15. Areas of Parallelograms

Exercise 15.1

1. Question

Which of the following figures lie on the same base and between the same parallel. In such a case, write the common base and two parallel:

(i)

(ii)

(iii)

(iv)

(v)

Fig. 15.4

Answer

(i) $\triangle P C D$ and trapezium $A B C D$ are on the same base $C D$ and between the same parallels $A B$ and $D C$.
(ii) Parallelogram $A B C D$ and $A P Q D$ are on the same base $A D$ and between the same parallel $A D$ and $B Q$.
(iii) Parallelogram $A B C D$ and $\triangle P Q R$ are between the same parallels $A D$ and $B Q$.
(iv) $\triangle Q R T$ and Parallelogram PQRS are on the same base $Q R$ and between the same parallels $Q R$ and PS.
(v) Parallelogram PQRS and trapezium SMNR are on the same base SR but they are not between the same parallel.
(vi) Parallelograms PQRS, AQRD, BCQR are between the same parallels also parallelograms PQRS, BPSC and APSD are between the same parallels.

Exercise 15.2

1. Question

If Fig. $15.26, A B C D$ is a parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, find $A D$.

Fig. 15.26

Answer

Given that,
In a parallelogram $A B C D$:
$C D=A B=16 \mathrm{~cm}$ (Opposite sides of parallelogram are equal)

We know that,
Area of parallelogram $=$ Base $*$ Corresponding altitude
Area of parallelogram ABCD:
$C D * A E=A D * C F$
$16 \mathrm{~cm} * 18 \mathrm{~cm}=\mathrm{AD} * 10 \mathrm{~cm}$
$A D=\frac{16 \times 9}{10}$
$A D=12.8 \mathrm{~cm}$

2. Question

In Q. No. 1, if $A D=6 \mathrm{~cm}, C F=10 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, find $A B$.

Answer

Area of parallelogram $A B C D=A D * C F(i)$
Again,
Area of parallelogram $A B C D=D C * A E$ (ii)
From (i) and (ii), we get
$A D * C F=D C * A F$
$6 * 10=C D * 8$
$C D=\frac{60}{8}$
$=7.5 \mathrm{~cm}$
Therefore,
$A B=D C=7.5 \mathrm{~cm}$ (Opposite sides of parallelogram are equal)

3. Question

Let $A B C D$ be a parallelogram of area $124 \mathrm{~cm}^{2}$. If E and F are the mid-points of sides $A B$ and $C D$ respectively, then find the area of parallelogram AEFD.

Answer

Given that,
Area of parallelogram $A B C D=124 \mathrm{~cm}^{2}$
Construction: Draw AP perpendicular to DC
Proof: Area of parallelogram AFED $=$ DF * AP (i)
Area of parallelogram EBCF $=\mathrm{FC} * \mathrm{AP}$ (ii)
And,
$D F=F C$ (iii) (F is the mid-point of DC)
Compare (i), (ii) and (iii), we get
Area of parallelogram AEFD = Area of parallelogram EBCF
Therefore,
Area of parallelogram AEFD $=\frac{\text { Area of parallelogram } A B C D}{2}$
$=\frac{124}{2}=62 \mathrm{~cm}^{2}$

4. Question

If $A B C D$ is a parallelogram, then prove that
$\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{BCD})=\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ACD})=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} \mathrm{ABCD}\right)$

Answer

We know that,
Diagonal of parallelogram divides it into two quadrilaterals.
Since,
$A C$ is the diagonal
Then, Area $(\triangle A B C)=$ Area $(\triangle A C D)$
$=\frac{1}{2}$ Area of parallelogram $A B C D$ (i)
Since,
$B D$ is the diagonal
Then, Area $(\triangle A B D)=$ Area $(\triangle B C D)$
$=\frac{1}{2}$ Area of parallelogram $A B C D$ (ii)
Compare (i) and (ii), we get
Therefore,
Area $(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{ACD})=\operatorname{Area}(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{BCD})=\frac{1}{2}$ Area of parallelogram $A B C D$

Exercise 15.3

1. Question

In Fig. 15.74, compute the aresa of quadrilateral $A B C D$.

Fig. 15.74

Answer

Given that,
$D C=17 \mathrm{~cm}$
$A D=9 \mathrm{~cm}$
And,
$B C=8 \mathrm{~cm}$
In $\triangle B C D$, we have
$C D^{2}=B D^{2}+B C^{2}$
$(17)^{2}=B D^{2}+(8)^{2}$
$B D^{2}=289-64$
$=15$

In $\triangle \mathrm{ABD}$, we have
$B D^{2}=A B^{2}+A D^{2}$
$(15)^{2}=A B^{2}+(9)^{2}$
$A B^{2}=225-81$
$=144$
$=12$
Therefore,
Area of Quadrilateral $\mathrm{ABCD}=$ Area $(\triangle \mathrm{ABD})+$ Area $(\triangle \mathrm{BCD})$
Area of quadrilateral $A B C D=\frac{1}{2}(12 \times 9)+\frac{1}{2}(8 \times 17)$
$=54+68$
$=112 \mathrm{~cm}^{2}$

2. Question

In Fig. 15.75, PQRS is a square and T and U are respectively, the mid-points of PS and QR. Find the area of Δ OTS if $\mathrm{PQ}=8 \mathrm{~cm}$

Fig. 15.75

Answer

From the figure,
T and U are the mid points of PS and QR respectively
Therefore,
TU || PQ
TO\|PQ
Thus,
In $\triangle \mathrm{PQS}$ and T is the mid-point of $P S$ and $T O \| P Q$
Therefore,
$\mathrm{TO}=\frac{1}{2} * \mathrm{PQ}$
$=4 \mathrm{~cm}$
Also,
$\mathrm{TS}=\frac{1}{2} * \mathrm{PS}$
$=4 \mathrm{~cm}$
Therefore,

Area $(\triangle \mathrm{OTS})=\frac{1}{2}(\mathrm{TO} * \mathrm{TS})$
$=\frac{1}{2}(4 * 4)$
$=8 \mathrm{~cm}^{2}$

3. Question

Compute the area of trapezium PQRS in Fig. 15.76.

Fig. 15.76

Answer

We have,
Area of trapezium PQRS $=$ Area of rectangle PSRT + Area $(\triangle \mathrm{QRT})$
Area of trapezium $\mathrm{PQRS}=\mathrm{PT} * \mathrm{RT}+\frac{1}{2}(\mathrm{QT} * \mathrm{RT})$
$=8 * R T+\frac{1}{2}(8 * R T)$
$=12 * R T$
In $\Delta \mathrm{QRT}$, we have
$Q R^{2}=Q T^{2}+R T^{2}$
$\mathrm{RT}^{2}=\mathrm{QR}^{2}-\mathrm{QT}^{2}$
$R T^{2}=(17)^{2}-(8)^{2}$
$=225$
$=15$
Hence,
Area of trapezium PQRS $=12 * 15$
$=180 \mathrm{~cm}^{2}$

4. Question

In Fig. 15.77, $\angle A O B=90^{\circ}, A C=B C, O A=12 \mathrm{~cm}$ and $O C=6,5 \mathrm{~cm}$. Find the area of $\triangle A O B$.

Fig. 15.77

Answer

Since,
The mid-point of the hypotenuse of a right triangle is equidistant from the vertices
Therefore,
$C A=C B=O C$
$C A=C B=6.5 \mathrm{~cm}$
$A B=13 \mathrm{~cm}$
In right ($\triangle \mathrm{OAB}$)
We have,
$A B^{2}=O B^{2}-O A^{2}$
$13^{2}=O B^{2}+12^{2}$
$\mathrm{OB}=5 \mathrm{~cm}$
Therefore,
$\operatorname{Area}(\triangle \mathrm{AOB})=\frac{1}{2}(\mathrm{OA} * \mathrm{OB})$
$=\frac{1}{2}(12 * 5)$
$=30 \mathrm{~cm}^{2}$

5. Question

In Fig. 15.78, $A B C D$ is a trapezium in which $A B=7 \mathrm{~cm}, A D=B C=5 \mathrm{~cm}, D C=x \mathrm{~cm}$, and distance between $A B$ and $D C$ is 4 cm . Find the value of x and area of trapezium $A B C D$.

Fig. 15.78

Answer

Draw AL perpendicular to DC
And,
BM perpendicular DC
Then,
$A L=B M=4 \mathrm{~cm}$
And,
$\mathrm{LM}=7 \mathrm{~cm}$
In \triangle ADL, we have
$A D^{2}=A L^{2}+D L^{2}$
$25=16+D L^{2}$
$D L=3 \mathrm{~cm}$
Similarly,
$M C=\sqrt{B C^{2}-B M^{2}}$
$=\sqrt{25-16}$
$=3 \mathrm{~cm}$
Therefore,
$x=C D=C M+M L+L D$
$=3+7+3$
$=13 \mathrm{~cm}$
Area of trapezium $A B C D=\frac{1}{2}(A B+C D) * A L$
$=\frac{1}{2}(7+13) * 4$
$=40 \mathrm{~cm}^{2}$

6. Question

In Fig. 15.79, OCDE is a rectangle inscribed in a quadrilateral of a circle of radium 10 cm . If $\mathrm{OE}=2 \sqrt{5}$, find the area of the rectangle.

Fig. 15.79

Answer

We have,
$O D=10 \mathrm{~cm}$
And,
$\mathrm{OE}=2 \sqrt{5} \mathrm{~cm}$
Therefore,
$O D^{2}=O E^{2}+D E^{2}$
$D E=\sqrt{O D^{2}-O E^{2}}$
$=\sqrt{(10)^{2}-(2 \sqrt{5})^{2}}$
$=4 \sqrt{5} \mathrm{~cm}$
Therefore,
Area of trapezium OCDE $=O E * D E$
$=2 \sqrt{5} * 4 \sqrt{5}$
$=40 \mathrm{~cm}^{2}$

7. Question

In Fig. 15.80, $A B C D$ is a trapezium in which $A B \| D C$. Prove that $\operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$.

Fig. 15.80

Answer

Given that,
$A B C D$ is a trapezium with $A B \| D C$
To prove: Area $(\triangle A O D)=$ Area $(\triangle B O C)$
Proof: Since,
$\triangle A B C$ and $\triangle A B D$ are on the same base $A B$ and between the same parallels $A B$ and $D C$
Therefore,
Area $(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{ABD})$
Area $(\triangle \mathrm{ABC})-\operatorname{Area}(\triangle \mathrm{AOB})=\operatorname{Area}(\triangle \mathrm{ABD})-\operatorname{Area}(\triangle \mathrm{AOB})$
$\operatorname{Area}(\triangle \mathrm{AOD})=\operatorname{Area}(\triangle \mathrm{BOC})$
Hence, proved

8. Question

In Fig. 15.81, $A B C D$ and CDEF are parallelograms. Prove that $\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{BCF})$.

Fig. 15.81

Answer

Given that,
ABCD is a parallelogram
So,
$A D=B C$
CDEF is a parallelogram
So,
DE $=C F$
ABFE is a parallelogram
So,
$A E=B F$
Thus,

In $\triangle A D E$ and $\triangle B C F$, we have
$A D=B C$
$D E=C F$
And,
$A E=B F$
So, by SSS congruence rule, we have
$\triangle A D E \cong \triangle B C F$
Therefore,
Area (\triangle ADE) $=$ Area ($\triangle \mathrm{BCF}$)

9. Question

Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect each other at P. Show that:
$\operatorname{ar}(\triangle \mathrm{APB}) \times \operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{APD}) \times \operatorname{ar}(\triangle \mathrm{BPC})$.

