16. Tangents and Normals

Exercise 16.1

1 A. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$y=\sqrt{x^{3}}$ at $x=4$

Answer

Let $y=f(x)$ be a continuous function and $P\left(x_{0}, y_{0}\right)$ be point on the curve, then,

The The Slope of the tangent at $P(x, y)$ is $f^{\prime}(x)$ or $\frac{d y}{d x}$
Since the normal is perpendicular to tangent,
The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$

Given:
$y=\sqrt{x^{3}}$ at $x=4$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$, i.e, to find the derivative of $f(x)$
$y=\sqrt{x^{3}}$
$\therefore \sqrt[n]{\mathrm{X}}=\mathrm{X}^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{y}=\left(\mathrm{x}^{3}\right)^{\frac{1}{2}}$
$\Rightarrow \mathrm{y}=(\mathrm{x})^{\frac{3}{2}}$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$

The Slope of the tangent is $\frac{d y}{d x}$
$\frac{d y}{d x}=\frac{3}{2}(x)^{\frac{3}{2}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{3}{2}(x)^{\frac{1}{2}}$
Since, $x=4$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=\frac{3}{2}(4)^{\frac{1}{2}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=\frac{3}{2} \times \sqrt{4}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=\frac{3}{2} \times 2$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=3$
\therefore The Slope of the tangent at $\mathrm{x}=4$ is 3
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=4}$
\Rightarrow The Slope of the normal $=\frac{-1}{3}$

1 B. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$y=\sqrt{x}$ at $x=9$

Answer

Given:
$y=\sqrt{x}$ at $x=9$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$, i.e, to find the derivative of $f(x)$
$\Rightarrow y=\sqrt{x}$
$\therefore \sqrt[n]{\mathrm{x}}=\mathrm{X}^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{y}=(\mathrm{x})^{\frac{1}{2}}$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow \mathrm{y}=(\mathrm{x})^{\frac{1}{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{1}{2}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{-1}{2}}$
Since, $x=9$
$\left(\frac{d y}{d x}\right) x=9=\frac{1}{2}(9)^{\frac{-1}{2}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{2} \times \frac{1}{(9)^{\frac{1}{2}}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{2} \times \frac{1}{\sqrt{9}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{2} \times \frac{1}{3}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{6}$
\therefore The Slope of the tangent at $x=9$ is $\frac{1}{6}$
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=9}$
\Rightarrow The Slope of the normal $=\frac{-1}{\frac{1}{6}}$
\Rightarrow The Slope of the normal $=-6$

1 C. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$y=x^{3}-x$ at $x=2$

Answer

Given:
$y=x^{3}-x$ at $x=2$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$, i.e, to find the derivative of $f(x)$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=x^{3}-x$
$\Rightarrow \frac{d y}{d x}=\frac{d y}{d x}\left(x^{3}\right)+3 x \frac{d y}{d x}(x)$
$\Rightarrow \frac{d y}{d x}=3 \cdot x^{3-1}-1 \cdot x^{1-0}$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-1$
Since, $x=2$
$\Rightarrow\left(\frac{d y}{d x}\right) x=2=3 \times(2)^{2}-1$
$\Rightarrow\left(\frac{d y}{d x}\right) x=2=(3 \times 4)-1$
$\Rightarrow\left(\frac{d y}{d x}\right) x=2=12-1$
$\Rightarrow\left(\frac{d y}{d x}\right) x=2=11$
\therefore The Slope of the tangent at $x=2$ is 11
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)^{x=2}}$
\Rightarrow The Slope of the normal $=\frac{-1}{11}$

1 D. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$y=2 x^{2}+3 \sin x$ at $x=0$

Answer

Given:
$y=2 x^{2}+3 \sin x$ at $x=0$

First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$, i.e, to find the derivative of $f(x)$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=2 x^{2}+3 \sin x$
$\Rightarrow \frac{d y}{d x}=2 \times \frac{d y}{d x}\left(x^{2}\right)+3 \times \frac{d y}{d x}(\sin x)$
$\Rightarrow \frac{d y}{d x}=2 \times 2 x^{2-1}+3 x(\cos x)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\sin x)=\cos x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=4 \mathrm{x}+3 \cos \mathrm{x}$
Since, $x=2$
$\Rightarrow\left(\frac{d y}{d x}\right) x=0=4 \times 0+3 \cos (0)$
$\therefore \cos (0)=1$
$\Rightarrow\left(\frac{d y}{d x}\right) x=0=0+3 \times 1$
$\Rightarrow\left(\frac{d y}{d x}\right) x=0=3$
\therefore The Slope of the tangent at $\mathrm{x}=0$ is 3
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=0}$
\Rightarrow The Slope of the normal $=\frac{-1}{3}$

1 E. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$x=a(\theta-\sin \theta), y=a(1+\cos \theta)$ at
$\theta=-\pi / 2$

Answer

Given:
$x=a(\theta-\sin \theta) \& y=a(1+\cos \theta)$ at $\theta=\frac{-\pi}{2}$
Here, To find $\frac{d y}{d x}$, we have to find $\frac{d y}{d \theta} \& \frac{d x}{d \theta}$ and and divide $\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$ and we get our desired $\frac{d y}{d x}$.
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
$\Rightarrow \mathrm{x}=\mathrm{a}(\theta-\sin \theta)$
$\Rightarrow \frac{d x}{d \theta}=a\left(\frac{d x}{d \theta}(\theta)-\frac{d x}{d \theta}(\sin \theta)\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1-\cos \theta)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\sin x)=\cos x$
$\Rightarrow \mathrm{y}=\mathrm{a}(1+\cos \theta)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left(\frac{\mathrm{dx}}{\mathrm{d} \theta}(1)+\frac{\mathrm{dx}}{\mathrm{d} \theta}(\cos \theta)\right)$
$\therefore \frac{d}{d x}(\cos x)=-\sin x$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow \frac{d y}{d \theta}=a(0+(-\sin \theta))$
$\Rightarrow \frac{d y}{d \theta}=a(-\sin \theta)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=-\mathrm{a} \sin \theta \ldots$ (2)
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-a \sin \theta}{a(1-\cos \theta)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\sin \theta}{(1-\cos \theta)}$
The Slope of the tangent is $\frac{-\sin \theta}{(1-\cos \theta)}$
Since, $\theta=\frac{-\pi}{2}$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\theta=\frac{-\pi}{2}}=\frac{-\sin \frac{-\pi}{2}}{\left(1-\cos \frac{-\pi}{2}\right)}$
$\therefore \sin \left(\frac{\pi}{2}\right)=1$
$\therefore \cos \left(\frac{\pi}{2}\right)=0$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\theta=\frac{-\pi}{2}}=\frac{-(-1)}{(1-(-0))}$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\theta=\frac{-\pi}{2}}=\frac{1}{(1-0)}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}=1$
\therefore The Slope of the tangent at $x=-\frac{\pi}{2}$ is 1
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{-\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{1}$
\Rightarrow The Slope of the normal $=-1$
1 F. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\pi / 4$

Answer

Given:
$x=\operatorname{acos}^{3} \theta \& y=\operatorname{asin}^{3} \theta$ at $\theta=\frac{\pi}{4}$
Here, To find $\frac{d y}{d x}$, we have to find $\frac{d y}{d \theta} \& \frac{d x}{d \theta}$ and and divide $\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$ and we get our desired $\frac{d y}{d x}$.
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
$\Rightarrow x=\operatorname{acos}^{3} \theta$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(\frac{\mathrm{dx}}{\mathrm{d} \theta}\left(\cos ^{3} \theta\right)\right)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\cos x)=-\sin x$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \cos ^{3-1} \theta \times-\sin \theta\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \cos ^{2} \theta x-\sin \theta\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=-3 \operatorname{acos}^{2} \theta \sin \theta$
$\Rightarrow y=\operatorname{asin}^{3} \theta$
$\Rightarrow \frac{d y}{d \theta}=a\left(\frac{d y}{d \theta}\left(\sin ^{3} \theta\right)\right)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\sin x)=\cos x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left(3 \sin ^{3-1} \theta \times \cos \theta\right)$
$\Rightarrow \frac{d y}{d \theta}=a\left(3 \sin ^{2} \theta \times \cos \theta\right)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=3 \operatorname{asin}^{2} \theta \cos \theta$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-3 \operatorname{acos}^{2} \theta \sin \theta}{3 a \sin ^{2} \theta \cos \theta}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\cos \theta}{\sin \theta}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\tan \theta$
The Slope of the tangent is $-\tan \theta$
Since, $\theta=\frac{\pi}{4}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}=-\tan \left(\frac{\pi}{4}\right)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}=-1$
$\therefore \tan \left(\frac{\pi}{4}\right)=1$
\therefore The Slope of the tangent at $x=\frac{\pi}{4}$ is -1
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{4}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{-1}$
\Rightarrow The Slope of the normal $=1$

1 A. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$\mathrm{y}=\sqrt{\mathrm{x}^{3}}$ at $\mathrm{x}=4$

Answer

Let $y=f(x)$ be a continuous function and $P\left(x_{0}, y_{0}\right)$ be point on the curve, then,

The The Slope of the tangent at $P(x, y)$ is $f^{\prime}(x)$ or $\frac{d y}{d x}$
Since the normal is perpendicular to tangent,
The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$

Given:
$y=\sqrt{x^{3}}$ at $x=4$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$, i.e, to find the derivative of $f(x)$
$y=\sqrt{x^{3}}$
$\therefore \sqrt[n]{\mathrm{x}}=\mathrm{x}^{\frac{1}{\mathrm{n}}}$
$\Rightarrow \mathrm{y}=\left(\mathrm{x}^{3}\right)^{\frac{1}{2}}$
$\Rightarrow \mathrm{y}=(\mathrm{x})^{\frac{3}{2}}$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3}{2}(\mathrm{x})^{\frac{3}{2}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3}{2}(\mathrm{x})^{\frac{1}{2}}$
Since, $x=4$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=\frac{3}{2}(4)^{\frac{1}{2}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=\frac{3}{2} \times \sqrt{4}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=\frac{3}{2} \times 2$
$\Rightarrow\left(\frac{d y}{d x}\right) x=4=3$
\therefore The Slope of the tangent at $\mathrm{x}=4$ is 3
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) x=4}$
\Rightarrow The Slope of the normal $=\frac{-1}{3}$

1 G. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\pi / 2$

Answer

Given:
$x=a(\theta-\sin \theta) \& y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$
Here, To find $\frac{d y}{d x}$, we have to find $\frac{d y}{d \theta} \& \frac{d x}{d \theta}$ and and divide $\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$ and we get our desired $\frac{d y}{d x}$.
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
$\Rightarrow \mathrm{x}=\mathrm{a}(\theta-\sin \theta)$
$\Rightarrow \frac{d x}{d \theta}=a\left(\frac{d x}{d \theta}(\theta)-\frac{d x}{d \theta}(\sin \theta)\right)$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1-\cos \theta)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\sin x)=\cos x$
$\Rightarrow \mathrm{y}=\mathrm{a}(1-\cos \theta)$
$\Rightarrow \frac{d y}{d \theta}=a\left(\frac{d x}{d \theta}(1)-\frac{d x}{d \theta}(\cos \theta)\right)$
$\therefore \frac{d}{d x}(\cos x)=-\sin x$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(0-(-\sin \theta))$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\operatorname{asin} \theta \ldots$ (2)
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \sin \theta}{a(1-\cos \theta)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\sin \theta}{(1-\cos \theta)}$

The Slope of the tangent is $\frac{-\sin \theta}{(1-\cos \theta)}$
Since, $\theta=\frac{\pi}{2}$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\theta=\frac{\pi}{2}}=\frac{\sin \frac{\pi}{2}}{\left(1-\cos \frac{\pi}{2}\right)}$
$\therefore \sin \left(\frac{\pi}{2}\right)=1$
$\therefore \cos \left(\frac{\pi}{2}\right)=0$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{(1)}{(1-(-0))}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=\frac{1}{(1-0)}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=1$
\therefore The Slope of the tangent at $x=\frac{\pi}{2}$ is 1
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{1}$
\Rightarrow The Slope of the normal $=-1$

1 H. Question

$y=(\sin 2 x+\cot x+2)^{2}$ at $x=\pi / 2$

Answer

Given:
$y=(\sin 2 x+\cot x+2)^{2}$ at $x=\frac{\pi}{2}$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$, i.e, to find the derivative of $f(x)$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=(\sin 2 x+\cot x+2)^{2}$
$\frac{d y}{d x}=2 x(\sin 2 x+\cot x+2)^{2-1}\left\{\frac{d y}{d x}(\sin 2 x)+\frac{d y}{d x}(\cot x)+\frac{d y}{d x}(2)\right\}$
$\Rightarrow \frac{d y}{d x}=2(\sin 2 x+\cot x+2)\left\{(\cos 2 x) \times 2+\left(-\operatorname{cosec}^{2} x\right)+(0)\right\}$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\sin x)=\cos x$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\cot x)=-\operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=2(\sin 2 x+\cot x+2)\left(2 \cos 2 x-\operatorname{cosec}^{2} x\right)$
Since, $x=\frac{\pi}{2}$
$\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 x\left(\sin 2\left(\frac{\pi}{2}\right)+\cot \left(\frac{\pi}{2}\right)+2\right)\left(2 \cos 2\left(\frac{\pi}{2}\right)-\operatorname{cosec}^{2}\left(\frac{\pi}{2}\right)\right)$
$\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times\left(\sin (\pi)+\cot \left(\frac{\pi}{2}\right)+2\right) \times\left(2 \cos (\pi)-\operatorname{cosec}^{2}\left(\frac{\pi}{2}\right)\right)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2 \times(0+0+2) \times(2(-1)-1)$
$\therefore \sin (\pi)=0, \cos (\pi)=-1$
$\therefore \cot \left(\frac{\pi}{2}\right)=0, \operatorname{cosec}\left(\frac{\pi}{2}\right)=1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=2(2) \times(-2-1)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}=4 x-3$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\theta=\frac{\pi}{2}}=-12$
\therefore The Slope of the tangent at $\mathrm{x}=\frac{\pi}{2}$ is -12
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)_{\theta=\frac{\pi}{2}}}$
\Rightarrow The Slope of the normal $=\frac{-1}{-12}$
\Rightarrow The Slope of the normal $=\frac{1}{12}$

1 I. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$x^{2}+3 y+y^{2}=5$ at $(1,1)$

Answer

Given:
$x^{2}+3 y+y^{2}=5$ at $(1,1)$
Here we have to differentiate the above equation with respect to x.
$\Rightarrow \frac{d}{d x}\left(x^{2}+3 y+y^{2}\right)=\frac{d}{d x}(5)$
$\Rightarrow \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(3 y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(5)$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
$\Rightarrow 2 x+3 x \frac{d y}{d x}+2 y \times \frac{d y}{d x}=0$
$\Rightarrow 2 x+\frac{d y}{d x}(3+2 y)=0$
$\Rightarrow \frac{d y}{d x}(3+2 y)=-2 x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2 \mathrm{x}}{(3+2 \mathrm{y})}$
The Slope of the tangent at $(1,1)$ is
$\Rightarrow \frac{d y}{d x}=\frac{-2 \times 1}{(3+2 \times 1)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-2}{(3+2)}$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{5}$
\therefore The Slope of the tangent at $(1,1)$ is $\frac{-2}{5}$
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)}$
\Rightarrow The Slope of the normal $=\frac{\frac{-1}{-2}}{5}$
\Rightarrow The Slope of the normal $=\frac{5}{2}$

1 J. Question

Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
$x y=6$ at $(1,6)$

Answer

Given:
$x y=56$ at $(1,6)$
Here we have to use the product rule for above equation.
If u and v are differentiable function, then
$\frac{d}{d x}(U V)=U \times \frac{d V}{d x}+V \times \frac{d U}{d x}$
$\frac{d}{d x}(x y)=\frac{d}{d x}(6)$
$\Rightarrow \mathrm{x} \times \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{y})+\mathrm{y} \times \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(5)$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}($ Constant $)=0$
$\Rightarrow x \frac{d y}{d x}+y=0$
$\Rightarrow x \frac{d y}{d x}=-y$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{y}}{\mathrm{x}}$
The Slope of the tangent at $(1,6)$ is
$\Rightarrow \frac{d y}{d x}=\frac{-6}{1}$
$\Rightarrow \frac{d y}{d x}=-6$
\therefore The Slope of the tangent at $(1,6)$ is -6
\Rightarrow The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
\Rightarrow The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right)}$
\Rightarrow The Slope of the normal $=\frac{-1}{-6}$
\Rightarrow The Slope of the normal $=\frac{1}{6}$

2. Question

Find the values of a and b if the The Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2 .

Answer

Given:
The Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2
First, we will find The Slope of tangent
we use product rule here,
$\therefore \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{UV})=\mathrm{U} \times \frac{\mathrm{dV}}{\mathrm{dx}}+\mathrm{V} \times \frac{\mathrm{dU}}{\mathrm{dx}}$
$\Rightarrow x y+a x+b y=2$
$\Rightarrow \mathrm{x} \times \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{y})+\mathrm{y} \times \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})+\mathrm{a} \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})+\mathrm{b} \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{y})+=\frac{\mathrm{d}}{\mathrm{dx}}(2)$
$\Rightarrow x \frac{d y}{d x}+y+a+b \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}(x+b)+y+a=0$
$\Rightarrow \frac{d y}{d x}(x+b)=-(a+y)$
$\Rightarrow \frac{d y}{d x}=\frac{-(a+y)}{x+b}$
since, The Slope of the tangent to the curve $x y+a x+b y=2$ at $(1,1)$ is 2
i.e, $\frac{d y}{d x}=2$
$\Rightarrow\left\{\frac{-(a+y)}{x+b}\right\}(x=1, y=1)=2$
$\Rightarrow \frac{-(\mathrm{a}+\mathrm{t})}{1+\mathrm{b}}=2$
$\Rightarrow-a-1=2(1+b)$
$\Rightarrow-\mathrm{a}-1=2+2 \mathrm{~b}$
$\Rightarrow a+2 b=-3$
Also, the point $(1,1)$ lies on the curve $x y+a x+b y=2$, we have
$1 \times 1+a \times 1+b \times 1=2$
$\Rightarrow 1+\mathrm{a}+\mathrm{b}=2$
$\Rightarrow \mathrm{a}+\mathrm{b}=1$
from (1) \& (2), we get

$$
\begin{gathered}
a+2 b=-3 \\
a+b=1 \\
-\quad-\quad- \\
\hline b=-4
\end{gathered}
$$

substitute $b=-4$ in $a+b=1$
$a-4=1$
$\Rightarrow \mathrm{a}=5$
So the value of $a=5 \& b=-4$

3. Question

If the tangent to the curve $y=x^{3}+a x+b$ at $(1,-6)$ is parallel to the line $x-y+5=0$, find a and b

Answer

Given:
The Slope of the tangent to the curve $y=x^{3}+a x+b$ at
$(1,-6)$
First, we will find The Slope of tangent
$y=x^{3}+a x+b$
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}(a x)+\frac{d}{d x}(b)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}^{3-1}+\mathrm{a}\left(\frac{\mathrm{dx}}{\mathrm{dx}}\right)+0$
$\Rightarrow \frac{d y}{d x}=3 x^{2}+a$
The Slope of the tangent to the curve $y=x^{3}+a x+b$ at
$(1,-6)$ is
$\Rightarrow \frac{d y}{d x}_{(x=1, y=-6)}=3(1)^{2}+\mathrm{a}$
$\Rightarrow \frac{d y}{d x}_{(x=1, y=-6)}=3+a$.
The given line is $x-y+5=0$
$y=x+5$ is the form of equation of a straight line $y=m x+c$, where m is the The Slope of the line.
so the The Slope of the line is $y=1 x x+5$
so The Slope is $1 . \ldots(2)$
Also the point $(1,-6)$ lie on the tangent, so
$x=1 \& y=-6$ satisfies the equation, $y=x^{3}+a x+b$
i.e, $-6=1^{3}+a \times 1+b$
$\Rightarrow-6=1+a+b$
$\Rightarrow a+b=-7$.
Since, the tangent is parallel to the line, from (1) \& (2)
Hence,
$3+a=1$
$\Rightarrow \mathrm{a}=-2$
From (3)
$a+b=-7$
$\Rightarrow-2+b=-7$
$\Rightarrow \mathrm{b}=-5$
So the value is $a=-2 \& b=-5$

4. Question

Find a point on the curve $y=x^{3}-3 x$ where the tangent is parallel to the chord joining $(1,-2)$ and $(2,2)$.

Answer

Given:
The curve $y=x^{3}-3 x$
First, we will find the Slope of the tangent
$y=x^{3}-3 x$
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}(3 x)$
$\Rightarrow \frac{d y}{d x}=3 x^{3-1}-3\left(\frac{d x}{d x}\right)$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-3 \ldots(1)$
The equation of line passing through $\left(x_{0}, y_{0}\right)$ and The Slope m is $y-y_{0}=m\left(x-x_{0}\right)$.
so The Slope, $m=\frac{y-y_{0}}{x-x_{0}}$
The Slope of the chord joining $(1,-2) \&(2,2)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-(-2)}{2-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{4}{1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=4 \ldots(2)$
From (1) \& (2)
$3 x^{2}-3=4$
$\Rightarrow 3 x^{2}=7$
$\Rightarrow x^{2}=\frac{7}{3}$
$\Rightarrow x= \pm \sqrt{\frac{7}{3}}$
$y=x^{3}-3 x$
$\Rightarrow y=x\left(x^{2}-3\right)$
$\Rightarrow \mathrm{y}= \pm \sqrt{\frac{7}{3}}\left(\left(\pm \sqrt{\frac{7}{3}}\right)^{2}-3\right)$
$\Rightarrow \mathrm{y}= \pm \sqrt{\frac{7}{3}}\left(\left(\frac{7}{3}-3\right)\right.$
$\Rightarrow \mathrm{y}= \pm \sqrt{\frac{7}{3}}\left(\frac{-2}{3}\right)$
we know that, $(\pm \times-)=\mp$
$\Rightarrow y=\mp\left(\frac{-2}{3}\right) \sqrt{\frac{7}{3}}$
Thus, the required point is $x= \pm \sqrt{\frac{7}{3}} \& y=\mp\left(\frac{-2}{3}\right) \sqrt{\frac{7}{3}}$

5. Question

Find a point on the curve $y=x^{3}-2 x^{2}-2 x$ at which the tangent lines are parallel to the line $y=2 x-3$.

