16. Circles

Exercise 16.1

1. Question

Fill in the blanks:
(i) All points lying inside/outside a circle are called \qquad points/ \qquad points.
(ii) Circles having the same centre and different radii are called \qquad Circles.
(iii) A point whose distance from the centre of a circle is greater than its radius lies in \qquad of the circle.
(iv) A continuous piece of a circle is \qquad of the circle.
(v) The longest chord of a circle is a of the circle.
(vi) An arc is a \qquad when its ends are the ends of a diameter.
(vii) Segment of a circle is the region between an arc andof the circle.
(viii) A circle divides the plane, on which it lies, in

Answer
(i) Interior/exterior
(ii) Concentric
(iii) Exterior
(iv) Arc
(v) Diameter
(vi) Semi-circle
(vii) Centre
(viii) Three

2. Question

Write the truth value (T/F) of the following with suitable reasons:
(i) A circle is a plane figure.
(ii) Line segment joining the centre to any point on the circle is a radius of the circle.
(iii) If a circle is divided into three equal arcs each is a major arc.
(iv) A circle has only finite number of equal chords.
(v) A chord of a circle, which is twice as long is its radius is a diameter of the circle.
(vi) Sector is the region between the chord and its corresponding arc.
(vii) The degree measure of an arc is the complement of the central angle containing the arc.
(viii) The degree measure of a semi-circle is 180°.

Answer

(i) True: Because it is a one dimensional figure
(ii) True: Since, line segment joining the centre to any point on the circle is a radius of the circle
(iii) True: Because each arc measures equal
(iv) False: Since, a circle has only infinite number of equal chords
(v) True: Because, radius equal to $\frac{1}{2}$ times of its diameter
(vi) True: Yes, sector is the region between the chord and its corresponding arc
(vii) False: The degree measure of an arc is half of the central angle containing the arc
(viii) True: Yes, The degree measure of a semi-circle is 180°

Exercise 16.2

1. Question

The radius of a circle is 8 cm and the length of one of its chords is 12 cm . Find the distance of the chord from the centre.

Answer

Given that,
Radius of circle (OA) $=8 \mathrm{~cm}$
Chord $(A B)=12 \mathrm{~cm}$
Draw $O C$ perpendicular to $A B$
We know that,
The perpendicular from centre to chord bisects the chord
Therefore,
$A C=B C=\frac{12}{2}$
$=6 \mathrm{~cm}$
Now,
In $\triangle O C A$, by using Pythagoras theorem
$A C^{2}+O C^{2}=O A^{2}$
$6^{2}+O C^{2}=8^{2}$
$36+O C^{2}=64$
$O C^{2}=64-36$
$O C^{2}=28$
$O C=5.291 \mathrm{~cm}$

2. Question

Find the length of a chord which is at a distance of 5 cm from the centre of a circle of radius 10 cm .

Answer

Given that,
Distance (OC) $=5 \mathrm{~cm}$
Radius of circle (OA) $=10 \mathrm{~cm}$
In $\triangle O C A$, by using Pythagoras theorem
$A C^{2}+O C^{2}=O A^{2}$
$A C^{2}+5^{2}=10^{2}$
$A C^{2}=100-25$
$A C^{2}=75$
$A C=8.66 \mathrm{~cm}$
We know that,
The perpendicular from centre to chord bisects the chord
Therefore,
$A C=B C=8.66 \mathrm{~cm}$
Then,
Chord $A B=8.66+8.66$
$=17.32 \mathrm{~cm}$

3. Question

Find the length of a chord which is at a distance of 4 cm from the centre of the circle of radius 6 cm .

Answer

Radius of circle (OA) $=6 \mathrm{~cm}$
Distance $(O C)=4 \mathrm{~cm}$
In $\triangle O C A$, by using Pythagoras theorem
$A C^{2}+O C^{2}=O A^{2}$
$\mathrm{AC}^{2}+4^{2}=6^{2}$
$A C^{2}=36-16$
$A C^{2}=20$
$A C=4.47 \mathrm{~cm}$
We know that,
The perpendicular distance from centre to chord bisects the chord
$A C=B C=4.47 \mathrm{~cm}$
Then,
$A B=4.47+4.47$
$=8.94 \mathrm{~cm}$

4. Question

Two chords $A B, C D$ of lengths $5 \mathrm{~cm}, 11 \mathrm{~cm}$ respectively of a circle are parallel. If the distance between $A B$ and $C D$ is 3 cm , find the radius of the circle.

Answer

Let r be the radius of the given circle and its center be O. Draw $O M \perp A B$ and $O N \perp C D$. Since, $O M$ perpendicular $A B$, ON perpendicular CD.
and $A B \| C D$
Therefore, points M, O and N are collinear.
So, $M N=6 \mathrm{~cm}$
Let, $\mathrm{OM}=\mathrm{xcm}$.
Then, $O N=(6-x) c m$.
Join OA and OC.
Then $O A=O C=r$
As the perpendicular from the centre to a chord of the circle bisects the chord.
$\therefore \quad \mathrm{AM}=\mathrm{BM}=1 / 2 \mathrm{AB}$
$=1 / 2 \times 5=2.5 \mathrm{~cm}$
$C N=D N=1 / 2 C D$
$=1 / 2 \times 11=5.5 \mathrm{~cm}$
In right triangles OAM and OCN, we have,
$O A^{2}=O M^{2}+A M^{2}$ and $O C^{2}=O N^{2}+C N^{2}$
$r^{2}=x^{2}+\left(\frac{5}{2}\right)^{2}$
$r^{2}=(6-x)^{2}+\left(\frac{11}{2}\right)^{2} \cdots \ldots(i i)$
From (i) and (ii), we have
$x^{2}+\left(\frac{5}{2}\right)^{2}=(6-x)^{2}+\left(\frac{11}{2}\right)^{2}$
$x^{2}+\frac{25}{4}=(6-x)^{2}+\frac{121}{4}$
$\Rightarrow 4 x^{2}+25=144+4 x^{2}-48 x+121$
$\Rightarrow \quad 48 x=240$
$\Rightarrow x=240 / 48$
$\Rightarrow x=5$

Putting the value of x in euation (i), we get

$$
\begin{aligned}
& r^{2}=5^{2}+(5 / 2)^{2} \\
& \Rightarrow r^{2}=25+25 / 4 \\
& \Rightarrow r^{2}=125 / 4 \\
& \Rightarrow r=5 \sqrt{ } 5 / 2 \mathrm{~cm}
\end{aligned}
$$

5. Question

Give a method to find the centre of a given circle.

Answer

Steps of construction:
(i) Take three points A, B and C on the given circle
(ii) Join $A B$ and $B C$
(iii) Draw the perpendicular bisectors of chord $A B$ and $B C$ which intersect each other at O
(iv) Point O will be required circle because we know that perpendicular bisector of chord always passes through centre.

6. Question

Prove that the line joining the mid-point of a chord to the centre of the circle passes through the midpoint of the corresponding minor arc.

Answer

Given that,
C is the mid-point of chord $A B$

To prove: D is the mid-point of arc $A B$
Proof: In $\triangle O A C$ and $\triangle O B C$,
$\mathrm{OA}=\mathrm{OB}$ (Radius of circle)
$A C=O C$ (Common)
$A C=B C$ (C is the mid-point of $A B)$
Then,
$\triangle O A C \cong \triangle O B C$ (By SSS congruence rule)
$\angle A O C=\angle B O C$ (By c.p.c.t)
$m(A \bar{D})=m(B \bar{D})$
$A \bar{D} \cong B \bar{D}$
Here, D is the mid-point of arc $A B$.

7. Question

Prove that a diameter of a circle which bisects a chord of the circle also bisects the angle subtended by the chord at the centre of the circle.

Answer

Given that,
$P Q$ is a diameter of circle which bisects chord $A B$ to C
To prove: PQ bisects $\angle A O B$
Proof: In $\triangle A O C$ and $\triangle B O C$,
$\mathrm{OA}=\mathrm{OB}$ (Radius of circle)
OC = OC (Common)
$A C=B C$ (Given)
Then,
$\triangle A D C \cong \triangle B O C$ (By SSS congruence rule)
$\angle A O C=\angle B O C$ (By c.p.c.t)
Hence, $P Q$ bisects $\angle A O B$.

8. Question

Given an arc of a circle, show how to complete the circle.

Answer

Steps of construction:
(i) Take three points A, B and C on the given arc
(ii) Join $A B$ and $B C$
(iii) Draw the perpendicular bisectors of chord $A B$ and $B C$ which intersect each other at point O. Then, O will be the required centre of the required circle.
(iv) Join OA
(v) With centre O and radius OA , complete the circle

9. Question

Prove that two different circles cannot intersect each other at more than two points.

Answer

Suppose two circles intersect in three points A, B and C. Then A, B, C are non-collinear. So, a unique circle passes through these three points. This is contradiction to the face that two given circles are passing through A, B, C. Hence, two circles cannot intersect each other at more than two points.

10. Question

A line segment $A B$ is length 5 cm . Draw a circle of radius 4 cm passing through A and B. Can you draw a circle of radius 2 cm passing through A and B ? Give reason in support of your answer.

Answer

(i) Draw a line segment $A B$ of 5 cm
(ii) Draw the perpendicular bisector of $A B$
(iii) With centre A and radius of 4 cm draw an arc which intersects the perpendicular bisector at point O. O will be the required centre.
(iv) Join OA
(v) With centre O and radius OA draw a circle.

No, we cannot draw a circle of radius 2 cm passing through A and B because when we draw an arc of radius 2 cm with centre A, the arc will not intersect the perpendicular bisector and we will not find the centre.

11. Question

An equilateral triangle of side 9 cm is inscribed in a circle. Find the radius of the circle.

