14. Differentials, Errors and Approximations

Exercise 14.1

1. Question

If $\mathrm{y}=\sin \mathrm{x}$ and x changes from $\frac{\pi}{2}$ to $\frac{22}{14}$, what is the approximate change in y ?

Answer

Given $\mathrm{y}=\sin \mathrm{x}$ and x changes from $\frac{\pi}{2}$ to $\frac{22}{14}$.
Let $\mathrm{x}=\frac{\pi}{2}$ so that $\mathrm{x}+\Delta \mathrm{x}=\frac{22}{14}$
$\Rightarrow \frac{\pi}{2}+\Delta x=\frac{22}{14}$
$\therefore \Delta x=\frac{22}{14}-\frac{\pi}{2}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}(\sin x)$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\therefore \frac{d y}{d x}=\cos x$
When $x=\frac{\pi}{2}$, we have $\frac{d y}{d x}=\cos \left(\frac{\pi}{2}\right)$.
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=\frac{\pi}{2}}=0$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d y}{d x}=0$ and $\Delta x=\frac{22}{14}-\frac{\pi}{2}$
$\Rightarrow \Delta \mathrm{y}=(0)\left(\frac{22}{14}-\frac{\pi}{2}\right)$
$\therefore \Delta \mathrm{y}=0$
Thus, there is approximately no change in y .

2. Question

The radius of a sphere shrinks from 10 to 9.8 cm . Find approximately the decrease in its volume.

Answer

Given the radius of a sphere changes from 10 cm to 9.8 cm .
Let x be the radius of the sphere and Δx be the change in the value of x.
Hence, we have $x=10$ and $x+\Delta x=9.8$
$\Rightarrow 10+\Delta x=9.8$
$\Rightarrow \Delta x=9.8-10$
$\therefore \Delta \mathrm{x}=-0.2$
The volume of a sphere of radius x is given by
$V=\frac{4}{3} \pi x^{3}$
On differentiating V with respect to x , we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{4}{3} \pi x^{3}\right)$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3} \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3}\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=4 \pi x^{2}$
When $x=10$, we have $\frac{d V}{d x}=4 \pi(10)^{2}$.
$\Rightarrow\left(\frac{d V}{d x}\right)_{x=10}=4 \pi \times 100$
$\Rightarrow\left(\frac{d V}{d x}\right)_{x=10}=400 \pi$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ - $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d v}{d x}=400 \pi$ and $\Delta x=-0.2$
$\Rightarrow \Delta V=(400 \pi)(-0.2)$
$\therefore \Delta V=-80 \pi$
Thus, the approximate decrease in the volume of the sphere is $80 \pi \mathrm{~cm}^{3}$.

3. Question

A circular metal plate expands under heating so that its radius increases by $k \%$. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm .

Answer

Given the radius of a circular plate initially is 10 cm and it increases by $\mathrm{k} \%$.
Let x be the radius of the circular plate, and Δx is the change in the value of x.
Hence, we have $x=10$ and $\Delta x=\frac{k}{100} \times 10$
$\therefore \Delta x=0.1 k$
The area of a circular plate of radius x is given by
$A=\pi x^{2}$
On differentiating A with respect to x, we get
$\frac{d A}{d x}=\frac{d}{d x}\left(\pi x^{2}\right)$
$\Rightarrow \frac{\mathrm{dA}}{\mathrm{dx}}=\pi \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dA}}{\mathrm{dx}}=\pi(2 \mathrm{x})$
$\therefore \frac{\mathrm{dA}}{\mathrm{dx}}=2 \pi \mathrm{x}$
When $x=10$, we have $\frac{d \mathrm{~A}}{\mathrm{dx}}=2 \pi(10)$.
$\Rightarrow\left(\frac{\mathrm{dA}}{\mathrm{dx}}\right)_{\mathrm{x}=10}=20 \pi$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d A}{d x}=20 \pi$ and $\Delta x=0.1 \mathrm{k}$
$\Rightarrow \Delta A=(20 \pi)(0.1 \mathrm{k})$
$\therefore \Delta \mathrm{A}=2 \mathrm{k} \pi$
Thus, the approximate increase in the area of the circular plate is $2 \mathrm{k} \pi \mathrm{cm}^{2}$.

4. Question

Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of the edges of the cube.

Answer

Given the error in the measurement of the edge of a cubical box is 1%.
Let x be the edge of the cubical box, and Δx is the error in the value of x.
Hence, we have $\Delta x=\frac{1}{100} \times x$
$\therefore \Delta \mathrm{x}=0.01 \mathrm{x}$
The surface area of a cubical box of radius x is given by
$S=6 x^{2}$
On differentiating A with respect to x, we get
$\frac{d S}{d x}=\frac{d}{d x}\left(6 x^{2}\right)$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=6 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=6(2 \mathrm{x})$
$\therefore \frac{d S}{d x}=12 x$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d S}{d x}=12 x$ and $\Delta x=0.01 x$
$\Rightarrow \Delta S=(12 x)(0.01 x)$
$\therefore \Delta \mathrm{S}=0.12 \mathrm{x}^{2}$
The percentage error is,
Error $=\frac{0.12 \mathrm{x}^{2}}{6 \mathrm{x}^{2}} \times 100 \%$
\Rightarrow Error $=0.02 \times 100 \%$
\therefore Error $=2 \%$
Thus, the error in calculating the surface area of the cubical box is 2%.

5. Question

If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere.

Answer

Given the error in the measurement of the radius of a sphere is 0.1%.
Let x be the radius of the sphere and Δx be the error in the value of x.
Hence, we have $\Delta x=\frac{0.1}{100} \times x$
$\therefore \Delta \mathrm{x}=0.001 \mathrm{x}$
The volume of a sphere of radius x is given by
$\mathrm{V}=\frac{4}{3} \pi \mathrm{x}^{3}$
On differentiating V with respect to x, we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{4}{3} \pi x^{3}\right)$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3} \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3}\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=4 \pi x^{2}$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$

Here, $\frac{d v}{d x}=4 \pi x^{2}$ and $\Delta x=0.001 x$
$\Rightarrow \Delta V=\left(4 \pi x^{2}\right)(0.001 x)$
$\therefore \Delta V=0.004 \pi x^{3}$
The percentage error is,
Error $=\frac{0.004 \pi x^{3}}{\frac{4}{3} \pi x^{3}} \times 100 \%$
\Rightarrow Error $=\frac{0.004 \times 3}{4} \times 100 \%$
\Rightarrow Error $=0.003 \times 100 \%$
\therefore Error $=0.3 \%$
Thus, the error in calculating the volume of the sphere is 0.3%.

6. Question

The pressure p and the volume v of a gas are connected by the relation $\mathrm{pv}^{1.4}=$ const. Find the percentage error in p corresponding to a decrease of $\frac{1}{2} \%$ in v.

Answer

Given $p v^{1.4}=$ constant and the decrease in v is $\frac{1}{2} \%$.
Hence, we have $\Delta v=-\frac{\frac{1}{2}}{100} \times v$
$\therefore \Delta v=-0.005 v$
We have $\mathrm{pv}^{1.4}=\mathrm{constant}$
Taking log on both sides, we get
$\log \left(p v^{1.4}\right)=\log ($ constant $)$
$\Rightarrow \log p+\log v^{1.4}=0[\because \log (a b)=\log a+\log b]$
$\Rightarrow \log p+1.4 \log v=0\left[\because \log \left(a^{m}\right)=m \log a\right]$
On differentiating both sides with respect to v, we get
$\frac{d}{d p}(\log p) \times \frac{d p}{d v}+\frac{d}{d v}(1.4 \log v)=0$
$\Rightarrow \frac{d}{d p}(\log p) \times \frac{d p}{d v}+1.4 \frac{d}{d v}(\log v)=0$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{1}{p} \times \frac{d p}{d v}+1.4 \times \frac{1}{v}=0$
$\Rightarrow \frac{1}{p} \frac{d p}{d v}+\frac{1.4}{v}=0$
$\Rightarrow \frac{1}{\mathrm{p}} \frac{\mathrm{dp}}{\mathrm{dv}}=-\frac{1.4}{\mathrm{v}}$
$\therefore \frac{d p}{d v}=-\frac{1.4}{v} p$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d p}{d v}=-\frac{1.4}{v} p$ and $\Delta v=-0.005 v$
$\Rightarrow \Delta \mathrm{p}=\left(-\frac{1.4}{\mathrm{~V}} \mathrm{p}\right)(-0.005 \mathrm{v})$
$\Rightarrow \Delta p=(-1.4 p)(-0.005)$
$\therefore \Delta p=0.007 p$
The percentage error is,
Error $=\frac{0.007 p}{p} \times 100 \%$
\Rightarrow Error $=0.007 \times 100 \%$
\therefore Error $=0.7 \%$
Thus, the error in p corresponding to the decrease in v is 0.7%.

7. Question

The height of a cone increases by $k \%$, its semi-vertical angle remaining the same. What is the approximate percentage increase in (i) in total surface area, and (ii) in the yolume, assuming that k is small.

Answer

Given the height of a cone increases by k\%.
Let x be the height of the cone and Δx be the change in the value of x.
Hence, we have $\Delta x=\frac{k}{100} \times x$
$\therefore \Delta x=0.01 k x$
Let us assume the radius, the slant height and the semi-vertical angle of the cone to be r, I and α respectively as shown in the figure below.