Answer

Given:
The curve $y=x^{3}-2 x^{2}-2 x$ and a line $y=2 x-3$
First, we will find The Slope of tangent
$y=x^{3}-2 x^{2}-2 x$
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}\left(2 x^{2}\right)-\frac{d}{d x}(2 x)$
$\Rightarrow \frac{d y}{d x}=3 x^{3-1}-2 \times 2\left(x^{2-1}\right)-2 x x^{1-1}$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-4 x-2$
$y=2 x-3$ is the form of equation of a straight line $y=m x+c$, where m is the The Slope of the line.
so the The Slope of the line is $y=2 x(x)-3$
Thus, The Slope $=2$.
From (1) \& (2)
$\Rightarrow 3 x^{2}-4 x-2=2$
$\Rightarrow 3 x^{2}-4 x=4$
$\Rightarrow 3 x^{2}-4 x-4=0$
We will use factorization method to solve the above Quadratic equation.
$\Rightarrow 3 x^{2}-6 x+2 x-4=0$
$\Rightarrow 3 x(x-2)+2(x-2)=0$
$\Rightarrow(x-2)(3 x+2)=0$
$\Rightarrow(x-2)=0 \&(3 x+2)=0$
$\Rightarrow x=2$ or
$x=\frac{-2}{3}$
Substitute $x=2 \& x=\frac{-2}{3}$ in $y=x^{3}-2 x^{2}-2 x$
when $x=2$
$\Rightarrow \mathrm{y}=(2)^{3}-2 \times(2)^{2}-2 \times(2)$
$\Rightarrow y=8-(2 \times 4)-4$
$\Rightarrow y=8-8-4$
$\Rightarrow y=-4$
when $x=\frac{-2}{3}$
$\Rightarrow y=\left(\frac{-2}{3}\right)^{3}-2 \times\left(\frac{-2}{3}\right)^{2}-2 \times\left(\frac{-2}{3}\right)$
$\Rightarrow y=\left(\frac{-8}{27}\right)-2 \times\left(\frac{4}{9}\right)+\left(\frac{4}{3}\right)$
$\Rightarrow y=\left(\frac{-8}{27}\right)-\left(\frac{8}{9}\right)+\left(\frac{4}{3}\right)$
taking Icm
$\Rightarrow \mathrm{y}=\frac{(-8 \times 1)-(8 \times 3)+(4 \times 9)}{27}$
$\Rightarrow \mathrm{y}=\frac{-8-24+36}{27}$
$\Rightarrow y=\frac{4}{27}$
Thus, the points are $(2,-4) \&\left(\frac{2}{3}, \frac{4}{27}\right)$

6. Question

Find a point on the curve $y^{2}=2 x^{3}$ at which the Slope of the tangent is 3

Answer

Given:

The curve $y^{2}=2 x^{3}$ and The Slope of tangent is 3
$y^{2}=2 x^{3}$
Differentiating the above w.r.t x
$\Rightarrow 2 y^{2}-1 \times \frac{d y}{d x}=2 \times 3 x^{3-1}$
$\Rightarrow y \frac{d y}{d x}=3 x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{y}$
Since, The Slope of tangent is 3
$\frac{3 x^{2}}{y}=3$
$\Rightarrow \frac{x^{2}}{y}=1$
$\Rightarrow x^{2}=y$
Substituting $x^{2}=y$ in $y^{2}=2 x^{3}$,
$\left(x^{2}\right)^{2}=2 x^{3}$
$x^{4}-2 x^{3}=0$
$x^{3}(x-2)=0$
$x^{3}=0$ or $(x-2)=0$
$x=0$ or $x=2$
If $x=0$
$\Rightarrow \frac{d y}{d x}=\frac{3(0)^{2}}{y}$
$\Rightarrow \frac{d y}{d x}=0$, which is not possible.
So we take $x=2$ and substitute it in $y^{2}=2 x^{3}$, we get
$y^{2}=2(2)^{3}$
$y^{2}=2 \times 8$
$y^{2}=16$
$y=4$
Thus, the required point is $(2,4)$

7. Question

Find a point on the curve $x y+4=0$ at which the tangents are inclined at an angle of 45° with the x-axis.

Answer

Given:
The curve is $x y+4=0$
If a tangent line to the curve $y=f(x)$ makes an angle θ with x - axis in the positive direction, then
$\frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
$x y+4=0$
Differentiating the above w.r.t x
$\Rightarrow x \times \frac{d}{d x}(y)+y \times \frac{d}{d x}(x)+\frac{d}{d x}(4)=0$
$\Rightarrow x \frac{d y}{d x}+y=0$
$\Rightarrow x \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{y}$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x} \ldots(1)$
Also, $\frac{d y}{d x}=\tan 45^{\circ}=1$
From (1) \& (2), we get,
$\Rightarrow \frac{-\mathrm{y}}{\mathrm{x}}=1$
$\Rightarrow \mathrm{x}=-\mathrm{y}$
Substitute in $x y+4=0$, we get
$\Rightarrow \mathrm{x}(-\mathrm{x})+4=0$
$\Rightarrow-x^{2}+4=0$
$\Rightarrow x^{2}=4$
$\Rightarrow \mathrm{x}= \pm 2$
so when $x=2, y=-2$
\& when $x=-2, y=2$
Thus, the points are $(2,-2) \&(-2,2)$

8. Question

Find a point on the curve $y=x^{2}$ where the Slope of the tangent is equal to the x-coordinate of the point.

Answer

Given:
The curve is $y=x^{2}$
$y=x^{2}$
Differentiating the above w.r.t x
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}^{2-1}$
$\Rightarrow \frac{d y}{d x}=2 x \ldots$ (1)
Also given the Slope of the tangent is equal to the x - coordinate,
$\frac{d y}{d x}=x \ldots$ (2)
From (1) \& (2), we get,
i.e, $2 x=x$
$\Rightarrow \mathrm{x}=0$.
Substituting this in $y=x^{2}$, we get,
$y=0^{2}$
$\Rightarrow \mathrm{y}=0$
Thus, the required point is (0,0)

9. Question

At what point on the circle $x^{2}+y^{2}-2 x-4 y+1=0$, the tangent is parallel to x-axis.

Answer

Given:
The curve is $x^{2}+y^{2}-2 x-4 y+1=0$
Differentiating the above w.r.t x
$\Rightarrow x^{2}+y^{2}-2 x-4 y+1=0$
$\Rightarrow 2 x^{2-1}+2 y^{2}-1 \times \frac{d y}{d x}-2-4 \times \frac{d y}{d x}+0=0$
$\Rightarrow 2 x+2 y \frac{d y}{d x}-2-4 \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}(2 y-4)=-2 x+2$
$\Rightarrow \frac{d y}{d x}=\frac{-2(x-1)}{2(y-2)}$
$\Rightarrow \frac{d y}{d x}=\frac{-(x-1)}{(y-2)}$.
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent is parallel to x - axis
i.e,
$\Rightarrow \frac{d y}{d x}=\tan (0)=0$
$\therefore \tan (0)=0$
From (1) \& (2), we get,
$\Rightarrow \frac{-(x-1)}{(y-2)}=0$
$\Rightarrow-(x-1)=0$
$\Rightarrow \mathrm{x}=1$
Substituting $x=1$ in $x^{2}+y^{2}-2 x-4 y+1=0$, we get,
$\Rightarrow 1^{2}+y^{2}-2 \times 1-4 y+1=0$
$\Rightarrow 1-y^{2}-2-4 y+1=0$
$\Rightarrow y^{2}-4 y=0$
$\Rightarrow y(y-4)=0$
$\Rightarrow y=0 \& y=4$
Thus, the required point is $(1,0) \&(1,4)$

10. Question

At what point of the curve $y=x^{2}$ does the tangent make an angle of 45° with the x-axis?

Answer

Given:
The curve is $y=x^{2}$
Differentiating the above w.r.t x
$\Rightarrow y=x^{2}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}^{2-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$.
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent make an angle of 45° with x - axis
i.e,
$\Rightarrow \frac{d y}{d x}=\tan \left(45^{\circ}\right)=1$
$\therefore \tan \left(45^{\circ}\right)=1$

From (1) \& (2), we get,
$\Rightarrow 2 x=1$
$\Rightarrow x=\frac{1}{2}$
Substituting $x=\frac{\mathbf{1}}{\mathbf{2}}$ in $y=x^{2}$, we get,
$\Rightarrow \mathrm{y}=\left(\frac{\mathbf{1}}{\mathbf{2}}\right)^{2}$
$\Rightarrow y=\frac{1}{4}$
Thus, the required point is $\left(\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{4}}\right)$

11. Question

Find a point on the curve $y=3 x^{2}-9 x+8$ at which the tangents are equally inclined with the axes.

Answer

Given:
The curve is $y=3 x^{2}-9 x+8$
Differentiating the above w.r.t x
$\Rightarrow y=3 x^{2}-9 x+8$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \times 3 \mathrm{x}^{2-1}-9+0$
$\Rightarrow \frac{d y}{d x}=6 x-9 \ldots(1)$
Since, the tangent are equally inclined with axes
i.e, $\theta=\frac{\pi}{4}$ or $\theta=\frac{-\pi}{4}$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
$\Rightarrow \frac{d y}{d x}=\tan \left(\frac{\pi}{4}\right)$ or $\tan \left(\frac{-\pi}{4}\right)$
$\Rightarrow \frac{d y}{d x}=1$ or $-1 \ldots$ (2)
$\therefore \tan \left(\frac{\pi}{4}\right)=1$
From (1) \& (2), we get,
$\Rightarrow 6 x-9=10 r 6 x-9=-1$
$\Rightarrow 6 x=100 r 6 x=8$
$\Rightarrow x=\frac{10}{6}$ or $x=\frac{8}{6}$
$\Rightarrow x=\frac{5}{3}$ or $x=\frac{4}{3}$
Substituting $x=\frac{5}{3}$ or $x=\frac{4}{3}$ in $y=3 x^{2}-9 x+8$, we get,
When $x=\frac{5}{3}$
$\Rightarrow y=3\left(\frac{5}{3}\right)^{2}-9\left(\frac{5}{3}\right)+8$
$\Rightarrow y=3\left(\frac{25}{9}\right)-\left(\frac{45}{3}\right)+8$
$\Rightarrow y=\left(\frac{75}{9}\right)-\left(\frac{45}{3}\right)+8$
taking LCM $=9$
$\Rightarrow \mathrm{y}=\left(\frac{(75 \times 1)-(45 \times 3)+(8 \times 9)}{9}\right)$
$\Rightarrow y=\left(\frac{75-135+72}{9}\right)$
$\Rightarrow y=\left(\frac{12}{9}\right)$
$\Rightarrow y=\left(\frac{4}{3}\right)$
when $x=\frac{\mathbf{4}}{\mathbf{3}}$
$\Rightarrow y=3\left(\frac{4}{3}\right)^{2}-9\left(\frac{4}{3}\right)+8$
$\Rightarrow y=3\left(\frac{16}{9}\right)-\left(\frac{36}{3}\right)+8$
$\Rightarrow y=\left(\frac{48}{9}\right)-\left(\frac{36}{3}\right)+8$
taking LCM $=9$
$\Rightarrow \mathrm{y}=\left(\frac{(48 \times 1)-(36 \times 3)+(8 \times 9)}{9}\right)$
$\Rightarrow y=\left(\frac{48-108+72}{9}\right)$
$\Rightarrow y=\left(\frac{12}{9}\right)$
$\Rightarrow y=\left(\frac{4}{3}\right)$
Thus, the required point is $\left(\frac{5}{3}, \frac{4}{3}\right) \&\left(\frac{4}{3}, \frac{4}{3}\right)$

12. Question

At what points on the curve $y=2 x^{2}-x+1$ is the tangent parallel to the line $y=3 x+4$?

Answer

Given:
The curve is $y=2 x^{2}-x+1$ and the line $y=3 x+4$
First, we will find The Slope of tangent
$y=2 x^{2}-x+1$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(2 x^{2}\right)-\frac{d}{d x}(x)+\frac{d}{d x}(1)$
$\Rightarrow \frac{d y}{d x}=4 x-1$.
$y=3 x+4$ is the form of equation of a straight line $y=m x+c, w h e r e m$ is the The Slope of the line.
so the The Slope of the line is $y=3 x(x)+4$
Thus, The Slope $=3 . \ldots(2)$
From (1) \& (2), we get,
$4 x-1=3$
$\Rightarrow 4 x=4$
$\Rightarrow x=1$
Substituting $x=1$ in $y=2 x^{2}-x+1$, we get,
$\Rightarrow \mathrm{y}=2(1)^{2}-(1)+1$
$\Rightarrow y=2-1+1$
$\Rightarrow y=2$
Thus, the required point is $(1,2)$

13. Question

Find a point on the curve $y=3 x^{2}+4$ at which the tangent is perpendicular to the line whose slope is $-\frac{1}{6}$.

Answer

Given:
The curve $y=3 x^{2}+4$ and the Slope of the tangent is $\frac{-1}{6}$
$y=3 x^{2}+4$
Differentiating the above w.r.t x
$\Rightarrow \frac{d y}{d x}=2 \times 3 x^{2-1}+0$
$\Rightarrow \frac{d y}{d x}=6 x$
Since, tangent is perpendicular to the line,
\therefore The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
i.e, $\frac{-1}{6}=\frac{-1}{6 x}$
$\Rightarrow \frac{1}{6}=\frac{1}{6 x}$
$\Rightarrow x=1$
Substituting $x=1$ in $y=3 x^{2}+4$,
$\Rightarrow y=3(1)^{2}+4$
$\Rightarrow y=3+4$
$\Rightarrow y=7$
Thus, the required point is $(1,7)$.

14. Question

Find the point on the curve $x^{2}+y^{2}=13$, the tangent at each one of which is parallel to the line $2 x+3 y=7$.

Answer

Given:
The curve $x^{2}+y^{2}=13$ and the line $2 x+3 y=7$
$x^{2}+y^{2}=13$

Differentiating the above w.r.t x
$\Rightarrow 2 x^{2-1}+2 y^{2-1} \frac{d y}{d x}=0$
$\Rightarrow 2 x+2 y \frac{d y}{d x}=0$
$\Rightarrow 2\left(x+y \frac{d y}{d x}\right)=0$
$\Rightarrow\left(x+y \frac{d y}{d x}\right)=0$
$\Rightarrow y \frac{d y}{d x}=-x$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{y}$.
Since, line is $2 x+3 y=7$
$\Rightarrow 3 y=-2 x+7$
$\Rightarrow y=\frac{-2 x+7}{3}$
$\Rightarrow y=\frac{-2 x}{3}+\frac{7}{3}$
\therefore The equation of a straight line is $y=m x+c$, where m is the The Slope of the line.
Thus, the The Slope of the line is $\frac{-2}{3}$.
Since, tangent is parallel to the line,
\therefore the The Slope of the tangent $=$ The Slope of the normal
$\frac{-x}{y}=\frac{-2}{3}$
$\Rightarrow-x=\frac{-2 y}{3}$
$\Rightarrow x=\frac{2 y}{3}$
Substituting $x=\frac{2 y}{3}$ in $x^{2}+y^{2}=13$,
$\Rightarrow\left(\frac{2 \mathrm{y}}{3}\right)^{2}+\mathrm{y}^{2}=13$
$\Rightarrow\left(\frac{4 y^{2}}{9}\right)+y^{2}=13$
$\Rightarrow \mathrm{y}^{2}\left(\frac{4}{9}+1\right)=13$
$\Rightarrow y^{2}\left(\frac{13}{9}\right)=13$
$\Rightarrow \mathrm{y}^{2}\left(\frac{1}{9}\right)=1$
$\Rightarrow y^{2}=9$
$\Rightarrow y= \pm 3$
Substituting $y= \pm 3$ in $x=\frac{2 y}{3}$, we get,
$x=\frac{2 \times(\pm 3)}{3}$
$x= \pm 2$
Thus, the required point is $(2,3) \&(-2,-3)$

15. Question

Find the point on the curve $2 a^{2} y=x^{3}-3 a x^{2}$ where the tangent is parallel to the x - axis.

Answer

Given:
The curve is $2 a^{2} y=x^{3}-3 a x^{2}$
Differentiating the above w.r.t x
$\Rightarrow 2 a^{2} \times \frac{d y}{d x}=3 x^{3-1}-3 \times 2 a x^{2-1}$
$\Rightarrow 2 a^{2} \frac{d y}{d x}=3 x^{2}-6 a x$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}-6 a x}{2 a^{2}}$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent is parallel to x - axis
i.e,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\tan (0)=0$.
$\therefore \tan (0)=0$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
From (1) \& (2), we get,
$\Rightarrow \frac{3 \mathrm{x}^{2}-6 \mathrm{ax}}{2 \mathrm{a}^{2}}=0$
$\Rightarrow 3 x^{2}-6 a x=0$
$\Rightarrow 3 x(x-2 a)=0$
$\Rightarrow 3 \mathrm{x}=0$ or $(\mathrm{x}-2 \mathrm{a})=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{x}=2 \mathrm{a}$
Substituting $x=0$ or $x=2 a$ in $2 a^{2} y=x^{3}-3 a x^{2}$,
when $x=0$
$\Rightarrow 2 \mathrm{a}^{2} \mathrm{y}=(0)^{3}-3 \mathrm{a}(0)^{2}$
$\Rightarrow \mathrm{y}=0$
when $x=2$
$\Rightarrow 2 a^{2} y=(2 a)^{3}-3 a(2 a)^{2}$
$\Rightarrow 2 a^{2} y=8 a^{3}-12 a^{3}$
$\Rightarrow 2 a^{2} y=-4 a^{3}$
$\Rightarrow \mathrm{y}=-2 \mathrm{a}$
Thus, the required point is $(0,0) \&(2 a,-2 a)$

16. Question

At what points on the curve $y=x^{2}-4 x+5$ is the tangent perpendicular to the line $2 y+x=7$?

Answer

Given:
The curve $y=x^{2}-4 x+5$ and line is $2 y+x=7$
$y=x^{2}-4 x+5$
Differentiating the above w.r.t x ,
we get the Slope of the tangent,
$\Rightarrow \frac{d y}{d x}=2 x^{2-1}-4+0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}-4$
Since, line is $2 y+x=7$
$\Rightarrow 2 y=-x+7$
$\Rightarrow y=\frac{-x+7}{2}$
$\Rightarrow y=\frac{-x}{2}+\frac{7}{2}$
\therefore The equation of a straight line is $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, where m is the The Slope of the line.

Thus, the The Slope of the line is $\frac{\mathbf{- 1}}{\mathbf{2}} \ldots$
Since, tangent is perpendicular to the line,
\therefore The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
From (1) \& (2), we get
i.e, $\frac{-1}{2}=\frac{-1}{2 x-4}$
$\Rightarrow 1=\frac{1}{x-2}$
$\Rightarrow \mathrm{x}-2=1$
$\Rightarrow x=3$
Substituting $x=3$ in $y=x^{2}-4 x+5$,
$\Rightarrow y=y=3^{2}-4 \times 3+5$
$\Rightarrow y=9-12+5$
$\Rightarrow y=2$
Thus, the required point is $(3,2)$

17 A. Question

Find the point on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to the
x-axis
Answer

Given:
The curve is $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
Differentiating the above w.r.t x, we get the The Slope of a tangent,
$\Rightarrow \frac{2 x^{2-1}}{4}+\frac{2 y^{2-1} \times \frac{d y}{d x}}{25}=0$
Cross multiplying we get,
$\Rightarrow \frac{25 \times 2 x+4 \times 2 y \times \frac{d y}{d x}}{100}=0$
$\Rightarrow 50 x+8 y \frac{d y}{d x}=0$
$\Rightarrow 8 y \frac{d y}{d x}=-50 x$
$\Rightarrow \frac{d y}{d x}=\frac{-50 x}{8 y}$
$\Rightarrow \frac{d y}{d x}=\frac{-25 x}{4 y}$.
(i)

Since, the tangent is parallel to x - axis
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\tan (0)=0$.
$\therefore \tan (0)=0$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
From (1) \& (2), we get,
$\Rightarrow \frac{-25 \mathrm{x}}{4 \mathrm{y}}=0$
$\Rightarrow-25 x=0$
$\Rightarrow x=0$
Substituting $x=0$ in $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$,
$\Rightarrow \frac{0^{2}}{4}+\frac{y^{2}}{25}=1$
$\Rightarrow y^{2}=25$
$\Rightarrow y= \pm 5$
Thus, the required point is $(0,5) \&(0,-5)$

17 B. Question

Find the point on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to the y - axis.

Answer

Since, the tangent is parallel to y - axis, its The Slope is not defined, then the normal is parallel to x - axis whose The Slope is zero.
i.e, $\frac{-1}{\frac{d y}{d x}}=0$
$\Rightarrow \frac{\frac{-1}{-25 x}}{4 y}=0$
$\Rightarrow \frac{-4 y}{25 x}=0$
$\Rightarrow y=0$
Substituting $y=0$ in $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$,
$\Rightarrow \frac{x^{2}}{4}+\frac{0^{2}}{25}=1$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm 2$
Thus, the required point is $(2,0) \&(-2,0)$

18 A. Question

Find the point on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the x - axis

Answer

Given:
The curve is $x^{2}+y^{2}-2 x-3=0$
Differentiating the above w.r.t x, we get The Slope of tangent,
$\Rightarrow 2 x^{2-1}+2 y^{2}-1 \frac{d y}{d x}-2-0=0$
$\Rightarrow 2 x+2 y \frac{d y}{d x}-2=0$
$\Rightarrow 2 y \frac{d y}{d x}=2-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{2-2 x}{2 y}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1-\mathrm{x}}{\mathrm{y}}$.
(i) Since, the tangent is parallel to x-axis
$\Rightarrow \frac{d y}{d x}=\tan (0)=0$
$\therefore \tan (0)=0$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
From (1) \& (2), we get,
$\Rightarrow \frac{1-x}{y}=0$
$\Rightarrow 1-\mathrm{x}=0$
$\Rightarrow x=1$
Substituting $x=1$ in $x^{2}+y^{2}-2 x-3=0$,
$\Rightarrow 1^{2}+y^{2}-2 \times 1-3=0$
$\Rightarrow 1+y^{2}-2-3=0$
$\Rightarrow y^{2}-4=0$
$\Rightarrow y^{2}=4$
$\Rightarrow \mathrm{y}= \pm 2$
Thus, the required point is $(1,2) \&(1,-2)$

18 B. Question

Find the point on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the $y-$ axis.