Answer

Let $A B C$ be an equilateral triangle of side 9 cm
Let, $A D$ be one of its medians and G be the centroids of the triangle $A B C$
Then,
AG: GD $=2: 1$
We know that,
In an equilateral triangle centroid coincides with the circumcentre
Therefore,
G is the centre of the circumference with circum radius GA
Also, G is the centre and GD is perpendicular to $B C$
Therefore,
In right triangle ADB, we have
$A B^{2}=A D^{2}+D B^{2}$
$9^{2}=A D^{2}+D B^{2}$
$A D=\frac{9 \sqrt{3}}{2} \mathrm{~cm}$
Therefore,
Radius $=A G=\frac{2}{3} A D$
$=3 \sqrt{3} \mathrm{~cm}$

12. Question

Given an arc of a circle, complete the circle.

Answer

Steps of construction:
(i) Take three points A, B, C on the given arc
(ii) Join $A B$ and $B C$
(iii) Draw the perpendicular bisectors of chords $A B$ and $B C$ which intersect each other at point O. Then, O will be the required centre of the required circle.
(iv) Join OA
(v) With centre O and radius OA , complete the circle

13. Question

Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Answer
Each pair of circles have 0,1 or 2 points in common. The maximum number of points in common is 2 .

14. Question

Suppose you are given a circle. Give a construction to find its centre.

Answer

Steps of construction:
(i) Take three points A, B and C in the given circle.
(ii) Join $A B$ and $B C$
(iii) Draw the perpendicular bisector of chord $A B$ and $B C$ which intersect each other at O
(iv) Point O will be the required centre of the circle because we know that, the perpendicular bisector of the chord always passes through the centre

15. Question

Two chords $A B$ and $C D$ of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are opposite side of its centre. If the distance between $A B$ and $C D$ is 6 cm , find the radius of the circle.

Answer

Draw OM perpendicular to $A B$ and $O N$ perpendicular to $C D$
Join OB and OC
$\mathrm{BM}=\frac{A B}{2}=\frac{5}{2}$ (Perpendicular from centre bisects the chord)
$N D=\frac{C D}{2}=\frac{11}{2}$
Let,
ON be r so OM will be (6-x)
In $\triangle M O B$,
$O M^{2}+M B^{2}=O B^{2}$
$(6-x)^{2}+\left(\frac{5}{2}\right)^{2}=O B^{2}$
$36+x^{2}-12 x+\frac{25}{4}=O B^{2}$
In $\triangle N O D$,
$O N^{2}+N D^{2}=O D^{2}$
$\mathrm{x}^{2}+\left(\frac{11}{2}\right)^{2}=O D^{2}$
$\mathrm{x}^{2}+\frac{121}{4}=O D^{2}$ (ii)
We have,
$\mathrm{OB}=\mathrm{OD}$ (Radii of same circle)
So from (i) and (ii), we get
$36+x^{2}+2 x+\frac{25}{4}=x^{2}+\frac{121}{4}$
$12 x=36+\frac{25}{4}-\frac{121}{4}$
$=\frac{144+25-121}{4}=\frac{48}{4}$
$=12$
From (ii), we get
$(1)^{2}+\left(\frac{121}{4}\right)=O D^{2}$
$O D^{2}=1+\frac{121}{4}$
$=\frac{125}{4}$
$O D=\frac{5 \sqrt{5}}{2}$
So, radius of circle is found to be $\frac{5}{2} \sqrt{5} \mathrm{~cm}$

16. Question

The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at a distance of 4 cm from the centre, what is the distance of the other chord from the centre?

Answer

Distance of smaller chord $A B$ from centre of circle $=4 \mathrm{~cm}$
$O M=4 \mathrm{~cm}$
$M B=\frac{A B}{2}=\frac{6}{2}$
$=3 \mathrm{~cm}$
In $\triangle O M B$,
$O M^{2}+M B^{2}=O B^{2}$
$(4)^{2}+(3)^{2}=\mathrm{OB}^{2}$
$16+9=O B^{2}$
$\mathrm{OB}^{2}=25$
$O B=5 \mathrm{~cm}$
In $\triangle O N D$,
$O D=O B=5 \mathrm{~cm}$ (Radii of same circle)
$N D=\frac{C D}{2}=\frac{8}{2}$
$=4 \mathrm{~cm}$
$O N^{2}+\mathrm{ND}^{2}=O D^{2}$
$\mathrm{ON}^{2}+(4)^{2}=(5)^{2}$
$\mathrm{ON}^{2}=25-16$
$=9$
$\mathrm{ON}=3$
SO, distance of bigger chord from circle is 3 cm .

Exercise 16.3

1. Question

Three girls Ishita, Isha and Nisha are playing a game by standing on a circle of radius 20 m drawn in a park. Ishita throws a ball to Isha, Isha to Nisha and Nisha to Ishita. If the distance between Ishita and Isha and between Isha and Nisha is 24 m each, what is distance between Ishita and Nisha?

Answer

Let A be the position of Ishita, B be the position of Isha and C be the position of NishaGiven $A B=B C$ $=24 \mathrm{~m} O A=O B=O C=20 \mathrm{~m}$ [Radii of circle]Draw perpendiculars $O P$ and $O Q$ on $A B$ and $B C$ respectively $A P=P B=12 \mathrm{mIn}$ right $\triangle O P A, O P^{2}+A P^{2}=O A^{2} O P^{2}+(12)^{2}=(20)^{2} O P^{2}=256 \mathrm{sq} \mathrm{m}$ Therefore, $O P=16 \mathrm{mFrom}$ the figure, $O A B C$ is a kite since $O A=O C$ and $A B=B C$. Recall that the diagonals of a kite are perpendicular and the diagonal common to both the isosceles triangles is bisected by another diagonal.Therefore, $\angle A R B=90^{\circ}$ and $A R=$ RCArea of $\triangle O A B$
$=\frac{1}{2} \quad \times \mathrm{OP} \times \mathrm{AB}$
$=\frac{1}{2} \times 16 \times 24=192$ sq m
Also area of $\triangle \mathrm{OAB}=\frac{1}{2} \quad \times \mathrm{OB} \times \mathrm{AR}$
Hence, $\frac{1}{2} \quad$ OB $\times \mathrm{AR}=192$
$\frac{1}{2} \times 20 \times$ AR $=192$
Therefore, $A R=19.2$ mBut $A C=2 A R=2(19.2)=38.4$ mThus the distance between Ishita and Nisha is 38.4 m

2. Question

A circular park of radius 40 m is situated in a colony. Three boys Ankur, Amit and Anand are sitting at equal distance on its boundary each having a toy telephone in his hands to talk to each other. Find the length of the string of each phone.

Answer

Given that,
$A B=B C=C A$
So, $A B C$ is an equilateral triangle
$O A=40 \mathrm{~cm}$ (Radius)
Medians of equilateral triangle pass through the circumference (O) of the equilateral triangle $A B C$
We also know that,
Median intersects each other at 2: 1 as $A D$ is the median of equilateral triangle $A B C$, we can write:
$\frac{O A}{O D}=\frac{2}{7}$
$\frac{40}{O D}=\frac{2}{7}$
$O D=20 \mathrm{~m}$
Therefore,
$A O=O A+O D$
$=40+20$
$=60 \mathrm{~m}$
In $\triangle A D C$,
By using Pythagoras theorem
$A C^{2}=A O^{2}+D C^{2}$
$A C^{2}=(60)^{2}+\left(\frac{A C}{2}\right)^{2}$
$A C^{2}=3600+\frac{A C * A C}{4}$
$\frac{3}{4} A C^{2}=3600$
$A C^{2}=4800$
$A C=40 \sqrt{3} \mathrm{~m}$
So, length of string of each phone will be $40 \sqrt{3} \mathrm{~m}$

Exercise 16.4

1. Question

In Fig. 16.120, O is the centre of the circle. If $\angle A P B=50^{\circ}$, find $\angle A O B$ and $\angle O A B$.

Fig. 16.120

Answer

$\angle A P B=50^{\circ}$ (Given)
By degree measure theorem,
$\angle A O B=\angle A P B$
$\angle \mathrm{APB}=2 * 50$
$=100^{\circ}$
Since,
$\mathrm{OA}=\mathrm{OB}$ (Radii)
Hence,
$\angle \mathrm{OAB}=\angle \mathrm{OBA}$ (Angle opposite to equal sides are equal)
Let,
$\angle O A B=x$
In Triangle OAB,
$\angle O A B+\angle O B A+\angle A O B=180^{\circ}$
$x+x+100^{\circ}=180^{\circ}$
$2 x=80^{\circ}$
$x=40^{\circ}$
$\angle O A B=\angle O B A=40^{\circ}$

2. Question

In Fig. 16.121, it is given that O is the centre of the circle and $\angle A O C=150^{\circ}$. Find $\angle A B C$.

Fig. 16.121

Answer

We have,
$\angle A O C=150^{\circ}$
Therefore,
$\angle A O C+$ Reflex $\angle A O C=360^{\circ}$
Reflex $\angle A O C=210^{\circ}$
$2 \angle A B C=210^{\circ}$ (By degree measure theorem)
$\angle A B C=105^{\circ}$

3. Question

In Fig. 16.122, O is the centre of the circle. Find $\angle B A C$.