Answer

Construction: Draw BQ perpendicular to AC
And,
DR perpendicular to AC
Proof: We have,
L.H.S $=$ Area $(\triangle \mathrm{APB}) *$ Area ($\triangle \mathrm{CPD}$)
$=\frac{1}{2}(\mathrm{AP} * \mathrm{BQ}) * \frac{1}{2}(\mathrm{PC} * \mathrm{DR})$
$=\left(\frac{1}{2} * P C * B Q\right) *\left(\frac{1}{2} * A P * D R\right)$
$=$ Area $(\triangle \mathrm{BPC}) *$ Area ($\triangle \mathrm{APD}$)
= R.H.S
Therefore,
L.H.S = R.H.S

Hence, proved

10. Question

In Fig. 15.82, $A B C$ and $A B D$ are two triangles on the base $A B$. If line segment $C D$ is bisected by $A B$ at O, Show that $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ABD})$.

Fig. 15.82

Answer

Given that,
$C D$ bisected $A B$ at O

To prove: Area $(\triangle A B C)=$ Area $(\triangle A B D)$
Construction: CP perpendicular to AB and DQ perpendicular to AB
Proof: Area $(\triangle A B C)=\frac{1}{2}(A B * C P)(i)$
Area $(\triangle A B D)=\frac{1}{2}(A B * D Q)(i i)$
In $\triangle C P O$ and $\triangle D Q O$, we have
$\angle C P O=\angle D Q O\left(\right.$ Each $\left.90^{\circ}\right)$
Given that,
$\mathrm{CO}=\mathrm{DO}$
$\angle C O P=\angle D O Q$ (Vertically opposite angle)
Then, by AAS congruence rule
$\triangle \mathrm{CPO} \cong \triangle \mathrm{DQO}$
Therefore,
CP = DQ (By c.p.c.t)
Thus,
Area $(\triangle A B C)=$ Area $(\triangle A B D)$
Hence, proved

11. Question

If P is any point in the interior of a parallelogram ABCD, then prove that area of the triangle APB is less than half the area of parallelogram.

Answer
Construction: Draw $\mathrm{DN} \perp \mathrm{AB}$ and $\mathrm{PM} \perp \mathrm{AB}$.
Proof: Area of parallelogram $A B C D=A B * D N$
Area $(\triangle \mathrm{APB})=\frac{1}{2}(\mathrm{AB} * \mathrm{PM})$
$=A B * P M<A B * D N$
$=\frac{1}{2}(A B * P M)<\frac{1}{2}(A B * D N)$
$=$ Area $(\triangle \mathrm{APB})<\frac{1}{2}$ Area of parallelogram ABCD

Fig. 15.93

12. Question

If $A D$ is a median of a triangle $A B C$, then prove that triangles $A D B$ and $A D C$ are equal in area. If G is the midpoint of median $A D$, prove that $\operatorname{ar}(\Delta B G C)=2 \operatorname{ar}(\triangle A G C)$.

Answer

Construction: Draw AM \perp BC

Proof: Since,
$A D$ is the median of $\triangle A B C$
Therefore,
$B D=D C$
$B D * A M=D C * A M$
$\frac{1}{2}(B D * A M)=\frac{1}{2}(D C * A M)$
Area ($\triangle \mathrm{ABD}$) $=\operatorname{Area}(\triangle \mathrm{ACD})$ (i$)$
Now, in $\triangle B G C$
$G D$ is the median
Therefore,
Area (BGD) = Area (CGD) (ii)
Also,
In $\triangle \mathrm{ACD}, \mathrm{CG}$ is the median
Therefore, Area $(\triangle \mathrm{AGC})=$ Area $(\Delta \mathrm{CGD})$ (iii)
From (i), (ii) and (iii) we have
Area ($\triangle \mathrm{BGD}$) $=$ Area ($\triangle \mathrm{AGC}$)
But,
Area $(\triangle B G C)=2$ Area ($\Delta B G D$)
Therefore,
Area $(\triangle B G C)=2$ Area ($\triangle A G C$)
Hence, proved

13. Question

A point D is taken on the side $B C$ of a $\triangle A B C$ such that $B D=2 D C$. Prove that $\operatorname{ar}(\triangle \mathrm{ABD})=2 \operatorname{ar}(\triangle \mathrm{ADC})$

Answer

Given that,
In $\triangle A B C$,
We have
$B D=2 D C$
To prove: Area $(\triangle \mathrm{ABD})=2$ Area $(\triangle \mathrm{ADC})$
Construction: Take a point E on BD such that, $\mathrm{BE}=\mathrm{ED}$

Proof: Since,
$B E=E D$ and,
$B D=2 D C$
Then,
$B E=E D=D C$
Median of the triangle divides it into two equal triangles
Since,
$A E$ and $A D$ are the medians of $\triangle A B D$ and $\triangle A E C$ respectively
Therefore,
Area $(\triangle A B D)=2 \operatorname{Area}(\triangle A E D)(i)$
And,
Area (\triangle ADC $)=$ Area (\triangle AED) (ii)
Comparing (i) and (ii), we get
Area $(\triangle A B D)=2$ Area ($\triangle \mathrm{ADC}$)
Hence, proved

Fig. 15.95

14. Question

$A B C D$ is a parallelogram whose diagonals intersect at O. If P is any point on $B O$, prove that (i) $\operatorname{ar}(\triangle \mathrm{ADO})=\operatorname{ar}(\triangle \mathrm{CDO})$
(ii) $\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{CBP})$

Answer

Given that,
ABCD is a parallelogram
To prove: (i) Area ($\triangle \mathrm{ADO}$) $=$ Area ($\triangle \mathrm{CDO}$)
(ii) Area $(\triangle \mathrm{ABP})=$ Area $(\triangle \mathrm{CBP})$

Proof: We know that,
Diagonals of a parallelogram bisect each other
Therefore,
$A O=O C$ and,
$B O=O D$

Fig. 15.96
(i) In $\triangle \mathrm{DAC}, \mathrm{DO}$ is a median.

Therefore,
Area $(\triangle \mathrm{ADO})=\operatorname{Area}(\triangle \mathrm{CDO})$
Hence, proved
(ii) In $\triangle B A C$, since $B O$ is a median

Then,
Area $(\triangle B A O)=\operatorname{Area}(\triangle B C O)(i)$
In a $\triangle P A C$, since $P O$ is the median
Then,
Area $(\triangle \mathrm{PAO})=\operatorname{Area}(\triangle \mathrm{PCO})$ (ii)
Subtract (ii) from (i), we get
Area $(\triangle \mathrm{BAO})-\operatorname{Area}(\triangle \mathrm{PAO})=\operatorname{Area}(\triangle \mathrm{BCO})-\operatorname{Area}(\triangle \mathrm{PCO})$
Area $(\triangle \mathrm{ABP})=\operatorname{Area}(\triangle \mathrm{CBP})$
Hence, proved

15. Question

$A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=B C$. $A E$ intersects $C D$ at F.
(i) Prove that $\operatorname{ar}(\triangle \mathrm{ADF})=\operatorname{ar}(\triangle \mathrm{ECF})$
(ii) If the area of $\triangle D F B=3 \mathrm{~cm}^{2}$, find the area of $\|^{\mathrm{gm}} \mathrm{ABCD}$.

Answer

In $\triangle \mathrm{ADF}$ and $\triangle \mathrm{ECF}$
We have,
$\angle A D F=\angle E C F$
$A D=E C$
And,
$\angle D F A=\angle C F A$
So, by AAS congruence rule,
$\Delta \mathrm{ADF} \cong \triangle \mathrm{ECF}$
Area $(\triangle \mathrm{ADF})=\operatorname{Area}(\triangle \mathrm{ECF})$
$D F=C F$
$B F$ is a median in $\triangle B C D$
Area $(\triangle B C D)=2$ Area $(\triangle B D F)$
Area $(\triangle B C D)=2 * 3$
$=6 \mathrm{~cm}^{2}$
Hence, Area of parallelogram $A B C D=2$ Area ($\triangle B C D$)
$=2 * 6$
$=12 \mathrm{~cm}^{2}$

Fig. 15.97

16. Question

$A B C D$ is a parallelogram whose diagonals $A C$ and $B D$ intersect at O. A line through O intersects $A B$ at P and DC at Q. Prove that
$\operatorname{ar}(\triangle \mathrm{POA})=\operatorname{ar}(\triangle \mathrm{QOC})$

Answer

In \triangle POA and $\triangle Q O C$, we have
$\angle A O P=\angle C O Q$ (Vertically opposite angle)
$O A=O C$ (Diagonals of parallelogram bisect each other)
$\angle P A C=\angle Q C A(A B| | D C$, alternate angles)
So, by ASA congruence rule, we have
$\triangle \mathrm{POA} \cong \triangle \mathrm{QOC}$
Area $(\triangle \mathrm{POA})=\operatorname{Area}(\triangle \mathrm{QOC})$
Hence, proved

Fig. 15.98

17. Question

$A B C D$ is a parallelogram. E is a point on $B A$ such that $B E=2 E A$ and F is a point on $D C$, such that $D F=2 F C$. Prove that AE CF is a parallelogram whose area is one third of the area of parallelogram ABCD.

Answer

Construction: Draw FG perpendicular to $A B$
Proof: We have,
$B E=2 E A$
And,
$D F=2 F C$
$A B-A E=2 A E$
And,
$D C-F C=2 F C$
$A B=3 A E$
And,
$D C=3 \mathrm{FC}$
$A E=\frac{1}{3} A B$ and $F C=\frac{1}{3} D C$ (i)
But,
$A B=D C$
Then,
$A E=F C$ (Opposite sides of a parallelogram)
Thus,
AE || FC such that $A E=F C$
Then,
AECF is a parallelogram
Now, Area of parallelogram (AECF) $=\frac{1}{3}(\mathrm{AB} * \mathrm{FG})$ [From (i)
3 Area of parallelogram $\mathrm{AECF}=\mathrm{AB} * \mathrm{FG}$ (ii)
And,
Area of parallelogram $A B C D=A B * F G$ (iii)
Compare equation (ii) and (iii), we get
3 Area of parallelogram AECF $=$ Area of parallelogram ABCD
Area of parallelogram AECF $=\frac{1}{3}$ Area of parallelogram ABCD
Hence, proved

Fig. 15.99

18. Question

In a $\triangle A B C, P$ and Q are respectively the mid-point of $A B$ and $B C$ and R is the mid-point of $A P$. Prove that:
(i) $\operatorname{ar}(\triangle \mathrm{PBQ})=\operatorname{ar}(\triangle \mathrm{ARC})$
(ii) $\operatorname{ar}(\triangle \mathrm{PQR})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ARC})$
(iii) $\operatorname{ar}(\triangle \mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\triangle \mathrm{ABC})$

Answer

(i) We know that each median of a triangle divides it into two triangles of equal area.

Since,
$C R$ is a median of $\triangle C A P$
Therefore,
Area $(\triangle C R A)=\frac{1}{2} \operatorname{Area}(\triangle C A P)(i)$
Also,
$C P$ is a median of $\triangle C A B$
Therefore,
Area ($\triangle \mathrm{CAP}$) $=\operatorname{Area}(\triangle \mathrm{CPB})$ (ii)
From (i) and (ii), we get
Therefore,
Area $(\triangle \mathrm{ARC})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{CPB})$ (iii)
$P Q$ is a median of $\triangle P B C$
Therefore,
Area $(\triangle \mathrm{CPB})=2 \operatorname{Area}(\triangle \mathrm{PQB})$ (iv)
From (iii) and (iv), we get
Area $(\triangle \mathrm{ARC})=\operatorname{Area}(\triangle \mathrm{PBQ})(\mathrm{v})$
(ii) Since QP and QR medians of $\triangle \mathrm{QAB}$ and $\triangle \mathrm{QAP}$ respectively.