Answer

Since, the tangent is parallel to y - axis, its slope is not defined, then the normal is parallel to x - axis whose slope is zero.
i.e, $\frac{-1}{d y}=0$
$\Rightarrow \frac{\frac{-1}{1-x}}{y}=0$
$\Rightarrow \frac{-\mathrm{y}}{1-\mathrm{x}}=0$
$\Rightarrow \mathrm{y}=0$
Substituting $y=0$ in $x^{2}+y^{2}-2 x-3=0$,
$\Rightarrow x^{2}+0^{2}-2 x x-3=0$
$\Rightarrow x^{2}-2 x-3=0$
Using factorization method, we can solve above quadratic equation
$\Rightarrow x^{2}-3 x+x-3=0$
$\Rightarrow x(x-3)+1(x-3)=0$
$\Rightarrow(x-3)(x+1)=0$
$\Rightarrow x=3 \& x=-1$
Thus, the required point is $(3,0) \&(-1,0)$

19 A. Question

Find the point on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are parallel to x-axis

Answer

Given:
The curve is $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
Differentiating the above w.r.t x, we get the Slope of tangent,
$\Rightarrow \frac{2 x^{2-1}}{9}+\frac{2 y^{2-1} \times \frac{d y}{d x}}{16}=0$
$\Rightarrow \frac{2 x}{9}+\frac{y \times \frac{d y}{d x}}{8}=0$
Cross multiplying we get,
$\Rightarrow \frac{(8 \times 2 x)+(9 \times y) \times \frac{d y}{d x}}{72}=0$
$\Rightarrow 16 x+9 y \frac{d y}{d x}=0$
$\Rightarrow 9 y \frac{d y}{d x}=-16 x$
$\Rightarrow \frac{d y}{d x}=\frac{-16 x}{9 y}$
(i)

Since, the tangent is parallel to x - axis
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\tan (0)=0$
$\therefore \tan (0)=0$
$\therefore \frac{d y}{d x}=$ The Slope of the tangent $=\tan \theta$
From (1) \& (2), we get,
$\Rightarrow \frac{-16 x}{9 y}=0$
$\Rightarrow-16 x=0$
$\Rightarrow x=0$
Substituting $x=0$ in $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$,
$\Rightarrow \frac{0^{2}}{9}+\frac{y^{2}}{16}=1$
$\Rightarrow y^{2}=16$
$\Rightarrow \mathrm{y}= \pm 4$
Thus, the required point is $(0,4) \&(0,-4)$

19 B. Question

Find the point on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are parallel to y - axis

Answer

Since the tangent is parallel to y-axis, its slope is not defined, then the normal is parallel to x-axis whose The Slope is zero.
i.e., $\frac{-1}{\frac{1}{d x}}=0$
$\Rightarrow \frac{\frac{-1}{-16 x}}{9 y}=0$
$\Rightarrow \frac{-9 y}{16 x}=0$
$\Rightarrow y=0$
Substituting $y=0 \operatorname{in} \frac{x^{2}}{9}+\frac{y^{2}}{16}=1$,
$\Rightarrow \frac{x^{2}}{9}+\frac{0^{2}}{16}=1$
$\Rightarrow x^{2}=9$
$\Rightarrow \mathrm{x}= \pm 3$
Thus, the required point is $(3,0) \&(-3,0)$

20. Question

Show that the tangents to the curve $y=7 x^{3}+11$ at the points $x=2$ and $x=-2$ are parallel.

Answer

Given:
The curve $y=7 x^{3}+11$
Differentiating the above w.r.t x
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3 \times 7 \mathrm{x}^{3-1}+0$
$\Rightarrow \frac{d y}{d x}=21 x^{2}$
when $\mathrm{x}=2$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}_{\mathrm{x}}=\mathbf{2}}=21 \times(2)^{2}$
$\Rightarrow \frac{d y}{d_{x}=2}=21 \times 4$
$\Rightarrow{\frac{d y}{d x_{x}=2}}=84$
when $\mathrm{x}=-2$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}_{\mathrm{x}}=\mathbf{2}}=21 \times(-2)^{2}$
$\Rightarrow \frac{d y}{d x_{x}=2}=21 \times 4$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{ds}_{\mathrm{x}}^{\mathrm{x}}=2}=84$
Let $y=f(x)$ be a continuous function and $P\left(x_{0}, y_{0}\right)$ be point on the curve, then,
The Slope of the tangent at $P(x, y)$ is $f^{\prime}(x)$ or $\frac{d y}{d x}$
Since, the Slope of the tangent is at $\mathrm{x}=2$ and $\mathrm{x}=-2$ are equal, the tangents at $\mathrm{x}=2$ and $\mathrm{x}=-2$ are parallel.

21. Question

Find the point on the curve $y=x^{3}$ where the Slope of the tangent is equal to x-coordinate of the point.

Answer

Given:
The curve is $y=x^{3}$
$y=x^{3}$
Differentiating the above w.r.t x
$\Rightarrow \frac{d y}{d x}=3 x^{2-1}$
$\Rightarrow \frac{d y}{d x}=3 x^{2}$

Also given the The Slope of the tangent is equal to the x - coordinate,
$\frac{d y}{d x}=x$
From (1) \& (2), we get,
i.e, $3 x^{2}=x$
$\Rightarrow x(3 x-1)=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{x}=\frac{1}{3}$
Substituting $\mathrm{x}=0$ or $\mathrm{x}=\frac{1}{3}$ this in $\mathrm{y}=\mathrm{x}^{3}$, we get,
when $\mathrm{x}=0$
$\Rightarrow \mathrm{y}=0^{3}$
$\Rightarrow \mathrm{y}=0$
when $\mathrm{x}=\frac{1}{3}$
$\Rightarrow y=\left(\frac{1}{3}\right)^{3}$
$\Rightarrow \mathrm{y}=\frac{1}{27}$
Thus, the required point is $(0,0) \&\left(\frac{1}{3}, \frac{1}{27}\right)$

Exercise 16.2

1. Question

Find the equation of the tangent to the curve $\sqrt{x}+\sqrt{y}=a$, at the point $\left(a^{2} / 4, a^{2} / 4\right)$

Answer

finding slope of the tangent by differentiating the curve
$\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}}\left(\frac{d y}{d x}\right)=0$
$\frac{d y}{d x}=-\frac{\sqrt{x}}{\sqrt{y}}$
at $\left(\frac{a^{2}}{4}, \frac{a^{2}}{4}\right)$ slope m, is - 1
the equation of the tangent is given by $y-y_{1}=m\left(x-x_{1}\right)$
$y-\frac{a^{2}}{4}=-1\left(x-\frac{a^{2}}{4}\right)$
$x+y=\frac{a^{2}}{2}$

2. Question

Find the equation of the normal toy $=2 x^{3}-x^{2}+3$ at (1,4).

Answer

finding the slope of the tangent by differentiating the curve
$m=\frac{d y}{d x}=6 x^{2}-2 x$
$\mathrm{m}=4$ at $(1,4)$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
$\mathrm{m}($ normal $)=-\frac{1}{4}$
equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-4=\left(-\frac{1}{4}\right)(x-1)$
$x+4 y=17$

3 A. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
m (tangent) at $(0,5)=-10$
m (normal) at $(0,5)=\frac{1}{10}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent $)\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-5=-10 x$
$y+10 x=5$
equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-5=\frac{1}{10} x$

3 B. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $x=1 y=3$

Answer

finding slope of the tangent by differentiating the curve
$\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
m (tangent) at $(x=1)=2$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(\mathrm{x}=1)=-\frac{1}{2}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-3=2(x-1)$
$y=2 x+1$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y-3=-\frac{1}{2}(x-1)$
$2 \mathrm{y}=7-\mathrm{x}$

3 C. Question

Find the equation of the tangent and the normal to the following curves at the indicated points: $y=x^{2}$ at $(0,0)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=2 x$
m (tangent) at $(x=0)=0$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(\mathrm{x}=0)=\frac{1}{0}$
We can see that the slope of normal is not defined
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y=0$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$x=0$

3 D. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$y=2 x^{2}-3 x-1$ at $(1,-2)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=4 x-3$
m (tangent) at $(1,-2)=1$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(1,-2)=-1$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y+2=1(x-1)$
$y=x-3$
equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y+2=-1(x-1)$
$y+x+1=0$

3 E. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$y^{2}=\frac{x^{3}}{4-x}$ at $(2,-2)$

Answer

finding the slope of the tangent by differentiating the curve
$2 y \frac{d y}{d x}=\frac{(4-x) 3 x^{2}+x^{4}}{(4-x)^{2}}$
$\frac{d y}{d x}=\frac{(4-x) 3 x^{2}+x^{4}}{2 y(4-x)^{2}}$
m (tangent) at $(2,-2)=-2$
m (normal) at $(2,-2)=\frac{1}{2}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y+2=-2(x-2)$
$y+2 x=2$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y+2=\frac{1}{2}(x-2)$
$2 y+4=x-2$
$2 y-x+6=0$

3 F. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$y=x^{2}+4 x+1$ at $x=3$

Answer

finding slope of the tangent by differentiating the curve
$\frac{d y}{d x}=2 x+4$
m (tangent) at $(3,0)=10$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(3,0)=-\frac{1}{10}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
y at $x=3$
$y=3^{2}+4 \times 3+1$
$y=22$
$y-22=10(x-3)$
$y=10 x-8$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-22=-\frac{1}{10}(x-3)$
$x+10 y=223$

3 G. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $(a \cos \theta, b \sin \theta)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{x}{a^{2}}+\frac{y}{b^{2}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\frac{x a^{2}}{y b^{2}}$
m (tangent)at $(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)=-\frac{\cot \theta \mathrm{a}^{2}}{\mathrm{~b}^{2}}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)=\frac{\mathrm{b}^{2}}{\cot \theta \mathrm{a}^{2}}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \sin \theta=-\frac{\cot \theta a^{2}}{b^{2}}(x-a \cos \theta)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-b \sin \theta=-\frac{b^{2}}{\cot \theta a^{2}}(x-a \cos \theta)$

3 H. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(a \sec \theta, b \tan \theta)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{x}{a^{2}}-\frac{y}{b^{2}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{x b^{2}}{y a^{2}}$
$\mathrm{m}(\operatorname{tangent})$ at $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)=\frac{\mathrm{b}}{\mathrm{a} \sin \theta}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)=-\frac{\mathrm{a} \sin \theta}{\mathrm{b}}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}($ tangent $)\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan \theta=\frac{b}{a \sin \theta}(x-a \sec \theta)$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y-b \tan \theta=-\frac{a \sin \theta}{b}(x-a \sec \theta)$

3 I. Question

Find the equation of the tangent and the normal to the following curves at the indicated points: $\mathrm{y}^{2}=4 \mathrm{a} \mathrm{x}$ at $\left(\mathrm{a} / \mathrm{m}^{2}, 2 \mathrm{a} / \mathrm{m}\right)$

Answer

finding the slope of the tangent by differentiating the curve
$2 y \frac{d y}{d x}=4 a$
$\frac{d y}{d x}=\frac{2 a}{y}$
m (tangent) at $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
$m($ tangent $)=m$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) $=-\frac{1}{\mathrm{~m}}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{y}-\frac{2 \mathrm{a}}{\mathrm{m}}=\mathrm{m}\left(\mathrm{x}-\frac{\mathrm{a}}{\mathrm{m}^{2}}\right)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$\mathrm{y}-\frac{2 \mathrm{a}}{\mathrm{m}}=-\frac{1}{\mathrm{~m}}\left(\mathrm{x}-\frac{\mathrm{a}}{\mathrm{m}^{2}}\right)$

3 J. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$c^{2}\left(x^{2}+y^{2}\right)=x^{2} y^{2}$ at $\left(\frac{c}{\cos \theta}, \frac{c}{\sin \theta}\right)$

Answer

finding the slope of the tangent by differentiating the curve
$c^{2}\left(2 x+2 y \frac{d y}{d x}\right)=2 x y^{2}+2 x^{2} y \frac{d y}{d x}$
$2 x^{2}-2 x y^{2}=2 x^{2} y \frac{d y}{d x}-2 y c^{2} \frac{d y}{d x}$
$\frac{d y}{d x}=\frac{x c^{2}-x y^{2}}{x^{2} y-y c^{2}}$
m (tangent) at $\left(\frac{c}{\cos \theta}, \frac{c}{\sin \theta}\right)=-\frac{\cos ^{3} \theta}{\sin ^{3} \theta}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\left(\frac{c}{\cos \theta}, \frac{c}{\sin \theta}\right)=\frac{\sin ^{3} \theta}{\cos ^{3} \theta}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-\frac{c}{\sin \theta}=-\frac{\cos ^{3} \theta}{\sin ^{3} \theta}\left(x-\frac{c}{\cos \theta}\right)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-\frac{c}{\sin \theta}=\frac{\sin ^{3} \theta}{\cos ^{3} \theta}\left(x-\frac{c}{\cos \theta}\right)$

3 K. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x y=c^{2}$ at (ct, c/t)

Answer

finding slope of the tangent by differentiating the curve
$y+x \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\frac{y}{x}$
m (tangent) at $\left(\mathrm{ct}, \frac{\mathrm{c}}{\mathrm{t}}\right)=-\frac{1}{\mathrm{t}^{2}}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\left(\mathrm{ct}, \frac{\mathrm{c}}{\mathrm{t}} \mathrm{t}\right)=\mathrm{t}^{2}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t)$
equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$\mathrm{y}-\frac{\mathrm{c}}{\mathrm{t}}=\mathrm{t}^{2}(\mathrm{x}-\mathrm{ct})$
3 L. Question
Find the equation of the tangent and the normal to the following curves at the indicated points:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{x}{a^{2}}-\frac{y}{b^{2}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{b^{2} x}{y^{2} a^{2}}$
m (tangent) at (x_{1}, y_{1}) $=\frac{b^{2} x_{1}}{y_{1} a^{2}}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=-\frac{\mathrm{a}^{2} \mathrm{y}_{1}}{\mathrm{x}_{1} \mathrm{~b}^{2}}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-y_{1}=\frac{b^{2} x_{1}}{y_{1} a^{2}}\left(x-x_{1}\right)$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y-y_{1}=-\frac{a^{2} y_{1}}{x_{1} b^{2}}\left(x-x_{1}\right)$

3 M. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $\left(x_{0}, y_{0}\right)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{x}{a^{2}}-\frac{y}{b^{2}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{b^{2} x}{y a^{2}}$
m (tangent) at $\left(x_{0}, y_{0}\right)=\frac{b^{2} x_{0}}{y_{0} a^{2}}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=-\frac{\mathrm{a}^{2} \mathrm{y}_{0}}{\mathrm{x}_{0} \mathrm{~b}^{2}}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-y_{1}=\frac{b^{2} x_{0}}{y_{0} a^{2}}\left(x-x_{1}\right)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-y_{1}=-\frac{a^{2} y_{0}}{x_{0} b^{2}}\left(x-x_{1}\right)$

3 N. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x^{2 / 3}+y^{2 / 3}=2$ at $(1,1)$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{2}{3 x^{1 / 3}}+\frac{2}{3 y^{1 / 3}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\frac{y^{1 / 3}}{x^{1 / 3}}$
m (tangent) at $(1,1)=-1$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(1,1)=1$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-1=-1(x-1)$
$x+y=2$
equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-1=1(x-1)$
$y=x$

3 O. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x^{2}=4 y$ at $(2,1)$

Answer

finding the slope of the tangent by differentiating the curve
$2 \mathrm{x}=4 \frac{\mathrm{dy}}{\mathrm{dx}}$
$\frac{d y}{d x}=\frac{x}{2}$
m (tangent) at $(2,1)=1$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(2,1)=-1$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}($ tangent $)\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{y}-1=1(\mathrm{x}-2)$
equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-1=-1(x-2)$

3 P. Question

Find the equation of the tangent and the normal to the following curves at the indicated points: $y^{2}=4 x$ at $(1,2)$

Answer

finding the slope of the tangent by differentiating the curve
$2 y \frac{d y}{d x}=4$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\mathrm{y}}$
m (tangent) at $(1,2)=1$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(1,2)=-1$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{y}-2=1(\mathrm{x}-1)$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y-2=-1(x-1)$

3 Q. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$4 x^{2}+9 y^{2}=36$ at $(3 \cos \theta, 2 \sin \theta)$

Answer

finding the slope of the tangent by differentiating the curve
$8 x+18 y \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\frac{4 x}{9 y}$
m (tangent) at $(3 \cos \theta, 2 \sin \theta)=-\frac{2 \cos \theta}{3 \sin \theta}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(3 \cos \theta, 2 \sin \theta)=\frac{3 \sin \theta}{2 \cos \theta}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-2 \sin \theta=-\frac{2 \cos \theta}{3 \sin \theta}(x-3 \cos \theta)$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y-2 \sin \theta=\frac{3 \sin \theta}{2 \cos \theta}(x-3 \cos \theta)$

3 P. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$y^{2}=4 a x$ at $\left(x_{1}, y_{1}\right)$

Answer

finding slope of the tangent by differentiating the curve
$2 y \frac{d y}{d x}=4 a$
$\frac{d y}{d x}=\frac{2 a}{y}$
m (tangent) at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\frac{2 \mathrm{a}}{\mathrm{y}_{1}}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=-\frac{\mathrm{y}_{1}}{2 \mathrm{a}}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-y_{1}=\frac{2 a}{y_{1}}\left(x-x_{1}\right)$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y-y_{1}=-\frac{y_{1}}{2 a}\left(x-x_{1}\right)$

3 S. Question

Find the equation of the tangent and the normal to the following curves at the indicated points: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(\sqrt{2} a, b)$

Answer

finding slope of the tangent by differentiating the curve
$\frac{\mathrm{x}}{\mathrm{a}^{2}}-\frac{\mathrm{y}}{\mathrm{b}^{2}} \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\frac{d y}{d x}=\frac{x b^{2}}{y a^{2}}$
m (tangent) at $(\sqrt{2} a, b)=\frac{\sqrt{2} a^{2}}{b^{2}}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $(\sqrt{2 a}, b)=-\frac{b^{2}}{\sqrt{2} a b^{2}}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-b=\frac{\sqrt{2} a b^{2}}{b^{2}}(x-\sqrt{2} a)$
equation of normal is given by $y-y_{1}=m$ (normal) $\left(x-x_{1}\right)$
$y-b=-\frac{b a^{2}}{\sqrt{2} a b^{2}}(x-\sqrt{2} a)$

4. Question

Find the equation of the tangent to the curve $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 4$.

Answer

finding slope of the tangent by differentiating x and y with respect to theta
$\frac{d x}{d \theta}=1+\cos \theta$
$\frac{d y}{d \theta}=-\sin \theta$
Dividing both the above equations
$\frac{d y}{d x}=-\frac{\sin \theta}{1+\cos \theta}$
m at theta $(\pi / 4)=-1+\frac{1}{\sqrt{2}}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-1-\frac{1}{\sqrt{2}}=\left(-1+\frac{1}{\sqrt{2}}\right)\left(x-\frac{\pi}{4}-\frac{1}{\sqrt{2}}\right)$

5 A. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\pi / 2$.

Answer

finding slope of the tangent by differentiating x and y with respect to theta
$\frac{d x}{d \theta}=1+\cos \theta$
$\frac{d y}{d \theta}=-\sin \theta$
Dividing both the above equations
$\frac{d y}{d x}=-\frac{\sin \theta}{1+\cos \theta}$
m (tangent) at theta $(\pi / 2)=-1$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at theta $(\pi / 2)=1$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-1=-1\left(x-\frac{\pi}{2}-1\right)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-1=1\left(x-\frac{\pi}{2}-1\right)$

5 B. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x=\frac{2 a t^{2}}{1+t^{2}}, y=\frac{2 a t^{3}}{1+t^{2}}$ at $t=1 / 2$

Answer

finding slope of the tangent by differentiating x and y with respect to t
$\frac{d x}{d t}=\frac{\left(1+t^{2}\right) 4 a t-2 \mathrm{at}^{2}(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}$
$\frac{d x}{d t}=\frac{4 a t}{\left(1+t^{2}\right)^{2}}$
$\frac{d y}{d t}=\frac{\left(1+t^{2}\right) 6 a t^{2}-2 a t^{3}(2 t)}{\left(1+t^{2}\right)^{2}}$
$\frac{d y}{d t}=\frac{6 a t^{2}+2 a t^{4}}{\left(1+t^{2}\right)^{2}}$
Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{6 a t^{2}+2 a t^{4}}{4 a t}$
m (tangent) at $\mathrm{t}=\frac{1}{2}$ is $\frac{13}{16}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\mathrm{t}=\frac{1}{2}$ is $-\frac{16}{13}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-\frac{a}{5}=\frac{13}{16}\left(x-\frac{2 a}{5}\right)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-\frac{a}{5}=-\frac{16}{13}\left(x-\frac{2 a}{5}\right)$

5 C. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$\mathrm{x}=a \mathrm{t}^{2}, \mathrm{y}=2 \mathrm{at} \mathrm{at} \mathrm{t}=1$.
Answer
finding slope of the tangent by differentiating x and y with respect to t
$\frac{d x}{d t}=2$ at
$\frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{a}$
Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{1}{t}$
m (tangent) at $t=1$ is 1
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $t=1$ is -1
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-2 a=1(x-a)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-2 a=-1(x-a)$

5 D. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x=a \sec t, y=b \tan t a t$.

Answer

finding slope of the tangent by differentiating x and y with respect to t
$\frac{d x}{d t}=\operatorname{asec} t \tan t$
$\frac{d y}{d t}=b s e c^{2} t$
Now dividing $\frac{\mathrm{dy}}{\mathrm{dt}}$ and $\frac{\mathrm{dx}}{\mathrm{dt}}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{b \operatorname{cosec} t}{a}$
m (tangent) at $t=\frac{b \operatorname{cosec} t}{a}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\mathrm{t}=-\frac{\mathrm{a}}{\mathrm{b}} \sin \mathrm{t}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-b \tan t=\frac{b \operatorname{cosec} t}{a}(x-a \sec t)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-b \tan t=-\frac{a \sin t}{b}(x-a \sec t)$

5 E. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at θ

Answer

finding slope of the tangent by differentiating x and y with respect to theta
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1+\cos \theta)$
$\frac{d y}{d \theta}=a(\sin \theta)$
Now dividing $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{\sin \theta}{1+\cos \theta}$
m (tangent) at theta is $\frac{\sin \theta}{1+\cos \theta}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at theta is $-\frac{\sin \theta}{1+\cos \theta}$
equation of tangent is given by $y-y_{1}=m$ (tangent) $\left(x-x_{1}\right)$
$y-a(1-\cos \theta)=\frac{\sin \theta}{1+\cos \theta}(x-a(\theta+\sin \theta))$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$y-a(1-\cos \theta)=\frac{1+\cos \theta}{-\sin \theta}(x-a(\theta+\sin \theta))$

5 F. Question

Find the equation of the tangent and the normal to the following curves at the indicated points:
$x=3 \cos \theta-\cos ^{3} \theta, y=3 \sin \theta-\sin ^{3} \theta$

Answer

finding slope of the tangent by differentiating x and y with respect to theta

$$
\begin{aligned}
& \frac{d x}{d \theta}=-3 \sin \theta+3 \cos ^{2} \theta \sin \theta \\
& \frac{d y}{d \theta}=3 \cos \theta-3 \sin ^{2} \theta \cos \theta
\end{aligned}
$$

Now dividing $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$ to obtain the slope of tangent
$\frac{d y}{d x}=\frac{3 \cos \theta-3 \sin ^{2} \theta \cos \theta}{-3 \sin \theta+3 \cos ^{2} \theta \sin \theta}=-\tan ^{3} \theta$
m (tangent) at theta is $-\tan ^{3} \theta$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at theta is $\cot ^{3} \theta$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-3 \sin \theta+\sin ^{3} \theta=-\tan ^{3} \theta\left(x-3 \cos \theta+3 \cos ^{3} \theta\right)$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-3 \sin \theta+\sin ^{3} \theta=\cot ^{3} \theta\left(x-3 \cos \theta+3 \cos ^{3} \theta\right)$

6. Question

Find the equation of the normal to the curve $x^{2}+2 y^{2}-4 x-6 y+8=0$ at the point whose abscissa is 2

Answer

finding slope of the tangent by differentiating the curve
$2 x+4 y \frac{d y}{d x}-4-6 \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{4-2 x}{4 y-6}$
Finding y co - ordinate by substituting x in the given curve
$2 y^{2}-6 y+4=0$
$y^{2}-3 y+2=0$
$y=2$ or $y=1$
m (tangent) at $x=2$ is 0
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $x=2$ is $\frac{1}{0}$, which is undefined
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
$x=2$

7. Question

Find the equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, a m^{3}\right)$.