Fig. 16.122

Answer

We have,
$\angle A O B=80^{\circ}$
$\angle A O C=110^{\circ}$
$\angle A O B+\angle A O C+\angle B O C=360^{\circ}($ Complete angle $)$
$80^{\circ}+110^{\circ}+\angle B O C=360^{\circ}$
ㅁ $B O C=170^{\circ}$
By degree measure theorem,
$\angle B O C=2 \angle B A C$
$170^{\circ}=2 \angle B A C$
$\angle B A C=85^{\circ}$

4. Question

If O is the centre of the circle, find the value of x in each of the following figures:

Fig. 16.123

Fig. 16.124

Fig. 16.125

Fig. 16.126
(v)

Fig. 16.127
(viii)

Fig. 16.130

Fig. 16.128

Fig. 16.129

Fig. 16.131

Answer

(i) $\angle A O C=135^{\circ}$

Therefore,
$\angle A O C+\angle B O C=180^{\circ}$ (Linear pair)
$135^{\circ}+\angle B O C=180^{\circ}$
$\angle B O C=45^{\circ}$
By degree measure theorem,
$\angle B O C=2 \angle C O B$
$45^{\circ}=2 x$
$x=22 \frac{1}{2} \circ$
(ii) We have,
$\angle A B C=40^{\circ}$
$\angle A C B=90^{\circ}$ (Angle in semi-circle)
In triangle $A B C$, by angle sum property
$\angle C A B+\angle A C B+\angle A B C=180^{\circ}$
$\angle C A B+90^{\circ}+40^{\circ}=180^{\circ}$
$\angle C A B=50^{\circ}$
Now,
$\angle C O B=\angle C A B$ (Angle on same segment)
$x=50^{\circ}$
(iii) We have,
$\angle A O C=120^{\circ}$
BY degree measure theorem,
$\angle A O C=2 \angle A P C$
$120^{\circ}=2 \angle \mathrm{APC}$
$\angle A P C=60^{\circ}$
Therefore,
$\angle A P C+\angle A B C=180^{\circ}$ (Opposite angles of cyclic quadrilateral)
$60^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=120^{\circ}$
$\angle \mathrm{ABC}+\angle \mathrm{DBC}=180^{\circ}$ (Linear pair)
$120^{\circ}+x=180^{\circ}$
$x=60^{\circ}$
(iv) We have,
$\angle C B D=65^{\circ}$
Therefore,
$\angle A B C+\angle C B D=180^{\circ}$ (Linear pair)
$\angle A B C+65^{\circ}=180^{\circ}$
$\angle A B C=115^{\circ}$
Therefore,
Reflex $\angle A O C=2 \angle A B C$ (By degree measure theorem)
$x=2 * 115^{\circ}$
$=230^{\circ}$
(v) We have,
$\angle O A B=35^{\circ}$
Then,
$\angle \mathrm{OBA}=\angle \mathrm{OAB}=35^{\circ}$ (Angle opposite to equal sides are equal)
In triangle AOB, by angle sum property
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$
$\angle A O B+35^{\circ}+35^{\circ}=180^{\circ}$
$\angle A O B=110^{\circ}$
Therefore,
$\angle A O B+$ Reflex $\angle A O B=360^{\circ}$ (Complete angle)
$110^{\circ}+$ Reflex $\angle A O B=360^{\circ}$
Reflex $\angle A O B=250^{\circ}$
By degree measure theorem,
Reflex $\angle A O B=2 \angle A C B$
$250^{\circ}=2 x$
$x=125^{\circ}$
(vi) We have,
$\angle A O B=60^{\circ}$
By degree measure theorem,
$\angle A O B=2 \angle A C B$
$60^{\circ}=2 \angle A C B$
$\angle A C B=30^{\circ}$
$x=30^{\circ}$
(vii) We have,
$\angle B A C=50^{\circ}$
$\angle D B C=70^{\circ}$
Therefore,
$\angle B D C=\angle B A C=50^{\circ}$ (Angles on same segment)
In triangle BDC, by angle sum property
$\angle B D C+\angle B C D+\angle D B C=180^{\circ}$
$50^{\circ}+x+70^{\circ}=180^{\circ}$
$120^{\circ}+x=180^{\circ}$
$x=60^{\circ}$
(viii) We have,
$\angle D B O=40^{\circ}$
$\angle \mathrm{DBC}=90^{\circ}$ (Angle in semi-circle)

Therefore,
$\angle \mathrm{DBO}+\angle \mathrm{OBC}=90^{\circ}$
$40^{\circ}+\angle \mathrm{OBC}=90^{\circ}$
$\angle O B C=50^{\circ}$
By degree measure theorem,
$\angle A O C=2 \angle O B C$
$x=2 * 50^{\circ}$
$x=100^{\circ}$
(ix) In triangle DAB, by angle sum property
$\angle A D B+\angle D A B+\angle A B D=180^{\circ}$
$32^{\circ}+\angle \mathrm{DAB}+50^{\circ}=180^{\circ}$
$\angle \mathrm{DAB}=98^{\circ}$
Now,
$\angle D A B+\angle D C B=180^{\circ}$ (Opposite angle of cyclic quadrilateral)
$98^{\circ}+x=180^{\circ}$
$x=180^{\circ}-98^{\circ}$
$=82^{\circ}$
(x) We have,
$\angle B A C=35^{\circ}$
$\angle B D C=\angle B A C=35^{\circ}$ (Angle on same segment)
In triangle BCD, by angle sum property
$\angle B D C+\angle B C D+\angle D B C=180^{\circ}$
$30^{\circ}+x+65^{\circ}=180^{\circ}$
$x=80^{\circ}$
(xi) We have,
$\angle \mathrm{ABD}=40^{\circ}$
$\angle A C D=\angle A B D=40^{\circ}$ (Angle on same segment)
In triangle PCD, by angle sum property
$\angle P C D+\angle C P D+\angle P D C=180^{\circ}$
$40^{\circ}+110^{\circ}+x=180^{\circ}$
$x=30^{\circ}$
(xii) Given that,
$\angle B A C=52^{\circ}$
$\angle B D C=\angle B A C=52^{\circ}$ (Angle on same segment)
Since, OD $=O C$
Then,
$\angle \mathrm{ODC}=\angle \mathrm{OCD}$ (Opposite angles to equal radii)
$x=52^{\circ}$

5. Question

O is the circumcentre of the triangle $A N C$ and $O D$ is perpendicular on $B C$. Prove that $\angle B O D=\angle A$

Answer

Given that,
O is the circumcentre of triangle $A B C$ and $O D$ perpendicular $B C$
To prove: $\angle B O D=\angle A$
Proof: In triangle OBD and triangle OCD, we have
$\angle O D B=\angle O D C\left(\right.$ Each $\left.90^{\circ}\right)$
$\mathrm{OB}=\mathrm{OC}$ (Radii)
$O D=O D$ (Common)
By R.H.S rule,
$\triangle O D B \cong \triangle O D C$
$\angle B O D=\angle C O D$ (By c.p.c.t) (i)
By degree measure theorem,
$\angle B O C=2 \angle B A C$
$2 \angle B O D=2 \angle B A C$ [From (i)]
$\angle B O D=\angle B A C$
Hence, proved

6. Question

In Fig. 16.135, O is the centre of the circle, $B o$ is the bisector of $\angle A B C$. Show that $A B=A C$.

Fig. 16.135

Answer

Given that,
$B O$ is the bisector of $\angle A B C$
To prove: $A B=B C$
Proof: $\angle A B O=\angle C B O$ ($B O$ bisector of $\angle A B C$) (i)
$O B=O A$ (Radii)
Therefore,
$\angle A B O=\angle D A B$ (Opposite angle to equal sides are equal) (ii)
$\mathrm{OB}=\mathrm{OC}$ (Radii)
Therefore,
$\angle C B O=\angle O C B$ (Opposite angles to equal sides are equal) (iii)
Compare (i), (ii) and (iii)
$\angle O A B=\angle O C B$ (iv)
In triangle $O A B$ and $O C B$, we have
$\angle O A B=\angle O C B[$ From (iv)]
$\angle O B A=\angle O B C$ (Given)
$O B=O B$ (Common)
By AAS congruence rule
$\triangle O A B \cong \triangle O C B$
$A B=B C$ (By c.p.c.t)
Hence, proved

7. Question

In Fig. 16. 136, O is the centre of the circle, prove that $\angle x=\angle y+\angle z$.

Fig. 16.136

Answer

We have,
$\angle 3=\angle 4$ (Angle on same segment)
By degree measure theorem,
$\angle x=2 \angle 3$
$\angle x=\angle 3+\angle 3$
$\angle x=\angle 3+\angle 4$ (i) (Therefore, $\angle 3=\angle 4$)
But,
$\angle y=\angle 3+\angle 1$ (By exterior angle property)
$\angle 3=\angle y-\angle 1$ (ii)
From (i) and (ii),
$\angle x=\angle y-\angle 1+\angle 4$
$\angle x=\angle y+\angle 4-\angle 1$
$\angle x=\angle y+\angle z+\angle 1-\angle 1$ (By exterior angle property)
$\angle x=\angle y+\angle z$
Hence, proved

8. Question

In Fig. 16.137, O and O^{\prime} are centres of two circles intersecting at B and $C . A C D$ is a straight line, find x.

Answer

By degree measure theorem,
$\angle A O B=2 \angle A C B$
$130^{\circ}=2 \angle A C B$
$\angle A C B=65^{\circ}$
Therefore,
$\angle A C B+\angle B C D=180^{\circ}$ (Linear pair)
$65^{\circ}+\angle B C D=180^{\circ}$
$\angle B C D=115^{\circ}$
By degree measure theorem,
Reflex $\angle B O D=2 \angle B C D$
Reflex $\angle \mathrm{BOD}=2 * 115^{\circ}$
$=230^{\circ}$
$\angle B O D+$ Reflex $\angle B O D=360^{\circ}$ (Complete angle)
$230^{\circ}+x=360^{\circ}$
$x=130^{\circ}$

9. Question

In Fig. 16.138, O is the centre of a circle and $P Q$ is a diameter. If $\angle R O S=40^{\circ}$, find $\angle R T S$.

Answer

Since,
PQ is diameter
Then,
$\angle P R Q=90^{\circ}$ (Angle in semi-circle)
Therefore,
$\angle \mathrm{PRQ}+\angle \mathrm{TRQ}=180^{\circ}$ (Linear pair)
$90^{\circ}+\angle T R Q=180^{\circ}$
$\angle \mathrm{TRQ}=90^{\circ}$
By degree measure theorem,
$\angle R O S=2 \angle R Q S$
$\angle \mathrm{RQS}=20^{\circ}$
In triangle RQT, we have
$\angle R Q T+\angle Q R T+\angle R T S=180^{\circ}$ (By angle sum property)
$20^{\circ}+90^{\circ}+\angle \mathrm{RTS}=180^{\circ}$
$\angle \mathrm{RTS}=70^{\circ}$

10. Question

In Fig. 16.139, if $\angle A C B=40^{\circ}, \angle D P B=120^{\circ}$, find $\angle C B D$.