Area $(\triangle Q A P)=\operatorname{Area}(\triangle Q B P)(v i)$
And,
Area ($\triangle \mathrm{QAP}$) $=2$ Area ($\triangle \mathrm{QRP}$) (vii)
From (vi) and (vii), we get
$\operatorname{Area}(\triangle \mathrm{PRQ})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{PBQ})($ viii)
From (v) and (viii), we get
Area $(\triangle \mathrm{PRQ})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ARC})(\mathrm{ix})$
(iii) Since CR is a median of $\triangle C A P$

Therefore,
Area $(\triangle \mathrm{ARC})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{CAP})$
$=\frac{1}{2} * \frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})$ (Therefore, $C P$ is a median of $\triangle \mathrm{ABC}$)
$=\frac{1}{4}$ Area $(\triangle A B C)(x)$
Since,
$R Q$ is a median of $\Delta R B C$.
Therefore,
Area $(\triangle R Q C)=\frac{1}{2} \operatorname{Area}(\triangle R B C)$
$=\frac{1}{2}[$ Area $(\triangle A B C)-\operatorname{Area}(\triangle A R C)]$
$=\frac{1}{2}\left[\right.$ Area $\left.(\triangle A B C)-\frac{1}{4} \operatorname{Area}(\triangle \mathrm{ABC})\right]$
$=\frac{3}{4}$ Area $(\triangle \mathrm{ABC})$

19. Question

$A B C D$ is a parallelogram, G is the point on $A B$ such that $A G=2 G B, E$ is a point of $D C$ such that $C E=2 D E$ and F is the point of $B C$ such that $B F=2 F C$. Prove that:
(i) $\operatorname{ar}(\triangle \mathrm{ADGE})=\operatorname{ar}(\triangle \mathrm{GBCE})$
(ii) $\operatorname{ar}(\triangle \mathrm{EGB})=\frac{1}{6} \operatorname{ar}(\triangle \mathrm{ABCD})$
(iii) $\operatorname{ar}(\triangle \mathrm{EFC})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{EBF})$
(iv) $\operatorname{ar}(\triangle \mathrm{EBG})=\frac{3}{2} \operatorname{ar}(\triangle \mathrm{EFC})$

Answer

Given: $A B C D$ is a parallelogram in which
$A G=2 G B$
$C E=2 D E$
$B F=2 F C$
(i) Since $A B C D$ is a parallelogram, we have $A B \| C D$ and $A B=C D$

Therefore,
$B G=\frac{1}{3} A B$
And,
$D E=\frac{1}{3} C D=\frac{1}{3} A B$
Therefore,
$B G=D E$
ADEH is a parallelogram (Since, $A H$ is parallel to DE and AD is parallel to HE)
Area of parallelogram ADEH = Area of parallelogram BCIG (i)
(Since, $D E=B G$ and $A D=B C$ parallelogram with corresponding sides equal)
$\operatorname{Area}(\Delta \mathrm{HEG})=\operatorname{Area}(\Delta \mathrm{EGI})(\mathrm{ii})$
(Diagonals of a parallelogram divide it into two equal areas)
From (i) and (ii), we get,
Area of parallelogram ADEH + Area $(\triangle \mathrm{HEG})=$ Area of parallelogram BCIG + Area $(\triangle \mathrm{EGI})$
Therefore,
Area of parallelogram ADEG $=$ Area of parallelogram GBCE
(ii) Height, h of parallelogram $A B C D$ and $\triangle E G B$ is the same

Base of $\triangle \mathrm{EGB}=\frac{1}{3} \mathrm{AB}$
Area of parallelogram $A B C D=h * A B$
Area $(\Delta \mathrm{EGB})=\frac{1}{2} * \frac{1}{3} \mathrm{AB} * \mathrm{~h}$
$=\frac{1}{6}(\mathrm{~h}) * \mathrm{AB}$
$=\frac{1}{6} *$ Area of parallelogram ABCD
(iii) Let the distance between EH and $\mathrm{CB}=\mathrm{x}$

Area $(\triangle E B F)=\frac{1}{2} * B F * x$
$=\frac{1}{2} * \frac{2}{3} B C * x$
$=\frac{1}{3} * B C * x$
Area $(\triangle \mathrm{EFC})=\frac{1}{2} * \mathrm{CF} * x$
$=\frac{1}{2} * \frac{1}{3} * B C * x$
$=\frac{1}{2} * \operatorname{Area}(\Delta \mathrm{EBF})$
$\operatorname{Area}(\triangle \mathrm{EFC})=\frac{1}{2} * \operatorname{Area}(\Delta \mathrm{EBF})$
(iv) As, it has been proved that

Area $(\triangle \mathrm{EGB})==\frac{1}{6} *$ Area of parallelogram ABCD (iii)
Area $(\triangle \mathrm{EFC})=\frac{1}{3}$ Area ($\triangle \mathrm{EBC}$)
Area $(\triangle \mathrm{EFC})=\frac{1}{2} * \frac{1}{3} * \mathrm{CE} * \mathrm{EP}$
$=\frac{1}{2} * \frac{1}{3} * \frac{2}{3} * \mathrm{CD} * \mathrm{EP}$
$=\frac{1}{6} * \frac{2}{3} *$ Area of parallelogram ABCD
Area $(\triangle \mathrm{EFC})=\frac{2}{3} *$ Area ($\triangle \mathrm{EGB}$) $[$ By using (iii) $]$
Area $(\triangle \mathrm{EGB})=\frac{3}{2}$ Area ($\triangle \mathrm{EFC}$)

20. Question

In Fig. 15.83, CD||AE and CY||BA
(i) Name a triangle equal in area of $\triangle C B X$

Fig. 15.83
(ii) Prove that $\operatorname{ar}(\triangle \mathrm{ZDE})=\operatorname{ar}(\triangle \mathrm{CZA})$
(iii) Prove that $\operatorname{ar}(\triangle \mathrm{BCYZ})=\operatorname{ar}(\triangle \mathrm{EDZ})$

Answer

(i) $\triangle \mathrm{AYC}$ and $\triangle \mathrm{BCY}$ are on the same base CY and between the same parallels

CY || AB
Area $(\triangle A Y C)=\operatorname{Area}(\triangle B C Y)$
(Triangles on the same base and between the same parallels are equal in area)

Subtracting $\triangle C X Y$ from both sides we get,
Area $(\triangle A Y C)-\operatorname{Area}(\triangle C X Y)=\operatorname{Area}(\triangle B C Y)-\operatorname{Area}(\triangle C X Y)$ (Equals subtracted from equals are equals)
Area $(\triangle C B X)=\operatorname{Area}(\triangle A X Y)$
(ii) Since, $\triangle A C C$ and $\triangle A D E$ are on the same base $A F$ and between the same parallels

CD || AF
Then,
Area $(\triangle A C E)=\operatorname{Area}(\triangle A D E)$
Area $(\triangle \mathrm{CEA})+$ Area $(\triangle \mathrm{AZE})=$ Area $(\triangle \mathrm{AZE})+$ Area $(\triangle \mathrm{DZE}$
$\operatorname{Area}(\triangle \mathrm{CZA})=\operatorname{Area}(\triangle \mathrm{ZDE})(\mathrm{i})$
(iii) Since, $\triangle C B Y$ and $\triangle C A Y$ are on the same base $C Y$ and between the same parallels

CY || BA
Then,
Area $(\triangle \mathrm{CBY})=\operatorname{Area}(\triangle \mathrm{CAY})$
Adding Area ($\triangle \mathrm{CYG}$) on both sides we get
$\operatorname{Area}(\triangle \mathrm{CBY})+\operatorname{Area}(\triangle \mathrm{CYG})=\operatorname{Area}(\triangle \mathrm{CAY})+\operatorname{Area}(\Delta \mathrm{CYG})$
Area (BCYZ) $=\operatorname{Area}(\triangle C Z A)$ (ii)
Compare (i) and (ii), we get
Area $(B C Z Y)=\operatorname{Area}(\triangle E D Z)$
21. Question

In Fig. 15.84, PSDA is a parallelogram in which $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$ and $\mathrm{AP}\|\mathrm{BQ}\| \mathrm{CR}$. Prove that

Fig. 15.84
$\operatorname{ar}(\triangle \mathrm{PQE})=\operatorname{ar}(\Delta \mathrm{CFD})$

Answer

Given that,
PSDA is a parallelogram
Since,
AP || $B Q$ || $C R$ || $D S$ and $A D$ || $P S$
Therefore,
$P Q=C D(i)$
In $\triangle B E D$,
C is the mid-point of $B D$ and $C F \| B E$
Therefore,
F is the mid-point of ED
$E F=P E$
Similarly,
$\mathrm{PE}=\mathrm{FD}$ (ii)
In $\triangle \mathrm{PQE}$ and $\triangle \mathrm{CFD}$, we have
$P E=F D$
$\angle E P Q=\angle F D C$ (Alternate angle)
And,
$P Q=C D$
So, by SAS theorem, we have
$\triangle \mathrm{PQE} \cong \triangle \mathrm{CFD}$
$\operatorname{Area}(\triangle \mathrm{PQE})=\operatorname{Area}(\triangle \mathrm{CFD})$
Hence, proved

22. Question

In Fig. 15.85, $A B C D$ is a trapezium in which $A B \| D C$ and $D C=40 \mathrm{~cm}$ and $A B=60 \mathrm{~cm}$. If X and Y are, respectively, the mid points of AD and BC, Prove that

Fig. 15.85
(i) $X Y=50 \mathrm{~cm}$ (ii) $D C Y X$ is a trapezium
(iii) $\operatorname{ar}($ trap. $D C Y X)=\frac{9}{11} \operatorname{ar}($ trap. $X Y B A)$

Answer

(i) Join DY and extend it to meet $A B$ produced at P
$\angle B Y P=\angle C Y D$ (Vertically opposite angles)
$\angle D C Y=\angle P B Y$ (Since DC || AP)
$B Y=C Y$ (Since Y is the mid-point of $B C$)
Hence, by A.S.A. congruence rule
$\Delta B Y P \cong \triangle C Y D$
$D Y=Y P$
And,
$D C=B P$
Also,
X is the mid-point of $A D$
Therefore,
XY || AP
And,
$X Y=\frac{1}{2} A P$
$X Y=\frac{1}{2}(A B+B P)$
$X Y=\frac{1}{2}(A B+D C)$
$X Y=\frac{1}{2}(60+40)$
$=\frac{1}{2} \times 100$
$=50 \mathrm{~cm}$
(ii) We have,

XY || AP
$X Y|\mid A B$ and $A B| \mid D C$
XY || DC
DCYX is a trapezium.
(iii) Since X and Y are the mid-points of $A D$ and $B C$ respectively

Therefore,
Trapezium DCYX and ABYX are of same height and assuming it as 'h' cm
Area $($ Trapezium $D C Y X)=\frac{1}{2}(D C+X Y) * h$
$=\frac{1}{2}(40+50) h$
$=45 \mathrm{~h} \mathrm{~cm}{ }^{2}$
Area $($ Trapezium $A B Y X)=\frac{1}{2}(A B+X Y) * h$
$=\frac{1}{2}(60+50) * h$
$=55 \mathrm{hcm}{ }^{2}$
So,
$\frac{\text { Area of trapezium DCYX }}{\text { Area of trapezium ABYX }}=\frac{45 h}{55 h}$
$=\frac{9}{11}$
Area of trapezium $D C Y X=\frac{9}{11}$ Area of trapezium $A B X Y$

23. Question

In Fig. 15.86, $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. $A E$ intersects $B C$ in F. Prove that

Fig. 15.86
(i) $\operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
(ii) $\operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{BAE})$
(iii) $\operatorname{ar}(\triangle \mathrm{BFE})=\operatorname{ar}(\triangle \mathrm{AFD})$
(iv) $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{BEC})$
(v) $\operatorname{ar}(\triangle$ FED $)=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{AFC})$
(vi) $\operatorname{ar}(\triangle \mathrm{BFE})=2 \operatorname{ar}(\triangle \mathrm{EFD})$

Answer

Given that,
ABC and BDF are two equilateral triangles
Let,
$A B=B C=C A=x$
Then,
$B D=\frac{x}{2}=D E=B F$
(i) We have,