From the above figure, using trigonometry, we have
$\tan \alpha=\frac{O B}{O A}$
$\Rightarrow \tan \alpha=\frac{\mathrm{r}}{\mathrm{X}}$
$\therefore \mathrm{r}=\mathrm{x} \tan (\alpha)$
We also have
$\cos \alpha=\frac{\mathrm{OA}}{\mathrm{AB}}$
$\Rightarrow \cos \alpha=\frac{\mathrm{x}}{\mathrm{l}}$
$\Rightarrow \mathrm{l}=\frac{\mathrm{x}}{\cos \alpha}$
$\therefore \mathrm{I}=\mathrm{x} \sec (\alpha)$
(i) The total surface area of the cone is given by
$S=\pi r^{2}+\pi r l$
From above, we have $r=x \tan (\alpha)$ and $I=x \sec (\alpha)$.
$\Rightarrow S=\pi(x \tan (\alpha))^{2}+\pi(x \tan (\alpha))(x \sec (\alpha))$
$\Rightarrow S=\pi x^{2} \tan ^{2} \alpha+\pi x^{2} \tan (\alpha) \sec (\alpha)$
$\Rightarrow S=\pi x^{2} \tan (\alpha)[\tan (\alpha)+\sec (\alpha)]$
On differentiating S with respect to x, we get
$\frac{d S}{d x}=\frac{d}{d x}\left[\pi x^{2} \tan \alpha(\tan \alpha+\sec \alpha)\right]$
$\Rightarrow \frac{d S}{d x}=\pi \tan \alpha(\tan \alpha+\sec \alpha) \frac{d}{d x}\left(x^{2}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=\pi \tan \alpha(\tan \alpha+\sec \alpha)(2 \mathrm{x})$
$\therefore \frac{\mathrm{dS}}{\mathrm{dx}}=2 \pi x \tan \alpha(\tan \alpha+\sec \alpha)$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ $-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dS}}{\mathrm{dx}}=2 \pi \mathrm{x} \tan \alpha(\tan \alpha+\sec \alpha)$ and $\Delta \mathrm{x}=0.01 \mathrm{kx}$
$\Rightarrow \Delta S=(2 \pi x \tan (\alpha)[\tan (\alpha)+\sec (\alpha)])(0.01 k x)$
$\therefore \Delta \mathrm{S}=0.02 \mathrm{k} \pi \mathrm{x}^{2} \tan (\alpha)[\tan (\alpha)+\sec (\alpha)]$
The percentage increase in S is,
Increase $=\frac{\Delta \mathrm{S}}{\mathrm{S}} \times 100 \%$
\Rightarrow Increase $=\frac{0.02 \mathrm{kmx}^{2} \tan \alpha(\tan \alpha+\sec \alpha)}{\pi \mathrm{x}^{2} \tan \alpha(\tan \alpha+\sec \alpha)} \times 100 \%$
\Rightarrow Increase $=0.02 \mathrm{k} \times 100 \%$
\therefore Increase $=2 \mathrm{k} \%$
Thus, the approximate increase in the total surface area of the cone is $2 \mathrm{k} \%$.
(ii) The volume of the cone is given by
$V=\frac{1}{3} \pi r^{2} x$
From above, we have $r=x \tan (\alpha)$.
$\Rightarrow \mathrm{V}=\frac{1}{3} \pi(\mathrm{x} \tan \alpha)^{2} \mathrm{x}$
$\Rightarrow V=\frac{1}{3} \pi\left(x^{2} \tan ^{2} \alpha\right) x$
$\Rightarrow \mathrm{V}=\frac{1}{3} \pi \mathrm{x}^{3} \tan ^{2} \alpha$
On differentiating V with respect to x , we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{1}{3} \pi x^{3} \tan ^{2} \alpha\right)$
$\Rightarrow \frac{\mathrm{dV}}{\mathrm{dx}}=\frac{1}{3} \pi \tan ^{2} \alpha \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{3}\right)$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{1}{3} \pi \tan ^{2} \alpha\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=\pi x^{2} \tan ^{2} \alpha$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{dV}}{\mathrm{dx}}=\pi \mathrm{x}^{2} \tan ^{2} \alpha$ and $\Delta \mathrm{x}=0.01 \mathrm{kx}$
$\Rightarrow \Delta V=\left(\pi x^{2} \tan ^{2} \alpha\right)(0.01 \mathrm{kx})$
$\therefore \Delta V=0.01 \mathrm{k} \pi x^{3} \tan ^{2} \alpha$
The percentage increase in \bigvee is,
Increase $=\frac{\Delta V}{V} \times 100 \%$
\Rightarrow Increase $=\frac{0.01 \mathrm{krx}^{3} \tan ^{2} \alpha}{\frac{1}{3} \pi \mathrm{x}^{3} \tan ^{2} \alpha} \times 100 \%$
\Rightarrow Increase $=\frac{0.01 \mathrm{k}}{\frac{1}{3}} \times 100 \%$
\Rightarrow Increase $=0.03 \mathrm{k} \times 100 \%$
\therefore Increase $=3 \mathrm{k} \%$
Thus, the approximate increase in the volume of the cone is $3 \mathrm{k} \%$.

8. Question

Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius.

Answer

Let the error in measuring the radius of a sphere be $\mathrm{k} \%$.
Let x be the radius of the sphere and Δx be the error in the value of x.
Hence, we have $\Delta x=\frac{k}{100} \times x$
$\therefore \Delta \mathrm{x}=0.01 \mathrm{kx}$
The volume of a sphere of radius x is given by
$V=\frac{4}{3} \pi x^{3}$
On differentiating V with respect to x , we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{4}{3} \pi x^{3}\right)$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3} \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3}\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=4 \pi x^{2}$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ $-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d v}{d x}=4 \pi x^{2}$ and $\Delta x=0.01 k x$
$\Rightarrow \Delta V=\left(4 \pi x^{2}\right)(0.01 k x)$
$\therefore \Delta V=0.04 \mathrm{k}_{\mathrm{k}} \mathrm{x}^{3}$
The percentage error is,

\Rightarrow Error $=\frac{0.04 \mathrm{k} \times 3}{4} \times 100 \%$
\Rightarrow Error $=0.03 \mathrm{k} \times 100 \%$
\therefore Error $=3 \mathrm{~K} \%$
Thus, the error in measuring the volume of the sphere is approximately three times the error in measuring its radius.

9 A. Question

Using differentials, find the approximate values of the following:
$\sqrt{25.02}$

Answer

Let us assume that $f(x)=\sqrt{x}$

Also, let $x=25$ so that $x+\Delta x=25.02$
$\Rightarrow 25+\Delta x=25.02$
$\therefore \Delta \mathrm{x}=0.02$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{2}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}$
When $x=25$, we have $\frac{d f}{d x}=\frac{1}{2 \sqrt{25}}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=25}=\frac{1}{2 \times 5}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=0.1$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.1$ and $\Delta \mathrm{x}=0.02$
$\Rightarrow \Delta \mathrm{f}=(0.1)(0.02)$
$\therefore \Delta f=0.002$
Now, we have $f(25.02)=f(25)+\Delta f$
$\Rightarrow \mathrm{f}(25.02)=\sqrt{25}+0.002$
$\Rightarrow f(25.02)=5+0.002$
$\therefore \mathrm{f}(25.02)=5.002$
Thus, $\sqrt{25.02} \approx 5.002$

9 B. Question

Using differentials, find the approximate values of the following:
$(0.009)^{1 / 3}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\frac{1}{3}}$
Also, let $x=0.008$ so that $x+\Delta x=0.009$
$\Rightarrow 0.008+\Delta x=0.009$
$\therefore \Delta \mathrm{x}=0.001$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{3}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{\frac{1}{3}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{-\frac{2}{3}}$
$\therefore \frac{d f}{d x}=\frac{1}{3 x^{\frac{2}{3}}}$
When $x=0.008$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3(0.008)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=0.008}=\frac{1}{3\left((0.2)^{3}\right)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=\frac{1}{3(0.2)^{2}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=\frac{1}{3(0.04)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=\frac{1}{0.12}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=8.3333$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=8.3333$ and $\Delta x=0.001$
$\Rightarrow \Delta f=(8.3333)(0.001)$
$\therefore \Delta \mathrm{f}=0.0083333$
Now, we have $f(0.009)=f(0.008)+\Delta f$
$\Rightarrow \mathrm{f}(0.009)=(0.008)^{\frac{1}{3}}+0.0083333$
$\Rightarrow \mathrm{f}(0.009)=\left((0.2)^{3}\right)^{\frac{1}{3}}+0.0083333$
$\Rightarrow f(0.009)=0.2+0.0083333$
$\therefore \mathrm{f}(0.009)=0.2083333$
Thus, $(0.009)^{1 / 3} \approx 0.2083333$

9 C. Question

Using differentials, find the approximate values of the following:
$(0.007)^{1 / 3}$

Answer

Let us assume that $f(x)=x^{\frac{1}{3}}$
Also, let $x=0.008$ so that $x+\Delta x=0.007$
$\Rightarrow 0.008+\Delta x=0.007$
$\therefore \Delta \mathrm{x}=-0.001$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{3}}\right)$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{\frac{1}{3}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{-\frac{2}{3}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3 \mathrm{x}^{\frac{2}{3}}}$
When $\mathrm{x}=0.008$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3(0.008)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=\frac{1}{3\left((0.2)^{3}\right)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=\frac{1}{3(0.2)^{2}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=\frac{1}{3(0.04)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=\frac{1}{0.12}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.008}=8.3333$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=8.3333$ and $\Delta \mathrm{x}=0.001$
$\Rightarrow \Delta \mathrm{f}=$ (8.3333)(-0.001)
$\therefore \Delta \mathrm{f}=-0.0083333$
Now, we have $f(0.007)=f(0.008)+\Delta f$
$\Rightarrow \mathrm{f}(0.007)=(0.008)^{\frac{1}{3}}-0.0083333$
$\Rightarrow \mathrm{f}(0.007)=\left((0.2)^{3}\right)^{\frac{1}{3}}-0.0083333$
$\Rightarrow f(0.007)=0.2-0.0083333$
$\therefore \mathrm{f}(0.007)=0.1916667$
Thus, $(0.007)^{1 / 3} \approx 0.1916667$

