB}$ which intersect above circle at M and N respectively.

(iv) Draw line segment $M N$ which intersect $A B$ at point \mathcal{P}.

We can see that, perpendicular bisector MN of AB passes through centre O.

4. Question

Draw a circle with centre at point O. Draw its two chords $A B$ and $C D$ such that $A B$ is not parallel to $C D$. Draw the perpendicular bisectors of $A B$ and $C D$. At what point do they intersect?

Answer

Steps of construction:
(i) Draw a circle with centre O .

(ii) Draw its two chords $A B$ and $C D$ such that $A B$ is not parallel to $C D$.

(iii) Draw a circle with centre A with radius more than $1 / 2 \mathrm{AB}$.

Similarly, Draw a circle with centre B with same radius which intersect aboye circle at M and N respectively.

(iv) Draw line segment $M N$ which intersect $A B$ at point P.

(v) Similarly, Draw a circle with centre C with radius more than 1/2 CD.

Similarly, Draw a circle with centre D with same radius which intersect above circle at X and Y respectively.

(vi) Draw line segment XY which intersect CD at point Q .

We can see that two bisectors $M N$ and $X Y$ intersects at centre O.

5. Question

Draw a line segment of length 10 cm and bisect it., Further bisect one of the equal parts and measure its length.

Answer

Steps of construction:
(i) Draw a line segment $A B=10 \mathrm{~cm}$.

(ii) Draw a circle with centre A with radius more than $1 / 2 \mathrm{AB}$.

Similarly, Draw a circle with centre B with same radius which intersect above circle at M and N respectively.

(iii) Draw line segment $M N$ which intersect $A B$ at point O.

On measuring,
$A O=B O=1 / 2 A B=5 \mathrm{~cm}$

(iv) Draw a circle with centre A with radius more than $1 / 2$ AO.

Similarly, Draw a circle with centre O with same radius which intersect above circle at P and Q respectively.

(v) Draw line segment $P Q$ which intersect $A O$ at X.

On measuring,
$A X=X O=1 / 2 A O=2.5 \mathrm{~cm}$

6. Question

Draw a line segment $A B$ and bisect it. Bisect one of the equal parts to obtain a line segment of length $\frac{1}{2}(A B)$.

Answer

Steps of construction:
(i) Draw a line segment $A B$.

(ii) Draw a circle with centre A with radius more than $1 / 2 \mathrm{AB}$.

Similarly, Draw a circle with centre B with same radius which intersect above circle at M and N respectively.

(iii) Draw line segment $M N$ which intersect $A B$ at point O.

On measuring,
$A O=B O=1 / 2 A B$

(iv) Draw a circle with centre A with radius more than 1/2 AO.

Similarly, Draw a circle with centre 0 with same radius which intersect above circle at P and Q respectively.

(v) Draw line segment PQ which intersect $A O$ at X.

On measuring,
$A X=X O=1 / 2 \quad A O=1 / 4 A B$

7. Question

Draw a line segment $A B$ and by ruler and compasses, obtain a line segment of length $\frac{3}{4}(A B)$.

Answer

Steps of construction:
(i) Draw a line segment $A B$.

(ii) Draw a circle with centre A with radius more than $1 / 2 \mathrm{AB}$.

Similarly, Draw a circle with centre B with same radius which intersect above circle at M and N respectively.

(iii) Draw line segment $M N$ which intersect $A B$ at point O.

On measuring,
$A O=B O=1 / 2 A B$

(iv) Draw a circle with centre A with radius more than $1 / 2$ AO.

Similarly, Draw a circle with centre O with same radius which intersect above circle at P and Q respectively.

(v) Draw line segment PQ which intersect $A O$ at X.

On measuring,
$A X=X O=1 / 2 A O=1 / 4 A B$
$\therefore X B=X O+B O=1 / 4 A B+1 / 2 A B=3 / 4 A B$

Exercise 17.2

1. Question

Draw an angle and label it as $\angle B A C$. Construct another angle, equal to $\angle B A C$.