Fig. 16.139

Answer

We have,
$\angle A C B=40^{\circ}$
$\angle \mathrm{DPB}=120^{\circ}$
$\angle A D B=\angle A C B=40^{\circ}$ (Angle on same segment)
In triangle PDB, by angle sum property
$\angle \mathrm{PDB}+\angle \mathrm{PBD}+\angle \mathrm{BPD}=180^{\circ}$
$40^{\circ}+\angle \mathrm{PBD}+120^{\circ}=180^{\circ}$
$\angle \mathrm{PBD}=20^{\circ}$
Therefore,
$\angle C B D=20^{\circ}$

11. Question

A chord of a circle is equal to the radius of the circle. Find the angle substended by the chords at a point on the minor arc and also at a point on the major arc.

Answer

We have,
Radius $\mathrm{OA}=$ Chord AB
$O A=O B=A B$
Then, triangle OAB is an equilateral triangle
Therefore,
$\angle A O B=60^{\circ}$ (Angle of an equilateral triangle)
By degree measure theorem,
$\angle A O B=2 \angle A P B$
$60^{\circ}=2 \angle A P B$
$\angle A P B=30^{\circ}$
Now,
$\angle A P B+\angle A Q B=180^{\circ}$ (Opposite angle of cyclic quadrilateral)
$30^{\circ}+\angle A Q B=180^{\circ}$
$\angle A Q B=150^{\circ}$
Therefore,
Angle by chord $A B$ at minor arc $=150^{\circ}$
And, by major arc $=30^{\circ}$

Exercise 16.5

1. Question

In Fig. 16.176, $\triangle A B C$ is an equilateral triangle. Find $m \angle B E C$.

Fig. 16.176
Answer
Since,
Triangle $A B C$ is an equilateral triangle
$\angle B A C=60^{\circ}$
$\angle B A C+\angle B E C=180^{\circ}$ (Opposite angles of quadrilateral)
$60^{\circ}+\angle B E C=180^{\circ}$
$\angle B E C=120^{\circ}$

2. Question

In Fig. 16.177, $\triangle P Q R$ is an isosceles triangle with $P Q=P R$ and $m \angle P Q R=35^{\circ}$. Find $m \angle Q S R$ and $m \angle Q T R$.

Fig. 16.177

Answer

We have,
$\angle \mathrm{PQR}=35^{\circ}$
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}=35^{\circ}$ (Angle opposite to equal sides)
In triangle PQR, by angle sum property
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$\angle P+35^{\circ}+35^{\circ}=180^{\circ}$
$\angle P=110^{\circ}$
Now,

$$
\begin{aligned}
& \angle \mathrm{QSR}+\angle \mathrm{QTR}=180^{\circ} \\
& 110^{\circ}+\angle \mathrm{QTR}=180^{\circ} \\
& \angle \mathrm{QTR}=70^{\circ}
\end{aligned}
$$

3. Question

In Fig. 16.178, O is the centre of the circle. If $\angle B O D=160^{\circ}$, find the values of x and y.

Fig. 16.178

Answer

Given that,
O is the centre of the circle
We have,
$\angle B O D=160^{\circ}$
By degree measure theorem,
$\angle B O D=2 \angle B C D$
$160^{\circ}=2 x$
$x=80^{\circ}$
Therefore,
$\angle B A D+\angle B C D=180^{\circ}$ (Opposite angles of Cyclic quadrilateral)
$y+x=180^{\circ}$
$y+80^{\circ}=180^{\circ}$
$y=100^{\circ}$

4. Question

In Fig. 16.179 $A B C D$ is a cyclic quadrilateral. If $\angle B C D=100^{\circ}$ and $\angle A B D=70^{\circ}$, find $\angle A D B$.

Fig. 16.179

Answer

We have,
$\angle B C D=100^{\circ}$
$\angle A B D=70^{\circ}$
Therefore,
$\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$ (Opposite angles of cyclic quadrilateral)
$\angle \mathrm{DAB}+100^{\circ}=180^{\circ}$
$\angle D A B=180^{\circ}-100^{\circ}$
$=80^{\circ}$
In triangle $D A B$, by angle sum property
$\angle A D B+\angle D A B+\angle A B D=180^{\circ}$
$\angle A B D+80^{\circ}+70^{\circ}=180^{\circ}$
$\angle A B D=30^{\circ}$

5. Question

If $A B C D$ is a cyclic quadrilateral in which $A D \| B C$ (fig. 16.180). Prove that $\angle B=\angle C$.

Fig. 16.180

Answer

Since, $A B C D$ is a cyclic quadrilateral with $A D$ || $B C$
Then,
$\angle A+\angle C=180^{\circ}$ (i) (Opposite angles of cyclic quadrilateral)
And,
$\angle A+\angle B=180^{\circ}$ (ii) (Co. interior angles)
Comparing (i) and (ii), we get
$\angle B=\angle C$
Hence, proved

6. Question

In Fig. 16.181, O is the centre of the circle. Find $\angle C B D$.

Answer

Given that,
$\angle B O C=100^{\circ}$
By degree measure theorem,
$\angle A O C=2 \angle A P C$
$100^{\circ}=2 \angle A P C$
$\angle A P C=50^{\circ}$
Therefore,
$\angle A P C+\angle A B C=180^{\circ}$ (Opposite angles of a cyclic quadrilateral)
$50^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=130^{\circ}$
Therefore,
$\angle A B C+\angle C B D=180^{\circ}$ (Linear pair)
$130^{\circ}+\angle C B D=180^{\circ}$
$\angle C B D=50^{\circ}$

7. Question

In Fig. 16.182, $A B$ and $C D$ are diameters of a circle with centre O. If $\angle O B D=50^{\circ}$, find $\angle A O C$.

Fig. 16.182

Answer

Given that,
$\angle O B D=50^{\circ}$
Since,
$A B$ and $C D$ are the diameters of the circles and O is the centre of the circle
Therefore,
$\angle \mathrm{PBC}=90^{\circ}$ (Angle in the semi-circle)
$\angle O B D+\angle D B C=90^{\circ}$
$50^{\circ}+\angle \mathrm{DBC}=90^{\circ}$
$\angle D B C=40^{\circ}$
By degree measure theorem,
$\angle A O C=2 \angle A B C$
$\angle A O C=2 * 40^{\circ}$
$=80^{\circ}$

8. Question

On a semi-circle with $A B$ as diameter, a point C is taken, so that $m(\angle C A B)=30^{\circ}$. Find $m(\angle A C B)$ and $m(\angle A B C)$.

Answer

We have,
$\angle C A B=30^{\circ}$
$\angle A C B=90^{\circ}$ (Angle in semi-circle)
IN triangle $A B C$, by angle sum property
$\angle C A B+\angle A C B+\angle A B C=180^{\circ}$
$30^{\circ}+90^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=60^{\circ}$

9. Question

In a cyclic quadrilateral $A B C D$ if $A B H C D$ and $B=70^{\circ}$, find the remaining angles.

Answer

Given that,
$\angle B=70^{\circ}$
Since, $A B C D$ is a cyclic quadrilateral
Then,
$\angle B+\angle D=180^{\circ}$
$70^{\circ}+\angle \mathrm{D}=180^{\circ}$
$\angle \mathrm{D}=110^{\circ}$
Since, $A B \| D C$
Then,
$\angle B+\angle C=180^{\circ}$ (Co. interior angle)
$70^{\circ}+\angle C=180^{\circ}$
$\angle C=110^{\circ}$
Now,
$\angle A+\angle C=180^{\circ}$ (Opposite angles of cyclic quadrilateral)
$\angle A+110^{\circ}=180^{\circ}$
$\angle A=70^{\circ}$

10. Question

In a cyclic quadrilateral $A B C D$, if $m \angle A=3(m \angle C)$. Find $m \angle A$.

Answer

WE have,
$\angle A=3 \angle C$
Let, $\angle C=x$
Therefore,
$\angle A+\angle C=180^{\circ}$ (Opposite angles of cyclic quadrilateral)
$3 x+x=180^{\circ}$
$4 x=180^{\circ}$
$x=45^{\circ}$
$\angle A=3 x$
$=3 * 45^{\circ}$
$=135^{\circ}$
Therefore,
$\angle A=135^{\circ}$

11. Question

In Fig. $16.183, O$ is the centre of the circle $\angle D A B=50^{\circ}$. Calculate the values of x and y.

Fig. 16.183

Answer

We have,
$\angle D A B=50^{\circ}$
By degree measure theorem
$\angle B O D=2 \angle B A D$
$x=2 * 50^{\circ}$
$=100^{\circ}$
Since, $A B C D$ is a cyclic quadrilateral
Then,
$\angle A+\angle C=180^{\circ}$
$50^{\circ}+y=180^{\circ}$
$y=130^{\circ}$

12. Question

In Fig. 16.184, if $\angle B A C=60^{\circ}$ and $\angle B C A=20^{\circ}$, find $\angle A D C$.

Fig. 16.184

Answer

By using angle sum property in triangle $A B C$,
$\angle B=180^{\circ}-\left(60^{\circ}+20^{\circ}\right)$
$=100^{\circ}$
In cyclic quadrilateral $A B C D$, we have
$\angle B+\angle D=180^{\circ}$
$\angle \mathrm{D}=180^{\circ}-100^{\circ}$
$=100^{\circ}$

13. Question

In Fig. 16.185, if $A B C$ is an equilateral triangle. Find $\angle B D C$ and $\angle B E C$

Fig. 16.185

Answer

Since, $A B C$ is an equilateral triangle
Then,
$\angle B A C=60^{\circ}$
Therefore,
$\angle B D C=\angle B A C=60^{\circ}$ (Angles in the same segment)
Since, quadrilateral $A B E C$ is a cyclic quadrilateral
Then,
$\angle B A C+\angle B E C=180^{\circ}$
$60^{\circ}+\angle B E C=180^{\circ}$
$\angle B E C=180^{\circ}-60^{\circ}$
$=120^{\circ}$

14. Question

In Fig. 16.186, O is the centre of the circle. If $\angle C E A=30^{\circ}$, find the values of x, y and z.