9 D. Question

Using differentials, find the approximate values of the following:
$\sqrt{401}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
Also, let $x=400$ so that $x+\Delta x=401$
$\Rightarrow 400+\Delta x=401$
$\therefore \Delta \mathrm{x}=1$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}$
When $\mathrm{x}=400$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{400}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=400}=\frac{1}{2 \times 20}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=400}=\frac{1}{40}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=400}=0.025$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.025$ and $\Delta \mathrm{x}=1$
$\Rightarrow \Delta f=(0.025)(1)$
$\therefore \Delta f=0.025$
Now, we have $f(401)=f(400)+\Delta f$
$\Rightarrow \mathrm{f}(401)=\sqrt{400}+0.025$
$\Rightarrow \mathrm{f}(401)=20+0.025$
$\therefore \mathrm{f}(401)=20.025$
Thus, $\sqrt{401} \approx 20.025$

9 E. Question

Using differentials, find the approximate values of the following:
$(15)^{1 / 4}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\frac{1}{4}}$
Also, let $x=16$ so that $x+\Delta x=15$
$\Rightarrow 16+\Delta x=15$
$\therefore \Delta x=-1$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{4}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{\frac{1}{4}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{-\frac{3}{4}}$
$\therefore \frac{d f}{d x}=\frac{1}{4 x^{\frac{3}{4}}}$
When $x=16$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4(16)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=16}=\frac{1}{4\left(2^{4}\right)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=16}=\frac{1}{4\left(2^{3}\right)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=16}=\frac{1}{4(8)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=16}=\frac{1}{32}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=16}=0.03125$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.03125$ and $\Delta x=-1$
$\Rightarrow \Delta f=(0.03125)(-1)$
$\therefore \Delta \mathrm{f}=-0.03125$
Now, we have $\mathrm{f}(15)=\mathrm{f}(16)+\Delta \mathrm{f}$
$\Rightarrow \mathrm{f}(15)=(16)^{\frac{1}{4}}-0.03125$
$\Rightarrow \mathrm{f}(15)=\left(2^{4}\right)^{\frac{1}{4}}-0.03125$
$\Rightarrow \mathrm{f}(15)=2-0.03125$
$\therefore \mathrm{f}(15)=1.96875$
Thus, $(15)^{1 / 4} \approx 1.96875$

9 F. Question

Using differentials, find the approximate values of the following:
(255) $)^{1 / 4}$

Answer

Let us assume that $f(x)=x^{\frac{1}{4}}$
Also, let $x=256$ so that $x+\Delta x=255$
$\Rightarrow 256+\Delta x=255$
$\therefore \Delta \mathrm{x}=-1$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{4}}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{\frac{1}{4}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{-\frac{3}{4}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4 \mathrm{x}^{\frac{3}{4}}}$
When $x=256$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4(256)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=256}=\frac{1}{4\left(4^{4}\right)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=256}=\frac{1}{4\left(4^{3}\right)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=256}=\frac{1}{4(64)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=256}=\frac{1}{256}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=256}=0.00390625$

Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.00390625$ and $\Delta \mathrm{x}=-1$
$\Rightarrow \Delta f=(0.00390625)(-1)$
$\therefore \Delta f=-0.00390625$
Now, we have $f(255)=f(256)+\Delta f$
$\Rightarrow \mathrm{f}(255)=(256)^{\frac{1}{4}}-0.00390625$
$\Rightarrow \mathrm{f}(255)=\left(4^{4}\right)^{\frac{1}{4}}-0.00390625$
$\Rightarrow f(255)=4-0.00390625$
$\therefore \mathrm{f}(255)=3.99609375$
Thus, $(255)^{1 / 4} \approx 3.99609375$

9 G. Question

Using differentials, find the approximate values of the following:
$\frac{1}{(2.002)^{2}}$

Answer

Let us assume that $f(x)=\frac{1}{x^{2}}$
Also, let $x=2$ so that $x+\Delta x=2.002$
$\Rightarrow 2+\Delta x=2.002$
$\therefore \Delta \mathrm{x}=0.002$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{x}^{2}}\right)$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(x^{-2}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=-2 \mathrm{x}^{-2-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=-2 \mathrm{x}^{-3}$
$\therefore \frac{d f}{d x}=-\frac{2}{x^{3}}$
When $x=2$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=-\frac{2}{2^{3}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=2}=-\frac{2}{8}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=2}=-0.25$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=-0.25$ and $\Delta \mathrm{x}=0.002$
$\Rightarrow \Delta \mathrm{f}=(-0.25)(0.002)$
$\therefore \Delta \mathrm{f}=-0.0005$
Now, we have $f(2.002)=f(2)+\Delta f$
$\Rightarrow \mathrm{f}(2.002)=\frac{1}{(2)^{2}}-0.0005$
$\Rightarrow \mathrm{f}(2.002)=\frac{1}{4}-0.0005$
$\Rightarrow \mathrm{f}(2.002)=0.25-0.0005$
$\therefore \mathrm{f}(2.002)=0.2495$
Thus, $\frac{1}{(2.002)^{2}} \approx 0.2495$

9 H. Question

Using differentials, find the approximate values of the following:
$\log _{e} 4.04$, it being given that $\log _{10} 4=0.6021$ and $\log _{10} e=0.4343$

Answer

$\log _{e} 4.04$, it being given that $\log _{10} 4=0.6021$ and $\log _{10} e=0.4343$
Let us assume that $f(x)=\log _{e} x$
Also, let $x=4$ so that $x+\Delta x=4.04$
$\Rightarrow 4+\Delta x=4.04$
$\therefore \Delta x=0.04$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(\log _{e} x\right)$
We know $\frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{\mathrm{x}}$
When $x=4$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=4}=0.25$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$

Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.25$ and $\Delta \mathrm{x}=0.04$
$\Rightarrow \Delta f=(0.25)(0.04)$
$\therefore \Delta \mathrm{f}=0.01$
Now, we have $f(4.04)=f(4)+\Delta f$
$\Rightarrow \mathrm{f}(4.04)=\log _{\mathrm{e}} 4+0.01$
$\Rightarrow f(4.04)=\frac{\log _{10} 4}{\log _{10} e}+0.01\left[\because \log _{b} a=\frac{\log _{c} a}{\log _{c} b}\right]$
$\Rightarrow \mathrm{f}(4.04)=\frac{0.6021}{0.4343}+0.01$
$\Rightarrow f(4.04)=1.3863689+0.01$
$\therefore \mathrm{f}(4.04)=1.3963689$
Thus, $\log _{\mathrm{e}} 4.04 \approx 1.3963689$

9 I. Question

Using differentials, find the approximate values of the following:
$\log _{\mathrm{e}} 10.02$, it being given that $\log _{\mathrm{e}} 10=2.3026$

Answer

$\log _{\mathrm{e}} 10.02$, it being given that $\log _{\mathrm{e}} 10=2.3026$
Let us assume that $f(x)=\log _{e} x$
Also, let $x=10$ so that $x+\Delta x=10.02$
$\Rightarrow 10+\Delta x=10.02$
$\therefore \Delta \mathrm{x}=0.02$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(\log _{e} x\right)$
We know $\frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{\mathrm{x}}$
When $x=10$, we have $\frac{d f}{d x}=\frac{1}{10}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=10}=0.1$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.1$ and $\Delta \mathrm{x}=0.02$
$\Rightarrow \Delta f=(0.1)(0.02)$
$\therefore \Delta \mathrm{f}=0.002$
Now, we have $f(10.02)=f(10)+\Delta f$
$\Rightarrow f(10.02)=\log _{\mathrm{e}} 10+0.002$
$\Rightarrow f(10.02)=2.3026+0.002$
$\therefore \mathrm{f}(10.02)=2.3046$
Thus, $\log _{\mathrm{e}} 10.02 \approx 2.3046$

9 J. Question

Using differentials, find the approximate values of the following:
$\log _{10} 10.1$, it being given that $\log _{10} e=0.4343$

Answer

$\log _{10} 10.1$, it being given that $\log _{10} e=0.4343$
Let us assume that $f(x)=\log _{10} x$
Also, let $x=10$ so that $x+\Delta x=10.1$
$\Rightarrow 10+\Delta x=10.1$
$\therefore \Delta \mathrm{x}=0.1$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\log _{10} \mathrm{x}\right)$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(\frac{\log _{e} x}{\log _{e} 10}\right)\left[\because \log _{b} a=\frac{\log _{c} a}{\log _{c} b}\right]$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(\log _{e} x \times \log _{10} e\right)\left[\because \frac{1}{\log _{a} b}=\log _{b} a\right]$
$\Rightarrow \frac{d f}{d x}=\log _{10} e \times \frac{d}{d x}\left(\log _{e} x\right)$
$\Rightarrow \frac{d f}{d x}=0.4343 \frac{d}{d x}\left(\log _{e} x\right)$
We know $\frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=0.4343 \times \frac{1}{\mathrm{x}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{0.4343}{\mathrm{x}}$
When $x=10$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{0.4343}{10}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=10}=0.04343$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.04343$ and $\Delta \mathrm{x}=0.1$
$\Rightarrow \Delta \mathrm{f}=(0.04343)(0.1)$
$\therefore \Delta f=0.004343$

Now, we have $f(10.1)=f(10)+\Delta f$
$\Rightarrow f(10.1)=\log _{10} 10+0.004343$
$\Rightarrow f(10.1)=1+0.004343\left[\because \log _{a} a=1\right]$
$\therefore \mathrm{f}(10.1)=1.004343$
Thus, $\log _{10} 10.1 \approx 1.004343$

9 K. Question

Using differentials, find the approximate values of the following:
$\cos 61^{\circ}$, it being given that $\sin 60^{\circ}=0.86603$ and $1^{\circ}=0.01745$ radian