Answer

The steps of the required construction are:

1) Draw an arbitrary angle $\angle B A C$.

2) Taking A as the center and any radius draw an arc which intersects $A B$ and $A C$ at point D and E respectively.

3) Draw a line segment $Q R$ of arbitrary length. With Q as the center and Radius $A D$, draw a circular arc, intersecting QR at S.

4) Taking S as the center and radius DE, draw another circular arc, intersecting the previous arc at P. Join $Q P$.

5) $\angle R Q P=\angle B A C$

2. Question

Draw an obtuse angle. Bisect it. Measure each of the angles so obtained.

Answer

The steps of the required construction are:

1) Draw an angle $\angle B A C=150^{\circ}$ using protractor.

2) Taking B as the center draw an arc of any radius greater than $\frac{B C}{2}$. Now, Taking C as the center and the keeping the same radius, draw another arc, intersecting the previous arc at D. Join $A D$.

3) $\angle B A D=\angle C A D=\frac{\angle B A C}{2}=75^{\circ}$

3. Question

Using your protractor, draw an angle of measure 108°. With this angle as given, draw an angle of 54°.

Answer

The steps of the required construction are:

1) Draw an angle $\angle B A C=108^{\circ}$ using a protractor.

2) Taking B as the center draw an arc of any radius greater than $\frac{B C}{2}$. Now, Taking C as the center and the keeping the same radius, draw another arc, intersecting the previous arc at D. Join $A D$.

3) $\angle B A D=\angle C A D=\frac{\angle B A C}{2}=54^{\circ}$

4. Question

Using protractor, draw a right angle. Bisect it to get an angle of measure 45°.

Answer

The steps of the required construction are:

1) Draw an angle $\angle B A C=90^{\circ}$ using a protractor.

2) Taking B as the center draw an arc of any radius greater than $\frac{B C}{2}$. Now, Taking C as the center and the keeping the same radius, draw another arc, intersecting the previous arc at D. Join AD.

3) $\angle B A D=\angle C A D=\frac{\angle B A C}{2}=45^{\circ}$

5. Question

Draw a linear pair of angles. Bisect each of the two angles. Verify that the two bisecting rays are perpendicular to each other.

Answer

The steps of the required construction are:

1) Draw a line segment and choosing an arbitrary point A on it as the center and with any radius, draw a semi-circle, intersecting the line segment at point B and C. Choosing any arbitrary point D on the semi-circle, join $A D$. Thus, $\angle B A D$ and $\angle C A D$ are a linear pair of angles.

2) Taking B as the center draw an arc of any radius greater than $\frac{B D}{2}$. Now, Taking D as the center and the keeping the same radius, draw another arc, intersecting the previous arc at E . Join AE . Similarly, Taking C as the center draw an arc of any radius greater than $\frac{C D}{2}$. Now, Taking D as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF.

3) $A E$ and $A F$ are angle bisectors of $\angle B A D$ and $\angle C A D$ respectively. Measure $\angle F A E$ using a protractor. It comes out to be 90°.

6. Question

Draw a pair of vertically opposite angles. Bisect each of the two angles. Verify that the bisecting rays are in the same line.

Answer

The steps of the required construction are:

1) Draw two intersecting line segments, intersecting at E. Taking E as center and any radius, draw a circle, intersecting the line segments at A, B, C and D. Thus $\angle A E C$ and $\angle B E D$ are vertically opposite angles.

2) Taking A as the center draw an arc of any radius greater than $\frac{A C}{2}$. Now, Taking C as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join EF. Similarly, Taking B as the center draw an arc of any radius greater than $\frac{B D}{2}$. Now, Taking D as the center and the keeping the same radius, draw another arc, intersecting the previous arc at G. Join EG.

3) Measure \angle FEG using a protractor. It comes out to be 180°. Hence, FEG is a straight line.

7. Question

Using ruler and compasses only, draw a right angle.