Area $(\triangle A B C)=\frac{\sqrt{3}}{4} x^{2}$
Area $(\triangle \mathrm{BDE})=\frac{\sqrt{3}}{4}\left(\frac{\mathrm{x}}{2}\right)^{2}$
$=\frac{1}{4} * \frac{\sqrt{3}}{4} x^{2}$
Area $(\triangle \mathrm{BDE})=\frac{1}{4}$ Area $(\triangle \mathrm{ABC})$
(ii) It is given that triangles $A B C$ and BED are equilateral triangles
$\angle A C B=\angle D B E=60^{\circ}$
$B E \| A C$ (Since, alternate angles are equal)
Triangles BAF and BEC re on the same base BE and between the same parallels BE and AC Therefore,

Area $(\triangle \mathrm{BAE})=\operatorname{Area}(\triangle \mathrm{BEC})$
Area $(\triangle \mathrm{BAE})=2$ Area $(\triangle \mathrm{BDE})$ (Therefore, ED is the median)
Area $(\triangle \mathrm{BDE})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{BAE})$
(iii) Since,
$\triangle A B C$ and $\triangle A E D$ are equilateral triangles
Therefore,
$\angle A B C=60^{\circ}$ and,
$\angle B D E=60^{\circ}$
$\angle A B C=\angle B D E$
AB || DE
Triangles BED and AED are on the same base ED and between the same parallels AB and DE Therefore,

Area $(\triangle \mathrm{BED})=\operatorname{Area}(\triangle \mathrm{AED})$

Area ($\triangle \mathrm{BED}$) - Area ($\triangle \mathrm{EFD}$) $=\operatorname{Area}(\triangle \mathrm{AED})-\operatorname{Area}(\triangle \mathrm{EFD})$
Area $(\triangle \mathrm{BEF})=\operatorname{Area}(\triangle \mathrm{AFD})$
(iv) Since,
$E D$ is the median of $\triangle B E C$
Therefore,
Area $(\triangle \mathrm{BEC})=2$ Area $(\triangle \mathrm{BDE})$
Area $(\triangle B E C)=2 * \frac{1}{4}$ Area $(\triangle A B C)$
Area $(\triangle \mathrm{BEC})=\frac{1}{2}$ Area $(\triangle \mathrm{ABC})$
Area $(\triangle A B C)=2$ Area $(\triangle B E C)$
(v) Let h be the height of vertex E, corresponding to the side $B D$ on $\triangle B D E$

Let H be the vertex A, corresponding to the side $B C$ in $\triangle A B C$
From part (i), we have
Area $(\triangle \mathrm{BDE})=\frac{1}{4}$ Area $(\triangle \mathrm{ABC})$
$\frac{1}{2} * B D * h=\frac{1}{4}\left(\frac{1}{2} * B C * H\right)$
$B D * h=\frac{1}{4}(2 B D * H)$
$h=\frac{1}{2} H(1)$
From part (iii), we have
Area $(\triangle \mathrm{BFC})=\operatorname{Area}(\triangle \mathrm{AFD})$
$=\frac{1}{2} * P D * H$
$=\frac{1}{2} * \mathrm{FD} * 2 \mathrm{~h}$
$=2\left(\frac{1}{2} * \mathrm{FD} * \mathrm{~h}\right)$
$=2$ Area ($\triangle \mathrm{EFD}$)
(vi) Area $(\triangle \mathrm{AFC})=$ Area $(\triangle \mathrm{AFD})+$ Area $(\triangle \mathrm{ADC}$
$=\operatorname{Area}(\triangle \mathrm{BFE})+\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})$
[Using part (iii) and $A D$ is the median of Area $\triangle A B C$]
$=$ Area $(\triangle \mathrm{BFE})+\frac{1}{2} * 4$ Area $(\triangle \mathrm{BDE})$ [Using part (i)]
Area $(\triangle \mathrm{BFC})=2$ Area ($\triangle \mathrm{FED}$) (2)
Area $(\triangle \mathrm{BDE})=\operatorname{Area}(\triangle \mathrm{BFE})+\operatorname{Area}(\triangle \mathrm{FED})$
2 Area ($\triangle \mathrm{FED}$) $+\operatorname{Area}(\triangle \mathrm{FED})$
3 Area ($\triangle \mathrm{FED}$) (3)
From above equations,
Area $(\triangle \mathrm{AFC})=2$ Area $(\triangle \mathrm{FED})+2 * 3$ Area ($\triangle \mathrm{FED}$)
$=$ Area ($\Delta \mathrm{FED}$)
Hence,
Area $(\triangle \mathrm{FED})=\frac{1}{8} \operatorname{Area}(\triangle \mathrm{AFC})$

24. Question

D is the mid-point of side $B C$ of $\triangle A B C$ and E is the mid-point of $B D$. If O is the mid-point of $A E$, prove that $\operatorname{ar}(\triangle \mathrm{BOE})=\frac{1}{8} \operatorname{ar}(\triangle \mathrm{ABC})$

Answer

Join A and D to get AD median
(Median divides the triangle into two triangles of equal area)
Therefore,
Area $(\triangle A B D)=\frac{1}{2}$ Area $(\triangle A B C)$
Now,
Join A and E to get $A E$ median
Similarly,
We can prove that,
Area $(\triangle A B E)=\frac{1}{2}$ Area $(\triangle A B D)$
Area $(\triangle A B E)=\frac{1}{4} A B C$ (Area $(\triangle A B D)=\frac{1}{2}$ Area $(A B C)$ (i)
Join B and O and we get BO median
Now,
Area $(\triangle B O E)=\frac{1}{2}$ Area $(\triangle A B E)$
Area $(\triangle \mathrm{BOE})=\frac{1}{2} * \frac{1}{4}$ Area $(\triangle \mathrm{ABC})$
Area $(\triangle \mathrm{BOE})=\frac{1}{8}$ Area $(\triangle \mathrm{ABC})$

25. Question

In Fig. 15.87, X and Y are the mid-point of $A C$ and $A B$ respectively, $Q P \| B C$ and $C Y Q$ and $B X P$ are straight lines. Prove that:
$\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACQ})$.

Fig. 15.87

Answer

In a $\triangle A X P$ and $\triangle C X B$,
$\angle P A X=X C B$ (Alternative angles AP || BC)
$A X=C X$ (Given)
$\angle A X P=\angle C X B$ (Vertically opposite angles)
$\triangle \mathrm{AXP} \cong \triangle C X B$ (By ASA rule)
$A P=B C$ (By c.p.c.t) (i)
Similarly,
$\mathrm{QA}=\mathrm{BC}$ (ii)
From (i) and (ii), we get
$A P=Q A$
Now,
$A P|\mid B C$
And,
$A P=Q A$
Area $(\triangle \mathrm{APB})=$ Area $(\triangle \mathrm{ACQ})$ (Therefore, Triangles having equal bases and between the same parallels QP and BC)

26. Question

In Fig. 15.88, ABCD and AEFD are two parallelograms. Prove that:

Fig. 15.88
(i) $P E=F Q$
(ii) $\operatorname{ar}(\triangle \mathrm{APE}): \operatorname{ar}(\triangle \mathrm{PFA})=\operatorname{ar}(\triangle \mathrm{QFD})=\operatorname{ar}(\triangle \mathrm{PFD})$
(iii) $\operatorname{ar}(\triangle \mathrm{PEA})=\operatorname{ar}(\triangle \mathrm{QFD})$

Answer

(i) In $\triangle E P A$ and $\triangle F Q D$
$\angle P E A=\angle Q F D$ (Corresponding angle)
$\angle E P A=\angle F Q D$ (Corresponding angle)
$\mathrm{PA}=\mathrm{QD}$ (Opposite sides of a parallelogram)
Then,
$\triangle \mathrm{EPA} \cong \triangle \mathrm{FQD}$ (By AAS congruence rule)
Therefore,
$\mathrm{EP}=\mathrm{FQ}$ (c.p.c.t)
(ii) Since, \triangle PEA and QFD stand on equal bases PE and FQ lies between the same parallel EQ and FQ lies between the same parallel EQ and AD

Therefore,
Area $(\triangle \mathrm{PEA})=\operatorname{Area}(\triangle \mathrm{QFD})(1)$
Since,
\triangle PEA and $\triangle P F D$ stand on the same base PF and lie between the same parallel PF and AD
Therefore,
Area ($\triangle \mathrm{PFA}$) $=$ Area ($\triangle \mathrm{PFD}$ (2)
Divide the equation (1) by (2), we get
$\frac{\text { Area }(\triangle \mathrm{PEA})}{\text { Area }(\triangle \mathrm{PFA})}=\frac{\text { Area }(\triangle \mathrm{QFD})}{\text { Area }(\triangle \mathrm{PFD})}$
(iii) From (i) part,
$\triangle \mathrm{EPA} \cong \triangle \mathrm{FQD}$
Then,
Area $(\triangle \mathrm{EPA})=\operatorname{Area}(\triangle \mathrm{FQD})$

27. Question

In Fig. 15.89, $A B C D$ is a $\|^{\mathrm{gm}}$. O is any point on $\mathrm{AC} . \mathrm{PQ} \| \mathrm{AB}$ and $\mathrm{LM} \| A D$. Prove that:

Fig. 15.89
$\operatorname{ar}\left(\left|\left.\right|^{\mathrm{gm}} \mathrm{DLOP}\right)=\operatorname{ar}\left(| |^{\mathrm{gm}} \mathrm{BMOQ}\right)\right.$

Answer

Since,
A diagonal of parallelogram divides it into two triangles of equal area
Therefore,
Area $(\triangle \mathrm{ADC})=\operatorname{Area}(\triangle \mathrm{ABC})$
Area ($\triangle \mathrm{APO})+$ Area of paratlelogram DLOP + Area ($\triangle \mathrm{OLC}$)
Area ($\triangle \mathrm{AOM})+$ Area of parallelogram DLOP + Area ($\triangle \mathrm{OQC}$) (i)
Since,
AO and CO are diagonals of parallelograms AMOP and OQCL respectively
Therefore,
Area $(\triangle \mathrm{APO})=\operatorname{Area}(\triangle \mathrm{AMO}){ }^{(\mathrm{ii})}$
Area $(\triangle O L C)=\operatorname{Area}(\triangle O Q C)$ (iii)
Subtracting (ii) from (iii), we get
Area of parallelogram DLOP = Area of parallelogram BMOQ.

28. Question

In a $\triangle A B C$, if L and M are points on $A B$ and $A C$ respectively such that $L M \| B C$. Prove that:
(i) $\operatorname{ar}(\triangle \mathrm{LCM})=\operatorname{ar}(\Delta \mathrm{LBM})$
(ii) $\operatorname{ar}(\Delta \mathrm{LBC})=\operatorname{ar}(\triangle \mathrm{MBC})$
(iii) $\operatorname{ar}(\triangle \mathrm{ABM})=\operatorname{ar}(\triangle \mathrm{ACL})$
(iv) $\operatorname{ar}(\Delta \mathrm{LOB})=\operatorname{ar}(\Delta \mathrm{MOC})$

Answer

(i) Clearly, triangles LMB and LMC are on the same base LM and between the same parallels LM and BC.

Therefore,
Area $(\Delta \mathrm{LMB})=\operatorname{Area}(\Delta \mathrm{LMC})(1)$
(ii) We observe that triangles LBC and MBC are on the same base BC and between the same parallels LM and BC.