Answer

$\cos 61^{\circ}$, it being given that $\sin 60^{\circ}=0.86603$ and $1^{\circ}=0.01745$ radian
Let us assume that $f(x)=\cos x$
Also, let $x=60^{\circ}$ so that $x+\Delta x=61^{\circ}$
$\Rightarrow 60^{\circ}+\Delta x=61^{\circ}$
$\therefore \Delta \mathrm{x}=1^{\circ}=0.01745$ radian
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\cos \mathrm{x})$
We know $\frac{d}{d x}(\cos x)=-\sin x$
$\therefore \frac{d f}{d x}=-\sin x$
When $x=60^{\circ}$, we have $\frac{d f}{d x}=-\sin 60^{\circ}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=60^{\mathrm{a}}}=-0.86603$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d f}{d x}=-0.86603$ and $\Delta x=0.01745$
$\Rightarrow \Delta f=(-0.86603)(0.01745)$
$\therefore \Delta f=-0.0151122$
Now, we have $f\left(61^{\circ}\right)=f\left(60^{\circ}\right)+\Delta f$
$\Rightarrow f\left(61^{\circ}\right)=\cos \left(60^{\circ}\right)-0.0151122$
$\Rightarrow \mathrm{f}\left(61^{\circ}\right)=0.5-0.0151122$
$\therefore \mathrm{f}\left(61^{\circ}\right)=0.4848878$
Thus, $\cos 61^{\circ} \approx 0.4848878$

9 L. Question

Using differentials, find the approximate values of the following:
$\frac{1}{\sqrt{25.1}}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\mathrm{x}}}$
Also, let $x=25$ so that $x+\Delta x=25.1$
$\Rightarrow 25+\Delta x=25.1$
$\therefore \Delta x=0.1$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\sqrt{\mathrm{x}}}\right)$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{\mathrm{x}^{\frac{1}{2}}}\right)$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{-\frac{1}{2}}\right)$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=-\frac{1}{2} \mathrm{x}^{-\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=-\frac{1}{2} \mathrm{x}^{-\frac{3}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=-\frac{1}{2 x^{\frac{3}{2}}}$
When $\mathrm{x}=25$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=-\frac{1}{2(25)^{\frac{3}{2}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=-\frac{1}{2\left(5^{2}\right)^{\frac{3}{2}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=-\frac{1}{2\left(5^{3}\right)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=-\frac{1}{2(125)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=-\frac{1}{250}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=-0.004$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=-0.004$ and $\Delta \mathrm{x}=0.1$
$\Rightarrow \Delta f=(-0.004)(0.1)$
$\therefore \Delta \mathrm{f}=-0.0004$
Now, we have $f(25.1)=f(25)+\Delta f$
$\Rightarrow \mathrm{f}(25.1)=\frac{1}{\sqrt{25}}-0.0004$
$\Rightarrow \mathrm{f}(25.1)=\frac{1}{5}-0.0004$
$\Rightarrow \mathrm{f}(25.1)=0.2-0.0004$
$\therefore \mathrm{f}(15)=0.1996$
Thus, $\frac{1}{\sqrt{25.1}} \approx 0.1996$

9 M. Question

Using differentials, find the approximate values of the following:
$\sin \left(\frac{22}{14}\right)$

Answer

Let us assume that $f(x)=\sin x$
Let $\mathrm{x}=\frac{\pi}{2}$ so that $\mathrm{x}+\Delta \mathrm{x}=\frac{22}{14}$
$\Rightarrow \frac{\pi}{2}+\Delta x=\frac{22}{14}$
$\therefore \Delta x=\frac{22}{14}-\frac{\pi}{2}$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}(\sin x)$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\cos \mathrm{x}$
When $\mathrm{x}=\frac{\pi}{2}$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\cos \left(\frac{\pi}{2}\right)$.
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=\frac{\pi}{2}}=0$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0$ and $\Delta \mathrm{x}=\frac{22}{14}-\frac{\pi}{2}$
$\Rightarrow \Delta \mathrm{f}=(0)\left(\frac{22}{14}-\frac{\pi}{2}\right)$
$\therefore \Delta \mathrm{f}=0$
Now, we have $\mathrm{f}\left(\frac{22}{14}\right)=\mathrm{f}\left(\frac{\pi}{2}\right)+\Delta \mathrm{f}$
$\Rightarrow f\left(\frac{22}{14}\right)=\sin \left(\frac{\pi}{2}\right)+0$
$\Rightarrow f\left(\frac{22}{14}\right)=\sin \left(\frac{\pi}{2}\right)$
$\therefore \mathrm{f}\left(\frac{22}{14}\right)=1$
Thus, $\sin \left(\frac{22}{14}\right) \approx 1$

9 N. Question

Using differentials, find the approximate values of the following:
$\cos \left(\frac{11 \pi}{36}\right)$

Answer

Let us assume that $f(x)=\cos x$
Let $\mathrm{x}=\frac{12 \pi}{36}=\frac{\pi}{3}$ so that $\mathrm{x}+\Delta \mathrm{x}=\frac{11 \pi}{36}$
$\Rightarrow \frac{\pi}{3}+\Delta x=\frac{11 \pi}{36}$
$\Rightarrow \Delta x=-\frac{\pi}{36}$
$\Rightarrow \Delta x=-\frac{\frac{22}{7}}{36}$
$\therefore \Delta \mathrm{x}=-0.0873$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\cos \mathrm{x})$
We know $\frac{d}{d x}(\cos x)=-\sin x$
$\therefore \frac{d f}{d x}=-\sin x$
When $\mathrm{x}=\frac{\pi}{3}$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=-\sin \left(\frac{\pi}{3}\right)$.
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=\frac{\pi}{3}}=-0.86603$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=-0.86603$ and $\Delta \mathrm{x}=-0.0873$
$\Rightarrow \Delta f=(-0.86603)(-0.0873)$
$\therefore \Delta \mathrm{f}=0.07560442$
Now, we have $\mathrm{f}\left(\frac{11 \pi}{36}\right)=\mathrm{f}\left(\frac{\pi}{3}\right)+\Delta \mathrm{f}$
$\Rightarrow f\left(\frac{11 \pi}{36}\right)=\cos \left(\frac{\pi}{3}\right)+0.07560442$
$\Rightarrow f\left(\frac{11 \pi}{36}\right)=0.5+0.07560442$
$\therefore \mathrm{f}\left(\frac{11 \pi}{36}\right)=0.57560442$
Thus, $\cos \left(\frac{11 \pi}{36}\right) \approx 0.57560442$

9 O. Question

Using differentials, find the approximate values of the following:
$(80)^{1 / 4}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\frac{1}{4}}$
Also, let $x=81$ so that $x+\Delta x=80$
$\Rightarrow 81+\Delta x=80$
$\therefore \Delta \mathrm{x}=-1$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{4}}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{\frac{1}{4}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{-\frac{3}{4}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4 x^{\frac{3}{4}}}$
When $\mathrm{x}=81$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4(81)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=81}=\frac{1}{4\left(3^{4}\right)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=81}=\frac{1}{4\left(3^{3}\right)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=81}=\frac{1}{4(27)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=81}=\frac{1}{108}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=\mathrm{81}}=0.00926$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ - $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$

Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.00926$ and $\Delta \mathrm{x}=-1$
$\Rightarrow \Delta f=(0.00926)(-1)$
$\therefore \Delta f=-0.00926$
Now, we have $f(80)=f(81)+\Delta f$
$\Rightarrow \mathrm{f}(80)=(81)^{\frac{1}{4}}-0.00926$
$\Rightarrow \mathrm{f}(80)=\left(3^{4}\right)^{\frac{1}{4}}-0.00926$
$\Rightarrow f(80)=3-0.00926$
$\therefore \mathrm{f}(80)=2.99074$
Thus, $(80)^{1 / 4} \approx 2.99074$

9 P. Question

Using differentials, find the approximate values of the following:
$(29)^{1 / 3}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\frac{1}{3}}$
Also, let $x=27$ so that $x+\Delta x=29$
$\Rightarrow 27+\Delta x=29$
$\therefore \Delta \mathrm{x}=2$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{3}}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{\frac{1}{3}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{-\frac{2}{3}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3 \mathrm{x}^{\frac{2}{3}}}$
When $x=27$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3(27)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=27}=\frac{1}{3\left(3^{3}\right)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=27}=\frac{1}{3 \times 3^{2}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=27}=\frac{1}{3(9)}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=27}=\frac{1}{27}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=27}=0.03704$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.03704$ and $\Delta \mathrm{x}=2$
$\Rightarrow \Delta \mathrm{f}=(0.03704)(2)$
$\therefore \Delta \mathrm{f}=0.07408$
Now, we have $f(29)=f(27)+\Delta f$
$\Rightarrow \mathrm{f}(29)=(27)^{\frac{1}{3}}+0.07408$
$\Rightarrow \mathrm{f}(29)=\left(3^{3}\right)^{\frac{1}{3}}+0.07408$
$\Rightarrow f(29)=3+0.07408$
$\therefore \mathrm{f}(29)=3.07408$
Thus, $(29)^{1 / 3} \approx 3.07408$

9 Q. Question

Using differentials, find the approximate values of the following:
$(66)^{1 / 3}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\frac{1}{3}}$
Also, let $x=64$ so that $x+\Delta x=66$
$\Rightarrow 64+\Delta x=66$
$\therefore \Delta x=2$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{3}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{\frac{1}{3}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} x^{-\frac{2}{3}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3 x^{\frac{2}{3}}}$
When $x=64$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3(64)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=64}=\frac{1}{3\left(4^{3}\right)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=64}=\frac{1}{3 \times 4^{2}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=64}=\frac{1}{3(16)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=64}=\frac{1}{48}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=64}=0.02083$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.02083$ and $\Delta x=2$
$\Rightarrow \Delta \mathrm{f}=(0.02083)(2)$
$\therefore \Delta f=0.04166$
Now, we have $f(66)=f(64)+\Delta f$
$\Rightarrow \mathrm{f}(66)=(64)^{\frac{1}{3}}+0.04166$
$\Rightarrow \mathrm{f}(66)=\left(4^{3}\right)^{\frac{1}{3}}+0.04166$
$\Rightarrow \mathrm{f}(66)=4+0.04166$
$\therefore \mathrm{f}(66)=4.04166$
Thus, $(66)^{1 / 3} \approx 4.04166$