Answer

The steps of the required construction are:

1) Draw a line segment $A B$. Keeping A as the center and any radius draw a semicircle, intersecting $A B$ at
point C .

2) Keeping C as the center and radius $A C$, draw an arc, cutting the semicircle at point D. Keeping D as the center and radius AC, draw an arc, cutting the semicircle at point E.

3) Taking D as the center draw an arc of any radius greater $\operatorname{than} \frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF.

4) $\angle B A F=90^{\circ}$.

8. Question

Using ruler and compasses only, draw an angle of measure 135°.

Answer

The steps of the required construction are:

1) Draw a line segment $B C$. Taking any arbitrary point A on line segment $B C$ as the center and any radius draw a semicircle, intersecting $B C$ at points D and E.

2) Taking D as the center draw an arc of any radius greater than $\frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF, which intersects the semicircle at point G.

3) Taking G as the center draw an arc of any radius greater than $\frac{G E}{2}$. Now, Taking E as the center and keeping the same radius, draw another arc, intersecting the previous arc at H . Join AH.

4) $\angle B A F=135^{\circ}$.

9. Question

Using a protractor, draw an angle of measure 72°. With this angle as given, draw angles of measure 36° and 54°.

Answer

The steps of the required construction are:

1) Draw $\angle B A C=72^{\circ}$ using a protractor. Using A as the center and radius less than $A B$ and $A C$, draw a circular arc, intersecting $A B$ and $A C$ at D and E respectively.

2) Taking D as the center draw an arc of any radius greater than $\frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF, which intersects the arc DE at point G. $\angle B A F=36^{\circ}$.

3) Taking G as the center draw an arc of any radius greater than $\frac{G E}{2}$. Now, Taking E as the center and keeping the same radius, draw another arc, intersecting the previous arc at H. Join AH.

4) $\angle B A H=54^{\circ}$.

10. Question

Construct the following angles at the initial point of a given ray and justify the construction:
(i) 45°
(ii) 90°

Answer

i) The steps of the required construction are:

1) Draw a line segment $B C$. Taking any arbitrary point, A on line segment $B C$ as the the center and any radius draw a semicircle, intersecting $B C$ at points D and E.

2) Taking D as the center draw an arc of any radius greater $\operatorname{than} \frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF, which intersects the semicircle at point G.

3) Taking D as the center draw an arc of any radius greater than $\frac{D G}{2}$. Now, Taking G as the center and the keeping the same radius, draw another arc, intersecting the previous arc at H . Join AH , which intersects the semicircle at point I.

4) $\angle \mathrm{DAI}=45^{\circ}$.

Justification:
Since DAE is a straight line therefore $\angle D A E=180^{\circ}$.
Consider \triangle EAF and $\triangle \mathrm{DAF}$
$A E=A D$ (Radius of semi-circle)
$E F=D F$ (By construction)
$A F=A F$ (Common side)
Hence, By SSS criteria, $\triangle E A F \cong \triangle D A F$
Therefore, by C.P.C.T. $\angle E A F=\angle D A F=\frac{1}{2} \angle D A E=90^{\circ}$.
Consider \triangle GAH and \triangle DAH
$A G=A D$ (Radius of semi-circle)
$\mathrm{GH}=\mathrm{DH}$ (By construction)
$\mathrm{AH}=\mathrm{AH}$ (Common side)
Hence, By SSS criteria, $\triangle G A H \cong \Delta D A H$.
Therefore, by C.P.C.T. $\angle G A H=\angle D A H=\frac{1}{2} \angle D A G=\frac{1}{2} \angle D A F=45^{\circ}$
Hence, $\angle D A I=\angle D A H=45^{\circ}$.
ii) The steps of the required construction are:

The steps of the required construction are:

1) Draw a line segment $B C$. Taking any arbitrary point, A on line segment $B C$ as the the center and any radius draw a semicircle, intersecting $B C$ at points D and E.

2) Taking D as the center draw an arc of any radius greater than $\frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join $A F$, which intersects the semicircle at point G.