Fig. 16.186

Answer

We have,
$\angle A E C=30^{\circ}$
Since, quadrilateral $A B C E$ is a cyclic quadrilateral
Then,
$\angle B A C+\angle A E C=180^{\circ}$
$x+30^{\circ}=180^{\circ}$
$x=150^{\circ}$
By degree measure theorem,
$\angle A O C=2 \angle A E C$
$y=2 * 30^{\circ}$
$=60^{\circ}$
Therefore,
$\angle A D C=\angle A E C$ (Angles in same segment)
$z=30^{\circ}$

15. Question

In Fig. 16.187, $\angle B A D=78^{\circ}, \angle D C F=x^{\circ}$ and $\angle D E F=y^{\circ}$. Find the values of x and y.

Fig. 16.187

Answer

We have,
$\angle B A D=78^{\circ}$
$\angle D C F=x^{0}$
$\angle D E F=y^{\circ}$
Since, $A B C D$ is a cyclic quadrilateral
$\angle B A D+\angle B C D=180^{\circ}$
$78^{\circ}+\angle B C D=180^{\circ}$
$\angle B C D=102^{\circ}$
Now,
$\angle B C D+\angle D C F=180^{\circ}$ (Linear pair)
$102^{\circ}=x-180^{\circ}$
$x=78^{\circ}$
Since,
DCEF is a cyclic quadrilateral
$x+y=180^{\circ}$
$78^{\circ}+y=180^{\circ}$
$y=102^{\circ}$

16. Question

In a cyclic quadrilateral $A B C D$, if $\angle A-\angle C=60^{\circ}$, prove that the smaller of two is 60°.

Answer

WE have,
$\angle \mathrm{A}-\angle \mathrm{C}=60^{\circ}$ (i)
Since, $A B C D$ is a cyclic quadrilateral
Then,
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ (ii)
Adding (i) and (ii), we get
$\angle \mathrm{A}-\angle \mathrm{C}+\angle \mathrm{A}+\angle \mathrm{C}=60^{\circ}+180^{\circ}$
$2 \angle A=240^{\circ}$
$\angle A=120^{\circ}$
Put value of $\angle A$ in (ii), we get
$120^{\circ}+\angle C=180^{\circ}$
$\angle C=60^{\circ}$

17. Question

In Fig. $16.188, A B C D$ is a cyclic quadrilateral. Find the value of x.

Fig. 16.188

Answer

$\angle \mathrm{FDC}+\angle \mathrm{CDA}=180^{\circ}$ (Linear pair)
$80^{\circ}+\angle C D A=180^{\circ}$
$\angle C D A=100^{\circ}$
Since, $A B C D$ is a cyclic quadrilateral
$\angle A D C+\angle A B C=180^{\circ}$
$100^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=80^{\circ}$

Now,
$\angle A B C+\angle A B F=180^{\circ}$ (Linear pair)
$80^{\circ}+x=180^{\circ}$
$x=180^{\circ}-80^{\circ}$
$=100^{\circ}$

18. Question

$A B C D$ is a cyclic quadrilateral in which:
(i) $B C \| A D, \angle A D C=110^{\circ}$ and $\angle B A C=50^{\circ}$. Find $\angle D A C$.
(ii) $\angle D B C=80^{\circ}$ and $\angle B A C=40^{\circ}$ Find $\angle B C D$.
(iii) $\angle B C D=100^{\circ}$ and $\angle A B D=70^{\circ}$. Find $\angle A D B$.

Answer

(i) Since, $A B C D$ is a cyclic quadrilateral

Then,
$\angle A B C+\angle A D C=180^{\circ}$
$\angle A B C+110^{\circ}=180^{\circ}$
$\angle A B C=70^{\circ}$
Since, AD || BC
Then,
$\angle \mathrm{DAB}+\angle \mathrm{ABC}=180^{\circ}$ (Co. interior angle)
$\angle D A C+50^{\circ}+70^{\circ}=180^{\circ}$
$\angle D A C=180^{\circ}-120^{\circ}$
$=60^{\circ}$
(ii) $\angle \mathrm{BAC}=\angle \mathrm{BDC}=40^{\circ}$ (Angle in the same segment)

In $\triangle B D C$, by angle sum property
$\angle D B C+\angle B C D+\angle B D C=180^{\circ}$
$80^{\circ}+\angle B C D+40^{\circ}=180^{\circ}$
$\angle B C D=60^{\circ}$
(iii) Given that,

Quadrilateral $A B C D$ is a cyclic quadrilateral

Then,
$\angle B A D+\angle B C D=180^{\circ}$
$\angle B A D=80^{\circ}$
In triangle ABD, by angle sum property
$\angle A B D+\angle A D B+\angle B A D=180^{\circ}$
$70^{\circ}+\angle A D B+80^{\circ}=180^{\circ}$
$\angle A D B=30^{\circ}$

19. Question

Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.

Answer

Let $A B C D$ be a cyclic quadrilateral and let O be the centre of the corresponding circle
Then, each side of the equilateral $A B C D$ is a chord of the circle and the perpendicular bisector of a chord always passes through the centre of the circle

So, right bisectors of the sides of the quadrilateral $A B C D$ will pass through the centre O of the corresponding circle.

20. Question

Prove that the centre of the circle circumscribing the cyclic rectangle $A B C D$ is the point of intersection of its diagonals.

Answer

Let O be the circle circumscribing the cyclic rectangle $A B C D$.
Since, $\angle A B C=90^{\circ}$ and $A C$ is the chord of the circle. Similarly, $B D$ is a diameter
Hence, point of intersection of $A C$ and $B D$ is the centre of the circle.

21. Question

Prove that the circles described on the four sides of a rhombus as diameters, pass through the point of intersection of its diagonals.

Answer

Let $A B C D$ be a rhombus such that its diagonals $A C$ and $B D$ intersects at O
Since, the diagonals of a rhombus intersect at right angle
Therefore,
$\angle \mathrm{ACB}=\angle \mathrm{BOC}=\angle \mathrm{COD}=\angle \mathrm{DOA}=90^{\circ}$
Now,
$\angle A O B=90^{\circ}=$ circle described on $A B$ as diameter will pass through O

Similarly, all the circles described on $B C, A D$ and $C D$ as diameter pass through 0 .

22. Question

If the two sides of a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are equal.

Answer

Given that,
$A B C D$ is cyclic quadrilateral in which $A B=D C$
To prove: $\mathrm{AC}=\mathrm{BD}$
Proof: In $\triangle P A B$ and $\triangle P D C$,
$A B=D C$ (Given)
$\angle B A P=\angle C D P$ (Angles in the same segment)
$\angle \mathrm{PBA}=\angle \mathrm{PCD}$ (Angles in the same segment)
Then,
$\triangle P A B=\triangle P D C$ (i) (By c.p.c.t)
$P C=P B$ (ii) (By c.p.c.t)
Adding (i) and (ii), we get
$P A+P C=P D+P B$
$A C=B D$

23. Question

$A B C D$ is a cyclic quadrilateral in which $B A$ and $C D$ when produced meet in E and $E A=E D$. Prove that:
(i) $A D \| B C$ (ii) $E B=E C$

Answer
Given that, $A B C D$ is a cyclic quadrilateral in which
(i) Since,
$E A=E D$
Then,
$\angle E A D=\angle E D A$ (i) (Opposite angles to equal sides)
Since, $A B C D$ is a cyclic quadrilateral
Then,
$\angle A B C+\angle A D C=180^{\circ}$
But,
$\angle A B C+\angle E B C=180^{\circ}$ (Linear pair)
Then,
$\angle A D C=\angle E B C$ (ii)
Compare (i) and (ii), we get
$\angle E A D=\angle E B C$ (iii)
Since, corresponding angles are equal
Then,
$B C \| A D$
(ii) From (iii), we have
$\angle E A D=\angle E B C$
Similarly,
$\angle E D A=\angle E C B$ (iv)
Compare equations (i), (iii) and (iv), we get
$\angle E B C=\angle E C B$
$\mathrm{EB}=\mathrm{EC}$ (Opposite angles to equal sides)

24. Question

Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side (or third side produced).

Answer

Since,
$A B$ is a diameter
Then,
$\angle A D B=90^{\circ}$ (i) (Angle in semi-circle)
Since,'
AC is a diameter
Then,
$\angle A D C=90^{\circ}$ (ii) (Angle in semi-circle)
Adding (i) and (ii), we get
$\angle A D B+\angle A D C=90^{\circ}+90^{\circ}$
$\angle B D C=180^{\circ}$
Then, $B D C$ is a line

Hence, the circles on any two sides intersect each other on the third side.

25. Question

Prove that the angle in a segment shorter than a semicircle is greater than a right angle.

Answer

Given that,
$\angle A C B$ is an angle in minor segment
To prove: $\angle A C B>90^{\circ}$
Proof: By degree measure theorem
Reflex $\angle A O B=2 \angle A C B$
And,
Reflex $\angle A O B>180^{\circ}$
Then,
$2 \angle A C B>180^{\circ}$
$\angle A C B>\frac{180}{2}$
$\angle A C B>90^{\circ}$
Hence, proved

26. Question

Prove that the angle in a segment greater than a semi-circle is less than a right angle.

Answer

Given that,
$\angle A C B$ is an angle in major segment
To prove: $\angle A C B>90^{\circ}$
Proof: By degree measure theorem,
$\angle A O B=2 \angle A C B$
And,
$\angle A O B<180^{\circ}$
Then,
$2 \angle \mathrm{ACB}<180^{\circ}$
$\angle A C B<90^{\circ}$

Hence, proved

27. Question

$A B C D$ is a cyclic trapezium with $A D \| B C$. If $\angle B=70^{\circ}$, determine other three angles of the trapezium.

Answer

Given that,
$A B C D$ is a cyclic trapezium with $A D \| B C$ and $\angle B=70^{\circ}$
Since, $A B C D$ is a quadrilateral
Then,
$\angle B+\angle D=180^{\circ}$
$70^{\circ}+\angle \mathrm{D}=180^{\circ}$
$\angle \mathrm{D}=110^{\circ}$
Since, $A D$ || $B C$
Then,
$\angle A+\angle B=180^{\circ}$ (Co. interior angle)
$\angle \mathrm{A}+70^{\circ}=180^{\circ}$
$\angle A=110^{\circ}$
Since, $A B C D$ is a cyclic quadrilateral
Then, $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$110^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle C=70^{\circ}$

28. Question

Prove that the line segment joining the mid-point of the hypotenuse of a right triangle to its opposite vertex is half of the hypotenuse.