9 R. Question

Using differentials, find the approximate values of the following:
$\sqrt{26}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
Also, let $x=25$ so that $x+\Delta x=26$
$\Rightarrow 25+\Delta x=26$
$\therefore \Delta \mathrm{x}=1$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{x}}$
When $x=25$, we have $\frac{d f}{d x}=\frac{1}{2 \sqrt{25}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=\frac{1}{2 \times 5}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=\frac{1}{10}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=25}=0.1$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.1$ and $\Delta \mathrm{x}=1$
$\Rightarrow \Delta \mathrm{f}=(0.1)(1)$
$\therefore \Delta \mathrm{f}=0.1$
Now, we have $f(26)=f(25)+\Delta f$
$\Rightarrow \mathrm{f}(26)=\sqrt{25}+0.1$
$\Rightarrow f(26)=5+0.1$
$\therefore \mathrm{f}(26)=5.1$
Thus, $\sqrt{26} \approx 5.1$

9 S. Question

Using differentials, find the approximate values of the following:
$\sqrt{37}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
Also, let $x=36$ so that $x+\Delta x=37$
$\Rightarrow 36+\Delta x=37$
$\therefore \Delta \mathrm{x}=1$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}$
When $x=36$, we have $\frac{d f}{d x}=\frac{1}{2 \sqrt{36}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=36}=\frac{1}{2 \times 6}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=36}=\frac{1}{12}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=36}=0.08333$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.08333$ and $\Delta \mathrm{x}=1$
$\Rightarrow \Delta \mathrm{f}=(0.08333)(1)$
$\therefore \Delta f=0.08333$
Now, we have $f(37)=f(36)+\Delta f$
$\Rightarrow \mathrm{f}(37)=\sqrt{36}+0.08333$
$\Rightarrow f(37)=6+0.08333$
$\therefore f(37)=6.08333$
Thus, $\sqrt{37} \approx 6.08333$

9 T. Question

Using differentials, find the approximate values of the following:
$\sqrt{0.48}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
Also, let $x=0.49$ so that $x+\Delta x=0.48$
$\Rightarrow 0.49+\Delta x=0.48$
$\therefore \Delta \mathrm{x}=-0.01$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}$
When $x=0.49$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{0.49}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.49}=\frac{1}{2 \times 0.7}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=0.49}=\frac{1}{1.4}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.49}=0.7143$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.7143$ and $\Delta x=-0.01$
$\Rightarrow \Delta f=(0.7143)(-0.01)$
$\therefore \Delta \mathrm{f}=-0.007143$
Now, we have $f(0.48)=f(0.49)+\Delta f$
$\Rightarrow \mathrm{f}(0.48)=\sqrt{0.49}+0.08333$
$\Rightarrow \mathrm{f}(0.48)=0.7-0.007143$
$\therefore \mathrm{f}(0.48)=0.692857$
Thus, $\sqrt{0.48} \approx 0.692857$

9 U. Question

Using differentials, find the approximate values of the following:
$(82)^{1 / 4}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\frac{1}{4}}$
Also, let $x=81$ so that $x+\Delta x=82$
$\Rightarrow 81+\Delta x=82$
$\therefore \Delta \mathrm{x}=1$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{4}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{\frac{1}{4}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{-\frac{3}{4}}$
$\therefore \frac{d f}{d x}=\frac{1}{4 x^{\frac{3}{4}}}$
When $x=81$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4(81)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=81}=\frac{1}{4\left(3^{4}\right)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=81}=\frac{1}{4\left(3^{3}\right)}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=81}=\frac{1}{4(27)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=81}=\frac{1}{108}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=\mathrm{81}}=0.00926$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.00926$ and $\Delta \mathrm{x}=1$
$\Rightarrow \Delta f=(0.00926)(1)$
$\therefore \Delta f=0.00926$
Now, we have $f(82)=f(81)+\Delta f$
$\Rightarrow f(82)=(81)^{\frac{1}{4}}+0.00926$
$\Rightarrow \mathrm{f}(82)=\left(3^{4}\right)^{\frac{1}{4}}+0.00926$
$\Rightarrow f(82)=3+0.00926$
$\therefore \mathrm{f}(82)=3.00926$
Thus, $(82)^{1 / 4} \approx 3.00926$

9 V. Question

Using differentials, find the approximate values of the following:
$\left(\frac{17}{81}\right)^{1 / 4}$

Answer

Let us assume that $f(x)=x^{\frac{1}{4}}$
Also, let $\mathrm{x}=\frac{16}{81}$ so that $\mathrm{x}+\Delta \mathrm{x}=\frac{17}{81}$
$\Rightarrow \frac{16}{81}+\Delta x=\frac{17}{81}$
$\therefore \Delta \mathrm{x}=\frac{1}{81}$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{4}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{\frac{1}{4}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4} \mathrm{x}^{-\frac{3}{4}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4 \mathrm{x}^{\frac{3}{4}}}$
When $\mathrm{x}=\frac{16}{81}$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{4\left(\frac{16}{81}\right)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=\frac{16}{81}}=\frac{1}{4\left(\left(\frac{2}{3}\right)^{4}\right)^{\frac{3}{4}}}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=\frac{16}{81}}=\frac{1}{4\left(\frac{2}{3}\right)^{3}}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=\frac{16}{81}}=\frac{1}{4\left(\frac{8}{27}\right)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=\frac{16}{81}}=\frac{27}{32}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=\frac{16}{81}}=0.84375$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.84375$ and $\Delta x=\frac{1}{81}$
$\Rightarrow \Delta \mathrm{f}=(0.84375)\left(\frac{1}{81}\right)$
$\therefore \Delta f=0.0104166$
Now, we have $\mathrm{f}\left(\frac{17}{81}\right)=\mathrm{f}\left(\frac{16}{81}\right)+\Delta \mathrm{f}$
$\Rightarrow \mathrm{f}\left(\frac{17}{81}\right)=\left(\frac{16}{81}\right)^{\frac{1}{4}}+0.0104166$
$\Rightarrow \mathrm{f}\left(\frac{16}{81}\right)=\left(\left(\frac{2}{3}\right)^{4}\right)^{\frac{1}{4}}+0.0104166$
$\Rightarrow f\left(\frac{16}{81}\right)=\frac{2}{3}+0.0104166$
$\Rightarrow \mathrm{f}\left(\frac{16}{81}\right)=0.666666+0.0104166$
$\therefore f\left(\frac{16}{81}\right)=0.6778026$
Thus, $\left(\frac{17}{81}\right)^{1 / 4} \approx 0.6778026$

9 W. Question

Using differentials, find the approximate values of the following:
$(33)^{1 / 5}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\frac{1}{5}}$
Also, let $x=32$ so that $x+\Delta x=33$
$\Rightarrow 32+\Delta x=33$
$\therefore \Delta x=1$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{5}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{5} \mathrm{X}^{\frac{1}{5}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{5} \mathrm{x}^{-\frac{4}{5}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{5 x^{\frac{4}{5}}}$
When $x=32$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{5(32)^{\frac{4}{5}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=32}=\frac{1}{5\left(2^{5}\right)^{\frac{4}{5}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=32}=\frac{1}{5\left(2^{4}\right)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=32}=\frac{1}{5(16)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=32}=\frac{1}{80}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=32}=0.0125$

Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.0125$ and $\Delta \mathrm{x}=1$
$\Rightarrow \Delta f=(0.0125)(1)$
$\therefore \Delta f=0.0125$
Now, we have $f(33)=f(32)+\Delta f$
$\Rightarrow \mathrm{f}(33)=(32)^{\frac{1}{5}}+0.0125$
$\Rightarrow \mathrm{f}(33)=\left(2^{5}\right)^{\frac{1}{5}}+0.0125$
$\Rightarrow f(33)=2+0.0125$
$\therefore \mathrm{f}(33)=2.0125$
Thus, $(33)^{1 / 5} \approx 2.0125$

9 X. Question

Using differentials, find the approximate values of the following:
$\sqrt{36.6}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
Also, let $x=36$ so that $x+\Delta x=36.6$
$\Rightarrow 36+\Delta x=36.6$
$\therefore \Delta \mathrm{x}=0.6$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{\mathrm{x}})$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}$
When $x=36$, we have $\frac{d f}{d x}=\frac{1}{2 \sqrt{36}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=36}=\frac{1}{2 \times 6}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=36}=\frac{1}{12}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=36}=0.0833333$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.0833333$ and $\Delta \mathrm{x}=0.6$
$\Rightarrow \Delta \mathrm{f}=(0.0833333)(0.6)$
$\therefore \Delta \mathrm{f}=0.05$
Now, we have $f(36.6)=f(36)+\Delta f$
$\Rightarrow \mathrm{f}(36.6)=\sqrt{36}+0.05$
$\Rightarrow f(36.6)=6+0.05$
$\therefore \mathrm{f}(36.6)=6.05$
Thus, $\sqrt{36.6} \approx 6.05$

9 Y. Question

Using differentials, find the approximate values of the following:
$25^{1 / 3}$

Answer

Let us assume that $f(x)=x^{\frac{1}{3}}$
Also, let $x=27$ so that $x+\Delta x=25$
$\Rightarrow 27+\Delta x=25$
$\therefore \Delta \mathrm{x}=-2$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{\frac{1}{3}}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{\frac{1}{3}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3} \mathrm{x}^{-\frac{2}{3}}$
$\therefore \frac{d f}{d x}=\frac{1}{3 x^{\frac{2}{3}}}$
When $x=27$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{3(27)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=27}=\frac{1}{3\left(3^{3}\right)^{\frac{2}{3}}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=27}=\frac{1}{3 \times 3^{2}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=27}=\frac{1}{3(9)}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=27}=\frac{1}{27}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=27}=0.03704$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d f}{d x}=0.03704$ and $\Delta x=2$
$\Rightarrow \Delta \mathrm{f}=(0.03704)(-2)$
$\therefore \Delta f=-0.07408$
Now, we have $f(25)=f(27)+\Delta f$
$\Rightarrow \mathrm{f}(25)=(27)^{\frac{1}{3}}-0.07408$
$\Rightarrow \mathrm{f}(25)=\left(3^{3}\right)^{\frac{1}{3}}-0.07408$
$\Rightarrow f(25)=3-0.07408$
$\therefore \mathrm{f}(25)=2.92592$
Thus, $(25)^{1 / 3} \approx 2.92592$