Answer

finding the slope of the tangent by differentiating the curve
$2 a y \frac{d y}{d x}=3 x^{2}$
$\frac{d y}{d x}=\frac{3 x^{2}}{2 a y}$
m (tangent) at $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ is $\frac{3 \mathrm{~m}}{2}$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
m (normal) at $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ is $-\frac{2}{3 \mathrm{~m}}$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
$y-a m^{3}=-\frac{2}{3 m}\left(x-a m^{2}\right)$

8. Question

The equation of the tangent $a t(2,3)$ on the curve $y^{2}=a x^{3}+b$ is $y=4 x-5$. Find the values of a and b.

Answer

finding the slope of the tangent by differentiating the curve
$2 y \frac{d y}{d x}=3 a x^{2}$
$\frac{d y}{d x}=\frac{3 a x^{2}}{2 y}$
m (tangent) at $(2,3)=2 \mathrm{a}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
now comparing the slope of a tangent with the given equation
$2 a=4$
$a=2$
now $(2,3)$ lies on the curve, these points must satisfy
$3^{2}=2 \times 2^{3}+b$
$b=-7$

9. Question

Find the equation of the tangent line to the curve $y=x^{2}+4 x-16$ which is parallel to the line $3 x-y+1=0$.

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=2 x+4$
m (tangent) $=2 x+4$
equation of tangent is given by $y-y_{1}=m$ (tangent $)\left(x-x_{1}\right)$
now comparing the slope of a tangent with the given equation
$2 x+4=3$
$x=-\frac{1}{2}$
Now substituting the value of x in the curve to find y
$y=\frac{1}{4}-2-16=-\frac{71}{4}$
Therefore, the equation of tangent parallel to the given line is
$y+\frac{71}{4}=3\left(x+\frac{1}{2}\right)$

10. Question

Find the equation of normal line to the curve $y=x^{3}+2 x+6$ which is parallel to the line $x+14 y+4=0$.

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=3 x^{2}+2$
$m($ tangent $)=3 x^{2}+2$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
$m($ normal $)=\frac{-1}{3 x^{2}+2}$
equation of normal is given by $y-y_{1}=m($ normal $)\left(x-x_{1}\right)$
now comparing the slope of normal with the given equation
$m($ normal $)=-\frac{1}{14}$
$-\frac{1}{14}=-\frac{1}{3 x^{2}+2}$
$x=2$ or -2
hence the corresponding value of y is 18 or - 6
so, equations of normal are
$y-18=-\frac{1}{14}(x-2)$
Or
$y+6=-\frac{1}{14}(x+2)$

11. Question

Determine the equation (s) of tangent (s) line to the curve $y=4 x^{3}-3 x+5$ which are perpendicular to the line $9 y+x+3=0$.

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=12 x^{2}-3$
$m($ tangent $)=12 x^{2}-3$
the slope of given line is $-\frac{1}{9}$, so the slope of line perpendicular to it is 9
$12 x^{2}-3=9$
$x=1$ or -1
since this point lies on the curve, we can find y by substituting x
$y=6$ or 4
therefore, the equation of the tangent is given by
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-6=9(x-1)$
or
$y-4=9(x+1)$

12. Question

Find the equation of a normal to the curve $y=x \log _{e} x$ which is parallel to the line $2 x-2 y+3=0$.

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=\ln x+1$
$m($ tangent $)=\ln x+1$
normal is perpendicular to tangent so, $m_{1} m_{2}=-1$
$m($ normal $)=-\frac{1}{\ln x+1}$
equation of normal is given by $y-y_{1}=m(n o r m a l)\left(x-x_{1}\right)$
now comparing the slope of normal with the given equation
$m($ normal $)=1$
$-\frac{1}{\ln x+1}=1$
$x=\frac{1}{e^{2}}$
since this point lies on the curve, we can find y by substituting x
$y=-\frac{2}{e^{2}}$
The equation of normal is given by
$y+\frac{2}{\mathrm{e}^{2}}=\mathrm{x}-\frac{1}{\mathrm{e}^{2}}$

13 A. Question

Find the equation of the tangent line to the curve $y=x^{2}-2 x+7$ which is parallel to the line $2 x-y+9=0$

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=2 x-2$
m (tangent) $=2 x-2$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
now comparing the slope of a tangent with the given equation
$m($ tangent $)=2$
$2 x-2=2$
$x=2$
since this point lies on the curve, we can find y by substituting x
$y=2^{2}-2 \times 2+7$
$y=7$
therefore, the equation of the tangent is
$y-7=2(x-2)$

13 B. Question

Find the equation of the tangent line to the curve $y=x^{2}-2 x+7$ which is perpendicular to the line $5 y-15 x=13$.

Answer

slope of given line is 3
finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=2 x-2$
$m($ tangent $)=2 x-2$
since both lines are perpendicular to each other
$(2 x-2) \times 3=-1$
$x=\frac{5}{6}$
since this point lies on the curve, we can find y by substituting x
$y=\frac{25}{36}-\frac{10}{6}+7=\frac{217}{36}$
therefore, the equation of the tangent is
$y-\frac{217}{36}=-\frac{1}{3}\left(x-\frac{5}{6}\right)$
14. Question

Find the equation of all lines having slope 2 and that are tangent to the curve $\mathrm{y}=\frac{1}{\mathrm{x}-3}, \mathrm{x} \neq 3$.
Answer
finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=-\frac{1}{(x-3)^{2}}$
Now according to question, the slope of all tangents is equal to 2 , so
$-\frac{1}{(x-3)^{2}}=2$
$(x-3)^{2}=-\frac{1}{2}$
We can see that LHS is always greater than or equal to 0 , while RHS is always negative. Hence no tangent is possible

15. Question

Find the equation of all lines of slope zero and that is tangent to the curve $y=\frac{1}{x^{2}-2 x+3}$.

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=-\frac{(2 x-2)}{\left(x^{2}-2 x+3\right)}$
Now according to question, the slope of all tangents is equal to 0 , so
$-\frac{(2 x-2)}{\left(x^{2}-2 x+3\right)}=0$
Therefore the only possible solution is $\mathrm{x}=1$
since this point lies on the curve, we can find y by substituting x
$y=\frac{1}{1-2+3}$
$y=\frac{1}{2}$
equation of tangent is given by $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}$ (tangent) $\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$y-\frac{1}{2}=0(x-1)$
$y=\frac{1}{2}$

16. Question

Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 x-2 y+5=0$.

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=\frac{3}{2 \sqrt{3 x-2}}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
now comparing the slope of a tangent with the given equation
$m($ tangent $)=2$
$\frac{3}{2 \sqrt{3 x-2}}=2$
$\frac{9}{16}=3 x-2$
$x=\frac{41}{48}$
since this point lies on the curve, we can find y by substituting x
$y=\sqrt{\frac{41}{16}-2}$
$y=\frac{3}{4}$
therefore, the equation of the tangent is
$y-\frac{3}{4}=2\left(x-\frac{41}{48}\right)$

17. Question

Find the equation of the tangent to the curve $x^{2}+3 y-3=0$, which is parallel to the line $y=4 x-5$.

Answer

finding the slope of the tangent by differentiating the curve
$3 \frac{d y}{d x}+2 x=0$
$\frac{d y}{d x}=-\frac{2 x}{3}$
$m($ tangent $)=-\frac{2 x}{3}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
now comparing the slope of a tangent with the given equation
$m($ tangent $)=4$
$-\frac{2 x}{3}=4$
$x=-6$
since this point lies on the curve, we can find y by substituting x
$6^{2}+3 y-3=0$
$y=-11$
therefore, the equation of the tangent is
$y+11=4(x+6)$

18. Question

Prove that $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ for all $n \in N$, at the point (a, b).

Answer

finding the slope of the tangent by differentiating the curve
$n\left(\frac{x}{a}\right)^{n-1}+n\left(\frac{y}{b}\right)^{n-1} \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\left(\frac{x}{y}\right)^{n-1}\left(\frac{b}{a}\right)^{n}$
m (tangent) at (a, b) is $-\frac{b}{a}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
therefore, the equation of the tangent is
$y-b=-\frac{b}{a}(x-a)$
$\frac{x}{a}+\frac{y}{b}=2$

Hence, proved

19. Question

Find the equation of the tangent to curve $x=\sin 3 t, y=\cos 2 t$ at $t=\frac{\pi}{4}$.

Answer

finding the slope of the tangent by differentiating x and y with respect to t
$\frac{\mathrm{dx}}{\mathrm{dt}}=3 \cos 3 \mathrm{t}$
$\frac{d y}{d t}=-2 \sin 2 t$
Dividing the above equations to obtain the slope of the given tangent
$\frac{d y}{d x}=\frac{-2 \sin 2 t}{3 \cos 3 t}$
m (tangent) at $\frac{\pi}{4}$ is $\frac{2 \sqrt{2}}{3}$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
therefore, equation of tangent is
$y-0=\frac{2 \sqrt{2}}{3}\left(x-\frac{1}{\sqrt{2}}\right)$

20. Question

At what points will be tangents to the curve $y=2 x^{3}-15 x^{2}+36 x-21$ be parallel to the x - axis? Also, find the equations of the tangents to the curve at these points.

Answer

finding the slope of the tangent by differentiating the curve
$\frac{d y}{d x}=6 x^{2}-30 x+36$
According to the question, tangent is parallel to the x - axis, which implies $\mathrm{m}=0$
$6 x^{2}-30 x+36=0$
$x^{2}-5 x+6=0$
$x=3$ or $x=2$
since this point lies on the curve, we can find y by substituting x
$y=2(3)^{3}-15(3)^{2}+36(3)-21$
$y=6$
or
$y=2(2)^{3}-15(2)^{2}+36(2)-21$
$y=7$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-6=0(x-3)$
$y=6$
or
$y-7=0(x-2)$
$y=7$

21. Question

Find the equation of the tangents to the curve $3 x^{2}-y^{2}=8$, which passes through the point $(4 / 3,0)$.

Answer

assume point (a, b) which lies on the given curve
finding the slope of the tangent by differentiating the curve
$6 x-2 y \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{3 x}{y}$
m (tangent) at (a, b) is $\frac{3 a}{b}$
Since this tangent passes through $\left(\frac{4}{3}, 0\right)$, its slope can also be written as
$\frac{b-0}{a-\frac{4}{3}}$
Equating both the slopes as they are of the same tangent
$\frac{b}{a-\frac{4}{3}}=\frac{3 a}{b}$
$b^{2}=3 a^{2}-4 a$
Since points (a, b) lies on this curve
$3 a^{2}-b^{2}=8$
Solving (i) and (ii) we get
$3 a^{2}-8=3 a^{2}-4 a$
$a=2$
b $=2$ or -2
therefore points are $(2,2)$ or $(2,-2)$
equation of tangent is given by $y-y_{1}=m($ tangent $)\left(x-x_{1}\right)$
$y-2=3(x-2)$
or
$y+2=-3(x-3)$

Exercise 16.3

1 A. Question

Find the angle to intersection of the following curves:
$y^{2}=x$ and $x^{2}=y$

Answer

Given:
Curves $y^{2}=x \ldots(1)$
$\& x^{2}=y \ldots(2)$
First curve is $y^{2}=x$
Differentiating above w.r.t x,
$\Rightarrow 2 y \cdot \frac{d y}{d x}=1$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \mathrm{x}} \ldots$ (3)
The second curve is $x^{2}=y$
$\Rightarrow 2 \mathrm{x}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x} \ldots$ (4)
Substituting (1) in (2), we get
$\Rightarrow x^{2}=y$
$\Rightarrow\left(\mathrm{y}^{2}\right)^{2}=\mathrm{y}$
$\Rightarrow y^{4}-\mathrm{y}=0$
$\Rightarrow \mathrm{y}\left(\mathrm{y}^{3}-1\right)=0$
$\Rightarrow y=0$ or $y=1$
Substituting $y=0 \& y=1$ in (1) in (2),
$x=y^{2}$
when $y=0, x=0$
when $y=1, x=1$
Substituting above values for $m_{1} \& m_{2}$, we get,
when $x=0$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \times 0}=\infty$
when $x=1$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \times 1}=\frac{1}{2}$
Values of m_{1} is $\infty \& \frac{1}{2}$
when $\mathrm{y}=0$,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}=2 \times 0=0$
when $x=1$,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}=2 \times 1=2$
Values of m_{2} is $0 \& 2$
when $\mathrm{m}_{1}=\infty \& \mathrm{~m}_{2}=0$
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\tan \theta=\left|\frac{0-\infty}{1+\infty \times 0}\right|$
$\tan \theta=\infty$
$\theta=\tan ^{-1}(\infty)$
$\therefore \tan ^{-1}(\infty)=\frac{\pi}{2}$
$\theta=\frac{\pi}{2}$
when $m_{1}=\frac{1}{2} \& m_{2}=2$
Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\tan \theta=\left|\frac{2-\frac{1}{2}}{1+\frac{1}{2} \times 2}\right|$
$\tan \theta=\left|\frac{\frac{3}{2}}{2}\right|$
$\tan \theta=\left|\frac{3}{4}\right|$
$\theta=\tan ^{-1}\left(\frac{3}{4}\right)$
$\theta \cong 36.86$

1 B. Question

Find the angle to intersection of the following curves:
$y=x^{2}$ and $x^{2}+y^{2}=20$

Answer

Given:
Curves $y=x^{2} \ldots(1)$
$\& x^{2}+y^{2}=20 \ldots(2)$
First curve $y=x^{2}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$
Second curve is $x^{2}+y^{2}=20$
Differentiating above w.r.t x,
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-x$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}$.
Substituting (1) in (2), we get
$\Rightarrow y+y^{2}=20$
$\Rightarrow \mathrm{y}^{2}+\mathrm{y}-20=0$
We will use factorization method to solve the above Quadratic equation
$\Rightarrow \mathrm{y}^{2}+5 \mathrm{y}-4 \mathrm{y}-20=0$
$\Rightarrow y(y+5)-4(y+5)=0$
$\Rightarrow(y+5)(y-4)=0$
$\Rightarrow y=-5 \& y=4$
Substituting $y=-5 \& y=4$ in (1) in (2),
$y=x^{2}$
when $\mathrm{y}=-5$,
$\Rightarrow-5=x^{2}$
$\Rightarrow x=\sqrt{-5}$
when $\mathrm{y}=4$,
$\Rightarrow 4=x^{2}$
$\Rightarrow x= \pm 2$
Substituting above values for $m_{1} \& m_{2}$, we get,
when $x=2$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \times 2=4$
when $x=1$,
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \times-2=-4$
Values of m_{1} is $4 \&-4$
when $y=4 \& x=2$
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}=\frac{-2}{4}=\frac{-1}{2}$
when $y=4 \& x=-2$
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}=\frac{2}{4}=\frac{1}{2}$
Values of m_{2} is $\frac{-1}{2} \& \frac{1}{2}$
when $\mathrm{m}_{1}=\infty \& \mathrm{~m}_{2}=0$

Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\tan \theta=\left|\frac{\frac{-1}{2}-4}{1+2 \times 4}\right|$
$\tan \theta=\left|\frac{\frac{-9}{2}}{1-2}\right|$
$\tan \theta=\left|\frac{9}{2}\right|$
$\theta=\tan ^{-1}\left(\frac{9}{2}\right)$
$\theta \cong 77.47$

1 C. Question

Find the angle to intersection of the following curves:
$2 y^{2}=x^{3}$ and $y^{2}=32 x$

Answer

Given:
Curves $2 \mathrm{y}^{2}=\mathrm{x}^{3}$
$\& y^{2}=32 x$
First curve is $2 y^{2}=x^{3}$
Differentiating above w.r.t x,
$\Rightarrow 4 y \cdot \frac{d y}{d x}=3 x^{2}$
$\Rightarrow m_{1}=\frac{d y}{d x}=\frac{3 x^{2}}{4 y}$.
Second curve is $y^{2}=32 x$
$\Rightarrow 2 \mathrm{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=32$
$\Rightarrow y \cdot \frac{d y}{d x}=16$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{16}{\mathrm{y}} .$.
Substituting (2) in (1), we get
$\Rightarrow 2 y^{2}=x^{3}$
$\Rightarrow 2(32 x)=x^{3}$
$\Rightarrow 64 x=x^{3}$
$\Rightarrow x^{3}-64 x=0$
$\Rightarrow x\left(x^{2}-64\right)=0$
$\Rightarrow x=0 \&\left(x^{2}-64\right)=0$
$\Rightarrow x=0 \& \pm 8$
Substituting $x=0 \& x= \pm 8$ in (1) in (2),
$y^{2}=32 x$
when $x=0, y=0$
when $x=8$
$\Rightarrow y^{2}=32 \times 8$
$\Rightarrow y^{2}=256$
$\Rightarrow \mathrm{y}= \pm 16$
Substituting above values for $m_{1} \& m_{2}$, we get,
when $x=0, y=16$
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{3 \times 0^{2}}{4 \times 8}=0$
when $x=8, y=16$
$\mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{3 \times 8^{2}}{4 \times 16}=3$
Values of m_{1} is $0 \& 3$
when $x=0, y=0$,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{16}{y}=\frac{16}{0}=\infty$
when $\mathrm{y}=16$,
$\mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{16}{y}=\frac{16}{16}=1$
Values of m_{2} is $\infty \& 1$
when $m_{1}=0 \& m_{2}=\infty$
$\Rightarrow \tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\infty-0}{1+\infty \times 0}\right|$
$\Rightarrow \tan \theta=\infty$
$\Rightarrow \theta=\tan ^{-1}(\infty)$
$\therefore \tan ^{-1}(\infty)=\frac{\pi}{2}$
$\Rightarrow \theta=\frac{\pi}{2}$
when $\mathrm{m}_{1}=\frac{1}{2} \& \mathrm{~m}_{2}=2$

Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\Rightarrow \tan \theta=\left|\frac{3-1}{1+3 \times 1}\right|$
$\Rightarrow \tan \theta=\left|\frac{2}{4}\right|$
$\Rightarrow \tan \theta=\left|\frac{1}{2}\right|$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2}\right)$
$\Rightarrow \theta \cong 25.516$

1 D. Question

Find the angle to intersection of the following curves:
$x^{2}+y^{2}-4 x-1=0$ and $x^{2}+y^{2}-2 y-9=0$

Answer

Given:

Curves $x^{2}+y^{2}-4 x-1=0$
$\& x^{2}+y^{2}-2 y-9=0$
First curve is $x^{2}+y^{2}-4 x-1=0$
$\Rightarrow x^{2}-4 x+4+y^{2}-4-1=0$
$\Rightarrow(\mathrm{x}-2)^{2}+\mathrm{y}^{2}-5=0$
Now ,Subtracting (2) from (1), we get
$\Rightarrow x^{2}+y^{2}-4 x-1-\left(x^{2}+y^{2}-2 y-9\right)=0$
$\Rightarrow x^{2}+y^{2}-4 x-1-x^{2}-y^{2}+2 y+9=0$
$\Rightarrow-4 x-1+2 y+9=0$
$\Rightarrow-4 x+2 y+8=0$
$\Rightarrow 2 y=4 x-8$
$\Rightarrow \mathrm{y}=2 \mathrm{x}-4$
Substituting $y=2 x-4$ in (3), we get,
$\Rightarrow(x-2)^{2}+(2 x-4)^{2}-5=0$
$\Rightarrow(x-2)^{2}+4(x-2)^{2}-5=0$
$\Rightarrow(x-2)^{2}(1+4)-5=0$
$\Rightarrow 5(x-2)^{2}-5=0$
$\Rightarrow(x-2)^{2}-1=0$
$\Rightarrow(x-2)^{2}=1$
$\Rightarrow(x-2)= \pm 1$
$\Rightarrow x=1+2$ or $x=-1+2$
$\Rightarrow x=3$ or $x=1$
So ,when $x=3$
$y=2 \times 3-4$
$\Rightarrow y=6-4=2$
So ,when $x=3$
$y=2 \times 1-4$
$\Rightarrow y=2-4=-2$
The point of intersection of two curves are $(3,2) \&(1,-2)$
Now ,Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow x^{2}+y^{2}-4 x-1=0$
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}-4-0=0$
$\Rightarrow x+y \cdot \frac{d y}{d x}-2=0$
$\Rightarrow y \cdot \frac{d y}{d x}=2-x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2-\mathrm{x}}{\mathrm{y}}$.
$\Rightarrow x^{2}+y^{2}-2 y-9=0$
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}-2 \frac{d y}{d x}-0=0$
$\Rightarrow x+y \cdot \frac{d y}{d x}-\frac{d y}{d x}=0$
$\Rightarrow x+(y-1) \frac{d y}{d x}=0$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}-1}$.
At $(3,2)$ in equation (3), we get
$\Rightarrow \frac{d y}{d x}=\frac{2-3}{2}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{2}$
At $(3,2)$ in equation(4), we get
$\Rightarrow \frac{d y}{d x}=\frac{-3}{2-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-3$
$\Rightarrow m_{2}=\frac{d y}{d x}=-3$
when $m_{1}=\frac{-1}{2} \& m_{2}=0$

Angle of intersection of two curve is given by

$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\Rightarrow \tan \theta=\left|\frac{\frac{-1}{2}-3}{1+\frac{-1}{2} \times 3}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-7}{2}}{1+\frac{-3}{2}}\right|$
$\Rightarrow \tan \theta=\left|\begin{array}{c}\frac{-7}{2} \\ \frac{-1}{2}\end{array}\right|$
$\Rightarrow \tan \theta=7$
$\Rightarrow \theta=\tan ^{-1}(7)$
$\Rightarrow \theta \cong 81.86$

1 E. Question

Find the angle to intersection of the following curves:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $x^{2}+y^{2}=a b$

Answer

Given:
Curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \ldots(1)$
$\& x^{2}+y^{2}=a b \ldots(2)$

Second curve is $x^{2}+y^{2}=a b$
$y^{2}=a b-x^{2}$
Substituting this in equation (1),
$\Rightarrow \frac{x^{2}}{a^{2}}+\frac{a b-x^{2}}{b^{2}}=1$
$\Rightarrow \frac{x^{2} b^{2}+a^{2}\left(a b-x^{2}\right)}{a^{2} b^{2}}=1$
$\Rightarrow x^{2} b^{2}+a^{3} b-a^{2} x^{2}=a^{2} b^{2}$
$\Rightarrow x^{2} b^{2}-a^{2} x^{2}=a^{2} b^{2}-a^{3} b$
$\Rightarrow x^{2}\left(b^{2}-a^{2}\right)=a^{2} b(b-a)$
$\Rightarrow x^{2}=\frac{a^{2} b(b-a)}{x^{2}\left(b^{2}-a^{2}\right)}$
$\Rightarrow x^{2}=\frac{a^{2} b(b-a)}{x^{2}(b-a)(b+a)}$
$\Rightarrow x^{2}=\frac{a^{2} b}{(b+a)}$
$\therefore \mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$
$\Rightarrow X= \pm \sqrt{\frac{a^{2} b}{(b+a)}} \cdots$ (3)
since, $y^{2}=a b-x^{2}$
$\Rightarrow y^{2}=a b-\left(\frac{a^{2} b}{(b+a)}\right)$
$\Rightarrow y^{2}=\frac{a b^{2}+a^{2} b-a^{2} b}{(b+a)}$
$\Rightarrow y^{2}=\frac{a b^{2}}{(b+a)}$
$\Rightarrow y= \pm \sqrt{\frac{a b^{2}}{(b+a)}} \cdots$
since, curves are $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \& x^{2}+y^{2}=a b$
Differentiating above w.r.t x,
$\Rightarrow \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0$
$\Rightarrow \frac{y}{b^{2}} \cdot \frac{d y}{d x}=-\frac{x}{a^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{x}{a^{2}}}{\frac{y^{2}}{b^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-b^{2} x}{a^{2} y}$
$\Rightarrow m_{1}=\frac{d y}{d x}=\frac{-b^{2} x}{a^{2} y}$.
Second curve is $x^{2}+y^{2}=a b$
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow m_{2}=\frac{d y}{d x}=\frac{-x}{y} .$.

Substituting (3) in (4), above values for $m_{1} \& m_{2}$, we get,
At $\left(\sqrt{\frac{a^{2} b}{(b+a)}}, \sqrt{\frac{a b^{2}}{(b+a)}}\right)$ in equation(5), we get
$\Rightarrow \frac{d y}{d x}=\frac{-b^{2} \times \sqrt{\frac{a^{2} b}{(b+a)}}}{a^{2} \times \sqrt{\frac{a b^{2}}{(b+a)}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-b^{2} \times a \sqrt{\frac{b}{(b+a)}}}{a^{2} \times b \sqrt{\frac{a}{(b+a)}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-b^{2} a \sqrt{b}}{a^{2} b \sqrt{a}}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{b} \sqrt{\mathrm{b}}}{\mathrm{a} \sqrt{\mathrm{a}}}$
At $\left(\sqrt{\frac{a^{2} b}{(b+a)}}, \sqrt{\frac{a b^{2}}{(b+a)}}\right)$ in equation(6), we get
$\Rightarrow \frac{d y}{d x}=\frac{-\sqrt{\frac{a^{2} b}{(b+a)}}}{\sqrt{\frac{a b^{2}}{(b+a)}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-a \sqrt{\frac{b}{(b+a)}}}{b \sqrt{\frac{a}{(b+a)}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-a \sqrt{b}}{b \sqrt{a}}$
$\Rightarrow m_{2}=\frac{d y}{d x}=-\sqrt{\frac{a}{b}}$
when $m_{1}=\frac{-b \sqrt{b}}{a \sqrt{a}} \& m_{2}=-\sqrt{\frac{a}{b}}$
Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\Rightarrow \tan \theta=\left|\frac{\frac{-b \sqrt{b}}{\mathrm{a} \sqrt{\mathrm{a}}}-\sqrt{\frac{a}{b}}}{1+\frac{-b \sqrt{b}}{\mathrm{a} \sqrt{\mathrm{a}}} \mathrm{x}-\sqrt{\frac{a}{b}}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-b \sqrt{b}}{a \sqrt{a}}+\sqrt{\frac{a}{b}}}{1+\frac{b}{a}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-b \sqrt{b} x \sqrt{b}+a \sqrt{a} x \sqrt{a}}{a \sqrt{a} \times \sqrt{b}}}{1+\frac{b}{a}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-b \times b+a \times a}{a \sqrt{2} b}}{1+\frac{b}{a}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{a^{2}-b^{2}}{a \sqrt{a} b}}{\frac{a+b}{a}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{(a+b)(a-b)}{\sqrt{a} b}}{a+b}\right|$
$\Rightarrow \tan \theta=\left|\frac{(\mathrm{a}-\mathrm{b})}{\sqrt{\mathrm{a} b}}\right|$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{(\mathrm{a}-\mathrm{b})}{\sqrt{\mathrm{ab}}}\right)$

1 F. Question

Find the angle to intersection of the following curves:
$x^{2}+4 y^{2}=8$ and $x^{2}-2 y^{2}=2$

Answer

Given:
Curves $x^{2}+4 y^{2}=8$
$\& x^{2}-2 y^{2}=2$
Solving (1) \& (2), we get,
from 2nd curve,
$x^{2}=2+2 y^{2}$
Substituting on $x^{2}+4 y^{2}=8$,
$\Rightarrow 2+2 y^{2}+4 y^{2}=8$
$\Rightarrow 6 y^{2}=6$
$\Rightarrow y^{2}=1$
$\Rightarrow \mathrm{y}= \pm 1$
Substituting on $y= \pm 1$, we get,
$\Rightarrow x^{2}=2+2(\pm 1)^{2}$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm 2$
\therefore The point of intersection of two curves $(2,1) \&(-2,-1)$
Now ,Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow x^{2}+4 y^{2}=8$
$\Rightarrow 2 x+8 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 8 y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{4 y}$.
$\Rightarrow x^{2}-2 y^{2}=2$
$\Rightarrow 2 x-4 y \cdot \frac{d y}{d x}=0$
$\Rightarrow x-2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 4 y \frac{d y}{d x}=x$
$\Rightarrow \frac{d y}{d x}=\frac{x}{2 y} \ldots$ (4)
At $(2,1)$ in equation(3), we get
$\Rightarrow \frac{d y}{d x}=\frac{-2}{4 \times 1}$
$\Rightarrow \mathrm{m}_{1}=\frac{-1}{2}$
At $(2,1)$ in equation(4), we get
$\Rightarrow \frac{d y}{d x}=\frac{2}{2 \times 1}$
$\Rightarrow \frac{d y}{d x}=1$
$\Rightarrow m_{2}=1$
when $m_{1}=\frac{-1}{2} \& m_{2}=1$
Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\Rightarrow \tan \theta=\left|\frac{\frac{-1}{2}-1}{1+\frac{-1}{2} \times 1}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-3}{2}}{1-\frac{1}{2}}\right|$
$\Rightarrow \tan \theta=\left|\begin{array}{c}\frac{-3}{2} \\ \frac{-1}{2}\end{array}\right|$
$\Rightarrow \tan \theta=|-3|$
$\Rightarrow \theta=\tan ^{-1}(3)$
$\Rightarrow \theta \cong 71.56$

1 G. Question

Find the angle to intersection of the following curves:
$x^{2}=27 y$ and $y^{2}=8 x$

Answer

Given:
Curves $x^{2}=27 y \ldots(1)$
$\& y^{2}=8 x$
Solving (1) \& (2), we get,
From $y^{2}=8 x$, we get,
$\Rightarrow \mathrm{x}=\frac{\mathrm{y}^{2}}{\mathrm{~g}}$
Substituting $x=\frac{y^{2}}{8}$ on $x^{2}=27 y$,
$\Rightarrow\left(\frac{y^{2}}{8}\right)^{2}=27 y$
$\Rightarrow\left(\frac{y^{4}}{64}\right)=27 y$
$\Rightarrow y^{4}=1728 y$
$\Rightarrow \mathrm{y}\left(\mathrm{y}^{3}-1728\right)=0$
$\Rightarrow y=0$ or $\left(y^{3}-1728\right)=0$
$\Rightarrow \mathrm{y}=0$ or $\mathrm{y}=\sqrt[3]{1728}$
$\therefore \sqrt[3]{1728}=12$
$\Rightarrow \mathrm{y}=0$ or $\mathrm{y}=12$
Substituting $y=0$ or $y=12$ on $x=\frac{y^{2}}{8}$
when $\mathrm{y}=0$,
$\Rightarrow X=\frac{0^{2}}{8}$
$\Rightarrow x=0$
when $y=12$,
$\Rightarrow \mathrm{X}=\frac{12^{2}}{8}$
$\Rightarrow x=18$
\therefore The point of intersection of two curves $(0,0) \&(18,12)$
First curve is $x^{2}=27 y$
Differentiating above w.r.t x,
$\Rightarrow 2 x=27 \cdot \frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{x}}{27}$
$\Rightarrow \mathrm{m}_{1}=\frac{2 \mathrm{x}}{27}$.
Second curve is $y^{2}=8 x$
$\Rightarrow 2 y \cdot \frac{d y}{d x}=8$
$\Rightarrow y \cdot \frac{d y}{d x}=4$
$\Rightarrow \mathrm{m}_{2}=\frac{4}{\mathrm{y}}$.
Substituting $(18,12)$ for $m_{1} \& m_{2}$, we get,
$\mathrm{m}_{1}=\frac{2 \mathrm{x}}{27}$
$\Rightarrow \frac{2 \times 18}{27}=\frac{36}{27}$
$\mathrm{m}_{1}=\frac{4}{3}$.
$\mathrm{m}_{2}=\frac{4}{\mathrm{y}}$
$\Rightarrow \frac{4}{y}=\frac{4}{12}$
$\mathrm{m}_{2}=\frac{1}{3}$.
when $\mathrm{m}_{1}=\frac{4}{3} \& \mathrm{~m}_{2}=\frac{1}{3}$
Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{2} m_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\Rightarrow \tan \theta=\left|\frac{\frac{4}{3}-\frac{1}{3}}{1+\frac{4}{3} \times \frac{1}{3}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{3}{3}}{1+\frac{4}{9}}\right|$
$\Rightarrow \tan \theta=\left|\frac{1}{\frac{13}{9}}\right|$
$\Rightarrow \tan \theta=\left|\frac{9}{13}\right|$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{9}{13}\right)$
$\Rightarrow \theta \cong 34.69$

1 H. Question

Find the angle to intersection of the following curves:
$x^{2}+y^{2}=2 x$ and $y^{2}=x$

Answer

Given:
Curves $x^{2}+y^{2}=2 x$
$\& y^{2}=x \ldots(2)$
Solving (1) \& (2), we get
Substituting $\mathrm{y}^{2}=\mathrm{x}$ in $\mathrm{x}^{2}+\mathrm{y}^{2}=2 \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{x}=2 \mathrm{x}$
$\Rightarrow x^{2}-\mathrm{x}=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-1)=0$
$\Rightarrow x=0$ or $(x-1)=0$
$\Rightarrow \mathrm{x}=0$ or $\mathrm{x}=1$
Substituting $\mathrm{x}=0$ or $\mathrm{x}=1$ in $\mathrm{y}^{2}=\mathrm{x}$, we get,
when $x=0$,
$\Rightarrow y^{2}=0$
$\Rightarrow y=0$
when $\mathrm{x}=1$,
$\Rightarrow y^{2}=1$
$\Rightarrow y=1$
The point of intersection of two curves are $(0,0) \&(1,1)$

Now ,Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow x^{2}+y^{2}=2 x$
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=2$
$\Rightarrow x+y \cdot \frac{d y}{d x}=1$
$\Rightarrow y \cdot \frac{d y}{d x}=1-x$
$\Rightarrow \frac{d y}{d x}=\frac{1-x}{y}$.
$\Rightarrow y^{2}=x$
$\Rightarrow 2 y \cdot \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y} \ldots$ (4)
At $(1,1)$ in equation(3), we get
$\Rightarrow \frac{d y}{d x}=\frac{1-x}{y}$
$\Rightarrow \frac{d y}{d x}=\frac{1-1}{1}$
$\Rightarrow \mathrm{m}_{1}=0$
At $(1,1)$ in equation(4), we get
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \times 1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}$
$\Rightarrow m_{2}=\frac{1}{2}$
when $\mathrm{m}_{1}=0 \& \mathrm{~m}_{2}=\frac{1}{2}$
Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\Rightarrow \tan \theta=\left|\frac{0-\frac{1}{2}}{1+0 \times \frac{1}{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{-1}{2}}{1+0}\right|$
$\Rightarrow \tan \theta=\left|\frac{-1}{2}\right|$
$\Rightarrow \tan \theta=\frac{1}{2}$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2}\right)$
$\Rightarrow \theta \cong 26.56$

1 I. Question

Find the angle to intersection of the following curves:
$y=4-x^{2}$ and $y=x^{2}$

Answer

Given:
Curves $y=4-x^{2} \ldots(1)$
\& $y=x^{2} \ldots$ (2)
Solving (1) \& (2), we get
$\Rightarrow y=4-x^{2}$
$\Rightarrow x^{2}=4-x^{2}$
$\Rightarrow 2 x^{2}=4$
$\Rightarrow x^{2}=2$
$\Rightarrow x= \pm \sqrt{2}$
Substituting $\sqrt{2}$ in $y=x^{2}$, we get
$y=(\sqrt{2})^{2}$
$y=2$
The point of intersection of two curves are $(\sqrt{2}, 2) \&(-\sqrt{2},-2)$
First curve $y=4-x^{2}$
Differentiating above w.r.t x,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=0-2 \mathrm{x}$
$\Rightarrow \mathrm{m}_{1}=-2 \mathrm{x}$
Second curve $y=x^{2}$
Differentiating above w.r.t x,
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$
$m_{2}=2 x$..
At ($\sqrt{2}, 2$), we have,
$m_{1}=\frac{d y}{d x}=-2 x$
$\Rightarrow-2 \times \sqrt{2}$
$\Rightarrow \mathrm{m}_{1}=-2 \sqrt{2}$
At $(-\sqrt{2}, 2)$, we have,
$m_{2}=\frac{d y}{d x}=-2 x$
$(-1) \times-\sqrt{2} \times 2=2 \sqrt{2}$
When $m_{1}=-2 \sqrt{2} \& m_{2}=2 \sqrt{2}$

Angle of intersection of two curve is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
where $m_{1} \& m_{2}$ are slopes of the curves.
$\tan \theta=\left|\frac{-2 \sqrt{2}-2 \sqrt{2}}{1-2 \sqrt{2} \times 2 \sqrt{2}}\right|$
$\tan \theta=\left|\frac{-4 \sqrt{2}}{1-8}\right|$
$\tan \theta=\left|\frac{-4 \sqrt{2}}{-7}\right|$
$\tan \theta=\frac{4 \sqrt{2}}{7}$
$\theta=\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)$
$\theta \cong 38.94$

2 A. Question

Show that the following set of curves intersect orthogonally :
$y=x^{3}$ and $6 y=7-x^{2}$

Answer

Given:
Curves $y=x^{3} \ldots$ (1)
$\& 6 y=7-x^{2} \ldots(2)$
Solving (1) \& (2), we get
$\Rightarrow 6 y=7-x^{2}$
$\Rightarrow 6\left(x^{3}\right)=7-x^{2}$
$\Rightarrow 6 x^{3}+x^{2}-7=0$
Since $f(x)=6 x^{3}+x^{2}-7$,
we have to find $f(x)=0$, so that x is a factor of $f(x)$.
when $x=1$
$f(1)=6(1)^{3}+(1)^{2}-7$
$f(1)=6+1-7$
$f(1)=0$
Hence, $x=1$ is a factor of $f(x)$.
Substituting $x=1$ in $y=x^{3}$, we get
$y=1^{3}$
$y=1$
The point of intersection of two curves is $(1,1)$
First curve $y=x^{3}$
Differentiating above w.r.t x,
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}^{2}$.

Second curve $6 y=7-x^{2}$
Differentiating above w.r.t x,
$\Rightarrow 6 \frac{\mathrm{dy}}{\mathrm{dx}}=0-2 \mathrm{x}$
$\Rightarrow \mathrm{m}_{2}=\frac{-2 \mathrm{x}}{6}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{3}$.
At (1,1), we have,
$m_{1}=3 x^{2}$
$\Rightarrow 3 \times(1)^{2}$
$\mathrm{m}_{1}=3$
At (1,1), we have,
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{3}$
$\Rightarrow \frac{-1}{3}$
$\Rightarrow \mathrm{m}_{2}=\frac{-1}{3}$
When $m_{1}=3 \& m_{2}=\frac{-1}{3}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$, where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow 3 \times \frac{-1}{3}=-1$
\therefore Two curves $y=x^{3} \& 6 y=7-x^{2}$ intersect orthogonally.

2 B. Question

Show that the following set of curves intersect orthogonally :
$x^{3}-3 x y^{2}=-2$ and $3 x^{2} y-y^{3}=2$

Answer

Given:
Curves $x^{3}-3 x y^{2}=-2$.
$\& 3 x^{2} y-y^{3}=2$
Adding (1) \& (2), we get
$\Rightarrow x^{3}-3 x y^{2}+3 x^{2} y-y^{3}=-2+2$
$\Rightarrow x^{3}-3 x y^{2}+3 x^{2} y-y^{3}=-0$
$\Rightarrow(x-y)^{3}=0$
$\Rightarrow(x-y)=0$
$\Rightarrow \mathrm{x}=\mathrm{y}$
Substituting $x=y$ on $x^{3}-3 x y^{2}=-2$
$\Rightarrow x^{3}-3 \times x \times x^{2}=-2$
$\Rightarrow x^{3}-3 x^{3}=-2$
$\Rightarrow-2 x^{3}=-2$
$\Rightarrow x^{3}=1$
$\Rightarrow x=1$
Since $x=y$
$y=1$
The point of intersection of two curves is $(1,1)$
First curve $x^{3}-3 x y^{2}=-2$
Differentiating above w.r.t x,
$\Rightarrow 3 x^{2}-3\left(1 \times y^{2}+x \times 2 y \frac{d y}{d x}\right)=0$
$\Rightarrow 3 x^{2}-3 y^{2}-6 x y \frac{d y}{d x}=0$
$\Rightarrow 3 x^{2}-3 y^{2}=6 x y \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}-3 y^{2}}{6 x y}$
$\Rightarrow \frac{d y}{d x}=\frac{3\left(x^{2}-y^{2}\right)}{6 x y}$
$\Rightarrow \mathrm{m}_{1}=\frac{\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{2 \mathrm{xy}}$.
Second curve $3 x^{2} y-y^{3}=2$
Differentiating above w.r.t x,
$\Rightarrow 3\left(2 x \times y+x^{2} \times \frac{d y}{d x}\right)-3 y^{2} \frac{d y}{d x}=0$
$\Rightarrow 6 x y+3 x^{2} \frac{d y}{d x}-3 y^{2} \frac{2 y}{d x}=0$
$\Rightarrow 6 x y+\left(3 x^{2}-3 y^{2}\right) \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-6 x y}{3 x^{2}-3 y^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x y}{x^{2}-y^{2}}$
$\Rightarrow m_{2}=\frac{-2 x y}{x^{2}-y^{2}} \ldots$ (
When $m_{1}=\frac{\left(x^{2}-y^{2}\right)}{2 x y} \& m_{2}=\frac{-2 x y}{x^{2}-y^{2}}$

Two curves intersect orthogonally if $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$, where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow \frac{\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)}{2 \mathrm{xy}} \times \frac{-2 \mathrm{xy}}{\mathrm{x}^{2}-\mathrm{y}^{2}}=-1$
\therefore Two curves $x^{3}-3 x y^{2}=-2 \& 3 x^{2} y-y^{3}=2$ intersect orthogonally.