Therefore,
Area $(\triangle \mathrm{LBC})=\operatorname{Area}(\triangle \mathrm{MBC})(2)$
(iii) We have,

Area $(\Delta \mathrm{LMB})=\operatorname{Area}(\Delta \mathrm{LMC})$ [From (i)]
$\operatorname{Area}(\triangle \mathrm{ALM})+\operatorname{Area}(\Delta \mathrm{LMB})=\operatorname{Area}(\triangle \mathrm{ALM})+\operatorname{Area}(\Delta \mathrm{LMC})$
Area $(\triangle \mathrm{ABM})=\operatorname{Area}(\triangle \mathrm{ACL})$
(iv) We have,

Area $(\triangle \mathrm{LBC})=\operatorname{Area}(\triangle \mathrm{MBC})$ [From (ii)]
Area $(\triangle L B C)$ - Area $(\triangle B O C=$ Area $(\triangle M B C)-\operatorname{Area}(\triangle B O C)$
Area $(\triangle \mathrm{LOB})=\operatorname{Area}(\triangle \mathrm{MOC})$

29. Question

In Fig. 15.90, D and E are two points on $B C$ such that $B D=D E=E C$. Show that $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\Delta$ AEC)

Fig. 15.90

Answer

Draw a line through A parallel to $B C$
Given that,
$B D=B E=E C$
We observed that the triangles ABD and AEC are on the same base and between the same parallels I and BC Therefore, their areas are equal

Hence,
Area $(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ADE})=\operatorname{Area}(\triangle \mathrm{ACE})$
30. Question

In Fig. 15.91, $A B C$ is a right triangle right angled at $A, B C E D, A C F G$ and $A B M N$ are squares on the sides $B C$, $C A$ and $A B$ respectively. Line segment $A X \perp D E$ meets $B C$ at Y. Show that:

(i) $\Delta \mathrm{MBC} \cong \mathrm{ABD}$ (ii) $\operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\Delta \mathrm{MBC})$
(iii) $\operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN})$
(iv) $\triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
(v) $\operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\triangle \mathrm{FCB})$
(vi) $\operatorname{ar}($ CYXE $)=\operatorname{ar}($ ACFG $)$
(vii) $\operatorname{ar}($ BCED $)=\operatorname{ar}($ ABMN $)+\operatorname{ar}($ ACFG $)$

Answer

(i) In $\triangle M B C$ and $\triangle A B D$, we have
$M B=A B$
$B C=B D$
And,
$\angle \mathrm{MBC}=\angle \mathrm{ABD}$ (Therefore, $\angle \mathrm{MBC}$ and $\angle A B C$ are obtained by adding $\angle A B C$ to right angle)
So, by SAS congruence rule, we have
$\Delta \mathrm{MBC} \cong \triangle \mathrm{ABD}$
Area $(\triangle \mathrm{MBC})=$ Area $(\triangle \mathrm{ABD})(1)$
(ii) Clearly, $\triangle A B C$ and rectangle $B Y X D$ are on the same base $B D$ and between the same parallels $A X$ and $B D$ Therefore,

Area $(\triangle \mathrm{ABD})=\frac{1}{2}$ Area of rectangle BYXD
Area of rectangle $\mathrm{BYXD}=2$ Area ($\triangle \mathrm{ABD}$)
Area of rectangle $\mathrm{BYXD}=2$ Area ($\triangle \mathrm{MBC}$) (2)
[Therefore, Area $(\triangle \mathrm{ABD})=$ Area $(\triangle \mathrm{MBC})$] From (1)
(iii) Since,
$\triangle \mathrm{MBC}$ and square MBAN are on the same base MB and between the same parallel MB and NC
Therefore,
2 Area $(\triangle \mathrm{MBC})=$ Area of square MBAN (3)
From (2) and (3), we have
Area of square MBAN $=$ Area of rectangle BXYD
(iv) $\ln \triangle \mathrm{FCB}$ and $\triangle \mathrm{ACE}$, we have
$\mathrm{FC}=\mathrm{AC}$
$C B=C E$
And,
$\angle F C B=\angle A C E$ (Therefore, $\angle F C B$ and $\angle A C E$ are obtained by adding $\angle A C B$ to a right angle)
So, by SAS congruence rule, we have
$\triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
(v) We have,
$\triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
Area $(\triangle \mathrm{FCB})=$ Area $(\triangle \mathrm{ACE})$
Clearly,
$\triangle A C E$ and rectangle CYXE are on the same base CE and between the same parallel CE and AX
Therefore,
2 Area ($\triangle \mathrm{ACE})=$ Area of rectangle CYXE
2 Area ($\triangle \mathrm{FCB}$) $=$ Area of rectangle CYXE (4)
(vi) Clearly,
$\triangle \mathrm{FCB}$ and rectangle FCAG are on the same base FC and between the same parallels FC and BG
Therefore,
2 Area $(\triangle \mathrm{FCB})=$ Area of rectangle FCAG (5)
From (4) and (5), we get
Area of rectangle CYXE = Area of rectangle ACFG
(vii) Applying Pythagoras theorem in $\triangle A C B$, we have
$B C^{2}=A B^{2}+A C^{2}$
$B C * B D=A B * M B+A C * F C$
Area of rectangle BCED $=$ Area of rectangle ABMN + Area of rectangle ACFG

CCE - Formative Assessment

1. Question

If $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$, then find $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle B D E)$.

Answer

$\triangle A B C$ and $\triangle B D E$ are equilateral triangles
We know that,
Area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
D is the mid-point of $B C$ then,
Area $(\triangle \mathrm{BDE})=\frac{\sqrt{3}}{4} *\left(\frac{a}{2}\right)^{2}$
$=\frac{\sqrt{3}}{4} * \frac{a * a}{4}$
Now,
$\frac{\sqrt{3}}{4} * a^{2}: \frac{\sqrt{3}}{4} * \frac{a * a}{4}$
1: $\frac{1}{4}$
4: 1
Hence,
Area ($\triangle \mathrm{ABC}$): Area ($\triangle \mathrm{BDE}$) is 4: 1

2. Question

In Fig. 15.104, $A B C D$ is a rectangle in which $C D=6 \mathrm{~cm}, A D=8 \mathrm{~cm}$. Find the area of parallelogram CDEF.

Answer

Given that,
$A B C D$ is a rectangle
$C D=6 \mathrm{~cm}$
$A D=8 \mathrm{~cm}$
We know that,
Area of parallelogram and rectangle on the same base between the same parallels are equal in area
So,
Area of parallelogram CDEF and rectangle $A B C D$ on the same base and between the same parallels, then We know that,

Area of parallelogram $=$ Base $*$ Height
Area of rectangle $A B C D=$ Area of parallelogram
$=A B * A D$
$=C D * A D$ (Therefore, $A B=C D)$
$=6 * 8$
$=48 \mathrm{~cm}^{2}$
Hence,
Area of rectangle $A B C D$ is $48 \mathrm{~cm}^{2}$

3. Question

In Fig. 15.104, find the area of $\triangle G E F$.

Answer

Given that,
$A B C D$ is rectangle
$C D=6 \mathrm{~cm}$
$A D=8 \mathrm{~cm}$
We know that,
If a rectangle and a parallelogram are on the same base and between the same parallels, then the area of a triangle is equal to the half of parallelogram

So, triangle GEF and parallelogram ABCD are on the same base and between same parallels, then we know Area of parallelogram = Base * Height

Now,
Area $(\triangle \mathrm{GEF})=\frac{1}{2} *$ Area of ABCD
$=\frac{1}{2} * A B * A D$
$=\frac{1}{2} * 6 * 8$
$=24 \mathrm{~cm}^{2}$
Hence,
Area ($\triangle \mathrm{GEF}$) is $24 \mathrm{~cm}^{2}$

4. Question

In Fig. 15.105, $A B C D$ is a rectangle with sides $A B=10 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. Find the area of $\triangle E F G$.

Fig. 15.105

Answer

We know that,
If a triangle and a parallelogram are on the same base and between the same parallel then the angle of triangle is equal to the half of the parallelogram

So, triangle EPG and parallelogram ABCD are on the same base and between same parallels. The
We know that,
Area of parallelogram = Base * Height
Now,
Area $(\triangle \mathrm{EPG})=\frac{1}{2} *$ Area of ABCD
$=\frac{1}{2} * A B * A D$
$=\frac{1}{2} * 10 * 5$
$=25 \mathrm{~cm}^{2}$

Hence,
Area ($\triangle \mathrm{EPG}$) is $25 \mathrm{~cm}^{2}$

5. Question

$P Q R S$ is a rectangle inscribed in a quadrant of a circle of radius 13 cm . A is any point on $P Q$. If $P S=5 \mathrm{~cm}$, then find $\operatorname{ar}(\triangle R A S)$.

Answer

Given that,
PQRS is a rectangle
$P S=5 \mathrm{~cm}$
$P R=13 \mathrm{~cm}$
In triangle PSR, by using Pythagoras theorem
$S R^{2}=P R^{2}-P S^{2}$
$S R^{2}=(13)^{2}-(5)^{2}$
$S R^{2}=169-25$
$S R^{2}=114$
$\mathrm{SR}=12 \mathrm{~cm}$
We have to find the area \triangle RAS,
Area $(\triangle \mathrm{RAS})=\frac{1}{2} *$ Base $*$ Height
$=\frac{1}{2} * \mathrm{SR} * \mathrm{PS}$
$=\frac{1}{2} * 12 * 5$
$=30 \mathrm{~cm}^{2}$
Hence, Area ($\triangle \mathrm{RAS}$) is $30 \mathrm{~cm}^{2}$

6. Question

In square $A B 2 C D, P$ and Q are mid-point of $A B$ and $C D$ respectively. If $A B=8 \mathrm{~cm}$ and $P Q$ and $B D$ intersect at O, then find area of $\triangle O P B$.

Answer

Given: $A B C D$ is a square
P and Q are the mid points of $A B$ and $C D$ respectively.
$A B=8 \mathrm{~cm}$
PQ and BD intersect at O
Now,
$A P=B P=\frac{1}{2} A B$
$\mathrm{AP}=\mathrm{BP}=\frac{1}{2} * 8$
$=4 \mathrm{~cm}$
$A B=A D=8 \mathrm{~cm}$
QP || AD

Then,
$A D=Q P$
So,
$\mathrm{OP}=\frac{1}{2} \mathrm{AD}$
$\mathrm{OP}=\frac{1}{2} * 8$
$=4 \mathrm{~cm}$
Now,
Area $(\triangle \mathrm{OPB})=\frac{1}{2} * \mathrm{BP} * \mathrm{PO}$
$=\frac{1}{2} * 4 * 4$
$=8 \mathrm{~cm}^{2}$
Hence, Area ($\triangle O P B$) is $8 \mathrm{~cm}^{2}$

7. Question

$A B C$ is a triangle in which D is the mid-point of $B C . E$ and F are mid-points of $D C$ and $A E$ respectively. If area of $\triangle A B C$ is $16 \mathrm{~cm}^{2}$, find the area of $\triangle D E F$.

Answer

Given that,
D, E, F are the mid-points of $B C, D C, A E$ respectively
Let, $A D$ is median of triangle $A B C$
Area $(\triangle \mathrm{ADC})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ABC})$
$=\frac{1}{2} * 16$
$=8 \mathrm{~cm}^{2}$
Now, $A E$ is a median of $\triangle A D C$
Area $(\triangle \mathrm{AED})=\frac{1}{2}$ Area $(\triangle \mathrm{ADC})$
$=\frac{1}{2} * 8$
$=4 \mathrm{~cm}^{2}$
Again,
$D E$ is the median of $\triangle A E D$
Area $(\triangle D E F)=\frac{1}{2}$ Area ($\triangle \mathrm{AED}$)
$=\frac{1}{2} * 4$
$=2 \mathrm{~cm}^{2}$

8. Question

$P Q R S$ is a trapezium having $P S$ and $Q R$ as parallel sides. A is any point on $P Q$ and B is a point on $S R$ such that $A B \| Q R$. If area of $\triangle P B Q$ is $17 \mathrm{~cm}^{2}$, find the area of $\triangle A S R$.

Answer

Given that,
Area $(\triangle \mathrm{PBQ})=17 \mathrm{~cm}^{2}$
PQRS is a trapezium
PS \| QR
A and B are points on $P Q$ and $R S$ respectively
AB || QR
We know that,
If a triangle and a parallelogram are on the same base and between the same parallels, the area of triangle is equal to half area of parallelogram

Here,
$\operatorname{Area}(\triangle \mathrm{ABP})=\operatorname{Area}(\triangle \mathrm{ASB})(\mathrm{i})$
Area $(\triangle A R Q)=\operatorname{Area}(\triangle A R B)(i i)$
We have to find Area ($\triangle \mathrm{ASR}$),
Area $(\triangle \mathrm{ASR})=$ Area $(\triangle \mathrm{ASB})+$ Area $(\triangle \mathrm{ARB})$
$=\operatorname{Area}(\triangle \mathrm{ABP})+\operatorname{Area}(\triangle \mathrm{ARQ})$
$=$ Area ($\triangle \mathrm{PBQ}$)
$=17 \mathrm{~cm}^{2}$
Hence,
Area ($\triangle \mathrm{ASR}$) is $17 \mathrm{~cm}^{2}$.