9 Z. Question

Using differentials, find the approximate values of the following:
$\sqrt{49.5}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
Also, let $x=49$ so that $x+\Delta x=49.5$
$\Rightarrow 49+\Delta x=49.5$
$\therefore \Delta \mathrm{x}=0.5$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\sqrt{\mathrm{x}})$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}$
When $x=49$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{49}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=49}=\frac{1}{2 \times 7}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=49}=\frac{1}{14}$
$\Rightarrow\left(\frac{d f}{d x}\right)_{x=49}=0.0714286$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$
$-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.0714286$ and $\Delta \mathrm{x}=0.5$
$\Rightarrow \Delta f=(0.0714286)(0.5)$
$\therefore \Delta \mathrm{f}=0.0357143$
Now, we have $f(49.5)=f(49)+\Delta f$
$\Rightarrow \mathrm{f}(49.5)=\sqrt{49}+0.0357143$
$\Rightarrow f(49.5)=7+0.0357143$
$\therefore \mathrm{f}(49.5)=7.0357143$
Thus, $\sqrt{49.5} \approx 7.0357143$

9 A1. Question

Using differentials, find the approximate values of the following:
$(3.968)^{3 / 2}$

Answer

Let us assume that $f(x)=x^{\frac{3}{2}}$
Also, let $x=4$ so that $x+\Delta x=3.968$
$\Rightarrow 4+\Delta x=3.968$
$\therefore \Delta \mathrm{x}=-0.032$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{3}{2}}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{3}{2} \mathrm{x}^{\frac{3}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{3}{2} \mathrm{x}^{\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{3}{2} \sqrt{\mathrm{x}}$
When $x=4$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{3}{2} \sqrt{4}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=4}=\frac{3}{2} \times 2$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=4}=3$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=3$ and $\Delta x=-0.032$
$\Rightarrow \Delta f=(3)(-0.032)$
$\therefore \Delta f=-0.096$
Now, we have $f(3.968)=f(4)+\Delta f$
$\Rightarrow \mathrm{f}(3.968)=(4)^{\frac{3}{2}}-0.096$
$\Rightarrow \mathrm{f}(3.968)=\left(2^{2}\right)^{\frac{3}{2}}-0.096$
$\Rightarrow f(3.968)=2^{3}-0.096$
$\Rightarrow f(3.968)=8-0.096$
$\therefore \mathrm{f}(3.968)=7.904$
Thus, $(3.968)^{3 / 2} \approx 7.904$

9 B1. Question

Using differentials, find the approximate values of the following:
$(1.999)^{5}$

Answer

Let us assume that $f(x)=x^{5}$
Also, let $x=2$ so that $x+\Delta x=1.999$
$\Rightarrow 2+\Delta x=1.999$
$\therefore \Delta \mathrm{x}=-0.001$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{5}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=5 \mathrm{x}^{5-1}$
$\therefore \frac{d f}{d x}=5 x^{4}$

When $\mathrm{x}=2$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=5(2)^{4}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=2}=5 \times 16$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=2}=80$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=80$ and $\Delta \mathrm{x}=-0.001$
$\Rightarrow \Delta \mathrm{f}=(80)(-0.001)$
$\therefore \Delta \mathrm{f}=-0.08$
Now, we have $f(1.999)=f(2)+\Delta f$
$\Rightarrow f(1.999)=2^{5}-0.08$
$\Rightarrow f(1.999)=32-0.08$
$\therefore \mathrm{f}(1.999)=31.92$
Thus, $(1.999)^{5} \approx 31.92$

9 C1. Question

Using differentials, find the approximate values of the following:
$\sqrt{0.082}$

Answer

Let us assume that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$
Also, let $x=0.09$ so that $x+\Delta x=0.082$
$\Rightarrow 0.09+\Delta x=0.082$
$\therefore \Delta \mathrm{x}=-0.008$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}(\sqrt{x})$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2} \mathrm{x}^{-\frac{1}{2}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}}}$
When $x=0.09$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{1}{2 \sqrt{0.09}}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.09}=\frac{1}{2 \times 0.3}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=0.09}=\frac{1}{0.6}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=0.09}=1.6667$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d f}{d x}=1.6667$ and $\Delta x=-0.008$
$\Rightarrow \Delta \mathrm{f}=(1.6667)(-0.008)$
$\therefore \Delta \mathrm{f}=-0.013334$
Now, we have $f(0.082)=f(0.09)+\Delta f$
$\Rightarrow \mathrm{f}(0.082)=\sqrt{0.09}-0.013334$
$\Rightarrow f(0.082)=0.3-0.013334$
$\therefore \mathrm{f}(0.082)=0.286666$
Thus, $\sqrt{0.082} \approx 0.286666$

10. Question

Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$.

Answer

Given $f(x)=4 x^{2}+5 x+2$
Let $x=2$ so that $x+\Delta x=2.01$
$\Rightarrow 2+\Delta x=2.01$
$\therefore \Delta x=0.01$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(4 x^{2}+5 x+2\right)$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(4 x^{2}\right)+\frac{d}{d x}(5 x)+\frac{d}{d x}(2)$
$\Rightarrow \frac{d f}{d x}=4 \frac{d}{d x}\left(x^{2}\right)+5 \frac{d}{d x}(x)+\frac{d}{d x}(2)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=4(2 \mathrm{x})+5(1)+0$
$\therefore \frac{d f}{d x}=8 x+5$
When $x=2$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=8(2)+5$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=2}=21$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=21$ and $\Delta \mathrm{x}=0.01$
$\Rightarrow \Delta \mathrm{f}=(21)(0.01)$
$\therefore \Delta \mathrm{f}=0.21$
Now, we have $\mathrm{f}(2.01)=\mathrm{f}(2)+\Delta \mathrm{f}$
$\Rightarrow f(2.01)=4(2)^{2}+5(2)+2+0.21$
$\Rightarrow f(2.01)=16+10+2+0.21$
$\therefore \mathrm{f}(2.01)=28.21$
Thus, $\mathrm{f}(2.01)=28.21$

11. Question

Find the approximate value of $f(5.001)$, where $f(x)=x^{3}-7 x^{2}+15$.

Answer

Given $f(x)=x^{3}-7 x^{2}+15$
Let $x=5$ so that $x+\Delta x=5.001$
$\Rightarrow 5+\Delta x=5.001$
$\therefore \Delta x=0.001$
On differentiating $f(x)$ with respect to x, we get
$\frac{d f}{d x}=\frac{d}{d x}\left(x^{3}-7 x^{2}+15\right)$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(-7 x^{2}\right)+\frac{d}{d x}(15)$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(x^{3}\right)-7 \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(15)$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=3 \mathrm{x}^{2}-7(2 \mathrm{x})+0$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=3 \mathrm{x}^{2}-14 \mathrm{x}$
When $x=5$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=3(5)^{2}-14(5)$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=5}=75-70$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{\mathrm{x}=5}=5$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=5$ and $\Delta \mathrm{x}=0.001$
$\Rightarrow \Delta \mathrm{f}=(5)(0.001)$
$\therefore \Delta f=0.005$
Now, we have $f(5.001)=f(5)+\Delta f$
$\Rightarrow f(5.001)=5^{3}-7(5)^{2}+15+0.005$
$\Rightarrow f(5.001)=125-175+15+0.005$
$\Rightarrow f(5.001)=-35+0.005$
$\therefore \mathrm{f}(5.001)=-34.995$
Thus, $f(5.001)=-34.995$

12. Question

Find the approximate value of $\log _{10} 1005$, given that $\log _{10} e=0.4343$.

Answer

Let us assume that $f(x)=\log _{10} x$
Also, let $x=1000$ so that $x+\Delta x=1005$
$\Rightarrow 1000+\Delta x=1005$
$\therefore \Delta \mathrm{x}=5$
On differentiating $f(x)$ with respect to x, we get
$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\log _{10} \mathrm{x}\right)$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(\frac{\log _{e} x}{\log _{e} 10}\right)\left[\because \log _{b} a=\frac{\log _{c} a}{\log _{c} b}\right]$
$\Rightarrow \frac{d f}{d x}=\frac{d}{d x}\left(\log _{e} x \times \log _{10} e\right)\left[\because \frac{1}{\log _{a} b}=\log _{b} a\right]$
$\Rightarrow \frac{d f}{d x}=\log _{10} e \times \frac{d}{d x}\left(\log _{e} x\right)$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=0.4343 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\log _{\mathrm{e}} \mathrm{x}\right)$
We know $\frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{df}}{\mathrm{dx}}=0.4343 \times \frac{1}{\mathrm{x}}$
$\therefore \frac{\mathrm{df}}{\mathrm{dx}}=\frac{0.4343}{\mathrm{x}}$
When $x=1000$, we have $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{0.4343}{1000}$
$\Rightarrow\left(\frac{\mathrm{df}}{\mathrm{dx}}\right)_{x=1000}=0.0004343$

Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ $-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{\mathrm{df}}{\mathrm{dx}}=0.0004343$ and $\Delta \mathrm{x}=5$
$\Rightarrow \Delta f=(0.0004343)(5)$
$\therefore \Delta f=0.0021715$
Now, we have $\mathrm{f}(1005)=\mathrm{f}(1000)+\Delta \mathrm{f}$
$\Rightarrow \mathrm{f}(1005)=\log _{10} 1000+0.0021715$
$\Rightarrow f(1005)=\log _{10} 10^{3}+0.0021715$
$\Rightarrow f(1005)=3 \times \log _{10} 10+0.0021715$
$\Rightarrow f(1005)=3+0.0021715\left[\because \log _{a} a=1\right]$
$\therefore \mathrm{f}(1005)=3.0021715$
Thus, $\log _{10} 1005=3.0021715$

13. Question

If the radius of a sphere is measured as 9 cm with an error of 0.03 m , find the approximate error in calculating its surface area.