2 C. Question

Show that the following set of curves intersect orthogonally :
$x^{2}+4 y^{2}=8$ and $x^{2}-2 y^{2}=4$.

Answer

Given:
Curves $x^{2}+4 y^{2}=8$
$\& x^{2}-2 y^{2}=4$.
Solving (1) \& (2), we get,
from 2nd curve,
$x^{2}=4+2 y^{2}$
Substituting on $x^{2}+4 y^{2}=8$,
$\Rightarrow 4+2 y^{2}+4 y^{2}=8$
$\Rightarrow 6 y^{2}=4$
$\Rightarrow y^{2}=\frac{4}{6}$
$\Rightarrow \mathrm{y}= \pm \sqrt{\frac{2}{3}}$
Substituting on $y= \pm \sqrt{\frac{2}{3}}$, we get,
$\Rightarrow x^{2}=4+2\left(\pm \sqrt{\frac{2}{3}}\right)^{2}$
$\Rightarrow x^{2}=4+2\left(\frac{2}{3}\right)$
$\Rightarrow x^{2}=4+\frac{4}{3}$
$\Rightarrow x^{2}=\frac{16}{3}$
$\Rightarrow x= \pm \sqrt{\frac{16}{3}}$
$\Rightarrow x= \pm \frac{4}{\sqrt{3}}$
\therefore The point of intersection of two curves $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right) \&\left(-\frac{4}{\sqrt{3}},-\sqrt{\frac{2}{3}}\right)$
Now ,Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow x^{2}+4 y^{2}=8$
$\Rightarrow 2 x+8 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 8 y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{4 y}$.
$\Rightarrow x^{2}-2 y^{2}=4$
$\Rightarrow 2 x-4 y \cdot \frac{d y}{d x}=0$
$\Rightarrow x-2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 4 y \frac{d y}{d x}=x$
$\Rightarrow \frac{d y}{d x}=\frac{x}{2 y} \ldots$ (4)
At $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$ in equation(3), we get
$\Rightarrow \frac{d y}{d x}=\frac{-\frac{4}{\sqrt{3}}}{4 \times \sqrt{\frac{2}{3}}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\frac{1}{\sqrt{3}}}{\sqrt{\frac{2}{3}}}$
$\Rightarrow \mathrm{m}_{1}=\frac{-1}{\sqrt{2}}$
At $\left(\frac{4}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$ in equation(4), we get
$\Rightarrow \frac{d y}{d x}=\frac{\frac{4}{\sqrt{3}}}{\left.2 \times \sqrt{\frac{2}{3}}\right)}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{2}{\sqrt{3}}}{\left.\sqrt{\frac{2}{3}}\right)}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\sqrt{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{2}$
$\Rightarrow m_{2}=1$
when $m_{1}=\frac{-1}{\sqrt{2}} \& m_{2}=\sqrt{2}$
Two curves intersect orthogonally if $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$, where
m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow \frac{-1}{\sqrt{2}} \times \sqrt{2}=-1$
\therefore Two curves $\mathrm{x}^{2}+4 \mathrm{y}^{2}=8 \& \mathrm{x}^{2}-2 \mathrm{y}^{2}=4$ intersect orthogonally.

3 A. Question

Show that the following curves intersect orthogonally at the indicated points:
$x^{2}=4 y$ and $4 y+x^{2}=8$ at $(2,1)$

Answer

Given:
Curves $x^{2}=4 y \ldots(1)$
$\& 4 y+x^{2}=8 \ldots(2)$
The point of intersection of two curves $(2,1)$
Solving (1) \& (2), we get,

First curve is $x^{2}=4 y$
Differentiating above w.r.t x,
$\Rightarrow 2 \mathrm{x}=4 . \frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x}{4}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{x}}{2}$.
Second curve is $4 y+x^{2}=8$
$\Rightarrow 4 \cdot \frac{d y}{d x}+2 x=0$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{4}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{2}$.
Substituting $(2,1)$ for $m_{1} \& m_{2}$, we get,
$\mathrm{m}_{1}=\frac{\mathrm{x}}{2}$
$\Rightarrow \frac{2}{2}$
$m_{1}=1 \ldots(5)$
$m_{2}=\frac{-x}{2}$
$\Rightarrow \frac{-2}{2}$
$m_{2}=-1$
when $m_{1}=1 \& m_{2}=-1$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$, where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow 1 \times-1=-1$
\therefore Two curves $x^{2}=4 y \& 4 y+x^{2}=8$ intersect orthogonally.

3 B. Question

Show that the following curves intersect orthogonally at the indicated points :
$x^{2}=y$ and $x^{3}+6 y=7$ at $(1,1)$

Answer

Given:
Curves $x^{2}=y \ldots(1)$
$\& x^{3}+6 y=7$
The point of intersection of two curves $(1,1)$
Solving (1) \& (2), we get,
First curve is $x^{2}=y$
Differentiating above w.r.t x,
$\Rightarrow 2 x=\frac{d y}{d x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$
$\Rightarrow \mathrm{m}_{1}=2 \mathrm{x}$
Second curve is $x^{3}+6 y=7$
Differentiating above w.r.t x,
$\Rightarrow 3 x^{2}+6 \cdot \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-3 x^{2}}{6}$
$\Rightarrow \frac{d y}{d x}=\frac{-x^{2}}{2}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}^{2}}{2}$.
Substituting $(1,1)$ for $m_{1} \& m_{2}$, we get,
$m_{1}=2 x$
$\Rightarrow 2 \times 1$
$m_{1}=2$
$\mathrm{m}_{2}=\frac{-\mathrm{x}^{2}}{2}$
$\Rightarrow \frac{-1^{2}}{2}$
$m_{2}=-\frac{-1}{2}$.
when $m_{1}=2 \& m_{2}=-\frac{-1}{2}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$, where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow 2 \times \frac{-1}{2}=-1$
\therefore Two curves $\mathrm{x}^{2}=\mathrm{y} \& \mathrm{x}^{3}+6 \mathrm{y}=7$ intersect orthogonally.

3 C. Question

Show that the following curves intersect orthogonally at the indicated points:
$y^{2}=8 x$ and $2 x^{2}+y^{2}=10$ at $(1,2 \sqrt{ } 2)$

Answer

Given:
Curves $y^{2}=8 x$
$\& 2 x^{2}+y^{2}=10 \ldots$
The point of intersection of two curves are $(0,0) \&(1,2 \sqrt{2})$
Now ,Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow y^{2}=8 x$
$\Rightarrow 2 y \cdot \frac{d y}{d x}=8$
$\Rightarrow \frac{d y}{d x}=\frac{8}{2 y}$
$\Rightarrow \frac{d y}{d x}=\frac{4}{y} \ldots$ (3)
$\Rightarrow 2 x^{2}+y^{2}=10$
Differentiating above w.r.t x,
$\Rightarrow 4 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow 2 x+y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{y}$.
Substituting $(1,2 \sqrt{2})$ for $m_{1} \& m_{2}$, we get,
$\mathrm{m}_{1}=\frac{4}{\mathrm{y}}$
$\Rightarrow \frac{4}{2 \sqrt{2}}$
$m_{1}=\sqrt{2} \ldots(5)$
$m_{2}=\frac{-2 x}{y}$
$\Rightarrow \frac{-2 \times 1}{2 \sqrt{2}}$
$m_{2}=-\frac{-1}{\sqrt{2}}$.
when $m_{1}=\sqrt{2} \& m_{2}=\frac{-1}{\sqrt{2}}$
Two curves intersect orthogonally if $m_{1} m_{2}=-1$,where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow \sqrt{2} \times \frac{-1}{\sqrt{2}}=-1$
\therefore Two curves $y^{2}=8 x \& 2 x^{2}+y^{2}=10$ intersect orthogonally.

4. Question

Show that the curves $4 x=y^{2}$ and $4 x y=k$ cut at right angles, if $k^{2}=512$.

Answer

Given:
Curves $4 x=y^{2}$
$\& 4 x y=k$
We have to prove that two curves cut at right angles if $k^{2}=512$
Now ,Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow 4 \mathrm{x}=\mathrm{y}^{2}$
$\Rightarrow 4=2 \mathrm{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{y}$
$\mathrm{m}_{1}=\frac{2}{\mathrm{y}}$.
$\Rightarrow 4 x y=k$
Differentiating above w.r.t x,
$\Rightarrow 4\left(1 \times y+x \frac{d y}{d x}\right)=0$
$\Rightarrow y+x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow m_{2}=\frac{-y}{x} \ldots$ (4)
Two curves intersect orthogonally if $m_{1} m_{2}=-1$,where m_{1} and m_{2} the slopes of the two curves.

Since m_{1} and m_{2} cuts orthogonally,
$\Rightarrow \frac{2}{y} \times \frac{-y}{x}=-1$
$\Rightarrow \frac{-2}{x}=-1$
$\Rightarrow x=2$
Now , Solving (1) \& (2), we get,
$4 x y=k \& 4 x=y^{2}$
$\Rightarrow\left(y^{2}\right) y=k$
$\Rightarrow y^{3}=k$
$\Rightarrow \mathrm{y}=\mathrm{k}^{\frac{1}{3}}$
Substituting $y=k^{\frac{1}{3}}$ in $4 x=y^{2}$, we get,
$\Rightarrow 4 \mathrm{x}=\left(\mathrm{k}^{\frac{1}{3}}\right)^{2}$
$\Rightarrow 4 \times 2=\mathrm{k}^{\frac{2}{3}}$
$\Rightarrow \mathrm{k}^{\frac{2}{3}}=8$
$\Rightarrow \mathrm{k}^{2}=8^{3}$
$\Rightarrow \mathrm{k}^{2}=512$

5. Question

Show that the curves $2 x=y^{2}$ and $2 x y=k$ cut at right angles, if $k^{2}=8$.

Answer

Given:
Curves $2 x=y^{2} \ldots(1)$
$\& 2 x y=k$
We have to prove that two curves cut at right angles if $k^{2}=8$
Now ,Differentiating curves (1) \& (2) w.r.t x, we get
$\Rightarrow 2 \mathrm{x}=\mathrm{y}^{2}$
$\Rightarrow 2=2 y \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{y}$
$\mathrm{m}_{1}=\frac{1}{\mathrm{y}}$.
$\Rightarrow 2 x y=k$
Differentiating above w.r.t x,
$\Rightarrow 2\left(1 \times y+x \frac{d y}{d x}\right)=0$
$\Rightarrow y+x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{y}}{\mathrm{x}} \ldots$ (4)
Two curves intersect orthogonally if $m_{1} m_{2}=-1$,where m_{1} and m_{2} the slopes of the two curves.

Since m_{1} and m_{2} cuts orthogonally,
$\Rightarrow \frac{1}{y} \times \frac{-y}{x}=-1$
$\Rightarrow \frac{-1}{\mathrm{x}}=-1$
$\Rightarrow x=1$
Now , Solving (1) \& (2), we get,
$2 x y=k \& 2 x=y^{2}$
$\Rightarrow\left(y^{2}\right) y=k$
$\Rightarrow y^{3}=k$
$\Rightarrow \mathrm{y}=\mathrm{k}^{\frac{1}{3}}$
Substituting $y=k^{\frac{1}{3}}$ in $2 x=y^{2}$, we get,
$\Rightarrow 2 \mathrm{x}=\left(\mathrm{k}^{\frac{1}{3}}\right)^{2}$
$\Rightarrow 2 \times 1=\mathrm{k}^{\frac{2}{3}}$
$\Rightarrow \mathrm{k}^{\frac{2}{3}}=2$
$\Rightarrow \mathrm{k}^{2}=2^{3}$
$\Rightarrow \mathrm{k}^{2}=8$

6. Question

Prove that the curves $x y=4$ and $x^{2}+y^{2}=8$ touch each other.

Answer

Given:
Curves $x y=4 \ldots(1)$
$\& x^{2}+y^{2}=8$
Solving (1) \& (2), we get
$\Rightarrow x y=4$
$\Rightarrow \mathrm{x}=\frac{4}{\mathrm{y}}$
Substituting $x=\frac{4}{y}$ in $x^{2}+y^{2}=8$, we get,
$\Rightarrow \underset{y}{\left(\frac{4}{y}\right)^{2}}+y^{2}=8$
$\Rightarrow \frac{16}{y^{2}}+y^{2}=8$
$\Rightarrow 16+y^{4}=8 y^{2}$
$\Rightarrow y^{4}-8 y^{2}+16=0$
We will use factorization method to solve the above equation
$\Rightarrow \mathrm{y}^{4}-4 \mathrm{y}^{2}-4 \mathrm{y}^{2}+16=0$
$\Rightarrow y^{2}\left(y^{2}-4\right)-4\left(y^{2}-4\right)=0$
$\Rightarrow\left(y^{2}-4\right)\left(y^{2}-4\right)=0$
$\Rightarrow y^{2}-4=0$
$\Rightarrow y^{2}=4$
$\Rightarrow y= \pm 2$
Substituting $\mathrm{y}= \pm 2$ in $\mathrm{x}=\frac{4}{\mathrm{y}}$, we get,
$\Rightarrow \mathrm{x}=\frac{4}{+2}$
$\Rightarrow \mathrm{x}= \pm 2$
\therefore The point of intersection of two curves $(2,2)$ \&
(-2,-2)
First curve $x y=4$
$\Rightarrow 1 \times y+x \cdot \frac{d y}{d x}=0$
$\Rightarrow x \cdot \frac{d y}{d x}=-y$
$\Rightarrow \mathrm{m}_{1}=\frac{-\mathrm{y}}{\mathrm{x}}$.
Second curve is $x^{2}+y^{2}=8$
Differentiating above w.r.t x,
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-x$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\mathrm{y}}$.
At $(2,2)$, we have,
$\mathrm{m}_{1}=\frac{-\mathrm{y}}{\mathrm{x}}$
$\Rightarrow \frac{-2}{2}$
$m_{1}=-1$
At $(2,2)$, we have,
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}}{\mathrm{y}}$
$\Rightarrow \frac{-2}{2}$
$\Rightarrow \mathrm{m}_{2}=-1$
Clearly, $m_{1}=m_{2}=-1$ at $(2,2)$
So, given curve touch each other at $(2,2)$

7. Question

Prove that the curves $y^{2}=4 x$ and
$x^{2}+y^{2}-6 x+1=0$ touch each other at the point $(1,2)$.

Answer

Given:
Curves $\mathrm{y}^{2}=4 \mathrm{x} \ldots(1)$
$\& x^{2}+y^{2}-6 x+1=0$
\therefore The point of intersection of two curves is $(1,2)$
First curve is $y^{2}=4 x$
Differentiating above w.r.t x,
$\Rightarrow 2 y \cdot \frac{d y}{d x}=4$
$\Rightarrow \mathrm{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=2$
$\Rightarrow \mathrm{m}_{1}=\frac{2}{\mathrm{y}}$.
Second curve is $x^{2}+y^{2}-6 x+1=0$
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}-6-0=0$
$\Rightarrow x+y \cdot \frac{d y}{d x}-3=0$
$\Rightarrow y \cdot \frac{d y}{d x}=3-x$
$\Rightarrow \frac{d y}{d x}=\frac{3-x}{y} \ldots$
At (1,2), we have,
$\mathrm{m}_{1}=\frac{2}{\mathrm{y}}$
$\Rightarrow \frac{2}{2}$
$m_{1}=1$
At $(1,2)$, we have,
$\Rightarrow \mathrm{m}_{2}=\frac{3-\mathrm{x}}{\mathrm{y}}$
$\Rightarrow \frac{3-1}{2}$
$\Rightarrow \mathrm{m}_{2}=1$
Clearly, $\mathrm{m}_{1}=\mathrm{m}_{2}=1$ at $(1,2)$
So, given curve touch each other at $(1,2)$

8 A. Question

Find the condition for the following set of curves to interest orthogonally.
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $x y=c^{2}$

Answer

Given:
Curves $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \ldots(1)$
$\& x y=c^{2}$
First curve is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Differentiating above w.r.t x,
$\Rightarrow \frac{2 \mathrm{x}}{\mathrm{a}^{2}}-\frac{2 \mathrm{y}}{\mathrm{b}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow \frac{y}{b^{2}} \cdot \frac{d y}{d x}=\frac{x}{a^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{b}^{2} \mathrm{x}}{\mathrm{a}^{2} \mathrm{y}}$.
Second curve is $x y=c^{2}$
$\Rightarrow \Rightarrow 1 \times y+x \cdot \frac{d y}{d x}=0$
$\Rightarrow x \cdot \frac{d y}{d x}=-y$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{y}}{\mathrm{x}}$.
When $m_{1}=\frac{b^{2} x}{a^{2} y} \& m_{2}=\frac{-y}{x}$
Since ,two curves intersect orthogonally,
Two curves intersect orthogonally if $m_{1} m_{2}=-1$, where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow \frac{-b^{2} x}{a^{2} y} \times \frac{-y}{x}=-1$
$\Rightarrow \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=1$
$\Rightarrow \therefore \mathrm{a}^{2}=\mathrm{b}^{2}$

8 B. Question

Find the condition for the following set of curves to interest orthogonally.
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$.

Answer

Given:
Curves $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \ldots(1)$
$\& \frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$
First curve is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Differentiating above w.r.t x,
$\Rightarrow \frac{2 \mathrm{x}}{\mathrm{a}^{2}}-\frac{2 \mathrm{y}}{\mathrm{b}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow \frac{y}{b^{2}} \cdot \frac{d y}{d x}=\frac{x}{a^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{b}^{2} \mathrm{x}}{\mathrm{a}^{2} \mathrm{y}} .$.
Second curve is $\frac{\mathrm{x}^{2}}{\mathrm{~A}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~B}^{2}}=1$
Differentiating above w.r.t x,
$\Rightarrow \frac{2 \mathrm{x}}{\mathrm{A}^{2}}-\frac{2 \mathrm{y}}{\mathrm{B}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{B}^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}}{\mathrm{A}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{x}{\frac{y}{y}}}{\mathrm{R}^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{B^{2} x}{A^{2} y}$
$\Rightarrow m_{1}=\frac{B^{2} x}{A^{2} y}$.
When $m_{1}=\frac{b^{2} x}{a^{2} y} \& m_{2}=\frac{B^{2} x}{A^{2} y}$
Since ,two curves intersect orthogonally,

Two curves intersect orthogonally if $m_{1} m_{2}=-1$,where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow \frac{b^{2} x}{a^{2} y} \times \frac{B^{2} x}{A^{2} y}=-1$
$\Rightarrow \frac{\mathrm{b}^{2} \mathrm{~B}^{2}}{\mathrm{a}^{2} \mathrm{~A}^{2}} \times \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}=-1$
$\Rightarrow \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}=\frac{-\mathrm{a}^{2} \mathrm{~A}^{2}}{\mathrm{~b}^{2} \mathrm{~B}^{2}}$.
Now equation (1) - (2) gives
$\Rightarrow\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\right)-\left(\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1\right)$
$\Rightarrow \mathrm{x}^{2}\left(\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~A}^{2}}\right)-\mathrm{y}^{2}\left(\frac{1}{\mathrm{~b}^{2}}-\frac{1}{\mathrm{~B}^{2}}\right)=0$
$\Rightarrow x^{2}\left(\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~A}^{2}}\right)=\mathrm{y}^{2}\left(\frac{1}{\mathrm{~b}^{2}}-\frac{1}{\mathrm{~B}^{2}}\right)$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{\left(\frac{1}{b^{2}}-\frac{1}{B^{2}}\right)}{\left(\frac{1}{a^{2}}-\frac{1}{A^{2}}\right)}$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{\left(\frac{B^{2}-b^{2}}{b^{2} \mathrm{~B}^{2}}\right)}{\left(\frac{A^{2}-a^{2}}{A^{2} a^{2}}\right)}$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{\left(B^{2}-b^{2}\right)\left(A^{2} a^{2}\right)}{\left(A^{2}-a^{2}\right)\left(b^{2} \mathrm{~B}^{2}\right)}$
Substituting $\frac{x^{2}}{y^{2}}$ from equation (5), we get
$\Rightarrow \frac{-\mathrm{a}^{2} \mathrm{~A}^{2}}{\mathrm{~b}^{2} \mathrm{~B}^{2}}=\frac{\left(\mathrm{B}^{2}-\mathrm{b}^{2}\right)\left(\mathrm{A}^{2} \mathrm{a}^{2}\right)}{\left(\mathrm{A}^{2}-\mathrm{a}^{2}\right)\left(\mathrm{b}^{2} \mathrm{~B}^{2}\right)}$
$\Rightarrow-1=\frac{\left(\mathrm{B}^{2}-\mathrm{b}^{2}\right)}{\left(\mathrm{A}^{2}-\mathrm{a}^{2}\right)}$
$\Rightarrow(-1)\left(A^{2}-a^{2}\right)=\left(B^{2}-b^{2}\right)$
$\Rightarrow \mathrm{a}^{2}-\mathrm{A}^{2}=\mathrm{B}^{2}-\mathrm{b}^{2}$
$\Rightarrow a^{2}+b^{2}=B^{2}+A^{2}$

9. Question

Show that the curves $\frac{x^{2}}{a^{2}+\lambda_{1}}+\frac{y^{2}}{b^{2}+\lambda_{1}}=1$ and $\frac{x^{2}}{a^{2}+\lambda_{2}}+\frac{y^{2}}{b^{2}+\lambda_{2}}=1$ interest at right angles