9. Question

$A B C D$ is a parallelogram. P is the mid-point of $A B$. $B D$ and $C P$ intersect at Q such that $C O: O P=3: 1$. If $\operatorname{ar}(\triangle P B O)=10 \mathrm{~cm}^{2}$, Find the area of parallelogram $A B C D$.

Answer

Given that,
$C Q: Q P=3: 1$
Let,
$C Q=3 x$
$P Q=x$
Area $(\triangle \mathrm{PBQ})=10 \mathrm{~cm}^{2}$
We know that,
Area of triangle $=\frac{1}{2} *$ Base $*$ Height
Area $(\triangle \mathrm{PBQ})=\frac{1}{2} * \mathrm{x} * \mathrm{~h}$
$10=\frac{1}{2} * x * h$
$x * h=20$
Area $(\triangle B Q C)=\frac{1}{2} * 3 x * h$
$=\frac{1}{2} * 3 * 20$
$=30 \mathrm{~cm}^{2}$
Now,
Area $(\triangle \mathrm{PCB})=\frac{1}{2} * \mathrm{~PB} * \mathrm{H}=30 \mathrm{~cm}^{2}$
$\mathrm{PB} * \mathrm{H}=60 \mathrm{~cm}^{2}$
We have to find area of parallelogram
We know that,
Area of parallelogram $=$ Base $*$ Height
Area $(A B C D)=A B * H$
Area $(\mathrm{ABCD})=2 \mathrm{BP} * \mathrm{H}$
Area $(A B C D)=2(60)$
Area $(A B C D)=120 \mathrm{~cm}^{2}$
Hence,
Area of parallelogram $A B C D$ is $120 \mathrm{~cm}^{2}$

10. Question

P is any point on base $B C$ of $\triangle A B C$ and D is the mid-point of $B C$. $D E$ is drawn parallel to PA to meet $A C$ at E. If $\operatorname{ar}(\triangle A B C)=12 \mathrm{~cm}^{2}$, then find area of $\triangle E P C$.

Answer

Given that,
Area $(\triangle \mathrm{ABC})=12 \mathrm{~cm}^{2}$
D is the mid-point of $B C$
So,
$A D$ is the median of triangle $A B C$,
$\operatorname{Area}(\triangle \mathrm{ABD})=\operatorname{Area}(\triangle \mathrm{ADC})=\frac{1}{2} * \operatorname{Area}(\triangle \mathrm{ABC})$
Area $(\triangle \mathrm{ADB})=\operatorname{Area}(\triangle \mathrm{ADC})=\frac{1}{2} * 12$
$=6 \mathrm{~cm}^{2}$ (i)
We know that,
Area of triangle between the same parallel and on the same base
Area $(\triangle \mathrm{APD})=\operatorname{Area}(\triangle \mathrm{APE})$
Area $(\triangle \mathrm{AMP})+\operatorname{Area}(\triangle \mathrm{PDM})=\operatorname{Area}(\triangle \mathrm{AMP})+\operatorname{Area}(\triangle \mathrm{AME})$
Area $(\triangle \mathrm{PDM})=\operatorname{Area}(\triangle \mathrm{AME})(\mathrm{ii})$
ME is the median of triangle ADC,
Area $(\triangle \mathrm{ADC})=\operatorname{Area}(\mathrm{MCED})+\operatorname{Area}(\triangle \mathrm{AME})$
Area $(\triangle \mathrm{ADC})=\operatorname{Area}(\mathrm{MECD})+\operatorname{Area}(\triangle \mathrm{PDM})[$ From (ii)]
Area $(\triangle \mathrm{ADC})=\operatorname{Area}(\triangle \mathrm{PEC})$
$6 \mathrm{~cm}^{2}=\operatorname{Area}(\mathrm{PPEC})$ [From (i)]
Hence,
Area ($\triangle P E C$) is $6 \mathrm{~cm}^{2}$.

1. Question

The opposite sides of a quadrilateral have
A. No common points
B. One common point
C. Two common points
D. Infinitely many common points

Answer

Since, the two opposite line are joined by two another lines connecting the end points.

2. Question

Two consecutive sides of a quadrilateral have
A. No common points
B. One common point
C. Two common points
D. Infinitely many common points

Answer

Since, quadrilateral is simple closed figure of four line segments.

3. Question

PQRS is a quadrilateral. PR and QS intersect each other at O . In which of the following cases, PQRS is a parallelogram?
A. $\angle P=100^{\circ}, \angle Q=80^{\circ}, \angle R=100^{\circ}$
B. $\angle P=85^{\circ}, \angle Q=85^{\circ}, \angle R=95^{\circ}$
C. $\mathrm{PQ}=7 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}, \mathrm{RS}=8 \mathrm{~cm}, \mathrm{SP}=8 \mathrm{~cm}$
D. $\mathrm{OP}=6.5 \mathrm{~cm}, \mathrm{OQ}=6.5 \mathrm{~cm}, \mathrm{OR}=5.2 \mathrm{~cm}, \mathrm{OS}=5.2 \mathrm{~cm}$

Answer
Since, the quadrilateral with opposite angles equal is a parallelogram.

4. Question

Which of the following quadrilateral is not a rhombus?
A. All four sides are equal
B. Diagonals bisect each other
C. Diagonals bisect opposite angles
D. One angle between the diagonals is 60°

Answer

One angle equalling to 60° need not necessarily be a rhombus.
5. Question

Diagonals necessarily bisect opposite angles in a
A. Rectangle
B. Parallelogram
C. Isosceles trapezium
D. Square

Answer

Each angle measures 45° each after the diagonal bisects them.

6. Question

The two diagonals are equal in a
A. Parallelogram
B. Rhombus
C. Rectangle
D. Trapezium

Answer

Let $A B C D$ is a rectangle
$A C$ and $B D$ are the diagonals of rectangle
In $\triangle A B C$ and $\triangle B C D$, we have
$A B=C D$ (Opposite sides of rectangle are equal)
$\angle A B C=\angle B C D\left(\right.$ Each equal to $\left.90^{\circ}\right)$
$B C=B C$ (Common)
Therefore,
$\triangle \mathrm{ABC} \cong \triangle \mathrm{BCD}$ (By SAS congruence criterion)
$A C=B D$ (c.p.c.t)
Hence, the diagonals of a rectangle are equal.

7. Question

We get a rhombus by joining the mid-points of the sides of a
A. Parallelogram
B. Rhombus
C. Rectangle
D. Triangle

Answer

Let $A B C D$ is a rectangle such as $A B=C D$ and $B C=D A$
P, Q, R and S are the mid points of the sides $A B, B C, C D$ and $D A$ respectively
Construction: Join AC and BD
In $\triangle A B C$,
P and Q are the mid-points of $A B$ and $B C$ respectively
Therefore,
$\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$ (Mid-point theorem) (i)
Similarly,
In $\triangle A D C$,
SR \| AC and SR = $\frac{1}{2} \mathrm{AC}$ (Mid-point theorem) (ii)
Clearly, from (i) and (ii)
$P Q \| S R$ and $P Q=S R$
Since, in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, it is a parallelogram.

Therefore,
PS || QR and PS = QR (Opposite sides of a parallelogram) (iii)
In $\triangle B C D$,
Q and R are the mid-points of side $B C$ and $C D$ respectively
Therefore,
QR || $B D$ and $Q R=\frac{1}{2} B D$ (Mid-point theorem) (iv)
However, the diagonals of a rectangle are equal
Therefore,
$A C=B D(v)$
Now, by using equation (i), (ii), (iii), (iv), and (v), we obtain
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$
Therefore, PQRS is a rhombus.

8. Question

The bisectors of any two adjacent angles of a parallelogram intersect at
A. 30°
B. 45°
C. 60°
D. 90°

Answer

Let, $A B C D$ is a parallelogram
OA and OD are the bisectors of adjacent angles $\angle A$ and $\angle D$
As, $A B C D$ is a parallelogram
Therefore,
$A B$ || $D C$ (Opposite sides of the parallelogram are parallel)
$A B|\mid D C$ and $A D$ is the transversal,
Therefore,
$\angle B A D+\angle C D A=180^{\circ}$ (Sum of interior angles on the same side of the transversal is 180°)
$\angle 1+\angle 2=90^{\circ}$ (AO and DO are angle bisectors $\angle A$ and $\angle D$) (i)
In $\triangle A O D$,
$\angle 1+\angle A O D+\angle 2=180^{\circ}$
$\angle A O D+90^{\circ}=180^{\circ}[$ From (i) $]$
$\angle A O D=180^{\circ}-90^{\circ}$
$=90^{\circ}$
Therefore,
In a parallelogram, the bisectors of the adjacent angles intersect at right angle.

9. Question

The bisectors of the angle of a parallelogram enclose a
A. Parallelogram
B. Rhombus
C. Rectangle
D. Square

Answer

Let, $A B C D$ is a parallelogram.
AE bisects $\angle B A D$ and $B F$ bisects $\angle A B C$
Also,
CG bisects $\angle B C D$ and $D H$ bisects $\angle A D C$
To prove: $L K J I$ is a rectangle
Proof: $\angle B A D+\angle A B C=180^{\circ}$ (Because adjacent angles of a parallelogram are supplementary)
$\triangle A B J$ is a right triangle
Since its acute interior angles are complementary
Similarly,
In $\triangle C D L$, we get
$\angle D L C=90^{\circ}$
In \triangle ADI, we get
$\angle A I D=90^{\circ}$
Then,
$\angle \mathrm{JIL}=90^{\circ}$ because $\angle A I D$ and $\angle \mathrm{JIL}$ are vertical opposite angles
Since three angles of quadrilateral LKJI are right angles, hence 4th angle is also a right angle Thus LKJI is a rectangle.

10. Question

The figure formed by joining the mid-points of the adjacent sides of a quadrilateral is a
A. Parallelogram
B. Rectangle
C. Square
D. Rhombus

Answer

Given that,
$A B C D$ is a quadrilateral and P, Q, R and S are the mid points of the sides $A B, B C, C D$ and $D A$ respectively To prove: PQRS is a parallelogram

Construction: Join A with C
Proof: In $\triangle \mathrm{ABC}$,
P and Q are the mid-points of $A B$ and $B C$ respectively
Therefore,
$\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$ (Mid-point theorem) (i)
Again,
In $\triangle \mathrm{ACD}$,
R and S are mid-points of sides $C D$ and AD respectively
Therefore,
SR \| AC and $S R=\frac{1}{2} A C$ (Mid-point theorem) (ii)
From (i) and (ii), we get
$P Q \| S R$ and $P Q=S R$
Hence, PQRS is a parallelogram (One pair of opposite sides is parallel and equal)

11. Question

The figure formed by joining the mid-points of the adjacent sides of a rectangle is a
A. Square
B. Rhombus
C. Trapezium
D. None of these

Answer

Given: $A B C D$ is a rectangle and P, Q, R, S are their midpoints
To Prove: PQRS is a rhombus
Proof: In $\triangle \mathrm{ABC}$,
P and Q are the mid points
So, PQ is parallel AC
And,
$\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$ (The line segment joining the mid points of 2 sides of the triangle is parallel to the third side and half of the third side)

Similarly,
RS is parallel AC
And,
$R S=\frac{1}{2} A C$
Hence, both PQ and RS are parallel to AC and equal to $\frac{1}{2} A C$.