Answer

Given the radius of a sphere is measured as 9 cm with an error of $0.03 \mathrm{~m}=3 \mathrm{~cm}$.
Let x be the radius of the sphere and Δx be the error in measuring the value of x.
Hence, we have $x=9$ and $\Delta x=3$
The surface area of a sphere of radius x is given by
$S=4 \pi x^{2}$
On differentiating S with respect to x, we get
$\frac{d S}{d x}=\frac{d}{d x}\left(4 \pi x^{2}\right)$
$\Rightarrow \frac{d S}{d x}=4 \pi \frac{d}{d x}\left(x^{2}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d S}{d x}=4 \pi(2 x)$
$\therefore \frac{d S}{d x}=8 \pi x$
When $x=9$, we have $\frac{d S}{d x}=8 \pi(9)$.
$\Rightarrow\left(\frac{d S}{d x}\right)_{x=9}=72 \pi$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$

- $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d s}{d x}=72 \pi$ and $\Delta x=3$
$\Rightarrow \Delta \mathrm{S}=(72 \pi)(3)$
$\therefore \Delta \mathrm{S}=216 \pi$
Thus, the approximate error in calculating the surface area of the sphere is $216 \pi \mathrm{~cm}^{2}$.

14. Question

Find the approximate change in the surface area of cube of side x meters caused by decreasing the side by 1%.

Answer

Given a cube whose side x is decreased by 1%.
Let Δx be the change in the value of x.
Hence, we have $\Delta x=-\frac{1}{100} \times x$
$\therefore \Delta x=-0.01 x$
The surface area of a cube of radius x is given by
$S=6 x^{2}$
On differentiating A with respect to x, we get
$\frac{d S}{d x}=\frac{d}{d x}\left(6 x^{2}\right)$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=6 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dS}}{\mathrm{dx}}=6(2 \mathrm{x})$
$\therefore \frac{\mathrm{dS}}{\mathrm{dx}}=12 \mathrm{x}$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ - $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d S}{d x}=12 x$ and $\Delta x=-0.01 x$
$\Rightarrow \Delta \mathrm{S}=(12 \mathrm{x})(-0.01 \mathrm{x})$
$\therefore \Delta \mathrm{S}=-0.12 \mathrm{x}^{2}$
Thus, the approximate change in the surface area of the cube is $0.12 x^{2} \mathrm{~m}^{2}$.

15. Question

If the radius of a sphere is measured as 7 m with an error of 0.02 m , find the approximate error in calculating its volume.

Answer

Given the radius of a sphere is measured as 7 m with an error of 0.02 m .

Let x be the radius of the sphere and $\Delta \mathrm{x}$ be the error in measuring the value of x .
Hence, we have $x=7$ and $\Delta x=0.02$
The volume of a sphere of radius x is given by
$V=\frac{4}{3} \pi x^{3}$
On differentiating V with respect to x , we get
$\frac{d V}{d x}=\frac{d}{d x}\left(\frac{4}{3} \pi x^{3}\right)$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3} \frac{d}{d x}\left(x^{3}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d V}{d x}=\frac{4 \pi}{3}\left(3 x^{2}\right)$
$\therefore \frac{d V}{d x}=4 \pi x^{2}$
When $x=7$, we have $\frac{d V}{d x}=4 \pi(7)^{2}$.
$\Rightarrow\left(\frac{d V}{d x}\right)_{x=7}=4 \pi \times 49$
$\Rightarrow\left(\frac{d V}{d x}\right)_{x=7}=196 \pi$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ - $f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d v}{d x}=196 \pi$ and $\Delta x=0.02$
$\Rightarrow \Delta V=(196 \pi)(0.02)$
$\therefore \Delta V=3.92 \pi$
Thus, the approximate error in calculating the volume of the sphere is $3.92 \pi \mathrm{~m}^{3}$.

16. Question

Find the approximate change in the volume of a cube of side x meters caused by increasing the side by 1%.

Answer

Given a cube whose side x is increased by 1%.
Let Δx be the change in the value of x.
Hence, we have $\Delta x=\frac{1}{100} \times x$
$\therefore \Delta \mathrm{x}=0.01 \mathrm{x}$
The volume of a cube of radius x is given by
$V=x^{3}$
On differentiating A with respect to x, we get
$\frac{d V}{d x}=\frac{d}{d x}\left(x^{3}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dV}}{\mathrm{dx}}=3 \mathrm{x}^{3-1}$
$\therefore \frac{d V}{d x}=3 x^{2}$
Recall that if $y=f(x)$ and Δx is a small increment in x, then the corresponding increment in $y, \Delta y=f(x+\Delta x)$ $-f(x)$, is approximately given as
$\Delta y=\left(\frac{d y}{d x}\right) \Delta x$
Here, $\frac{d V}{d x}=3 x^{2}$ and $\Delta x=0.01 x$
$\Rightarrow \Delta V=\left(3 x^{2}\right)(0.01 x)$
$\therefore \Delta V=0.03 x^{3}$
Thus, the approximate change in the volume of the cube is $0.03 \mathrm{x}^{3} \mathrm{~m}^{3}$.

MCQ

1. Question

Mark the correct alternative in the following:
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is:
A. 1\%
B. 2%
C. 3%
D. 4%

Answer

given $(\Delta L / L) \times 100=2$ (if we let the length of pendulum is L)
we all know the formula of period of a pendulum is $T=2 \pi \times \sqrt{ }(\mathrm{l} / \mathrm{g})$
By the formula of approximation in derivation ,we get-
$\left(\frac{\Delta \mathrm{T}}{\mathrm{T}}\right) \times 100=\frac{1}{2} \times\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right) \times 100$
$=\left(\frac{1}{2}\right) \times(2)$
$=1 \%$
2. Question

Mark the correct alternative in the following:
If there is an error of $a \%$ in measuring the edge of a cube, then percentage error in its surface is:
A. $2 a \%$
B. $\frac{a}{2} \%$
C. $3 \mathrm{a} \%$
D. none of these

Answer

given that
\% Error in measuring the edge of a cube $[(\Delta \mathrm{L} / \mathrm{L}) \times 100]$ is $=\mathrm{a}$ (if L is edge of the cube)
We have to find out $(\Delta A / A) \times 100=$? (IF let the surface of the cube is A)
By the formula of approximation of derivation we get,
$\left(\frac{\Delta \mathrm{A}}{\mathrm{A}}\right) \times 100=2 \times\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right) \times 100$
$=2 \times a$
$=2 a$

3. Question

Mark the correct alternative in the following:
If an error of $k \%$ is made in measuring the radius of a sphere, then percentage error in its volume is
A. $\mathrm{k} \%$
B. $3 \mathrm{k} \%$
C. $2 \mathrm{k} \%$
D. $\frac{\mathrm{k}}{3} \%$

Answer

given \% error in measuring the radius of a sphere $\Delta r / r \times 100=k$ (if let r is radius)
Find out: $(\Delta \mathrm{v} / \mathrm{v}) \times 100=$?
We know by the formula of the volume of the sphere
$V=\frac{4}{3} \pi r^{3}$
So, $d V=\frac{4}{3} \pi \times 3 r^{2} d r$
So, $\frac{\Delta V}{V}=\frac{\frac{\frac{4}{3} \pi \times 3 r^{2} d r}{4}}{3} \pi r^{3}$
So, $\left(\frac{\Delta v}{v}\right) \times 100=3 \times\left(\frac{\Delta r}{r}\right) \times 100$
$=3 \times \mathrm{k}$
$=3 \mathrm{k} \%$

4. Question

Mark the correct alternative in the following:
The height of a cylinder is equal to the radius. If an error of $\alpha \%$ is made in the height, then percentage error in its volume is:
A. $\alpha \%$
B. $2 \alpha \%$
C. $3 \alpha \%$
D. none of these

Answer

let height of a cylinder $=\mathrm{h}=$ radius of that cylinder $=\mathrm{r}$
$\%$ error in height $\Delta \mathrm{h} / \mathrm{h} \times 100=\mathrm{a}$ (given)
Volume of cylinder $=v=(1 / 3) \times \pi r^{2} h$
We have given that $h=r$
Then
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi h^{3}$
So, $\Delta V=\frac{1}{3} \pi h^{2} d h$
Finally
$\left(\frac{\Delta v}{v}\right) \times 100=3 \times\left(\frac{\Delta h}{h}\right) \times 100$
$=3 \times a$
$=3 a \%$

5. Question

Mark the correct alternative in the following:
While measuring the side of an equilateral triangle an error of $k \%$ is made, the percentage error in its area is
A. $\mathrm{k} \%$
B. $2 \mathrm{k} \%$
C. $\frac{\mathrm{k}}{2} \%$
D. $3 \mathrm{k} \%$

Answer

we know that the area of a equilateral traiangle is $=A=(\sqrt{3} / 4) \times a^{2}$
Where $a=$ side of equilateral triangle
So by the formula of approximation of derivation, we get,
$\left(\frac{\Delta \mathrm{A}}{\mathrm{A}}\right) \times 100=2 \times\left(\frac{\Delta \mathrm{a}}{\mathrm{a}}\right) \times 100$
$=2 \times \mathrm{k}$
$=2 \mathrm{k} \%$ ans