Answer

Let, triangle $A B C$ be a right angle triangle at $\angle B$
Let P be the mid-point of hypotenuse AC
Draw a circle with centre P and $A C$ as diameter
Since,
$\angle A B C=90^{\circ}$
Therefore, the circle passes through B

Therefore,
$B P=$ Radius
Also,
$\mathrm{AP}=\mathrm{CP}=$ Radius
Therefore,
$A P=B P=C P$
Hence, $B P=\frac{1}{2} A C$

29. Question

In Fig. 16.189, $A B C D$ is a cyclic quadrilateral in which $A C$ and $B D$ are its diagonals. If $\angle D B C=55^{\circ}$ and $\angle B A C=45^{\circ}$, find $\angle B C D$.

Fig. 16.189

Answer

Since angles on the same segment of a circle are equal
Therefore,
$\angle C A D=\angle D B C=55^{\circ}$
$\angle D A B=\angle C A D+\angle B A C$
$=55^{\circ}+45^{\circ}$
$=100^{\circ}$
But,
$\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$ (Opposite angles of a cyclic quadrilateral)
Therefore,
$\angle B C D=180^{\circ}-100^{\circ}$
$\angle B C D=80^{\circ}$
CCE - Formative Assessment

1. Question

In Fig. 16.193, two circles intersect at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. If $\angle A P B=70^{\circ}$, find $\angle A C B$.

Fig. 16.193

Answer

O is the centre of the smaller circle.
$\angle A P B=70^{\circ}$
By degree measure theorem,
$\angle A O B=2 \angle A P B$
$\angle A O B=2 \times 70^{\circ}$
$=140^{\circ}$
Therefore,
$A O B C$ is a cyclic quadrilateral
$\angle A C B+\angle A O B=180^{\circ}$
$\angle A C B+140^{\circ}=180^{\circ}$
$\angle A C B=40^{\circ}$

2. Question

In Fig. 16.194, two congruent circles with centres O and O^{\prime} intersect at A and B. If $\angle A O^{\prime} B=50^{\circ}$, then find $\angle A P B$.

Fig. 16.194

Answer

$\angle A O^{\prime} B=50^{\circ}$
Since, both the triangle are congruent so their corresponding angles are equal.
$\angle A O B=A O^{\prime} B=50^{\circ}$
Now,
$\angle \mathrm{APB}=\frac{A O B}{2}$
$\angle \mathrm{APB}=\frac{50}{2}$
$=25^{\circ}$

3. Question

In Fig. 16.195, $A B C D$ is a cyclic quadrilateral in which $\angle B A D=75^{\circ}, \angle A B D=58^{\circ}$ and $\angle A D C=77^{\circ}, A C$ and $B D$ intersect at P. Then, find $\angle D P C$.

Fig. 16.195

Answer

$\angle D B A=\angle D C A=58^{\circ}$ (Angles on the same segment)
In triangle DCA
$\angle D C A+\angle C D A+\angle D A C=180^{\circ}$
$58^{\circ}+77^{\circ}+\angle \mathrm{DAC}=180^{\circ}$
$\angle D A C=45^{\circ}$
$\angle \mathrm{DPC}=180^{\circ}-58^{\circ}-30^{\circ}$
$=92^{\circ}$

4. Question

In Fig. 16.196, if $\angle A O B=80^{\circ}$ and $\angle A B C=30^{\circ}$, then find $\angle C A O$.

Fig. 16.196

Answer

$2 \angle O A B=100^{\circ}$
$\angle \mathrm{OAB}=50^{\circ}$
Therefore,
$\angle O A B=\angle O B A=50^{\circ}$
$\angle A O B=2 \angle B C A$ (Angle subtended by any point on circle)
$80^{\circ}=2 \angle B C A$
$\angle B C A=40^{\circ}$
Now,
In triangle $A B C$
$\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+30^{\circ}+40^{\circ}=180^{\circ}$
$\angle A=110^{\circ}$
$\angle C A B=\angle C A O+\angle O A B$
$110^{\circ}=\angle C A O+50^{\circ}$
$\angle C A O=60^{\circ}$

5. Question

In Fig. 16.196, if O is the circumcentre of $\triangle A B C$, then find the value of $\angle O B C+\angle B A C$.

Fig. 16.196

Answer

$\angle \mathrm{OBC}+\angle \mathrm{CBA}=\angle \mathrm{OBA}$
$\angle O B C+30^{\circ}=50^{\circ}$
$\angle O B C=20^{\circ}$
$\angle O B C+\angle B A C=\angle O B C+\angle C A B$
$=20^{\circ}+110^{\circ}$
$=130^{\circ}$

6. Question

In Fig. 16.197, $A O C$ is a diameter if the circle and $\operatorname{arc} A X B=\frac{1}{2} \operatorname{arc} B Y C$. Find $\angle B O C$.

Fig. 16.197

Answer

Given that,
Arc $A X B=\frac{1}{2} \operatorname{Arc} B Y C(i)$
Since,
Arc AXBYC is the arc equal to half circumference
And,
Angle subtended by half circumference at centre is 180°
$\operatorname{Arc} A X B Y C=\operatorname{Arc} A X B+\operatorname{Arc} B Y C$
$\operatorname{Arc} \mathrm{AXBYC}=\frac{1}{2} \operatorname{Arc} \mathrm{BYC}+\operatorname{Arc} B Y C$
Arc $A X B Y C=\frac{2}{3} \operatorname{Arc} A X B Y C$
Now,
$\angle \mathrm{BOC}=\frac{2}{3} \angle \mathrm{AOC}$
$\angle \mathrm{BOC}=\frac{2}{3} * 180^{\circ}$
$\angle B O C=120^{\circ}$

7. Question

In Fig. 16.198, A is the centre of the circle. $A B C D$ is a parallelogram and $C D E$ is a straight line. Find $\angle B C D: \angle A B E$

Fig. 16.198

Answer

Given that,
A is the centre of the circle, then
$A B=A D$
$A B C D$ is a parallelogram, then
$A D\|B C, A B\| C D$
CDE is a straight line, then
$A B \| C E$
Let,
$\angle B E C=\angle A B E=x^{\prime}$ (Alternate angle)
We know that,
The angle substended by an arc of a circle at the centre double the angle are angle substended by it at any point on the remaining part of circle
$\angle B A D=2 \angle B E C$
$\angle B A D=2 x^{\prime}$
In a rhombus opposite angles are equal to each other
$\angle B A D=\angle B C D=2 x^{\prime}$
Now, we have to find
$\frac{\angle \mathrm{BCD}}{\angle \mathrm{ABE}}=\frac{2 x \prime}{x^{\prime}}$
$\frac{\angle \mathrm{BCD}}{\angle \mathrm{ABE}}=\frac{2}{1}$
$\frac{\angle \mathrm{BCD}}{\angle \mathrm{ABE}}=\frac{2 x \prime}{x^{\prime}}$
Hence,
$\angle B C D: \angle A B E$ is $2: 1$

8. Question

In Fig. 16.199, $A B$ is a diameter of the circle such that $\angle A=35^{\circ}$ and $\angle Q=25^{\circ}$, find $\angle P B R$.

Fig. 16.199

Answer

In triangle $A B Q$,
$\angle A B Q+\angle A Q B+\angle B A Q=180^{\circ}$
$\angle A B Q+25^{\circ}+35^{\circ}=180^{\circ}$
$\angle A B Q=120^{\circ}$
$\angle \mathrm{APB}=90^{\circ}$ (Angle in the semi-circle)
In triangle APB,
$\angle \mathrm{APB}+\angle \mathrm{PBA}+\angle \mathrm{PAB}=180^{\circ}$
$90^{\circ}+\angle \mathrm{PBA}+35^{\circ}=180^{\circ}$
$\angle \mathrm{PBA}=55^{\circ}$
Now,
$\angle P B R=\angle P B A+\angle P B R$
$\angle \mathrm{PBR}=55^{\circ}+\left(180^{\circ}-120^{\circ}\right)$
$\angle \mathrm{PBR}=115^{\circ}$
Thus,
$\angle \mathrm{PBR}=115^{\circ}$

9. Question

In Fig. 16.200, P and Q are centres of two circles intersecting at B and $C . A C D$ is a straight line. Then, $\angle B Q D=$

Fig. 16.200

Answer

We know that,
$\angle \mathrm{ACB}=\frac{\angle \mathrm{APB}}{2}$
$\angle A C B=\frac{150}{2}$
$\angle A C B=75^{\circ}$
Since,
ACD is a straight line, so
$\angle A C B+\angle B C D=180^{\circ}$
$75^{\circ}+\angle B C D=180^{\circ}$
$\angle B C D=180^{\circ}-75^{\circ}$
$=105^{\circ}$
Now,
$\angle \mathrm{BCD}=\frac{1}{2}$ Reflex $\angle \mathrm{BQD}$
$105^{\circ}=\frac{1}{2}\left(360^{\circ}-\angle B Q D\right)$
$210^{\circ}=360^{\circ}-\angle B Q D$
$\angle B Q D=360^{\circ}-210^{\circ}$
Therefore,
$\angle B Q D=150^{\circ}$

10. Question

In Fig. 16.201, $A B C D$ is a quadrilateral inscribed in a circle with centre O. $C D$ is produced to E such that $\angle A E D=95^{\circ}$ and $\angle O B A=30^{\circ}$. Find $\angle O A C$.