3) $\angle \mathrm{DAG}=90^{\circ}$.

Justification:
Since DAE is a straight line therefore $\angle D A E=180^{\circ}$.
Consider $\triangle \mathrm{EAF}$ and $\triangle \mathrm{DAF}$
$A E=A D$ (Radius of semi-circle)
$E F=D F$ (By construction)
$A F=A F$ (Common side)
Hence, By SSS criteria, $\triangle E A F \cong \triangle D A F$.
Therefore, by C.P.C.T. $\angle E A F=\angle D A F=\frac{1}{2} \angle D A E=90^{\circ}$
Hence, $\angle \mathrm{DAG}=\angle \mathrm{DAF}=90^{\circ}$.

11. Question

Construct the angles of the following measurements:
(i) 30°
(ii) 75°
(iii) 105°
(iv) 135°
(v) 15°
(vi) $22 \frac{1}{2}^{\circ}$

Answer

i) The steps of the required construction are:

1) Draw a line segment $A B$. Keeping A as the center and any radius draw a semicircle, intersecting $A B$ at point C.

2) Keeping C as the center and radius $A C$, draw an arc, cutting the semicircle at point D.

3) Taking C as the center draw an arc of any radius greater than $\frac{C D}{2}$. Now, Taking D as the center and the keeping the same radius, draw another arc, intersecting the previous arc at E . Join AE .

4) $\angle B A E=30^{\circ}$.
ii) The steps of the required construction are:
5) Draw a line segment $A B$. Keeping A as the center and any radius draw a semicircle, intersecting $A B$ at point C.

6) Keeping C as the center and radius $A C$, draw an arc, cutting the semicircle at point D. Keeping D as the center and radius AC , draw an arc, cutting the semicircle at point E .

7) Taking D as the center draw an arc of any radius greater than $\frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF, intersecting the semicircle at G .

8) Taking D as the center draw an arc of any radius greater than $\frac{D G}{2}$. Now, Taking G as the center and the keeping the same radius, draw another arc, intersecting the previous arc at H. Join AH.

9) $\angle B A H=75^{\circ}$.
iii) The steps of the required construction are:
10) Draw a line segment $A B$. Keeping A as the center and any radius draw a semicircle, intersecting $A B$ at point C .

11) Keeping C as the center and radius $A C$, draw an arc, cutting the semicircle at point D. Keeping D as the center and radius $A C$, draw an arc, cutting the semicircle at point E.

12) Taking D as the center draw an arc of any radius greater than $\frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join $A F$, intersecting the semicircle at G .

13) Taking E as the center draw an arc of any radius greater than $\frac{G E}{2}$. Now, Taking G as the center and the keeping the same radius, draw another arc, intersecting the previous arc at H . Join AH .

14) $\angle B A H=105^{\circ}$.
iv) The steps of the required construction are:
15) Draw a line segment $B C$. Taking any arbitrary point A on line segment $B C$ as the center and any radius draw a semicircle, intersecting $B C$ at points D and E.

16) Taking D as the center draw an arc of any radius greater than $\frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF, which intersects the semicircle at point G.

17) Taking G as the center draw an arc of any radius greater than $\frac{G E}{2}$. Now, Taking E as the center and keeping the same radius, draw another arc, intersecting the previous arc at H . Join AH .

18) $\angle B A F=135^{\circ}$.
v) The steps of the required construction are:
19) Draw a line segment $A B$. Keeping A as the center and any radius draw a semicircle, intersecting $A B$ at point C .

20) Keeping C as the center and radius $A C$, draw an arc, cutting the semicircle at point D.

21) Taking C as the center draw an arc of any radius greater than $\frac{C D}{2}$. Now, Taking D as the center and the keeping the same radius, draw another arc, intersecting the previous arc at E . Join AE , intersecting the semicircle at F.