6. Question

Mark the correct alternative in the following:
If $\log _{e} 4=1.3868$, then $\log _{e} 4.01=$
A. 1.3968
B. 1.3898
C. 1.3893
D. none of these

Answer

let $y=f(x)=\log x$
Let $x=4$,
$X+\Delta x=4.01$,
$\Delta x=0.01$,
For $x=4$,
$Y=\log 4=1.3868$,
$y=\log x$
$\frac{d y}{d x}=\frac{1}{x}=\frac{1}{4}$
$\Delta y=d y$
$=\left(\frac{d y}{d x}\right) \cdot d x$
$=\left(\frac{1}{4}\right) \times 0.01$
$\Delta y=0.0025$
So, $\log (4.01)=y+\Delta y$
$=1.3893$

7. Question

Mark the correct alternative in the following:
A sphere of radius 100 mm shrinks to radius 98 mm , then the approximate decrease in its volume is
A. $12000 \pi \mathrm{~mm}^{3}$
B. $800 \pi \mathrm{~mm}^{3}$
C. $80000 \pi \mathrm{~mm}^{3}$
D. $120 \pi \mathrm{~mm}^{3}$

Answer

we know that volume of sphere $=v=(4 / 3) \times \pi r^{3}$ (r is radius of sphere)
$r=100 \mathrm{~mm}$
$\Delta v=\left(\frac{4}{3}\right) \times \pi \times 3 r^{2} \Delta r$
$=4 \pi r^{2} \Delta r$
$\Delta r=(98-100)$
$=-2$
$\Delta v=4 \pi(100)^{2} \times(-2)$
$\Delta v=-80,000 \pi \mathrm{~mm}^{3} \mathrm{ans}$

8. Question

Mark the correct alternative in the following:

If the ratio of base radius and height of a cone is $1: 2$ and percentage error in radius is $\lambda \%$, then the error in its volume is:
A. $\lambda \%$
B. $2 \lambda \%$
C. $3 \lambda \%$
D. none of these

Answer

given that the radius is half then the height of the cone so
Let $h=2 r$ (where r is radius and h is height of the cone)
Volume of the cone $=v$
$=\left(\frac{1}{3}\right) \times \pi r^{2} \times h$
$=\left(\frac{2}{3}\right) \times \pi r^{3}$ (because $h=2 r$)
$\Delta v=\left(\frac{2}{3}\right) \pi \times 3 r^{2} \Delta r$
$\Delta v=2 \pi r^{2} \Delta r$
So finally ,
$\left(\frac{\Delta v}{\mathrm{v}}\right) \times 100=3 \cdot\left(\frac{\Delta \mathrm{r}}{\mathrm{r}}\right) \times 100$
$=3 \times \lambda$
$=3 \lambda \%$

9. Question

Mark the correct alternative in the following:
The pressure P and volume V of a gas are connected by the relation $\mathrm{PV}^{1 / 4}=$ constant. The percentage increase in the pressure corresponding to a deminition of $1 / 2 \%$ in the volume is
A. $\frac{1}{2} \%$
B. $\frac{1}{4} \%$
C. $\frac{1}{8} \%$
D. none of these

Answer

let $\mathrm{pv}^{1 / 4}=\mathrm{k}$ (constant)
$\mathrm{Pv}^{1 / 4}=\mathrm{k}$
$P=k \cdot v^{-1 / 4}$
$\log (p)=\log \left(k \cdot v^{-1 / 4}\right)$
$\log (p)=\log (k)-(1 / 4) \log (v)$
$\frac{\mathrm{dP}}{\mathrm{P}}=0-\frac{1}{4} \times \frac{\mathrm{dV}}{\mathrm{V}}$
$\frac{\mathrm{dP}}{\mathrm{P}}=-\frac{1}{4} \times-\frac{1}{2} \%$
$=\frac{1}{8} \%$
10. Question

Mark the correct alternative in the following:
If $y=x^{n}$, then the ratio of relative errors in y and x is
A. $1: 1$
B. $2: 1$
C. $1: n$
D. $n: 1$

Answer

given $y=x^{n}$
$\Delta y=n \cdot x^{n-1} \cdot \Delta x=x$
$\frac{\frac{\Delta y}{y}}{\frac{y x}{x}}=\frac{x}{y} \cdot \frac{\Delta y}{\Delta x}$
$=\frac{x}{y} \times \frac{n \cdot x^{n-1} \cdot \Delta x}{\Delta x}$
$=\frac{\mathrm{n} \cdot \mathrm{x}^{\mathrm{n}}}{\mathrm{x}^{\mathrm{n}}}$
$=\frac{\mathrm{n}}{1}$
So finally ratio is $=\mathrm{n}: 1$

11. Question

Mark the correct alternative in the following:
The approximate value of $(33)^{1 / 5}$ is
A. 2.0125
B. 2.1
C. 2.01
D. none of these

Answer

$f(x)=x^{1 / 5}$
$F^{\prime}(x)=(1 / 5) \cdot x^{-4 / 5}$
$F(a+h)=f(a)+h \times f^{\prime}(a)$
$(a+h)^{\frac{1}{5}}=a^{\frac{1}{5}}+h \times\left(\frac{1}{5}\right) \times(a)^{-\frac{4}{5}}$
Now

Let $\mathrm{a}=32 \& \mathrm{~h}=1$
$(32+1)^{\frac{1}{5}}=(32)^{\frac{1}{5}}+1 \times\left(\frac{1}{5}\right) \times(32)^{-\frac{4}{5}}$
$=2+1 \times\left(\frac{1}{5}\right) \times(2)^{-4}$
$=2+\left(\frac{1}{80}\right)$
$=\frac{161}{80}$
$=2.0125$

12. Question

Mark the correct alternative in the following:
The circumference of a circle is measured as 28 cm with an error of 0.01 cm . The percentage error in the area is
A. $\frac{1}{14}$
B. 0.01
C. $\frac{1}{7}$
D. none of these

Answer

given that circumference is $=C=2 \pi r=28 \mathrm{~cm}$
That's mean $r=14 / \pi$
$\Delta C=2 \pi \Delta r=0.01$
$\Delta r=(0.01 / 2 \pi)$
We all know that area of a circle is $=A=\pi r^{2}$
$\Delta A=2 \pi r \times d r$
So finally,
$\left(\frac{\Delta \mathrm{A}}{\mathrm{A}}\right) \times 100=2 \times \frac{\frac{0.01}{2 \pi}}{\frac{14}{\pi}} \times 100$
$=1 / 14$

Very short answer

1. Question

For the function $y=x^{2}$, if $x=10$ and $\Delta x=0.1$. Find Δy.

Answer

by the formula of differentiation we all know that-
$\frac{d y}{d x}=\frac{\Delta y}{\Delta x} \ldots$ eq(1)

Ify $=x^{2}$ then
$\frac{d y}{d x}=2 x$,so put the value of $\frac{d y}{d x}$ in eq(1), we get-
$2 \mathrm{x}=\frac{\Delta \mathrm{y}}{0.1}$
$\Delta y=2 \times 10 \times(0.1)$
$\Delta y=2$

2. Question

If $y=\log _{e} x$, then find Δy when $x=3$ and $\Delta x=0.03$.

Answer

given that
$Y=\log x$ then $y^{\prime}=1 / x$
$\Delta \mathrm{y}=$?
$X=3$
$\Delta x=0.03$
By putting the values of above in the formula $\frac{d y}{d x}=\frac{\Delta y}{\Delta x}$ we get
$\frac{1}{x}=\frac{\Delta y}{0.03}$
$\frac{1}{3}=\frac{\Delta y}{0.03}$
$\Delta y=0.01$

3. Question

If the relative error in measuring the radius of a circular plane is α, find the relative error measuring its area.

Answer

given that
$\frac{\Delta r}{r}=a$ (if let r is radius)
$\frac{\Delta \mathrm{A}}{\mathrm{A}}=$? (if let A is area of circle)
We know that the area of a circle $(A)=\pi r^{2}$ then
$d A=2 \pi r \times d r$
now
$\frac{\mathrm{dA}}{\mathrm{A}}=\frac{2 \pi r \times \mathrm{dr}}{\mathrm{A}}$
$\frac{\mathrm{dA}}{\mathrm{A}}=\frac{2 \pi r \times \mathrm{dr}}{\pi \mathrm{r}^{2}}$
$\frac{\mathrm{dA}}{\mathrm{A}}=2 \times \frac{\mathrm{dr}}{\mathrm{r}}$
we know that if there is a little approximation in variables then,
$\frac{\mathrm{dA}}{\mathrm{A}}=\frac{\Delta \mathrm{A}}{\mathrm{A}}$
$=2 \times \frac{\Delta r}{r}$
$=2 \times a$
$=2 \mathrm{a}$

4. Question

If the percentage error in the radius of a sphere is α, find the percentage error in its volume.

Answer

given that
$\left(\frac{\Delta r}{r}\right) \times 100=\mathrm{a}$ (if let r is a radius of a sphere)
$\left(\frac{\Delta \mathrm{v}}{\mathrm{v}}\right) \times 100=$?
We know that $\mathrm{v}=\left(\frac{4}{3}\right) \pi \mathrm{r}^{3}$
Then, $d v=\left(4 \pi r^{2}\right) \times d r$
Finally $\left(\frac{\Delta v}{v}\right) \times 100=3 \times\left(\frac{\Delta r}{r}\right) \times 100$
$=3 \times a$
=3a\%

5. Question

A piece of ice is in the from of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume.

Answer

given that cube edge error $\%[(\Delta x / x) \times 100]=a$
Volume \%=?
Let the edge of cube is x,
Volume; $v=x^{3}$
Then, $d v=3 x^{2} . d x$
So finally $\frac{\Delta v}{v} \times 100=\frac{\left(3 x^{2}\right) \Delta x}{x^{3}} \times 100$
$=3 .\left(\frac{\Delta x}{x}\right) \times 100$
$=3 \times a$
$=3 \mathrm{a}$