Fig. 16.201

Answer

$\angle A D E=95^{\circ}$ (Given)
Since,
$O A=O B$, so
$\angle O A B=\angle O B A$
$\angle O A B=30^{\circ}$
$\angle A D E+\angle A D C=180^{\circ}$ (Linear pair)
$95^{\circ}+\angle A D C=180^{\circ}$
$\angle A D C=85^{\circ}$
We know that,
$\angle A D C=2 \angle A D C$
$\angle A D C=2 * 85^{\circ}$
$\angle A D C=170^{\circ}$
Since,
$A O=O C$ (Radii of circle)
$\angle \mathrm{OAC}=\angle \mathrm{OCA}$ (Sides opposite to equal angle) (i)
In triangle OAC,
$\angle O A C+\angle O C A+\angle A O C=180^{\circ}$
$\angle O A C+\angle O A C+170^{\circ}=180^{\circ}[$ From (i) $]$
$2 \angle \mathrm{OAC}=10^{\circ}$
$\angle O A C=5^{\circ}$
Thus,
$\angle O A C=5^{\circ}$

1. Question

If the length of a chord of a circle is 16 cm and is at a distance of 15 cm from the centre of the circle, then the radius of the circle is
A. 15 cm
B. 16 cm
C. 17 cm
D. 34 cm

Answer

Let $A B$ be the chord of length 16 cm .
Given that,
Distance from centre to the chord $A B$ is $O C=15 \mathrm{~cm}$
Now,
$O C \perp A B$
Therefore,
$A C=C B$ (Since perpendicular drawn from centre of the circle bisects the chord)
Therefore,
$A C=C B=8 \mathrm{~cm}$
In right $\triangle \mathrm{OCA}$,
$O A^{2}=A C^{2}+O C^{2}$
$=8^{2}+15^{2}$
$=225+64$
$=289$
$O A=17 \mathrm{~cm}$
Thus, the radius of the circle is 17 cm

2. Question

The radius of a circle is 6 cm . The perpendicular distance from the centre of the circle to the chord which is 8 cm in length, is
A. $\sqrt{5} \mathrm{~cm}$
B. $2 \sqrt{5} \mathrm{~cm}$
C. $2 \sqrt{7} \mathrm{~cm}$
D. $\sqrt{7} \mathrm{~cm}$

Answer

Let, O be the centre of the circle with chord $A B=8 \mathrm{~cm}$
And,
OC be the perpendicular bisector of AC
$A O=6 \mathrm{~cm}$
$A C=4 \mathrm{~cm}$
In $\triangle \mathrm{AOC}$,
$O A^{2}=A C^{2}+O C^{2}$
$6^{2}=4^{2}+O C^{2}$
$O C^{2}=20$
$O C=2 \sqrt{5}$

3. Question

If O is the centre of a circle of radius r and $A B$ is chord of the circle at a distance $r / 2$ from O, then $\angle B A O=$
A. 60°
B. 45°
C. 30°
D. 15°

Answer

Let, O be the centre of the circle and r be the radius
$\operatorname{Sin} \mathrm{A}=\frac{O A}{A C}$
$=\frac{r}{2} r$
$=\frac{1}{2}$
$\operatorname{Sin} A=\frac{1}{2}$
$\operatorname{Sin} A=\operatorname{Sin} 30^{\circ}$
$\mathrm{A}=30^{\circ}$
Therefore,
$\angle \mathrm{BAO}=\angle \mathrm{CAO}=30^{\circ}$

4. Question

$A B C D$ is a cyclic quadrilateral such that $\angle A D B=30^{\circ}$ and $\angle D C A=80^{\circ}$, then $\angle D A B=$
A. 70°
B. 100°
C. 125°
D. 150°

Answer

$A B C D$ is a cyclic quadrilateral
$\angle \mathrm{ADB}=30^{\circ}$
$\angle D C A=80^{\circ}$
$\angle \mathrm{ADB}=\angle \mathrm{ACB}=30^{\circ}$ (Angle on the same segment)
Now,
$\angle B C D=\angle A C B+\angle D C A$
$=30^{\circ}+80^{\circ}$
$=110^{\circ}$
$\angle \mathrm{OAB}+\angle \mathrm{BCD}=180^{\circ}$
$\angle O A B+110^{\circ}=180^{\circ}$
$\angle O A B=70^{\circ}$

5. Question

A chord of length 14 cm is at a distance of 6 cm from the centre of a circle. The length of another chord at a distance of 2 cm from the centre of the circle is
A. 12 cm
B. 14 cm
C. 16 cm
D. 18 cm

Answer

Let $A B$ and $C D$ be two chords of the circle.
Draw $O M$ perpendicular to $A B$ and $O N=C D$
$A B=14 \mathrm{~cm}$
$\mathrm{OM}=6 \mathrm{~cm}$
$\mathrm{ON}=2 \mathrm{~cm}$
Let,
$C D=x$
In $\triangle A O M$,
$A O^{2}=A M^{2}+O M^{2}$
$=7^{2}+6^{2}$
$A O^{2}=85$ (i)
In $\triangle \mathrm{CON}$,
$\mathrm{CO}^{2}=\mathrm{ON}^{2}+\mathrm{CN}^{2}$
$\mathrm{CO}^{2}=4+\frac{x * x}{4}$ (ii)
We Know,
$A O=C O$
$\mathrm{AO}^{2}=\mathrm{CO}^{2}$
$85=4+\frac{x * x}{4}$
$x^{2}=324$
$x=18 \mathrm{~cm}$

6. Question

One chord of a circle is known to be 10 cm . The radius of this circle must be
A. 5 cm
B. Greater than 5 cm
C. Greater than or equal to 5 cm
D. Less than 5 cm

It must be greater than 5 cm .

7. Question

$A B C$ is a triangle with B as right angle, $A C=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$. A circle is drawn with A as centre and $A C$ as radius. The length of the chord of this circle passing through C and B is
A. 3 cm
B. 4 cm
C. 5 cm
D. 6 cm

Answer

Given: $\mathrm{AC}=$ radius $=5 \mathrm{~cm}$
$A B=4 \mathrm{~cm}$
$D C$ is a chord passing B and C
In $\triangle A B C$
$A C^{2}=A B^{2}+B C^{2}$
$B C^{2}=9$
$B C=3 \mathrm{~cm}$
$C D=2 B C$
$=6 \mathrm{~cm}$

8. Question

If $A B, B C$ and $C D$ are equal chords of a circle with O as a centre and $A D$ diameter, than $\angle A O B=$
A. 60°
B. 90°
C. 120°
D. None of these

Answer

We can't say that,
$\angle \mathrm{AOB}=60^{\circ}, 90^{\circ}$ or 120°
So, angle AOB is none of these.

9. Question

Let C be the mid-point of an arc $A B$ of a circle such that $m \overparen{A B}=183^{\circ}$. If the region bounded by the arc $A C B$ and line segment $A B$ is denoted by S, then the centre O of the circle lies
A. In the interior of S
B. In the exterior of S
C. On the segment $A B$
D. On $A B$ and bisects $A B$

Answer

The centre O lies in the interior of S

10. Question

In a circle, the major arc is 3 times the minor arc. The corresponding central angles and the degree measures of two arcs are
A. 90° and 270°
B. 90° and 90°
C. 270° and 90°
D. 60° and 210°

Answer

Arc $A C B=3$ arc $A B$ (Given)
Central angle $=270^{\circ}$
Degree measures of the two arcs are 90°

11. Question

If A and B are two points on a circle such that $m(\overparen{A B})=260^{\circ}$. A possible value for the angle subtended by $\operatorname{arc} B A$ at a point on the circle is
A. 100°
B. 75°
C. 50°
D. 25°

Answer

Arc $A B=260^{\circ}$ (Given)
Let a point C on the circle
We Know that,
An angle subtended by an arc at the centre of the circle is double the angle subtended at any point on the circle.
$\angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}$
$\angle \mathrm{ACB}=\frac{1}{2} * 100$
$=50^{\circ}$

12. Question

An equilateral triangle $A B C$ is inscribed in a circle with centre O. The measures of $\angle B O C$ is
A. 30°
B. 60°
C. 90°
D. 120°

Answer

Given that O is the centre of circle.
Triangle $A B C$ is an equilateral triangle
$\angle A=\angle B=\angle C=60^{\circ}$
We Know that,
An angle subtended by an arc at the centre of the circle is double the angle subtended at any point on the circle.
$\angle B O C=2 \angle B A C$
$\angle B O C=2 \angle A$
$\angle B O C=120^{\circ}$

13. Question

In a circle with centre $O, A B$ and $C D$ are two diameters perpendicular to each other. The length of chord $A C$ is
A. $2 A B$
B. $\sqrt{2}$
C. $\frac{1}{2} A B$
D. $\frac{1}{\sqrt{2}} A B$

Answer

Given: O is the centre of circle
$A B$ and $C D$ are diameters of the circle
$\mathrm{AO}=\mathrm{BO}=\mathrm{CO}=\mathrm{DO}$ (Radius of the circle)
In right angle $\triangle A O C$,
$\operatorname{Cos} \mathrm{A}=\frac{A M}{O A}$
$\operatorname{Cos} \mathrm{A}=\frac{\frac{1}{2} A C}{\frac{1}{2} A B}$
$\operatorname{Cos} \mathrm{A}=\frac{A C}{A B}$ (i$)$
$\angle O M A=90^{\circ}$
$\angle A O M=\angle M A O=45^{\circ}$
Using value of angle A in (i)
$\operatorname{Cos} 45^{\circ}=\frac{A C}{A B}$
$\frac{1}{\sqrt{2}}=\frac{A C}{A B}$
$A C=\frac{1}{\sqrt{2}} A B$

14. Question

Two equal circles of radius r intersect such that each passes through the centre of the other. The length of the common chord of the circles is
A. \sqrt{r}
B. $\sqrt{2} r A B$
C. $\sqrt{3} r$
D. $\frac{\sqrt{3}}{2} r$

Answer

Let O and O^{\prime} be the centre of two circles
OA and $\mathrm{O}^{\prime} \mathrm{A}=$ Radius of the circles
$A B$ be the common chord of both the circles
OM perpendicular to $A B$
And,
O'M perpendicular to $A B$
$\triangle \mathrm{AOO}$ ' is an equilateral triangle.
$A M=$ Altitude of $A O O^{\prime}$
Height of $\triangle A O O^{\prime}=\frac{\sqrt{3}}{2} r$
$A B=2 A M$
$=2 \frac{\sqrt{3}}{2} r$
$=\sqrt{3} r$