Answer

Given:
Curves $\frac{x^{2}}{a^{2}+\lambda_{1}}+\frac{y^{2}}{b^{2}+\lambda_{1}}=1 \ldots$ (1)
$\& \frac{x^{2}}{a^{2}+\lambda_{2}}+\frac{y^{2}}{b^{2}+\lambda_{2}}=1$.
First curve is $\frac{x^{2}}{a^{2}+\lambda_{1}}+\frac{y^{2}}{b^{2}+\lambda_{1}}=1$
Differentiating above w.r.t x,
$\Rightarrow \frac{2 \mathrm{x}}{\mathrm{a}^{2}+\lambda_{1}}+\frac{2 \mathrm{y}}{\mathrm{b}^{2}+\lambda_{1}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow \frac{y}{b^{2}+\lambda_{1}} \cdot \frac{d y}{d x}=\frac{-x}{a^{2}+\lambda_{1}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{-x}{a^{2}+\lambda_{1}}}{\frac{y}{b^{2}+\lambda_{1}}}$
$\Rightarrow m_{1}=\frac{-x\left(b^{2}+\lambda_{1}\right)}{y\left(a^{2}+\lambda_{1}\right)}$.
Second curve is $\frac{x^{2}}{a^{2}+\lambda_{2}}+\frac{y^{2}}{b^{2}+\lambda_{2}}=1$
Differentiating above w.r.t x,
$\Rightarrow \frac{2 x}{a^{2}+\lambda_{2}}+\frac{2 y}{b^{2}+\lambda_{2}} \cdot \frac{d y}{d x}=0$
$\Rightarrow \frac{y}{b^{2}+\lambda_{2}} \cdot \frac{d y}{d x}=\frac{-x}{a^{2}+\lambda_{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{-x}{a^{2}+\lambda_{2}}}{\frac{y}{b^{2}+\lambda_{2}}}$
$\Rightarrow \mathrm{m}_{2}=\frac{-\mathrm{x}\left(\mathrm{b}^{2}+\lambda_{2}\right)}{\mathrm{y}\left(\mathrm{a}^{2}+\lambda_{2}\right)}$
Now equation (1) - (2) gives
$\Rightarrow\left(\frac{x^{2}}{a^{2}+\lambda_{1}}+\frac{y^{2}}{b^{2}+\lambda_{1}}=1\right)-\left(\frac{x^{2}}{a^{2}+\lambda_{2}}+\frac{y^{2}}{b^{2}+\lambda_{2}}=1\right)$
$\Rightarrow x^{2}\left(\frac{1}{a^{2}+\lambda_{1}}-\frac{1}{a^{2}+\lambda_{2}}\right)+y^{2}\left(\frac{1}{b^{2}+\lambda_{1}}-\frac{1}{b^{2}+\lambda_{2}}\right)=0$
$\Rightarrow x^{2}\left(\frac{1}{a^{2}+\lambda_{1}}-\frac{1}{a^{2}+\lambda_{2}}\right)=-y^{2}\left(\frac{1}{b^{2}+\lambda_{1}}-\frac{1}{b^{2}+\lambda_{2}}\right)$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{-\left(\frac{1}{b^{2}+\lambda_{1}}-\frac{1}{b^{2}+\lambda_{2}}\right)}{\left(\frac{1}{a^{2}+\lambda_{1}}-\frac{1}{a^{2}+\lambda_{2}}\right)}$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{-\left(\frac{b^{2}+\lambda_{2}-\left(\mathrm{b}^{2}+\lambda_{1}\right)}{\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)}\right)}{\left(\frac{\left(\mathrm{a}^{2}+\lambda_{2}\right)-\mathrm{a}^{2}+\lambda_{1}}{\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}\right)}$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{-\left(\frac{\left.b^{2}+\lambda_{2}-b^{2}-\lambda_{1}\right)}{\left(b^{2}+\lambda_{1}\right)\left(b^{2}+\lambda_{1}\right)}\right.}{\left(\frac{\left(a^{2}+\lambda_{2}\right) a^{2}-\lambda_{1}}{\left(a^{2}+\lambda_{1}\right)\left(a^{2}+\lambda_{2}\right)}\right)}$
$\Rightarrow \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}=\frac{\left(\frac{-\left(\lambda_{2}-\lambda_{1}\right)}{\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)}\right)}{\left(\frac{\left(\lambda_{2}-\lambda_{1}\right.}{\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}\right)}$
$\Rightarrow \frac{x^{2}}{\mathrm{y}^{2}}=\frac{\left(\frac{\left(\lambda_{1}-\lambda_{2}\right)}{\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)}\right)}{\left(\frac{\left(\lambda_{2}-\lambda_{1}\right.}{\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}\right)}$
$\Rightarrow \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}=\frac{\left(\lambda_{1}-\lambda_{2}\right)\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)}$
$\Rightarrow \frac{x^{2}}{y^{2}}=\frac{-\left(\lambda_{2}-\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)}$
$\Rightarrow \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}}=\frac{-\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}{\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)} \ldots$ (5)
When $\mathrm{m}_{1}=\frac{-\mathrm{x}\left(\mathrm{b}^{2}+\lambda_{1}\right)}{\mathrm{y}\left(\mathrm{a}^{2}+\lambda_{1}\right)} \& \mathrm{~m}_{2}=\frac{-\mathrm{x}\left(\mathrm{b}^{2}+\lambda_{2}\right)}{\mathrm{y}\left(\mathrm{a}^{2}+\lambda_{2}\right)}$

Two curves intersect orthogonally if $m_{1} m_{2}=-1$,where m_{1} and m_{2} the slopes of the two curves.
$\Rightarrow \frac{-\mathrm{x}\left(\mathrm{b}^{2}+\lambda_{1}\right)}{\mathrm{y}\left(\mathrm{a}^{2}+\lambda_{1}\right)} \times \frac{-\mathrm{x}\left(\mathrm{b}^{2}+\lambda_{2}\right)}{\mathrm{y}\left(\mathrm{a}^{2}+\lambda_{2}\right)}$
$\Rightarrow \frac{\mathrm{x}^{2}}{\mathrm{y}^{2}} \times \frac{\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{2}\right)}{\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}$
Substituting $\frac{x^{2}}{y^{2}}$ from equation (5), we get
$\Rightarrow \frac{-\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}{\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{1}\right)} \times \frac{\left(\mathrm{b}^{2}+\lambda_{1}\right)\left(\mathrm{b}^{2}+\lambda_{2}\right)}{\left(\mathrm{a}^{2}+\lambda_{1}\right)\left(\mathrm{a}^{2}+\lambda_{2}\right)}$
$\Rightarrow-1$
\therefore The two curves intersect orthogonally,

10. Question

If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then prove that
$a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=\rho^{2}$.

Answer

Given:
The straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
Suppose the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve at $\left(x_{1}, y_{1}\right)$.
But the equation of tangent to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$ is
$\Rightarrow \frac{\mathrm{xx}_{1}}{\mathrm{a}^{2}}-\frac{\mathrm{yy}}{\mathrm{b}_{1}}=1$
Thus, equation $\frac{x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$ and $x \cos \alpha+y \sin \alpha=p$ represent the same line.
$\therefore \frac{\frac{x_{1}}{a^{2}}}{\cos \alpha}+\frac{\frac{y_{1}}{b^{2}}}{\sin \alpha}=\frac{1}{p}$
$\Rightarrow x_{1}=\frac{a^{2} \cos \alpha}{p}, y_{1}=\frac{b^{2} \sin \alpha}{p}$
Since the point $\left(x_{1}, y_{1}\right)$ lies on the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$\Rightarrow \frac{\left(\frac{\mathrm{a}^{2} \cos \alpha}{\mathrm{p}}\right)^{2}}{\mathrm{a}^{2}}-\frac{\left(\frac{\mathrm{b}^{2} \sin \alpha}{\mathrm{p}}\right)^{2}}{\mathrm{~b}^{2}}=1$
$\Rightarrow \frac{\mathrm{a}^{4} \cos \alpha^{2}}{\mathrm{p}^{2} \mathrm{a}^{2}}-\frac{\mathrm{b}^{4} \sin \alpha^{2}}{\mathrm{p}^{2} \mathrm{~b}^{2}}=1$
$\Rightarrow \frac{\mathrm{a}^{2} \cos \alpha^{2}}{\mathrm{p}^{2}}-\frac{\mathrm{b}^{2} \sin \alpha^{2}}{\mathrm{p}^{2}}=1$
$\Rightarrow a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$
Thus proved.

MCQ

1. Question

The equation to the normal to the curve $y=\sin x$ at $(0,0)$ is
A. $x=0$
B. $y=0$
C. $x+y=0$
D. $x-y=0$

Answer

Given that $y=\sin x$
Slope of the tangent $\frac{d y}{d x}=\cos x$
Slope at origin $=\cos 0=1$
Equation of normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$\Rightarrow(y-0)=\frac{-1}{1}(x-0)$
$\Rightarrow y+x=0$
Hence option C is correct.

2. Question

The equation of the normal to the curve $y=x+\sin x \cos x$ at $x=\frac{\pi}{2}$ is
A. $x=2$
B. $x=\pi$
C. $x+\pi=0$
D. $2 x=\pi$

Answer

Given that the curve $\mathrm{y}=\mathrm{x}+\sin \mathrm{x} \cos \mathrm{x}$
Differentiating both the sides w.r.t. x,
$\frac{d y}{d x}=1+\cos ^{2} x-\sin ^{2} x$
Now,
Slope of the tangent $\frac{d y}{d x}\left(x=\frac{\pi}{2}\right)=1+\cos ^{2} \frac{\pi}{2}-\sin ^{2} \frac{\pi}{2}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1-1+0=0$
When $\mathrm{x}=\frac{\pi}{2}, \mathrm{y}=\frac{\pi}{2}$
Equation of the normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$\Rightarrow\left(y-\frac{\pi}{2}\right)=\frac{-1}{0}\left(x-\frac{\pi}{2}\right)$
$\Rightarrow 2 \mathrm{x}=\pi$
Hence option D is correct.

3. Question

The equation of the normal to the curve $y=x(2-x)$ at the point $(2,0)$ is
A. $x-2 y-2$
B. $x-2 y+2=0$
C. $2 x+y=4$
D. $2 x+y-4=0$

Answer

Given that $\mathrm{y}=\mathrm{x}(2-\mathrm{x})$
$\Rightarrow y=2 x-x^{2}$

Slope of the tangent $\frac{d y}{d x}=2-2 x$
Slope at $(2,0)=2-4=-2$
Equation of normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$\Rightarrow(y-0)=\frac{-1}{-2}(x-2)$
$\Rightarrow 2 y=x-2$
$\Rightarrow \mathrm{x}-2 \mathrm{y}-2=0$
Hence option A is correct.

4. Question

The point on the curve $\mathrm{y}^{2}=\mathrm{x}$ where tangent makes 45° angle with x -axis is
A. $\left(\frac{1}{2}, \frac{1}{4}\right)$
B. $\left(\frac{1}{4}, \frac{1}{2}\right)$
C. $(4,2)$
D. $(1,1)$

Answer

Given that $y^{2}=x$
The tangent makes 45° angle with x-axis.
So, slope of tangent $=\tan 45^{\circ}=1$
\because the point lies on the curve
\therefore Slope of the curve at that point must be 1
$2 y \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$
$\Rightarrow \frac{1}{2 y}=1$
$\Rightarrow \mathrm{y}=\frac{1}{2}$
And $\mathrm{x}=\frac{1}{4}$
So, the correct option is B.

5. Question

If the tangent to the curve $x=a t^{2}, y=2 a t$ is perpendicular to x - $a x i s$, then its point of contact is
A. (a, a)
B. $(0, a)$
C. $(0,0)$
D. $(a, 0)$

Answer

Given that the tangent to the curve $x=a t^{2}, y=2$ at is perpendicular to x-axis.
Differentiating both w.r.t. t,
$\frac{d x}{d t}=2 a t, \frac{d y}{d t}=2 a$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 a}{2 a t}=\frac{1}{t}$
From $\mathrm{y}=2 \mathrm{at}, \mathrm{t}=\frac{\mathrm{y}}{2 \mathrm{a}}$
\Rightarrow Slope of the curve $=\frac{2 \mathrm{a}}{\mathrm{y}}$
Slope of x axis $=0$
$\Rightarrow \frac{2 \mathrm{a}}{\mathrm{y}}=0$
$\Rightarrow \mathrm{a}=0$
Then point of contact is $(0,0)$.

6. Question

The point on the curve $y=x^{2}-3 x+2$ where tangent is perpendicular to $y=x$ is
A. $(0,2)$
B. $(1,0)$
C. $(-1,6)$
D. $(2,-2)$

Answer

Given that the curve $y=x^{2}-3 x+2$ where tangent is perpendicular to $y=x$
Differentiating both w.r.t. x ,
$\frac{d y}{d x}=1$ and $\frac{d y}{d x}=2 x-3$
\because the point lies on the curve and line both
Slope of the tangent $=-1$
$\Rightarrow 2 \mathrm{x}-3=-1$
$\Rightarrow x=1$
And $y=1-3+2$
$\Rightarrow \mathrm{y}=0$
So, the required point is $(1,0)$.

7. Question

The point on the curve $y^{2}=x$ where tangent makes 45° angle with x -axis is
A. $\left(\frac{1}{2}, \frac{1}{4}\right)$
B. $\left(\frac{1}{4}, \frac{1}{2}\right)$
C. $(4,2)$
D. $(1,1)$

Answer

Given that $\mathrm{y}^{2}=\mathrm{x}$
The tangent makes 45° angle with x-axis.
So, slope of tangent $=\tan 45^{\circ}=1$
\because the point lies on the curve
\therefore Slope of the curve at that point must be 1
$2 y \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$
$\Rightarrow \frac{1}{2 y}=1$
$\Rightarrow \mathrm{y}=\frac{1}{2}$
And $\mathrm{x}=\frac{1}{4}$
So, the correct option is B

8. Question

The point on the curve $y=12 x-x^{2}$ where the slope of the tangent is zero will be
A. $(0,0)$
B. $(2,16)$
C. $(3,9)$
D. $(6,36)$

Answer

Given that the curve $y=12 x-x^{2}$
The slope of the curve $\frac{d y}{d x}=12-2 x$
Given that the slope of the tangent $=0$
$\Rightarrow 12-2 \mathrm{x}=0$
$\Rightarrow x=6$
So, $y=72-36$
$\Rightarrow y=36$
So, the correct option is D.

9. Question

The angle between the curves $y^{2}=x$ and $x^{2}=y$ at $(1,1)$ is
A. $\tan ^{-1} \frac{4}{3}$
B. $\tan ^{-1} \frac{3}{4}$
C. 90°
D. 45°

Answer

Given two curves $y^{2}=x$ and $x^{2}=y$
Differentiating both the equations w.r.t. x,
$\Rightarrow 2 y \frac{d y}{d x}=1$ and $2 x=\frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$ and $\frac{d y}{d x}=2 x$
For (1, 1):
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}$ and $\frac{d y}{d x}=2$
Thus we get
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{1}{2}-2}{1+1}\right|$
$\Rightarrow \tan \theta=\frac{3}{4}$
$\Rightarrow \theta=\tan ^{-1} \frac{3}{4}$

10. Question

The equation of the normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to $x+3 y=k$ is
A. $x-3 y=8$
B. $x-3 y+8=0$
C. $x+3 y \pm 8=0$
D. $x=3 y=0$

Answer

Given that the normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to $x+3 y=k$.
Let (a, b) be the point of intersection of both the curve.
$\Rightarrow 3 a^{2}-b^{2}=8$
and $a+3 b=k$
Now, $3 x^{2}-y^{2}=8$

On differentiating w.r.t. x,
$6 x-2 y \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{3 x}{y}$
Slope of the tangent at $(a, b)=\frac{3 a}{b}$
Slope of the normal at $(a, b)=\frac{-b}{3 a}$
Slope of normal $=$ Slope of the line
$\Rightarrow \frac{-\mathrm{b}}{3 \mathrm{a}}=\frac{-1}{3}$
$\Rightarrow \mathrm{b}=\mathrm{a}$
Put (3) in (1),
$3 a^{2}-a^{2}=8$
$\Rightarrow 2 a^{2}=8$
$\Rightarrow \mathrm{a}= \pm 2$
Case: 1
When $\mathrm{a}=2, \mathrm{~b}=2$
$\Rightarrow x+3 y=k$
$\Rightarrow k=8$
Case: 2
When $a=-2, b=-2$
$\Rightarrow x+3 y=k$
$\Rightarrow \mathrm{k}=-8$
From both the cases,
The equation of the normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to $x+3 y=k$ is $x+3 y= \pm 8$.

11. Question

The equation of tangent at those points where the curve $y=x^{2}-3 x+2$ meets x-axis are
A. $x-y+2=0=x-y-1$
B. $x+y-1=0=x-y-2$
C. $x-y-1=0=x-y$
D. $x-y=0=x+y$

Answer

Given that the curve $y=x^{2}-3 x+2$
$\Rightarrow \frac{d y}{d x}=2 x-3$
The tangent passes through point ($\mathrm{x}, 0$)
$\Rightarrow 0=x^{2}-3 x+2$
$\Rightarrow(x-2)(x-1)=0$
$\Rightarrow x=1$ or 2
Equation of the tangent:
$\left(y-y_{1}\right)=$ Slope of tangent $\times\left(x-x_{1}\right)$
Case: 1
When $x=2$
Slope of tangent $=1$
Equation of tangent:
$y=1 x(x-2)$
$\Rightarrow \mathrm{x}-\mathrm{y}-\mathrm{z}=0$
Case: 2
When $x=1$
Slope of tangent $=-1$
Equation of tangent:
$y=-1 x(x-1)$
$\Rightarrow x+y-1=0$
Hence, option B is correct.

12. Question

The slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at point $(2,-1)$ is
A. $\frac{22}{7}$
B. $\frac{6}{7}$
C. -6
D. $\frac{7}{6}$

Answer

Given that $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$
Differentiating both the sides,
$\frac{d x}{d t}=2 t+3, \frac{d y}{d t}=4 t-2$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
$=\frac{4 t-2}{2 t+3}$
The given point is $(2,-1)$
$2=t^{2}+3 t-8,-1=2 t^{2}-2 t-5$
On solving we get,
$t=2$ or -5 and $t=2$ or -1
$\because \mathrm{t}=2$ is the common solution
So, $\frac{d y}{d x}=\frac{8-2}{4+3}$
$=\frac{6}{7}$

13. Question

At what points the slope of the tangent to the curve $x^{2}+y^{2}-2 x-3=0$ is zero.
A. $(3,0),(-1,0)$
B. $(3,0),(1,2)$
C. $(-1,0),(1,2)$
D. $(1,2),(1,-2)$

Answer

Given that the curve $x^{2}+y^{2}-2 x-3=0$
Differentiation on both the sides,
$2 x+2 y \frac{d y}{d x}-2=0$
$\Rightarrow \frac{d y}{d x}=\frac{1-x}{y}$
According to the question,
Slope of the tangent $=0$
$\Rightarrow \frac{1-x}{y}=0$
$\Rightarrow x=1$
Putting this in equation of curve,
$1+y^{2}-2-3=0$
$\Rightarrow y^{2}=4$
$\Rightarrow y= \pm 2$
So, the required points are $(1,2)$ and $(1,-2)$

14. Question

The angle of intersection of the curves $x y=a^{2}$ and $x^{2}-y^{2}=2 a^{2}$ is:
A. 0°
B. 45°
C. 90°
D. 30°

Answer

Given that the curves $x y=a^{2}$ and $x^{2}-y^{2}=2 a^{2}$
Differentiating both of them w.r.t. x,
$x \frac{d y}{d x}+y=0$ and $2 x-2 y \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}$ and $\frac{d y}{d x}=\frac{x}{y}$
Let $\mathrm{m}_{1}=\frac{-\mathrm{y}}{\mathrm{x}}$ and $\mathrm{m}_{2}=\frac{\mathrm{x}}{\mathrm{y}}$
$m_{1} \times m_{2}=-1$
So, the angle between the curves is 90°.

15. Question

If the curve ay $+x^{2}=7$ and $x^{3}=y$ cut orthogonally at $(1,1)$, then a is equal to
A. 1
B. -6
C. 6
D. 0

Answer

Given that the curves ay $+x^{2}=7$ and $x^{3}=y$
Differentiating both of them w.r.t. x ,
$a \frac{d y}{d x}+2 x=0$ and $3 x^{2}=\frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{a}$ and $\frac{d y}{d x}=3 x^{2}$
For (1, 1)
$\frac{d y}{d x}=\frac{-2}{a}$ and $\frac{d y}{d x}=3$
Let $\mathrm{m}_{1}=\frac{-2}{\mathrm{a}}$ and $\mathrm{m}_{2}=3$
$m_{1} \times m_{2}=-1$
(because curves cut each other orthogonally)
$\Rightarrow \frac{-6}{\mathrm{a}}=-1$
$\Rightarrow a=6$

16. Question

If the line $y=x$ touches the curve $y=x^{2}+b x+c$ at a point $(1,1)$ then
A. $b=1, c=2$
B. $b=-1, c=1$
C. $b=2, c=1$
D. $b=-2, c=1$

Answer

Given that line $y=x$ touches the curve $y=x^{2}+b x+c$ at a point $(1,1)$
Slope of line $=1$

Slope of tangent to the curve $=1$
$\Rightarrow \frac{d y}{d x}=2 x+b$
$\Rightarrow 2 x+b=1$
$\Rightarrow 2+b=1$
$\Rightarrow \mathrm{b}=-1$
Putting this and $x=1$ and $y=1$ in the equation of the curve,
$1=1-1+c$
$\Rightarrow \mathrm{c}=1$

17. Question

The slope of the tangent to the curve $x=3 t^{2}+1, y=t^{3}-1$ at $x=1$ is
A. $\frac{1}{2}$
B. 0
C. -2
D. ∞

Answer

Given that $x=3 t^{2}+1, y=t^{3}-1$
For $x=1$,
$3 \mathrm{t}^{2}+1=1$
$\Rightarrow 3 \mathrm{t}^{2}=0$
$\Rightarrow t=0$
Now, differentiating both the equations w.r.t. t, we get
$\frac{d x}{d t}=6 t$ and $\frac{d y}{d t}=3 t^{2}$
\Rightarrow Slope of the curve:
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
$=\frac{3 \mathrm{t}^{2}}{6 \mathrm{t}}$
$=\frac{1}{2} \mathrm{t}$

For $\mathrm{t}=0$,
Slope of the curve $=0$
Hence, option B is correct.