Hence, PQRS is a parallelogram
In triangles APS \& BPQ,
$A P=B P(P$ is the mid-point of side $A B)$
$\angle P A S=\angle P B Q\left(90^{\circ}\right.$ each $)$
$A S=B Q(S$ and Q are the mid points of $A D$ and $B C$ respectively and since opposite sides of a rectangle are equal, so their halves will also be equal)
$\Delta \mathrm{APS} \cong \Delta \mathrm{BPQ}$ (By SAS congruence rule)
$\mathrm{PS}=\mathrm{PQ}$ (By c.p.c.t.)
PQRS is a parallelogram in which adjacent sides are equal.
Hence, PQRS is a rhombus.

12. Question

The figure formed by joining the mid-points of the adjacent sides of a rhombus is a
A. Square
B. Rectangle
C. Trapezium
D. None of these

Answer

To prove: That the quadrilateral formed by joining the mid points of sides of a rhombus is a rectangle.
$A B C D$ is a rhombus P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively.
Construction: Join AC
Proof: In $\triangle A B C, P$ and Q are the mid points of $A B$ and $B C$ respectively
Therefore,
$\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$ (i) (Mid-point theorem)
Similarly,
RS \| AC and RS $=\frac{1}{2} \mathrm{AC}$ (ii) (Mid-point theorem)
From (i) and (ii), we get
$P Q \| R S$ and $P Q=R S$
Thus, PQRS is a parallelogram (A quadrilateral is a parallelogram, if one pair of opposite sides is parallel and equal)
$A B=B C$ (Given)
Therefore,
$\frac{1}{2} A B=\frac{1}{2} B C$
$P B=B Q$ (P and Q are mid points of $A B$ and $B C$ respectively)
In $\triangle P B Q$,
$\mathrm{PB}=\mathrm{BQ}$
Therefore,
$\angle B Q P=\angle B P Q$ (iii) (Equal sides have equal angles opposite to them)

In $\triangle \mathrm{APS}$ and $\triangle \mathrm{CQR}$,
$A P=C Q\left(A B=B C=\frac{1}{2} A B=\frac{1}{2} B C=A P=C Q\right)$
$A S=C R\left(A D=C D=\frac{1}{2} A D=\frac{1}{2} C D=A S=C R\right)$
$P S=R Q$ (Opposite sides of parallelogram are equal)
Therefore,
$\triangle \mathrm{APS} \cong \triangle \mathrm{CQR}$ (By SSS congruence rule)
$\angle A P S=\angle C Q R$ (iv) (By c.p.c.t)
Now,
$\angle \mathrm{BPQ}+\angle \mathrm{SPQ}+\angle \mathrm{APS}=180^{\circ}$
$\angle \mathrm{BQP}+\angle \mathrm{PQR}+\angle \mathrm{CQR}=180^{\circ}$
Therefore,
$\angle \mathrm{BPQ}+\angle \mathrm{SPQ}+\angle \mathrm{APS}=\angle \mathrm{BQP}+\angle \mathrm{PQR}+\angle \mathrm{CQR}$
$\angle S P Q=\angle P Q R(v)[F r o m(i i i)$ and (iv)]
$\mathrm{PS} \| \mathrm{QR}$ and PQ is the transversal,
Therefore,
$\angle S P Q+\angle P Q R=180^{\circ}\left(\right.$ Sum of adjacent interior an angles is $\left.180^{\circ}\right)$
$\angle \mathrm{SPQ}+\angle \mathrm{SPQ}=180^{\circ}[$ From $(\mathrm{v})]$
$2 \angle \mathrm{SPQ}=180^{\circ}$
$\angle \mathrm{SPQ}=90^{\circ}$
Thus, PQRS is a parallelogram such that $\angle S P Q=90^{\circ}$
Hence, PQRS is a rectangle.

13. Question

The figure formed by joining the mid-points of the adjacent sides of a square is a
A. Rhombus
B. Square
C. Rectangle
D. Parallelogram

Answer

Let $A B C D$ is a square such that $A B=B C=C D=D A, A C=B D$ and P, Q, R and S are the mid points of the sides $A B, B C, C D$ and $D A$ respectively.

In $\triangle \mathrm{ABC}$,
P and Q are the mid-points of $A B$ and $B C$ respectively.
Therefore,
$P Q \| A C$ and $P Q=\frac{1}{2} A C$ (Mid-point theorem) (i)
Similarly,
In $\triangle \mathrm{ADC}$,

SR\|AC and $S R=\frac{1}{2} A C$ (Mid-point theorem) (ii)
Clearly,
$P Q \| S R$ and $P Q=S R$
Since, in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other. Hence, it is a parallelogram.

Therefore,
PS \| QR and PS = QR (Opposite sides of a parallelogram) (iii)
In $\triangle B C D$,
Q and R are the mid-points of sides $B C$ and $C D$ respectively
Therefore,
$\mathrm{QR} \| \mathrm{BD}$ and $\mathrm{QR}=\frac{1}{2} \mathrm{BD}$ (Mid-point theorem) (iv)
However, the diagonals of a square are equal
Therefore,
$A C=B D(v)$
By using equation (i), (ii), (iii), (iv) and (v), we obtain
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$
We know that, diagonals of a square are perpendicular bisector of each/ other
Therefore,
$\angle A O D=\angle A O B=\angle C O D=\angle B O C=90^{\circ}$
Now, in quadrilateral EHOS, we have
SE \| OH
Therefore,
$\angle A O D+\angle A E S=180^{\circ}($ Corresponding angle $)$
$\angle A E S=180^{\circ}-90^{\circ}$
$=90^{\circ}$
Again,
$\angle A E S+\angle S E O=180^{\circ}$ (Linear pair)
$\angle S E O=180^{\circ}-90^{\circ}$
$=90^{\circ}$
Similarly,
SH || EO
Therefore,
$\angle A O D+\angle D H S=180^{\circ}$ (Corresponding angle)
$\angle D H S=180^{\circ}-90^{\circ}=90^{\circ}$
Again,
$\angle D H S+\angle S H O=180^{\circ}($ Linear pair $)$
$\angle \mathrm{SHO}=180^{\circ}-90^{\circ}$
$=90^{\circ}$
Again,
In quadrilateral EHOS, we have
$\angle \mathrm{SEO}=\angle \mathrm{SHO}=\angle \mathrm{EOH}=90^{\circ}$
Therefore, by angle sum property of quadrilateral in EHOS, we get
$\angle \mathrm{SEO}+\angle \mathrm{SHO}+\angle \mathrm{EOH}+\angle \mathrm{ESH}=360^{\circ}$
$90^{\circ}+90^{\circ}+90^{\circ}+\angle E S H=360^{\circ}$
$\angle E S H=90^{\circ}$
In the same manner, in quadrilateral EFOP, FGOQ, GHOR, we get
$\angle H R G=\angle F Q G=\angle E P F=90^{\circ}$
Therefore, in quadrilateral PQRS, we have
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$ and $\angle \mathrm{ESH}=\angle \mathrm{HRG}=\angle \mathrm{FQG}=\angle \mathrm{EPF}=90^{\circ}$
Hence, PQRS is a square.

14. Question

The figure formed by joining the mid-points of the adjacent sides of a parallelogram is a
A. Rectangle
B. Parallelogram
C. Rhombus
D. Square

Answer

Let $A B C D$ be a quadrilateral, with points
E, F, G and H the midpoints of
$A B, B C, C D, D A$ respectively.
(I suggest you draw this, and add segments EF, FG, GH, and HE, along with diagonals AC and BD)
$E F=\frac{1}{2} A B$ (Definition of midpoint)
Similarly,
$B F=\frac{1}{2} B C$
Thus, triangle BEF is similar to triangle BAC (SAS similarity)
Therefore EF is half the length of diagonal AC, since that's the proportion of the similar triangles.
Similarly, we can show that triangle DHG is similar to triangle DAC,
Therefore,
HG is half the length of diagonal AC
So,
$\mathrm{EF}=\mathrm{HG}$
Similarly,
We can use similar triangles to prove that EH and FG are both half the length of diagonal BD, and therefore equal

This means that both pairs of opposite sides of quadrilateral EFGH are equal, so it is a parallelogram.

15. Question

If one side of a parallelogram is 24° less than twice the smallest angle, then the measure of the largest angle of the parallelogram is
A. 176°
B. 68°
C. 112°
D. 102°

Answer

Let the small angle be $=x$
Then the second angle $=2 x-24^{\circ}$
Since,
Opposite angles are equal the 4 angles will be $x, 2 x-24^{\circ}, x, 2 x-24^{\circ}$
So now by angle sum property:
$x+2 x-24^{\circ}+x+2 x-24^{\circ}=360^{\circ}$
$6 x-48^{\circ}=360^{\circ}$
$6 x=360^{\circ}+48^{\circ}$
$6 x=408^{\circ}$
$x=\frac{409}{6}$
$x=68^{\circ}$
Thus, the smallest angle is 68°
The second angle $=2\left(68^{\circ}\right)-24^{\circ}$
$=112^{\circ}$

16. Question

In a parallelogram $A B C D$, if $\angle D A B=75^{\circ}$ and $\angle D B C=60^{\circ}$, then $\angle B D C=$
A. 75°
B. 60°
C. 45°
D. 55°

Answer

We know that,
The opposite angles of a parallelogram are equal
Therefore,
$\angle B C D=\angle B A D=75^{\circ}$
Now, in $\triangle B C D$, we have
$\angle C D B+\angle D B C+\angle B C D=180^{\circ}$ (Since, sum of the angles of a triangle is 180°)
$\angle C D B+60^{\circ}+75^{\circ}=180^{\circ}$
$\angle C D B+135^{\circ}=180^{\circ}$
$\angle C D B=\left(180^{\circ}-135^{\circ}\right)=45^{\circ}$

17. Question

$A B C D$ is a parallelogram and E and F are the centroids of triangles $A B D$ and $B C D$ respectively, then $E F=$
A. AE
B. BE
C. $C E$
D. DE

Answer

Given: $A B C D$ is a parallelogram
E and F are the centroids of triangle $A B D$ and $B C D$
Since, the diagonals of parallelogram bisect each other
$A O$ is the median of triangle $A B D$
And,
CO is the median of triangle CBD
$\mathrm{EO}=\frac{1}{3} \mathrm{AO}$ (Since, centroid divides the median in the ratio 2:1)
Similarly,
$\mathrm{FO}=\frac{1}{3} \mathrm{CO}$
$\mathrm{EO}+\mathrm{FO}=\frac{1}{3} \mathrm{AO}+\frac{1}{3} \mathrm{CO}$
$=\frac{1}{3}(\mathrm{AO}+\mathrm{CO})$
$E F=\frac{1}{3} A C$
$A E=\frac{1}{3} A O$
$=\frac{2}{3} * \frac{1}{2} \mathrm{AC}$
$=\frac{1}{3} \mathrm{AC}$
Therefore,
$E F=A E$

18. Question

$A B C D$ is a parallelogram M is the mid-point of $B D$ and $B M$ bisects $\angle B$. Then, $\angle A M B=$
A. 45°
B. 60°
C. 90°
D. 75°

Answer

$A B C D$ is a parallelogram. $B D$ is the diagonal and M is the mid-point of $B D$.
$B D$ is a bisector of $\angle B$

We know that,
Diagonals of the parallelogram bisect each other
Therefore,
M is the mid-point of $A C$
$A B|\mid C D$ and $B D$ is the transversal,
Therefore,
$\angle \mathrm{ABD}=\angle \mathrm{BDC}$ (i) (Alternate interior angle)
$\angle \mathrm{ABD}=\angle \mathrm{DBC}$ (ii) (Given)
From (i) and (ii), we get
$\angle B D C=\angle D B C$
In $\triangle \mathrm{BCD}$,
$\angle B D C=\angle D B C$
$B C=C D$ (iii) (In a triangle, equal angles have equal sides opposite to them)
$A B=C D$ and $B C=A D$ (iv) (Opposite sides of the parallelogram are equal)
From (iii) and (iv), we get
$A B=B C=C D=D A$
Therefore,
$A B C D$ is a rhombus
$\angle A M B=90^{\circ}$ (Diagonals of rhombus are perpendicular to each other)