15. Question

If $A B$ is a chord of a circle, P and Q are the two points on the circle different from A and B, then
A. $\angle A P B=\angle A Q B$
B. $\angle A P B+\angle A Q B=180^{\circ}$ or $\angle A P B=\angle A Q B$
C. $\angle A P B+\angle A Q B=90^{\circ}$
D. $\angle A P B+\angle A Q B=180^{\circ}$

Answer

$A B$ is a chord of circle P and Q are two points on circle $\angle A P B=\angle A Q B$ (Angles on the same segment)

16. Question

If two diameters of a circle intersect each other at right angles, then quadrilateral formed by joining their end points is a
A. Rhombus
B. Rectangle
C. Parallelogram
D. Square

Answer

Let $A B$ and $C D$ are two diameters of circle
$\angle A O D=\angle B O D=\angle B O C=\angle A O C=90^{\circ}$
$A B$ and $C D$ are diagonals of quadrilateral $A B C D$
They intersect each other at right angles
And
$A B=B C=C D=D A$
We know that,
Sides of a square are equal and diagonals intersect at 90°
Therefore, $A B C D$ is a square

17. Question

If $A B C$ is an arc of a circle and $\angle A B C=135^{\circ}$, then the ratio of arc $\overparen{A B C}$ to the circumference is
A. 1: 4
B. $3: 4$
C. $3: 8$
D. $1: 2$

Answer
$\angle A B C=135^{\circ}$
$A B C$ is an arc
Circumference $=360^{\circ}$
$\operatorname{Arc}=135^{\circ}$
$\frac{\text { Arc } A B C}{\text { Circumference }}=\frac{135}{360}$
$=\frac{3}{8}$

18. Question

The chord of a circle is equal to its radius. The angle substended by this chord at the minor arc of the circle is
A. 60°
B. 75°
C. 120°
D. 150°

Answer

Let $A B$ be the chord of circle equal to radius r
$\mathrm{OA}=\mathrm{OB}=\mathrm{r}($ Radii $)$
Therefore,
$O A=O B=A B$
OBC is equilateral triangle
Each angle $=60^{\circ}$
Hence,
Angle surrounded by $A B$ at minor arc $=\frac{1}{2}$ (Reflex $\left.* \angle A O D\right)$
$=\frac{1}{2}\left(360^{\circ}-60^{\circ}\right)$
$=150^{\circ}$

19. Question

$P Q R S$ is a cyclic quadrilateral such that $P R$ is a diameter of the circle. If $\angle Q P R=67^{\circ}$ and $\angle S P R=72^{\circ}$, then $\angle Q R S=$
A. 41°
B. 23°
C. 67°
D. 18°

Answer

Given that,
PQRS is a cyclic quadrilateral
$\angle Q P R=67^{\circ}$
$\angle S P R=72^{\circ}$
$\angle \mathrm{SPQ}=\angle \mathrm{QPR}+\angle \mathrm{SPR}$
$=67^{\circ}+72^{\circ}$
$=139^{\circ}$
$\angle \mathrm{SPQ}+\angle \mathrm{QRS}=180^{\circ}$ (Opposite angles of cyclic quadrilateral)
$139^{\circ}+\angle \mathrm{QRS}=180^{\circ}$
$\angle \mathrm{QRS}=41^{\circ}$

20. Question

If A, B, C are three points on a circle with centre O such that $\angle A O B=90^{\circ}$ and $\angle B O C=120^{\circ}$, then $\angle A B C=$
A. 60°
B. 75°
C. 90°
D. 135°

Answer

$$
\angle B O C=120^{\circ}
$$

$$
\angle A O C=\angle A O B+\angle B O C
$$

$=90^{\circ}+120^{\circ}$
$=210^{\circ}$
Now,
$\angle \mathrm{ABC}=\frac{1}{2} *($ Reflex $\angle \mathrm{AOC})$
$=\frac{1}{2}\left(360^{\circ}-210^{\circ}\right)$
$=75^{\circ}$

21. Question

$A B$ and $C D$ are two parallel chords of a circle with centre O such that $A B=6 \mathrm{~cm}$ and $C D=12 \mathrm{~cm}$. The chords are on the same side of the centre and the distance between them in 3 cm . The radius of the circle is
A. 6 cm
B. $5 \sqrt{2} \mathrm{~cm}$
C. 7 cm
D. $3 \sqrt{5} \mathrm{~cm}$

Answer

Given that,
AB || CD (Chords on same side of centre)
$\mathrm{AO}=\mathrm{CO}$ (Radii)
OL and OM perpendicular bisector of $C D$ and $A B$ respectively
$C L=L D=6 \mathrm{~cm}$
$A M=M B=3 \mathrm{~cm}$
LM $=3 \mathrm{~cm}$ (Given)
In $\triangle \mathrm{COL}$,
$\mathrm{CO}^{2}=\mathrm{OL}^{2}+6^{2}(\mathrm{i})$
In AOM,
$A O^{2}=A M^{2}+O M^{2}$
$=3^{2}+(O L+L M)^{2}$
$=9+\mathrm{OL}^{2}+9+6 \mathrm{OL}$
$\mathrm{OL}^{2}=A O^{2}-18-60 \mathrm{~L}$ (ii)
Using (ii) in (i),
$\mathrm{OL}=3 \mathrm{~cm}$
Putting OL in (i),
$A O^{2}=\sqrt{45}$
$A O=3 \sqrt{5}$

22. Question

In a circle of radius 17 cm , two parallel chords are drawn on opposite side of a diameter. The distance between the chords is 23 cm . If the length of one chord is 16 cm , then the length of the other is
A. 34 cm
B. 15 cm
C. 23 cm
D. 30 cm

Answer

Given that,
AB || CD (Chords on opposite side of centre)
DO = BO (Radii)
OL and OM perpendicular bisector of CD and $A B$ respectively
$\mathrm{LM}=23 \mathrm{~cm}$
$A B=16 \mathrm{~cm}$
In Δ OLB,
$O B^{2}=O L^{2}+L B^{2}$
$\mathrm{OL}^{2}=225$
$\mathrm{OL}=15 \mathrm{~cm}$
$\mathrm{OM}=\mathrm{LM}-\mathrm{OL}$
$=8 \mathrm{~cm}$
In $\triangle \mathrm{OMD}$,
$O D^{2}=O M^{2}+M D^{2}$
$M D^{2}=225$
$M D=15 \mathrm{~cm}$
Now,
$C D=2 M D=30 \mathrm{~cm}$

23. Question

The greatest chord of a circle is called its
A. Radius
B. Secant
C. Diameter
D. None of these

Answer

The largest chord in any circle is its diameter.

24. Question

Angle formed in minor segment of a circle is
A. Acute
B. Obtuse
C. Right angle
D. None of these

Answer

The minor segment in a circle always forms an obtuse angle.

25. Question

Number of circles that can be drawn through three non-collinear points is
A. 1
B. 0
C. 2
D. 3

Answer

Only and only a single circle can be drawn passing through any three non collinear points.

26. Question

In Fig. $16.202, O$ is the centre of the circle such that $\angle A O C=130^{\circ}$, then $\angle A B C=$
A. 130°
B. 115°
C. 65°
D. 165°

Fig. 16.202

Answer

We have,
$\angle A O C=130^{\circ}$
$\angle \mathrm{ABC}=\frac{1}{2} *$ (Reflex of AOC)
$=\frac{1}{2} *\left(360^{\circ}-130^{\circ}\right)$
$=\frac{1}{2} * 230$
$=115^{\circ}$

27. Question

In Fig. 16.203, if chords $A B$ and $C D$ of the circle intersect each other at right angles, then $x+y=$

Fig. 16.203
A. 45°
B. 60°
C. 75°
D. 90°

Answer

Given: $A B$ and $C D$ are two chords of the circle.
$\angle A P C=90^{\circ}$
$\angle A C P=\angle P B D=y$ (Angles on the same segment $)$

In $\triangle \mathrm{ACP}$,
$\angle A C P+\angle A P C+\angle P A C=180^{\circ}$
$y+90^{\circ}+y=180^{\circ}$
$x+y=90^{\circ}$

28. Question

In Fig. 16.204, if $\angle A B C=45^{\circ}$, then $\angle A O C=$

Fig. 16.204
A. 45°
B. 60°
C. 75°
D. 90°

Answer

We know that,
An angle subtended by an arc at the centre of the circle is double the angle subtended at any point on the circle

$$
\begin{aligned}
& \angle A O C=2 \angle A B C \\
& =2 * 45^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

29. Question

In Fig. 16.205, chords $A D$ and $B C$ intersect each other at right angles at a point P. If $\angle D A B=35^{\circ}$, then $\angle A D C=$

Fig. 16.205
A. 35°
B. 45°
C. 55°
D. 65°

Answer

Given that,
Chords AD and BC intersect at right angles,
$\angle \mathrm{DAB}=35^{\circ}$
$\angle \mathrm{APC}=90^{\circ}$
$\angle \mathrm{APC}+\angle \mathrm{CPD}=180^{\circ}$
$90^{\circ}+\angle C P D=180^{\circ}$
$\angle C P D=90^{\circ}$
$\angle \mathrm{DAB}=\angle \mathrm{PCD}=35^{\circ}$ (Angles on the same segment)
In triangle PCD,
$\angle \mathrm{PCD}+\angle \mathrm{PDC}+\angle \mathrm{CPD}=180^{\circ}$
$35^{\circ}+\angle \mathrm{PDC}+90^{\circ}=180^{\circ}$
$\angle P D C=45^{\circ}$
$\angle A D C=45^{\circ}$

30. Question

In Fig. 16.206, O is the centre of the circle and $\angle B D C=42^{\circ}$. The measure of $\angle A C B$ is

Fig. 16.206
A. 42°
B. 48°
C. 58°
D. 52°

Answer

$\angle B D C=42^{\circ}$
$\angle A B C=90^{\circ}$ (Angle in a semi-circle)
In $\triangle \mathrm{ABC}$,
$\angle A B C+\angle B A C=42^{\circ}$ (Angles on the same segment)
$90^{\circ}+42^{\circ}+\angle A C B=180^{\circ}$
$\angle A C B=48^{\circ}$