22) Taking C as the center draw an arc of any radius greater than $\frac{C F}{2}$. Now, Taking F as the center and the keeping the same radius, draw another arc, intersecting the previous arc at G. Join AG.

23) $\angle B A G=15^{\circ}$.
vi) The steps of the required construction are:
24) Draw a line segment $B C$. Taking any arbitrary point, A on line segment $B C$ as the the center and any radius draw a semicircle, intersecting $B C$ at points D and E.

25) Taking D as the center draw an arc of any radius greater $\operatorname{than} \frac{D E}{2}$. Now, Taking E as the center and the keeping the same radius, draw another arc, intersecting the previous arc at F. Join AF, which intersects the semicircle at point G.

26) Taking D as the center draw an arc of any radius greater than $\frac{D G}{2}$. Now, Taking G as the center and the keeping the same radius, draw another arc, intersecting the previous arc at H . Join AH , which intersects the semicircle at point I.

27) Taking D as the center draw an arc of any radius greater than $\frac{D I}{2}$. Now, Taking I as the center and the keeping the same radius, draw another arc, intersecting the previous arc at J. Join AJ.

28) $\angle B A J=22 \frac{1^{\circ}}{2}$.

Exercise 17.3

1. Question

Construct a $\triangle A B C$ in which $B C=3.6 \mathrm{~cm}, A B+A C=4.8 \mathrm{~cm}$ and $\angle B=60^{\circ}$.

Answer

The steps of the required construction are:

1) Draw a line segment $B C=3.6 \mathrm{~cm}$. Using a protractor, draw $\angle C B D=60^{\circ}$. Join and extend $B D$.

2) Taking B as the center and radius $=4.8 \mathrm{~cm}$, draw an arc, intersecting extended $B D$ at point P. Join $P C$.

3) Taking P as the center and radius greater than $\frac{P C}{2}$, draw arcs on each side of $P C$. Now, taking C as the center and same radius, draw arcs, intersecting the previous arcs at points Q and R. Join and extend QR. Extended QR intersects line segment DB at point A. Join AC.

4) $\triangle A B C$ is the required triangle.

2. Question

Construct a $\triangle A B C$ in which $A B+A C=5.6 \mathrm{~cm}, B C=4.5 \mathrm{~cm}$, and $\angle B=45^{\circ}$.
Answer

The steps of the required construction are:

1) Draw a line segment $B C=4.5 \mathrm{~cm}$. Using a protractor, draw $\angle C B D=45^{\circ}$. Join and extend BD.

2) Taking B as the center and radius $=5.6 \mathrm{~cm}$, draw an arc, intersecting extended $B D$ at point P. Join PC.

3) Taking P as the center and radius greater than $\frac{P C}{2}$, draw arcs on each side of PC. Now, taking C as the center and same radius, draw arcs, intersecting the previous arcs at points Q and R. Join and extend $Q R$. Extended QR intersects line segment DB at point A. Join AC.

4) $\triangle A B C$ is the required triangle.

3. Question

Construct a $\triangle A B C$ in which $B C=3.4 \mathrm{~cm}, A B-A C=1.5 \mathrm{~cm}$ and $\angle B=45^{\circ}$.
Answer
The steps of the required construction are:

1) Draw a line segment $B C=3.4 \mathrm{~cm}$. Using a protractor, draw $\angle C B D=45^{\circ}$. Join $B D$ and extend it.

2) Taking B as the center and radius $=1.5 \mathrm{~cm}$, draw an arc, intersecting $B D$ at point P. Join $P C$.

3) Taking P as the center and radius greater than $\frac{P C}{2}$, draw arcs on each side of PC. Now, taking C as the center and same radius, draw arcs, intersecting the previous arcs at points Q and R. Join and extend $Q R$. Extended QR intersects extended line segment DB at póint A. Join AC.

4) $\triangle A B C$ is the required triangle.

4. Question

Using ruler and compasses only, construct an $\triangle A B C$, given base $B C=7 \mathrm{~cm}, \angle A B C=60^{\circ}$ and $A B+A C=12 \mathrm{~cm}$.