19. Question

$A B C D$ is a parallelogram and E is the mid-point of $B C$. $D E$ and $A B$ when produced meet at F. Then, $A F=$
A. $\frac{3}{2} \mathrm{AB}$
B. 2 AB
C. 3 AB
D. $\frac{5}{4} \mathrm{AB}$

Answer

$A B C D$ is a parallelogram. E is the midpoint of $B C$. So, $B E=C E$
DE produced meets the $A B$ produced at F
Consider the triangles CDE and BFE
$B E=C E$ (Given)
$\angle C E D=\angle B E F$ (Vertically opposite angles)
$\angle D C E=\angle F B E$ (Alternate angles)
Therefore,
$\triangle C D E \cong \triangle \mathrm{BFE}$
So,
$C D=B F$ (c.p.c.t)
But,
$C D=A B$
Therefore,
$A B=B F$
$A F=A B+B F$
$A F=A B+A B$
$A F=2 A B$

20. Question

If an angle of a parallelogram is two-third of its adjacent angle, the smallest angle of the parallelogram is
A. 108°
B. 54°
C. 72°
D. 81°

Answer

Since the adjacent angle of a parallelogram are supplementary.
Hence,
$x+\frac{2}{3} x=180^{\circ}$
$\frac{5}{8} x=180^{\circ}$
$x=108^{\circ}$
Now,
$\frac{2}{3} x=\frac{2}{3} * 108^{\circ}$
$=72^{\circ}$

21. Question

If the degree measures of the angles of quadrilateral are $4 x, 7 x, 9 x$ and $10 x$, what is the sum of the measures of the smallest angle and largest angle?
A. 140°
B. 150°
C. 168°
D. 180°

Answer

The total must be equal to 360° (Sum of quadrilaterals)
So,
$4 x+7 x+9 x+10 x=360^{\circ}$
$30 x=360^{\circ}$
$x=12^{\circ}$
Now,
Substitute $x=12$ into $4 x$ (Smallest) $+10 x$ (Biggest)
So,
$(4 * 12)+(10 * 12)$
$=48+120$
$=168$ so the answer is C

22. Question

In a quadrilateral $A B C D, \angle A+\angle C$ is 2 times $\angle B+\angle D$. If $\angle A=140^{\circ}$ and $f \angle D=60^{\circ}$, then $\angle B=$
A. 60°
B. 80°
C. 120°
D. None of these

Answer

Given that,
$\angle A=140^{\circ}$
$\angle D=60^{\circ}$
According to question,
$\angle A+\angle C=2(\angle B+\angle D)$
$140+\angle C=2\left(\angle B+60^{\circ}\right)$
$\angle B=\frac{1}{2}(\angle \mathrm{C})+10^{\circ}(\mathrm{i})$
We know,
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$140^{\circ}+\frac{1}{2}(\angle \mathrm{C})+10^{\circ}+\angle \mathrm{C}+60^{\circ}=360^{\circ}$
$\frac{3}{2} \angle \mathrm{C}=150^{\circ}$
$\angle C=100^{\circ}$
$\angle B=\frac{1}{2}\left(100^{\circ}\right)+10^{\circ}$
$=60^{\circ}$

23. Question

If the diagonals of a rhombus are 18 cm and 24 cm respectively, then its side is equal to
A. 16 cm
B. 15 cm
C. 20 cm
D. 17 cm

Answer

$A B C D$ is a rhombus
$A C=18 \mathrm{~cm}$
$B D=24 c m$
We have to find the sides of the rhombus
In triangle AOB,

AO $=9 \mathrm{~cm}$ (Diagonals of a parallelogram bisect each other)
$B O=12 \mathrm{~cm}$
AOB is a right - triangle right angled at O (Diagonals of a rhombus are perpendicular to each other)
So,
$A B^{2}=A O^{2}+B O^{2}$ (By Pythagoras theorem)
$A B^{2}=9^{2}+12^{2}$
$A B^{2}=81+144$
$A B^{2}=225$
$A B=15 \mathrm{~cm}$
In a rhombus, all sides are equal
Thus, each side of the rhombus is 15 cm .

24. Question

The diagonals $A C$ and $B D$ of a rectangle $A B C D$ intersect each other at P. If $\angle A B D=50^{\circ}$, then $\angle D P C=$
A. 70°
B. 90°
C. 80°
D. 100°

Answer

Given that,
$\angle A B D=\angle A B P=50^{\circ}$
$\angle P B C+\angle A B P=90^{\circ}$ (Each angle of a rectangle is a right angle)
$\angle \mathrm{PBC}=40^{\circ}$
Now,
PB $=$ PC (Diagonals of a rectangle are equal and bisect each other)
Therefore,
$\angle B C P=40^{\circ}$ (Equal sides has equal angle)
In triangle BPC,
$\angle B P C+\angle P B C+\angle B C P=180^{\circ}$ (Angle sum property of a triangle)
$\angle B P C=100^{\circ}$
$\angle B P C+\angle D P C=180^{\circ}($ Angles in a straight line $)$
$\angle D P C=180^{\circ}-100^{\circ}$
$=80^{\circ}$

25. Question

$A B C D$ is a parallelogram in which diagonal $A C$ bisects $\angle B A D$. If $\angle B A C=35^{\circ}$, then $\angle A B C=$
A. 70°
B. 110°
C. 90°
D. 120°

Answer

Given: ABCD is a parallelogram
$A C$ is a bisector of angle BAD
$\angle B A C=35^{\circ}$
$\angle A=2 \angle B A C$
$\angle A=2\left(35^{\circ}\right)$
$\angle A=70^{\circ}$
$\angle A+\angle B=180^{\circ}$ (Adjacent angles of parallelogram are supplementary)
$70+\angle B=180^{\circ}$
$\angle B=110^{\circ}$

26. Question

In a rhombus $A B C D$, if $\angle A C B=40^{\circ}$, then $\angle A D B=$
A. 70°
B. 45°
C. 50°
D. 60°

Answer

The diagonals in a rhombus are perpendicular,
So,
$\angle B P C=90^{\circ}$
From triangle BPC,
The sum of angles is 180°
So,
$\angle C B P=180^{\circ}-40^{\circ}-90^{\circ}$
$=50^{\circ}$
Since, triangle ABC is isosceles
We have,
$A B=B C$
So,
$\angle A C B=\angle C A B=40^{\circ}$
Again from triangle APB,
$\angle P B A=180^{\circ}-40^{\circ}-90^{\circ}$
$=50^{\circ}$
Again, triangle ADB is isosceles,
So,
$\angle \mathrm{ADB}=\angle \mathrm{DBA}=50^{\circ}$
$\angle A D B=50^{\circ}$

27. Question

In $\triangle A B C, \angle A=30^{\circ}, \angle B=40^{\circ}$ and $\angle C=110^{\circ}$. The angles of the triangle formed by joining the mid-points of the sides of this triangle are
A. $70^{\circ}, 70^{\circ}, 40^{\circ}$
B. $60^{\circ}, 40^{\circ}, 80^{\circ}$
C. $30^{\circ}, 40^{\circ}, 110^{\circ}$
D. $60^{\circ}, 70^{\circ}, 50^{\circ}$

Answer

Since, the triangle formed by joining the mid points of the triangle would be similar to it hence the angles would be equal to the outer triangle's angles.

28. Question

The diagonals of a parallelogram $A B C D$ intersect ay 0 . If $\angle B O C=90^{\circ}$ and $\angle B D C=50^{\circ}$, then $\angle O A B=$
A. 40°
B. 50°
C. 10°
D. 90°

Answer

$\angle B O C$ is 90°
So,
$\angle C O D$ and $\angle A O B$ all should be 90° by linear pair
$\angle B D C$ is 50°,
So,
Now as in a parallelogram the opposite sides are equal
We say,
$A B$ parallel to $C D$
$\angle D C A=50^{\circ}$
So,
In triangle COA
$\angle C=50^{\circ}$ (Stated above)
$\angle C O A=90^{\circ}$ (Proved above)
Therefore,
$90^{\circ}+50^{\circ}+x^{\circ}=180^{\circ}$
$x=40^{\circ}$

29. Question

$A B C D$ is a trapezium in which $A B \| D C . M$ and N are the mid-points of $A D$ and $B C$ respectively, If $A B=12 c m$, $M N=14 \mathrm{~cm}$, then $C D=$
A. 10 cm
B. 12 cm
C. 14 cm
D. 16 cm

Answer

Construction: Join A to C
Mark the intersection point of AC and MN as O
Now, M and N are mid points of the non-parallel of a trapezium
Therefore,
$M N||A B|| D C$
So,
MO || BC
And,
M is a mid-point of $A D$
Therefore,
$M O=\frac{1}{2} B C$
Similarly,
$N O=\frac{1}{2} A B$
Therefore,
$\mathrm{MN}=\mathrm{MO}+\mathrm{NO}$
$=\frac{1}{2}(A B+C D)$
But,
$\mathrm{MN}=14 \mathrm{~cm}$
Hence,
$\frac{1}{2}(A B+C D)=14 \mathrm{~cm}$
$12+C D=28$
$C D=16 \mathrm{~cm}$

30. Question

Diagonals of a quadrilateral $A B C D$ bisect each other. If $\angle A=45^{\circ}$, then $\angle B=$
A. 115°
B. 120°
C. 125°
D. 135°

Answer

Since, diagonals of quadrilateral bisect each other
Hence, it's a parallelogram
We know,
The adjacent angles of parallelogram are supplementary

Therefore,
$\angle A+\angle B=180^{\circ}$
$45^{\circ}+\angle B=180^{\circ}$
$\angle B=135^{\circ}$

31. Question

P is the mid-point of side $B C$ of a parallelogram $A B C D$ such that $\angle B A P=\angle D A P$. If $A D=10 \mathrm{~cm}$, then $C D=$
A. 5 cm
B. 6 cm
C. 8 cm
D. 10 cm

Answer

Given that,
$A B C D$ is a parallelogram
P is the mid-point of $B C$
$\angle D A P=\angle P A B=x$
$A D=10 \mathrm{~cm}$
To find: The length of CD
$\angle A B P=180-2 x$ (Co interior angle of parallelogram)
$\angle A P B=180^{\circ}-\left(180^{\circ}-2 x+x\right)=x$
Therefore,
In triangle $A B P$,
$\angle A P B=\angle P A B=x$
Therefore,
$A B=P B$ (In a triangle sides opposite to equal angles are equal in length)
$C D=A B=P B=\frac{B C}{2}=\frac{A D}{2}=\frac{10}{2}=5 \mathrm{~cm}$

32. Question

In $\triangle A B C, E$ is the mid-point of median $A D$ such that $B E$ produced meets $A C$ at F. If $A C=10.5 \mathrm{~cm}$, then $A F=$
A. 3 cm
B. 3.5 cm
C. 2.5 cm
D. 5 cm

Answer

Complete the parallelogram ADCP
So the diagonals DP \& AC bisect each other at O
Thus O is the midpoint of $A C$ as well as DP (i)
Since ADCP is a parallelogram,
$A P=D C$

And,
AP parallel DC
But,
D is mid-point of $B C$ (Given)
$A P=B D$
And,
AP parallel BD
Hence,
BDPA is also a parallelogram.
So, diagonals $A D \& B P$ bisect each other at E (E being given mid-point of $A D$)
So, BEP is a single straight line intersecting $A C$ at F
In triangle ADP,
E is the mid-point of $A D$ and
O is the midpoint of PD.
Thus, these two medians of triangle ADP intersect at F, which is centroid of triangle ADP By property of centroid of triangles,

It lies at $\frac{2}{3}$ of the median from vertex
So,
$A F=\frac{2}{3} A O$ (ii)
So,
From (i) and (ii),
$\mathrm{AF}=\frac{2}{3} * \frac{1}{2} * \mathrm{AC}$
$=\frac{1}{3} \mathrm{AC}$
$=\frac{10.5}{3}$
$=3.5 \mathrm{~cm}$