18. Question

The curves $y=a e^{x}$ and $y=b e^{-x}$ cut orthogonally, if
A. $a=b$
B. $a=-b$
C. $a b=1$
D. $a b=2$

Answer

Given that the curves $y=a e^{x}$ and $y=b e^{-x}$
Differentiating both of them w.r.t. x,
$\frac{d y}{d x}=a e^{x}$ and $\frac{d y}{d x}=-b e^{-x}$
Let $m_{1}=a e^{x}$ and $m_{2}=-b e^{-x}$
$m_{1} \times m_{2}=-1$
(Because curves cut each other orthogonally)
$\Rightarrow-a b=-1$
$\Rightarrow \mathrm{ab}=1$

19. Question

The equation of the normal to the curve $x=\operatorname{acos}^{3} \theta, y=a \sin ^{3} \theta$ at the point $\theta=\frac{\pi}{4}$ is
A. $x=0$
B. $y=0$
C. $x=y$
D. $x+y=a$

Answer

Given that the curve $x=\operatorname{acos}^{3} \theta, y=a \sin ^{3} \theta$ have a normal at the point $\theta=\frac{\pi}{4}$
Differentiating both w.r.t. θ,
$\frac{d x}{d \theta}=-3 \cos ^{2} \theta \sin \theta, \frac{d y}{d \theta}=3 a \sin ^{2} \theta \cos \theta$
$\Rightarrow \frac{d y}{d x}=-\tan \theta$
For $\theta=\frac{\pi}{4}$
Slope of the tangent $=-1$
$x=\frac{a}{2 \sqrt{2}}, y=\frac{a}{2 \sqrt{2}}$
Equation of normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$x=y$

20. Question

If the curves $y=2 e^{x}$ and $y=a e^{-x}$ interest orthogonally, then $a=$
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 2
D. $2 \mathrm{e}^{2}$

Answer

Given that the curves $y=2 e^{x}$ and $y=a e^{-x}$
Differentiating both of them w.r.t. x ,
$\frac{d y}{d x}=2 e^{x}$ and $\frac{d y}{d x}=-a e^{-x}$
Let $\mathrm{m}_{1}=2 \mathrm{e}^{\mathrm{x}}$ and $\mathrm{m}_{2}=-\mathrm{ae}^{-\mathrm{x}}$
$m_{1} \times m_{2}=-1$
(Because curves cut each other orthogonally)
$\Rightarrow-2 a=-1$
$\Rightarrow \mathrm{a}=\frac{1}{2}$

21. Question

The point on the curve $y=6 x-x^{2}$ at which the tangent to the curve is inclined at $\frac{\pi}{4}$ to the line $x+y=0$ is
A. $(-3,-27)$
B. $(3,9)$
C. $\left(\frac{7}{2}, \frac{35}{4}\right)$
D. $(0,0)$

Answer

The curve $y=6 x-x^{2}$ has a point at which the tangent to the curve is inclined at to $\frac{\pi}{4}$ the line $x+y=0$.
Differentiating w.r.t. x ,
$\frac{d y}{d x}=6-2 x=m_{1}$ and $\frac{d y}{d x}=-1=m_{2}$
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \frac{\pi}{4}=\left|\frac{6-2 x+1}{1+2 x-6}\right|$
On solving we get $x=3$
Thus $\mathrm{y}=9$
Hence, option B is correct.

22. Question

The angle of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ at the origin is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer

Given that the the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$
Differentiating both w.r.t. x ,
$2 y \frac{d y}{d x}=4 a$ and $2 x=4 a \frac{d y}{d x}$
$\frac{d y}{d x}=\frac{2 a}{y}=m_{1}$ and $\frac{d y}{d x}=\frac{x}{2 a}=m_{2}$
At origin,
$\mathrm{m}_{1}=$ infinity and $\mathrm{m}_{2}=0$
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\infty-0}{1+0 \times \infty}\right|=\infty$
$\Rightarrow \theta=90^{\circ}$

23. Question

The angle of intersection of the curves $y=2 \sin ^{2} x$ and $y=\cos ^{2} x$ at $x=\frac{\pi}{6}$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer

Given that the curve $y=2 \sin ^{2} x$ and $y=\cos ^{2} x$
Differentiating both w.r.t. x ,
$\frac{d y}{d x}=4 \sin x \cos x$ and $\frac{d y}{d x}=-2 \cos x \sin x$
$\mathrm{m}_{1}=4 \sin \mathrm{x} \cos \mathrm{x}$ and $\mathrm{m}_{2}=-2 \cos \mathrm{x} \sin \mathrm{x}$
At $x=\frac{\pi}{6}$,
$m_{1}=\sqrt{ } 3$ and $m_{2}=-\frac{\sqrt{3}}{2}$
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\sqrt{3}+\frac{\sqrt{3}}{2}}{1-\sqrt{3} \times \frac{\sqrt{3}}{2}}\right|=\frac{\frac{3 \sqrt{3}}{2}}{\frac{1}{2}}=3 \sqrt{3}$
$\Rightarrow \theta=\tan ^{-1} 3 \sqrt{ } 3$

24. Question

Any tangent to the curve $y=2 x^{7}+3 x+5$.
A. is parallel to x-axis
B. is parallel to y-axis
C. makes an acute angle with x-axis
D. makes an obtuse angle with x-axis

Answer

Given curve $y=2 x^{7}+3 x+5$.
Differentiating w.r.t. x ,
$\frac{d y}{d x}=14 x^{6}+3$
Here $\frac{d y}{d x} \geq 3$
$\Rightarrow \frac{d y}{d x}>0$
So, $\tan \theta>0$
Hence, θ lies in first quadrant.
So, any tangent to this curve makes an acute angle with x-axis.

25. Question

The point on the curve $9 y^{2}=x^{3}$, where the normal to the curve makes equal intercepts with the axes is
A. $\left(4, \pm \frac{8}{3}\right)$
B. $\left(-4, \frac{8}{3}\right)$
C. $\left(-4,-\frac{8}{3}\right)$
D. $\left(\frac{8}{3}, 4\right)$

Given curve $9 y^{2}=x^{3}$
Differentiate w.r.t. x,
$18 y \frac{d y}{d x}=3 x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}}{6 y}$
Equation of normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
\because it makes equal intercepts with the axes
\therefore slope of the normal $= \pm 1$
$\Rightarrow x^{2}= \pm 6 y$
Squaring both the sides,
$x^{4}= \pm 36 y^{2}$
From (1),
$x=0,4$
and $y=0, \pm \frac{8}{3}$
But the line making equal intercept cannot pass through origin.
So, the required points are $\left(4, \pm \frac{8}{3}\right)$.
26. Question

The slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point $(2,-1)$ is
A. $\frac{22}{7}$
B. $\frac{6}{7}$
C. $\frac{7}{6}$
D. $-\frac{6}{7}$

Answer

Given that $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$
Differentiating w.r.t. t,
$\frac{d x}{d t}=2 t+3, \frac{d y}{d t}=4 t-2$
$\frac{d y}{d x}=\frac{4 t-2}{2 t+3}$
For (2, -1),
The given point is $(2,-1)$
$2=t^{2}+3 t-8,-1=2 t^{2}-2 t-5$
On solving we get,
$\mathrm{t}=2$ or -5 and $\mathrm{t}=2$ or -1
$\because \mathrm{t}=2$ is the common solution
So, $\frac{d y}{d x}=\frac{8-2}{4+3}=\frac{6}{7}$

27. Question

The line $y=m x+1$ is a tangent to the curve $y^{2}=4 x$, if the value of m is
A. 1
B. 2
C. 3
D. $\frac{1}{2}$

Answer

It is given that the line $y=m x+1$ is a tangent to the curve $y^{2}=4 x$.
Slope of the line $=m$
Slope of the curve $\frac{\mathrm{dy}}{\mathrm{dx}}$,
Differentiating the curve we get
$2 y \frac{d y}{d x}=4$
$\Rightarrow \frac{d y}{d x}=\frac{2}{y}$
$\Rightarrow \frac{2}{y}=m$
$\Rightarrow \mathrm{y}=\frac{2}{\mathrm{~m}}$
\because The given line is a tangent to the curve so the point passes through both line and curve.
$\Rightarrow \mathrm{y}=\mathrm{mx}+1$ and $\mathrm{y}^{2}=4 \mathrm{x}$
$\Rightarrow \frac{2}{\mathrm{~m}}=\mathrm{mx}+1$ and $\frac{4}{\mathrm{~m}^{2}}=4 \mathrm{x}$
$\Rightarrow \mathrm{mx}=\frac{2-\mathrm{m}}{\mathrm{m}}$ and $\mathrm{x}=\frac{1}{\mathrm{~m}^{2}}$
$\Rightarrow \mathrm{x}=\frac{2-\mathrm{m}}{\mathrm{m}^{2}}$ and $\mathrm{x}=\frac{1}{\mathrm{~m}^{2}}$
$\Rightarrow \frac{2-\mathrm{m}}{\mathrm{m}^{2}}=\frac{1}{\mathrm{~m}^{2}}$
$\Rightarrow 2-\mathrm{m}=1$
$\Rightarrow \mathrm{m}=1$
Hence, the correct option is A.
28. Question

The normal at the point $(1,1)$ on the curve $2 y+x^{2}=3$ is
A. $x+y=0$
B. $x-y=0$
C. $x+y+1=0$
D. $x-y=1$

Answer

Given that the curve $2 y+x^{2}=3$ has a normal passing through point (1,1).
Differentiating both the sides w.r.t. x ,
$2 \frac{d y}{d x}+2 x=0$
Slope of the tangent $\frac{d y}{d x}=-x$
For $(1,1)$:
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-1$
Equation of the normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$\Rightarrow(y-1)=\frac{-1}{-1}(x-1)$
$\Rightarrow \mathrm{y}-1=\mathrm{x}-1$
$\Rightarrow \mathrm{y}-\mathrm{x}=0$
$\Rightarrow \mathrm{x}-\mathrm{y}=0$
Hence, option B is correct.

29. Question

The normal to the curve $x^{2}=4 y$ passing through $(1,2)$ is
A. $2 x+y=4$
B. $x-y=3$
C. $x+y=1$
D. $x-y=1$

Answer

Given that the curve $x^{2}=4 y$
Differentiating both the sides w.r.t. x ,
$4 \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}$
Slope of the tangent $\frac{d y}{d x}=\frac{1}{2} x$
For (1, 2):
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}$

Equation of the normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$\Rightarrow(y-2)=\frac{-2}{1}(x-1)$
$\Rightarrow y-2=-2 x+2$
$\Rightarrow y+2 x=4$
No option matches the answer.

Very short answer

1. Question

Find the point on the curve $y=x^{2}-2 x+3$, where the tangent is parallel to x-axis.

Answer

Given curve $y=x^{2}-2 x+3$
We know that the slope of the x-axis is 0 .
Let the required point be (a, b).
\because the point lies on the given curve
$\therefore \mathrm{b}=\mathrm{a}^{2}-2 \mathrm{a}+3$
Now, $y=x^{2}-2 x+3$
$\frac{d y}{d x}=2 x-2$
Slope of the tangent at $(a, b)=2 a-2$
According to the question,
$2 a-2=0$
$\Rightarrow \mathrm{a}=1$
Putting this in (1),
$b=1-2+3$
$\Rightarrow \mathrm{b}=2$
So, the required point is $(1,2)$

2. Question

Find the slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at $t=2$.

Answer

Given that $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{t}+3, \frac{\mathrm{dy}}{\mathrm{dt}}=4 \mathrm{t}-2$
$\therefore \frac{d y}{d x}=\frac{4 t-2}{2 t+3}$
Now,
Slope of the tangent $($ at $t=2)=\frac{8-2}{4+3}=\frac{6}{7}$

3. Question

If the tangent line at a point (x, y) on the curve $y=f(x)$ is parallel to x-axis, then write the value of $\frac{d y}{d x}$.

Answer

Given curve $y=f(x)$ has a point (x, y) which is parallel to x-axis.
We know that the slope of the x -axis is 0 .
\because the point lies on the given curve
\therefore Slope of the tangent $\frac{d y}{d x}=0$
4. Question

Write the value of $\frac{d y}{d x}$, if the normal to the curve $y=f(x)$ at (x, y) is parallel to y-axis.

Answer

Given that the normal to the curve $y=f(x)$ at (x, y) is parallel to y-axis.
We know that the slope of the y-axis is ∞.
\because Slope of the normal $=$ Slope of the y-axis $=\infty$
\therefore Slope of the tangent $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{\text { Slope of the normal }}=\frac{1}{\infty}=0$

5. Question

If the tangent to a curve at a point (x, y) is equally inclined to the coordinate axes, then write the value of $\frac{d y}{d x}$.

Answer

Given that the tangent to a curve at a point (x, y) is equally inclined to the coordinate axes.
\Rightarrow The angle made by the tangent with the axes can be $\pm 45^{\circ}$.
\therefore Slope of the tangent $\frac{d y}{d x}=\tan \pm 45^{\circ}= \pm 1$

6. Question

If the tangent line at a point (x, y) on the curve $y=f(x)$ is parallel to y-axis, find the value of $\frac{d x}{d y}$.

Answer

Given that the tangent line at a point (x, y) on the curve $y=f(x)$ is || to y-axis.
Slope of the y-axis $=\infty$
\therefore Slope of the tangent $\frac{\mathrm{dy}}{\mathrm{dx}}=\infty$
$\frac{d x}{d y}=\frac{1}{\infty}=0$

7. Question

Find the slope of the normal at the point ' t ' on the curve $\mathrm{x}=\frac{1}{\mathrm{t}}, \mathrm{y}=\mathrm{t}$.

Answer

Given that the curve $\mathrm{x}=\frac{1}{\mathrm{t}}, \mathrm{y}=\mathrm{t}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{-1}{\mathrm{t}^{2}}, \frac{\mathrm{dy}}{\mathrm{dt}}=1$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{1}{\frac{-1}{t^{2}}}=-t^{2}$
Now, Slope of tangent $=-t^{2}$
Slope of normal $=\frac{-1}{\text { Slope of tangent }}=\frac{1}{t^{2}}$

8. Question

Write the coordinates of the point on the curve $y^{2}=x$ where the tangent line makes an angle $\frac{\pi}{4}$ with x-axis.

Answer

Given that the curve $y^{2}=x$ has a point where the tangent line makes an angle $\frac{\pi}{4}$ with x-axis.
\therefore Slope of the tangent $\frac{d y}{d x}=\tan 45^{\circ}=1$
\because the point lies on the curve.
$y^{2}=x$
$\Rightarrow 2 y \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$
$\Rightarrow \frac{1}{2 y}=1$
$\Rightarrow \mathrm{y}=\frac{1}{2}$
So, $x=\frac{1}{4}$
Hence, the required point is $\left(\frac{1}{4}, \frac{1}{2}\right)$

9. Question

Write the angle made by the tangent to the curve $x=e^{t} \cos t, y=e^{t} \sin t$ at $t=\frac{\pi}{4}$ with the x-axis.

Answer

Given that the curve $x=e^{t} \cos t, y=e^{t} \sin t$
$\frac{d x}{d t}=e^{t} \cos t-e^{t} \sin t$ and $\frac{d y}{d t}=e^{t} \sin t+e^{t} \cos t$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{e^{t} \sin t+e^{t} \cos t}{e^{t} \cos t-e^{t} \sin t}=\frac{\sin t+\cos t}{\cos t-\sin t}$
Now, for $t=\frac{\pi}{4}$
$\frac{d y}{d x}=\frac{\sin \frac{\pi}{4}+\cos \frac{\pi}{4}}{\cos \frac{\pi}{4}-\sin \frac{\pi}{4}}=\frac{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}}=\infty$
Let θ be the angle made by the tangent with the x-axis.
$\therefore \tan \theta=\infty$
$\Rightarrow \theta=\frac{\pi}{2}$

10. Question

Write the equation of the normal to the curve $\mathrm{y}=\mathrm{x}+\sin \mathrm{x} \cos \mathrm{x}$ at $\mathrm{x}=\frac{\pi}{2}$.

Answer

Given that the curve $\mathrm{y}=\mathrm{x}+\sin \mathrm{x} \cos \mathrm{x}$
Differentiating both the sides w.r.t. x ,
$\frac{d y}{d x}=1+\cos ^{2} x-\sin ^{2} x$
Now,
Slope of the tangent $\frac{d y}{d x}\left(x=\frac{\pi}{2}\right)=1+\cos ^{2} \frac{\pi}{2}-\sin ^{2} \frac{\pi}{2}$
$\Rightarrow \frac{d y}{d x}=1-1+0=0$
When $\mathrm{x}=\frac{\pi}{2}, \mathrm{y}=\frac{\pi}{2}$
Equation of the normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$\Rightarrow\left(\mathrm{y}-\frac{\pi}{2}\right)=\frac{-1}{0}\left(\mathrm{x}-\frac{\pi}{2}\right)$
$\Rightarrow 2 x=\pi$

11. Question

Find the coordinates of the point on the curve $y^{2}=3-4 x$ where tangent is parallel to the line $2 x+y-2=0$.

Answer

Given that the curve $y^{2}=3-4 x$ has a point where tangent is || to the line $2 x+y-2=0$.
Slope of the given line is -2 .
\because the point lies on the curve
$\therefore \mathrm{y}^{2}=3-4 \mathrm{x}$
$\Rightarrow 2 y \frac{d y}{d x}=-4$
$\Rightarrow \frac{d y}{d x}=\frac{-2}{y}$
Now, the slope of the curve = slope of the line
$\Rightarrow \frac{-2}{y}=-2$
$\Rightarrow y=1$
Putting above value in the equation of the line,
$2 x+1-2=0$
$\Rightarrow 2 \mathrm{x}-1=0$
$\Rightarrow \mathrm{x}=\frac{1}{2}$
So, the required coordinate is $\left(\frac{1}{2}, 1\right)$.

12. Question

Write the equation of the tangent to the curve $y=x^{2}-x+2$ at the point where it crosses the y-axis.

Answer

Given that the curve $y=x^{2}-x+2$ has a point crosses the y-axis.
The curve will be in the form of $(0, y)$
$\Rightarrow y=0-0+2$
$\Rightarrow y=2$
So, the point at which curve crosses the y-axis is $(0,2)$.
Now, differentiating the equation of curve w.r.t. x
$\frac{d y}{d x}=x-1$
For (0, 2),
$\frac{d y}{d x}=-1$
Equation of the tangent:
$\left(y-y_{1}\right)=$ Slope of tangent $\times\left(x-x_{1}\right)$
$\Rightarrow(y-2)=-1 x(x-0)$
$\Rightarrow y-2=-x$
$\Rightarrow x+y=2$

13. Question

Write the angle between the curves $y^{2}=4 x$ and $x^{2}=2 y-3$ at the point $(1,2)$.

Answer

Given two curves $y^{2}=4 x$ and $x^{2}=2 y-3$
Differentiating both the equations w.r.t. x,
$\Rightarrow 2 y \frac{d y}{d x}=4$ and $2 x=2 \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{y}$ and $\frac{d y}{d x}=x$
For (1, 2):
$\Rightarrow \frac{d y}{d x}=\frac{2}{2}=1$ and $\frac{d y}{d x}=1$
Thus we get
$\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{1-1}{1+1}\right|$
$\Rightarrow \tan \theta=0$
$\Rightarrow \theta=0^{\circ}$

14. Question

Write the angle between the curves $y=e^{-x}$ and $y=e^{x}$ at their point of intersection.

Answer

Given that $\mathrm{y}=\mathrm{e}^{-\mathrm{x}} \ldots$ (1) and $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$
Substituting the value of y in (1),
$e^{-x}=e^{x}$
$\Rightarrow x=0$
And $y=1$ (from 2)
On differentiating (1) w.r.t. x, we get
$\frac{d y}{d x}=-e^{-x}$
$\Rightarrow \mathrm{m}_{1}=\frac{\mathrm{dy}}{\mathrm{dx}}=-1$
On differentiating (2) w.r.t. x, we get
$\frac{d y}{d x}=e^{-x}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{dy}}{\mathrm{dx}}=1$
$\because m_{1} \times m_{2}=-1$
Since the multiplication of both the slopes is -1 so the slopes are perpendicular to each other.
\therefore Required angle $=90^{\circ}$

15. Question

Write the slope of the normal to the curve $\mathrm{y}=\frac{1}{\mathrm{x}}$ at the point $\left(3, \frac{1}{3}\right)$.

Answer

Given that $\mathrm{y}=\frac{1}{\mathrm{x}}$
On differentiating both sides w.r.t. x, we get
$\frac{d y}{d x}=-\frac{1}{x^{2}}$
Now, slope of the tangent at $\left(3, \frac{1}{3}\right)$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{9}$
Slope of normal $=9$

16. Question

Write the coordinates of the point at which the tangent to the curve $y=2 x^{2}-x+1$ is parallel to the line $y=$ $3 x+9$.

Answer

Let (a, b) be the required coordinate.
Given that the tangent to the curve $y=2 x^{2}-x+1$ is parallel to the line $y=3 x+9$.
Slope of the line $=3$
\because the point lies on the curve
$\Rightarrow b=2 a^{2}-a+1 \ldots$
Now, $y=2 x^{2}-x+1$
$\Rightarrow \frac{d y}{d x}=4 x-1$
Now value of slope at (a, b)
$\Rightarrow \frac{d y}{d x}=4 a-1$
Given that Slope of tangent $=$ Slope of line
$\Rightarrow 4 \mathrm{a}-1=3$
$\Rightarrow 4 \mathrm{a}=4$
$\Rightarrow \mathrm{a}=1$
From (1),
$b=2-1+1$
$\Rightarrow b=2$

17. Question

Write the equation of the normal to the curve $y=\cos x$ at $(0,1)$.

Answer

Given that $y=\cos x$
On differentiating both the sides w.r.t. x
$\frac{d y}{d x}=-\sin x$
Now,
Slope of tangent at $(0,1)=0$
Equation of normal:
$\left(y-y_{1}\right)=\frac{-1}{\text { Slope of tangent }}\left(x-x_{1}\right)$
$\Rightarrow(y-1)=\frac{-1}{0}(x-0)$
$\Rightarrow x=0$

18. Question

Write the equation of the tangent drawn to the curve $y=\sin x$ at the point $(0,0)$.

Answer

Given that $\mathrm{y}=\sin \mathrm{x}$
The slope of the tangent:
$\frac{d y}{d x}=\cos x$
For origin (a, b) slope $=\cos 0=1$
Equation of the tangent:
$\left(y-y_{1}\right)=$ Slope of tangent $\times\left(x-x_{1}\right)$
So, the equation of the tangent at the point $(0,0)$
$y-0=1(x-0)$
$\Rightarrow y=x$