Answer

The steps of the required construction are:

1) Draw a line segment $B C=7 \mathrm{~cm}$. Using a protractor, draw $\angle C B D=60^{\circ}$. Join and extend $B D$.

2) Taking B as the center and radius $=12 \mathrm{~cm}$, draw an arc, intersecting extended $B D$ at point P. Join $P C$.

3) Taking P as the center and radius greater than $\frac{P C}{2}$, draw arcs on each side of PC. Now, taking C as the center and same radius, draw arcs, intersecting the previous arcs at points Q and R . Join and extend QR . Extended QR intersects line segment DB at point A. join $A C$.

4) $\triangle A B C$ is the required triangle.

5. Question

Construct a triangle whose perlmeter is 6.4 cm , and angles at the base are 60° and 45°.

Answer

The steps of the required construction are:

1) Draw a line segment $D E=6.4 \mathrm{~cm}$. Using a protractor, draw $\angle E D F=60^{\circ}$ and $\angle D E G=45^{\circ}$. Join $D F$ and $E G$. Taking D as the center and any radius, draw an arc, intersecting DE at H and DF at I. Similarly, Taking E as the center and any radius, draw an arc, intersecting DE at J and EG at K.

2) Taking H as the center draw an arc of any radius greater than $\frac{H I}{2}$. Now, Taking I as the center and the keeping the same radius, draw another arc, intersecting the previous arc at L. Join and extend DL. Similarly, Taking J as the center draw an arc of any radius greater than $\frac{J K}{2}$. Now, Taking K as the center and the keeping the same radius, draw another arc, intersecting the previous arc at M . Join and extend EM, intersecting extended DL at A.

3) Taking D as the center and radius greater than $\frac{A D}{2}$, draw arcs on eachl side of $A D$. Now, taking A as the center and same radius, draw arcs, intersecting the previous arcs at points N and O . Join and extend NO. Extended NO intersects line segment DE at point C. Join AC. Similarly, Taking E as the center and radius greater than $\frac{A E}{2}$, draw arcs on each side of $A E$. Now, taking A as the center and same radius, draw arcs, intersecting the previous arcs at points P and Q. Join and extend PQ. Extended NO intersects line segment $D E$ at point B. Join $A B$.

4) $\triangle A B C$ is the required triangle.

6. Question

Using ruler and compasses only, construct a $\triangle A B C$ from the following data:
$A B+B C+C A=12 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$.

Answer

The steps of the required construction are:

1) Draw a line segment $D E=12 \mathrm{~cm}$. Using a protractor, draw $\angle E D F=60^{\circ}$ and $\angle D E G=45^{\circ}$. Join $D F$ and $E G$. Taking D as the center and any radius, draw an arc, intersecting DE at H and DF at I. Similarly, Taking E as the center and any radius, draw an arc, intersecting DE at J and EG at K.

2) Taking H as the center draw an arc of any radius greater than $\frac{H I}{2}$. Now, Taking I as the center and the keeping the same radius, draw another arc, intersecting the previous arc at L. Join and extend DL. Similarly, Taking J as the center draw an arc of any radius greater than $\frac{J K}{2}$. Now, Taking K as the center and the keeping the same radius, draw another arc, intersecting the previous arc at M. Join and extend EM, intersecting extended DL at A.

3) Taking D as the center and radius greater than $\frac{A D}{2}$, draw arcs on each side of $A D$. Now, taking A as the center and same radius, draw arcs, intersecting the previous arcs at points N and O . Join and extend NO. Extended NO intersects line segment DE at point C. Join AC. Similarly, Taking E as the center and radius greater than $\frac{A E}{2}$, draw arcs on each side of $A E$. Now, taking A as the center and same radius, draw arcs, intersecting the previous arcs at points P and Q. Join and extend PQ. Extended NO intersects line segment $D E$ at point B. Join $A B$.

4) $\triangle A B C$ is the required triangle.
